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Preface

This volume contains the papers presented at the joint SUMo/CompoNet 2011
event: second international workshop on Scalable and Usable Model Checking for
Petri nets and other models of concurrency and the first international workshop
on Composition of Petri nets held on June 20-24, 2011 in Newcastle, United
Kingdom as a part of the International Conference on Applications and Theory of
Petri Nets (PETRI NETS 2011). These joint workshops aim at bringing together,
in an informal setting, researchers interested in all aspects of model checking
and composition for different models of concurrency, whether this interest be
practical or theoretical, primary or derived.

SUMo and CompoNet PC members have reviewed nine submissions by re-
searchers from several countries. Each submission was reviewed by 4 program
committee members. Finally six papers have been selected for publication and
presentation.

The Model Checking Contest is a SUMo’s additional event that runs in par-
allel with the paper submissions, this year the results of this contest will be
presented at the conference but not directly published in this proceeding. We
expect a future publication of those results after the workshop.

The workshops organizers would like to thank Alexandre Duret-Lutz, from
EPITA/LRDE for his Keynote talk entitled ”Building LTL Model Checkers using
Transition-based Generalized Büchi Automata”.

The workshops organizers would also like to thank the authors of submitted
papers for their interest in SUMo/CompoNet. We also thank the program com-
mittee members and the external reviewers for their outstanding work during
the reviewing process.

Last but not least, we thank the authors of the EasyChair conference man-
agement system which made the practical organization of the reviewing process
considerably easier.

June 2011 Didier Buchs (PC chair SUMo)
Hanna Klaudel and Franck Pommereau (PC chairs CompoNet)
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Distributed Verification of Modular Systems

M.C. Boukala1 and L. Petrucci2

1 LSI, Computer Science department, USTHB
BP 32 El-Alia Algiers, ALGERIA

boukala@lsi-usthb.dz
2 LIPN, CNRS UMR 7030, Université Paris XIII

99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE

Laure.Petrucci@lipn.univ-paris13.fr

Abstract. The use of distributed or parallel processing gained interest
in the recent years to fight the state space explosion problem. Many in-
dustrial systems are described with large models, and the state space
being even larger, it does not fit completely into the memory of a single
computer.
To avoid the high space requirement, several reduction techniques have
been proposed: modular verification, partial order reductions, symme-
tries, using symbolic or compact representations like BDDs.
Another way to alleviate the state space explosion problem is to use
modular analysis, which takes advantage of the modular structure of a
system specification, particularly for systems where the modules exhibit
strong cohesion and weak coupling.
In this paper, we propose to combine distributed processing and modu-
lar analysis to perform verification of basic behavioural properties such
as reachability, deadlock states, liveness, and home states and their dis-
tributed analysis for modular systems. Each module is assigned to a
process which explores independently the internal activity of the mod-
ule, allowing a significant reduction in the size of the state space rather
than in an interleaved fashion.
Keywords: Modular systems, distributed verification, modular analysis,
Petri nets.

1 Introduction

Systems developed nowadays are both more and more complex and critical.
When addressing the design of such systems, it is necessary to ensure reliability,
by verifying the system properties. The main approach to verification consists
in the generation and analysis of the state space. Some properties such as reach-
ability or deadlocks can be verified on-the-fly, and only require information on
states reachable from the initial marking. On the contrary, liveness and home
states are elaborate properties which require a full generation of the state space
including not only nodes but also arcs. Even for small models, the size of the
state space may be too huge to fit in the memory of a single computer.
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To cope with the state space explosion problem, several reduction techniques
have been proposed: on-the-fly verification checks properties during the state
space construction; sweep-line construction [Sch04] considers a progress mea-
sure, and discards states that will not be encountered further in the construc-
tion; modular verification [LP04]; partial order reductions [Val92,NG97]; sym-
metries [AHI98,CFJ93]; using symbolic or compact representations like BDDs
and Kronecker algebra.

Recently, several studies addressed distributed verification, many of them
focussing on distributed LTL model-checking [BBS01,BO03,LS99,BP07]. These
works are mainly based on the partionning of the state space.

The performances of distributed verification depends on several criteria, e.g.
load balancing of the partitioned state space, but also, more importantly, on
a good partitioning. Therefore, choosing an adequate hash function to assign
nodes to processors is important.

In [LP04] the modular analysis approach examines in isolation the local be-
haviour of each subsystem, and then separately considers the synchronisation
between the subsystems. In this fashion, exploring the many possible interleav-
ings of activity of the subsystems is avoided, thus reducing the state space.

In this work, we propose to combine modular analysis and distributed pro-
cessing to improve consequently the systems verification. We focus on checking
usual properties such as reachability, liveness and home states.

The paper is organised as follows. We assume the reader is familiar with basic
Petri nets notions. Hence, we recall in Section 2 only the modular concepts, i.e.
Modular Petri nets and Modular State Spaces. In section 3, we introduce algo-
rithms based on distributed modular construction of the state space. In section 4
distributed verification of various properties is presented. These algorithms have
been implemented in a prototype tool and experimental results are presented in
section 5. Finally, section 6 concludes the paper.

2 Modular Petri Nets

In this paper, we consider only modules synchronised through shared transitions
as in [LP04].

2.1 Definition of Modular Petri Nets

Definition 1 (Modular Petri net). A modular Petri net is a pair MN =
(S,TF), satisfying:

1. S is a finite set of modules such that:
– Each module, s ∈ S, is a Petri net: s = (Ps, Ts,Ws,M0s

).
– The sets of nodes corresponding to different modules are pair-wise dis-

joint:
∀s1, s2 ∈ S : [s1 6= s2 ⇒ (Ps1 ∪ Ts1) ∩ (Ps2 ∪ Ts2) = ∅].
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– P =
⋃

s∈S

Ps and T =
⋃

s∈S

Ts are the sets of all places and all transitions

of all modules.
2. TF ⊆ 2T is a finite set of non-empty transition fusion sets.

In the following, TF also denotes
⋃

tf∈TF tf . We now introduce transition
groups.
Definition 2 (transition group). A transition group tg ⊆ T consists of either
a single non-fused transition t ∈ T \ TF or all members of a transition fusion
set tf ∈ TF .
The set of transition groups is denoted by TG.

A transition can be a member of several transition groups as it can be syn-
chronised with different transitions (a sub-action of several more complex ac-
tions). Hence, a transition group corresponds to a synchronised action. Note
that all transition groups have at least one element.

Next, we extend the arc weight function W to transition groups, i.e. ∀p ∈
P,∀tg ∈ TG :

W (p, tg) =
∑

t∈tg
W (p, t), W (tg, p) =

∑
t∈tg

W (t, p).

Markings of modular Petri nets are defined as markings of Petri nets, over the
set P of all places of all modules. The restriction of a marking M to a module
s is denoted by Ms. The enabling and occurrence rules of a modular Petri net
can now be expressed.
Definition 3 (Transition group enabledness). A transition group tg is en-
abled in a marking M , denoted by M [tg〉, iff:

∀p ∈ P : W (p, tg) 6M(p)

When a transition group tg is enabled in a marking M1, it may occur, changing
the marking M1 to another marking M2, defined by:

∀p ∈ P : M2(p) = (M1(p)−W (p, tg)) +W (tg, p).
Figure 1 depicts a modular Petri net consisting of three modules A, B and

C. Modules A and B both contain transitions labelled F1 and F3, while modules
B and C both contain transition F2. These matched transitions are assumed to
form three transitions fusion sets.

Example: The (full) state space for the modular Petri net of figure 1 is shown
in figure 2. Note that the initial state is shown as A1B1C1, thus indicating that
place A1 is marked with a token in module A, place B1 is marked with a token
in module B, and place C1 is marked with a token in module C. In this initial
state, only transition F1 is enabled, its occurrence leading to state A2B2C1.

When considering the modular state space, as well as checking properties of
the system, we will use Strongly Connected Components. The set of all strongly
connected components is denoted by SCC. For a node v and a component c ∈
SCC we use v ∈ c to denote that v is one of the nodes in c. A similar notation
is used for arcs. We use vc to denote the component to which v belongs.
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A1

A2

A3

B1

B2

B3

C1

C2

F3

F1

tB

F2

F1

tA

F3

F2

Fig. 1: A modular Petri net with 3 modules

2.2 Modular State Spaces

In the definition of modular state spaces, we denote the set of states reachable
from M by occurrences of local (non-fused) transitions only, in all the individual
modules, by [[M〉.

The notation with a subscript s means the restriction to module s, e.g. [M〉s
is the set of all nodes reachable from the global marking M by occurrences of
transitions in module s only.

We use M [[σ〉〉M ′ to denote that M ′ is reachable from M by a sequence
σ ∈ (T \ TF )∗TF of internal transitions followed by a fused transition. In the
definition of modular state spaces we need a compact notation to capture the
states reachable from M in all the individual modules. It turns out that we can
use a product of SCCs of the individual modules to express this representative
node: for any reachable marking M , we use M c to denote the product (or tuple)
of Strongly Connected Components (SCCs) M c

s of the individual modules:

∀M ∈ [M0〉 : M c =
∏
s∈S

M c
s .

The definition of a modular state space consists of two parts: the state spaces of
the individual modules and the synchronisation graph.

Definition 4 (Modular state space). Let MN = (S,TF) be a modular Petri
net with the initial marking M0. The modular state space of MN is a pair
MSS = ((SSs)s∈S ,SG), where:

1. SSs = (Vs, As) is the local state space of module s:
(a) Vs =

⋃
v∈VSG

[v〉s
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A1B1C1

A2B2C1

A2B3C2 A3B2C1

A3B3C2

F1

F2 tA

tA

F2F3

tB

tB

Fig. 2: The state space of the modular net of figure 1

(b) As = {(M1, t,M2) ∈ Vs × (T \ TF)s × Vs |M1[t〉M2}
2. SG = (VSG, ASG) is the synchronisation graph of MN :

(a) VSG = [[M0〉〉c ∪M c
0

(b) ASG = {(M c
1 , (M

′c
1 , tf ),M c

2 ) ∈ VSG×([M0〉c×TF)×VSG |M
′

1 ∈ [[M1〉∧
M

′

1[tf 〉M2}

A detailed explanation of the definition is given in [LP04]:
(1) The definition of the state space graphs of the modules is a generalization of
the usual definition of state spaces.

(1a) The set of nodes of the state space graph of a module contains all states
locally reachable from any node of the synchronisation graph.

(1b) Likewise the arcs of the state space graph of a module correspond to all
enabled internal transitions of the module.
(2) Each node of the synchronisation graph is labelled by a M c and is a repre-
sentative for all the nodes reachable from M by occurrences of local transitions
only, i.e. [[M〉. The synchronisation graph contains the information on the nodes
reachable by occurrences of fused transitions.

(2a) The nodes of the synchronisation graph represent all markings reachable
from another marking by a sequence of internal transitions followed by a fused
transition. The initial node is also represented.

(2b) The arcs of the synchronisation graph represent all occurrences of fused
transitions.

The state space graphs of the modules contain only local information, i.e.
the markings of the module and the arcs corresponding to local transitions but
not the arcs corresponding to fused transitions. All the information concerning
these is stored in the synchronisation graph.

The nodes of the synchronisation graph represent all markings reachable
from another marking by a sequence of internal transitions followed by a fused
transition. The initial node is also represented.
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The arcs of the synchronisation graph represent all occurrences of fused tran-
sitions. Each arc is labelled by the corresponding fired transition and by the
SCCs of the markings which enabled this transition. But only the SCCs of the
participating modules do appear.

Example: The modular state space for the modular Petri net of figure 1 is shown
in figure 3. Note that there is a local state space for each module, as well as a
synchronisation graph which captures the occurrence of fused transitions. We do
not distinguish between nodes and SCCs since, in this case, all SCCs consist of
a single node (which is seldom the case in practice).

Module A

A1

A2

A3

Module B

B1

B2

B3

Module C

C1

C2

Synch. Graph

A1B1C1

A2B2C1

A2B3C2

tA

A1B1C1, F1

A2B2C1, F2

tB

A3B3C2, F3

Fig. 3: The modular state space of the net in figure 1

Although sketches of algorithms were introduced in [LP04], we give here the
description of the distributed algorithms for the construction of the state space
and for the verification of the reachability, dead markings, liveness, and home
states properties.

3 Distributed Construction of the Modular State Space

Several works have developed distributed tools generating and exploring the
state space on a cluster of workstations. Partitioning the set of states over the
different stations is done using a hash function [GMS01,KP04,AAC87,LP04].
This approach can handle larger state spaces but still remains limited.

Here, we consider a different approach based on modularity to achieve a dis-
tributed construction of the state space and the verification of various properties.

In this approach we also used two types of processes. They consist in a
coordinator process and N worker processes, one worker process for each module,
as in [KP04].
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The coordinator constructs the synchronisation graph, coordinates the differ-
ent worker processes and determines the termination of the modular state space
construction, while every worker generates the local state space of the module
it is assigned by firing only internal transitions.

The coordinator process starts by sending the initial marking M0s
restricted

to module s to each worker process, and waits for receiving the states enabling
fused transitions from the workers processes.

Algorithm 1: Internal State Space Generation()
begin1

/* Process states in Waiting */
while ¬EndOfGeneration do2

while Waiting 6= ∅ do3
Choose M ∈Waitings4
forall the t 6∈ TF s.t. M [t〉M ′ do5

/* t is an enabled internal transition */
Add (M ′)6
Arc (M, t, M ′)7
UpdateSCC ()8

forall the tf ∈ TF s.t. M [tf 〉 do9
/* M enables a fused transition tf */
TFWaiting ← TFWaiting ∪ {(M, tf )};10

Waitings ←Waitings \ {M}11

if TFWaiting = ∅ then12
EndOfGeneration = true13

else14
while TFWaiting 6= ∅ do15

Choose (M, tf ) ∈ TFWaiting s.t. M [tf 〉M ′16
Waitings ←Waitings ∪ {M ′}17
TW .label = Mc18
TW .AncSCC = AncSCC (M)19
TW .tr = tf20
TW .SuccSCC = M ′c21
Send (Sender = s, Dest = Coordinator , Type = SynchTrans,22

Content = TW )23

Send (Sender = s, Dest = Coordinator , Type = END_GENERATION)24
end25

When a worker process s receives the initial marking, it adds it to the sets
Vs and Waitings, that correspond respectively to the set of local markings and
the set of markings which are visited but not explored yet. The worker process
then invokes algorithm 1 to generate the internal state space of the module it is
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assigned. Function Add (M) adds the marking M to both sets Vs and Waitings

if it is not already in Vs.
The workers send enabled fused transitions to the coordinator process. Actu-

ally, the message sent to the coordinator not only contains the fused transition tf
but also the SCC number M c of the marking enabling tf , and the SCC number
of its predecessor marking in the synchronisation graph (in a field AncSCC ).

The communications are asynchronous. Thus, when receiving a message,
the coordinator and worker processes are preempted and a handler function
MessageHandler() is invoked. Algorithm 2 describes the actions performed by
the coordinator when it receives a fused transition from the worker process s.

The parts handling other messages are not detailed. They concern the algo-
rithm termination (and is similar to the termination in [KP04]), as well as the
analysis messages introduced in section 4.

First, the coordinator creates the initial node v0 = M c
0 ∈ VSG. When a

fused transition tf is received from a process s, the successors of a node v =
(v1, v2, . . . vN ) ∈ VSG are computed as follows:

– we consider the set PM of the modules (processes) participating in the syn-
chronisation of the fused transition tf ;

– we construct the sets:
• Wpm corresponding to the fused transition tf received earlier from other
processes;
• Ws corresponding to the fused transition received from process s;
• Wnp contains • for modules not participating in the synchronisation;

– for all possible combinations, the successor nodes in the synchronisation
graph are calculated.

The successor states thus computed are sent to the worker processes for an
additional round of internal state space generation.

4 Properties

A major issue is the analysis of concurrent systems properties. The reachabil-
ity graph is the basic model on which most verifications are built. Behavioural
properties, which depend on initial marking, and the reachability graph are often
used to perform such analysis.

In this work we focus on basic behavioural properties: reachability, deadlocks,
liveness, home state and their distributed analysis.

4.1 Reachability

The reachability problem for Petri nets consists in proving that a given marking
M is in [M0〉. This property is often used to check whether a faulty state M
is reachable, e.g. an elevator moving while the door is open. It is convenient to
look for erroneous states.
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Algorithm 2: Message Handler()
begin1

...
if Message.Type = SynchTrans then2

/* message received contains an enabled fused transition */
tf = Message.Content.tr3
s = Message.Sender4
PM = {i s.t. tf ∈ Ti}5
/* PM: modules participating in the synchronisation of tf */
foreach v = (vc

1, vc
2, · · · , vc

N ) ∈ VSG do6
foreach pm ∈ PM and pm 6= s do7

Wpm = {w ∈ SGWaitingpm s.t.8
(w.AncSCC = vc

pm) ∧ (w.tr = tf )}9
/* Wpm: markings enabling tf , with vpm as ancestor */

foreach np 6∈ PM and np 6= s do10
Wnp = {•}11
/* any marking of a non-participating module enables

synchronisation */

Ws = {Message.Content}12
foreach C = (c1, c2, · · · , cN ) s.t. ∀i ∈ PM , ci ∈Wi do13

v′ = (v′c
1, v′c

2, · · · , v′c
N ) where:14

∀i ∈ PM , v′c
i = ci.SuccSCC and ∀i 6∈ PM , v′c

i = vc
i15

Add (v′)16
AddArc (v, (C , ft), v′)17
foreach pm ∈ PM do18

Send (Sender = Coordinator , Dest = pm, Type = NEW_NODE,19
Content = v′

pm)20

SGWaitings = SGWaitings ∪Message.Content21

...
end22
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In some applications, one may be interested in the markings of a subset of
places and not care about the others places in the net. This leads to a submarking
reachability problem.

Reachability is known to be decidable. For modular systems, determining
whether a given state M is reachable from the initial marking can be done in
a parallel way: each worker process s searches through its local state space Vs.
Then, if one of the worker processes does not find Ms in its local state space
Vs, marking M is not reachable. Otherwise i.e. (∀s ∈ {1..N} Ms ∈ Vs), all
the workers send the ancestor SCCs of Ms to the coordinator. The coordinator
stores the SCCs received from each worker s and checks whether there exists a
combination of these in the set of nodes of the synchronisation graph VSG.

4.2 Deadlocks

The algorithm used to find dead markings in a modular state space is based on
the following proposition:

Proposition 1 (Deadlocks).

M ∈ [M0〉 is a deadlock ⇔ [ ∀s ∈ S : (Ms)c ∈ Term(SCCs) ∩ Trivial(SCCs))
∧(∀(v1, (M c

1 , tf), v2) ∈ ASG : M c
1 6= M c)]

Each worker process s searches in its local state space for the local dead
markings which consist in trivial terminal SCCs. If there exists a worker process
without such a node, the module assigned to this worker always allows a local
behaviour. Hence, the system is deadlock-free. Otherwise, every worker process
sends the SCCs corresponding to the locally dead markings to the coordinator
process.

The coordinator process stores the SCCs received from the workers. It then
checks each combination of such markings: if it labels an arc in the synchroni-
sation graph, the corresponding fused transition is enabled and the marking is
not a deadlock. Otherwise, if the marking is effectively reachable, then it is a
deadlock.

4.3 Liveness

To verify whether a transition t is live or not, two cases are distinguished: if t
is a fused transition (t ∈ TF), or t is an internal transition. The verification is
based on the following proposition.

Proposition 2 (Liveness).

1. A transition tf ∈ TF is live ⇔
[∀scc ∈ Term(SCCSG) : tf ∈ Trans(scc)]

∧ [∀v ∈ VSG : ∀M ∈ [[v〉 :(∀s ∈ S : M c
s ∈ Term(SCCs))

⇒ ∃(v, (M1, tf ′), v2) ∈ ASG : M1 ∈ [[M〉].
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2. A transition t ∈ Ts is live ⇔
[∀scc ∈ Term(SCCSG) : ∃v ∈ scc : t ∈ Trans([vs〉s)]

∧ [∀v ∈ VSG : ∀M ∈ [[v〉 : (M c
s ∈ Term(SCCs))

⇒ (t ∈ Trans(M c
s ) ∨ ∃(v, (M1, tf ), v2) ∈ ASG : M1 ∈ [[M〉))].

To check if a fused transition tf is live, the coordinator checks if there exists
a terminal SCC in the synchronisation graph which does not contain transition
tf , in which case transition tf is not live. Otherwise, for each node v ∈ VSG
of the synchronisation graph, the coordinator sends vs to the worker process s
and waits to receive the terminal SCCs reachable from vs in module s. Then,
it checks whether the combinations of the terminal SCCs label fused transitions
are in SG, considering only the modules participating in the synchronisation of
this fused transition. If this is not the case, tf is not live.

When transition t is an internal transition of module s, the worker process s
detects the terminal SCCs which do not enable t, that may invalidate liveness.
For each node v ∈ VSG of the synchronisation graph, the coordinator sends vs

to the worker process s. The worker processes check whether these problematic
SCCs are reachable from vs, and send them to the coordinator. The coordinator
checks if there exists a combination that does not label a fused transition, in
which case transition t is not live.

4.4 Home States
The verification of whether a reachable state MH is a home state or not is based
on the following proposition.
Proposition 3 (Home state).
A state MH ∈ [M0〉 is a home state ⇔

[∀scc ∈ Term(SCCSG) : ∃v ∈ scc : MH ∈ [[v〉]
∧ [∀v ∈ VSG : ∀M ∈ [[v〉 : (∀s ∈ S : M c

s ∈ Term(SCCs))
⇒MH ∈ [[M〉 ∨ ∃(v, (M1, tf ,M2), v2) ∈ ASG : M1 ∈ [[M〉].

To check such a property, we first check whether the state MH is reachable
from all nodes of the synchronisation graph. Then, for every node v of the syn-
chronisation graph, the coordinator asks the worker processes for the terminal
SCCs reachable from v by firing internal transitions only. The coordinator checks
then that all combinations label an arc, or correspond to the SCC containing
MH . Otherwise MH is not a home state.

5 Implementation and experiments
The previous algorithms were implemented within a prototype tool. The tests
were carried on a cluster composed of 12 stations (Pentium IV with 512 Mbytes
of memory), one of them is assigned to the coordinator process while the others
run the worker processes.

In this section, we give the results obtained for the dining philosophers prob-
lem and Automated Guided Vehicles (AGV) problem, and draw conclusions.
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5.1 The dining philosophers problem

The distributed generation based on partitioning the state space over a cluster
of stations, allows for handling large size problems. In [BP07], the philosophers
problem was handled with various sizes (see Table 1).

Nb Philo Nb States Nb Trans Nb Cross. arcs Nb Mess. CPU Time (sec)
5 11 30 18 36 <0.01
10 123 680 242 494 <0.01
15 1,364 11,310 2,731 5477 0.06
20 15,127 167,240 30,236 60,493 2.52
25 167,761 2,318,400 315,718 631,587 32.58
30 1,728,813 28,686,031 3,572,821 7,156,116 7547.45

Table 1: Distributed generation based on partitioning the state space

But this approach is still limited. The total number of exchanged messages
is very high, due to the amount of cross arcs.

In the distributed modular based approach, the original Petri net is split into
a Modular Petri net with N modules and each module, which can contain m
philosophers, is assigned to a worker process. Philosopher i of module l shares its
forks with the philosophers i−1 and i+1 of the same module for 2 ≤ i ≤ m−1.
Philosophers 1 in module l and m in module (l− 1)modN + 1 also share a fork.

The nature of the Petri net gives 4 SCCs in each module graph. The syn-
chronisation graph size is 2N nodes and N.2N arcs. For a problem with 100
philosophers, if we consider 10 modules with 10 philosophers each, we obtain
1,024 nodes and 10,240 arcs in the synchronisation graph, 233 nodes and 1,132
arcs in each local graph. The reachability graph size for the original problem is
greater than 7× 1020 nodes and 7× 1022 arcs.

In Table 2, we give the modular state space sizes for the philosophers problem
considering 10 philosophers per module each time. The average of CPU times of
the coordinator is also given.

Nb Philo Nodes N Arcs Mess Nb CPU Time (sec) CPU time (1 proc)
20 470 2162 26 0.04 0.08
40 948 4372 52 0.04 0.16
60 1462 6846 84 0.04 0.25
80 2120 10664 120 0.05 0.39
100 3354 21010 230 0.16 0.61

Table 2: Modular distributed generation

The CPU time of the workers is generally equal to 0.04 s (for 10 philosophers
per module). Thus, in the first cases the global CPU time corresponds to the
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local state space generation, the synchronisation graph generation CPU time is
less then 0.01 s. In the last cases the synchronisation graph generation spends
more time since its size became larger.

Various tests were performed for reachability, liveness and home state prop-
erties, with the philosophers problem of 10 modules with 10 philosophers in each
one, the experimental results are given in the table 3.

Properties CPU Time (sec) Mess Nb
Reachability1 < 0.01 20
Reachability2 0.03 20
Reachability3 0.02 20
Liveness (Internal tr) 0.17 4278
Liveness (F uzed tr) 0.15 4116
Home state 0.21 4432

Table 3: Distributed modular verification of properties of the philosophers example

For reachability, we considered three cases: in the first, the marking is not
reachable in some modules; in the second, the marking is reachable in the mod-
ules but not reachable as a global marking; and in the third case, the marking
is reachable. The number of exchanged messages is the same and correspond to
messages sent by the coordinator to the worker processes to transmit the mark-
ing to check (10 messages) and to the answers of the workers (10 messages).
The liveness and home state verifications are performed with a relatively large
number of exchanged messages: since all transitions are live, the coordinator
must obtain the terminal SCCs reachable from each node of the synchronisation
graph. When the coordinator moves from a node to its successor in the synchro-
nisation graph, it transmits messages only to the workers corresponding to the
changed components to have their terminal SCCs. This allows for minimising
the number of messages transmitted by the coordinator.

5.2 Automated Guided Vehicles

The Automated Guided Vehicles (AGVs) problem has been solved by means of
Modular State Spaces in [LP04]. The problem is that of a factory floor which
consists of three workstations which operate on parts, two input and one output
stations, and five AGVs which move parts from one station to another.

The 5 AGVs example is loosely coupled. Therefore, much interleaving is
avoided when building the modular state space and this leads to very good
results. This model has 30,965,760 states (see [LP04]). However, with modu-
lar analysis we obtain only 900 states with 2,687 arcs. The analysis based on
modular distribution gives also good results as shown in table 4.
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CPU Time (sec) Mess Nb
State Space Generation 0.02 82
Deadlocks search 0.03 11
Reachability1 < 0.01 22
Reachability2 0.02 22
Reachability3 0.02 22
Liveness (Internal tr) 0.09 3313
Liveness (F uzed tr) 0.08 3062
Home state 0.15 3415

Table 4: Distributed verification of properties for the 5 AGVs example

6 Conclusion

In this paper, we proposed steps towards distributed modular analysis of Petri
net models, based on the construction framework of [LP04]. Using these algo-
rithms, it is possible to verify standard Petri nets properties, such as reachability,
deadlocks, home states and liveness, in a distributed manner.

The main advantage of such an approach is the possibility to consider very
large systems with several modules, sharing transitions, and assign them among a
set of machines, thus limiting the drawbacks of the state space explosion problem.

Each machine (process) generates only the state space of the module it is
assigned. The synchronisation graph provides the global knowledge of the be-
haviour of the system.

Moreover, it is also possible to check properties using the distributed modu-
lar state space directly, i.e. without unfolding to the ordinary state space. When
designing algorithms there is often a trade-off between time and space complex-
ity. For state space analysis it is attractive to have a rather fast way to decide
properties, but the state space explosion problem makes it absolutely necessary
to minimise memory usage.

Experiments were performed on a cluster of 12 stations. Both the AGVs,
and the philosophers problems were considered, with different sizes. The results
obtained for the generation of the modular state space were very interesting
and allow for checking properties of very large systems. Future work will ex-
tend properties verification to temporal logic properties. Further experiments
on larger case studies are also necessary for a better assessment of the benefits
of this approach.
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Abstract. Symbolic BDD-based verification techniques successfully tackle com-
binatorial explosion in many cases. However, the models to be verified become
increasingly larger and more complex, including - for instance - additional fea-
tures like quantitative requirements and/or a very high number of components.
The need to improve performances for verification tools thus remains a challenge.
In this work, we extend the framework of Instantiable Transition Systems in order
to (i) take into account time constraints in a model and (ii) capture the symmetry
of instances which share a common structure, thus significantly increasing the
power of our tool. For point (i), we implement timed models with discrete time
semantics and for (ii), we introduce scalar sets as a special form of composition.
We also report on experiments including comparisons with other tools. The re-
sults show a good scale up for our approach.

1 Introduction

Context. Model checking is now widely used as an automatic and exhaustive way to
verify complex systems. However, this approach suffers from an intrinsic combinatorial
explosion, due to both a high number of synchronized components and a high level of
expressivity in these components.

Among the different methods proposed to tackle the problem, using decision di-
agrams [8] or partial order based techniques [21] have proved successful. Moreover,
exploitation of symmetries [13] or compositional model checking [2, 16] can be most
successful, especially when several components share the same structure (like the train
models in the train crossing example or the processes in Fischer’s protocol).

With respect to the expressivity issue, we consider the particular problem of intro-
ducing explicit time constraints in the components of a system. In this modeling step,
the choice of a time domain is important, impacting on the size of the resulting model,
the class of properties which can be verified and the performances of the verification.

During the last twenty years, numerous variants of dense time models have been
extensively studied. Among them, Time Petri Nets [19] (TPN) and networks of Timed
Automata [1] (TA) benefit from verification tools, which implement techniques relying
on the construction of a class graph (for TPN) or zone graph (for TA), with dedicated
and efficient data structures to represent zones, like Difference Bounded Matrices [10]
(DBM), which have been used in both cases.
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If we now consider a growing number of timed components, the two problems of
expressivity and sizeoccur together, but the symbolic DBM encoding only applies to
time zones and does not concern the discrete part of the states. Furthermore, the union
of DBM may not be convex, thus cannot be encoded as a DBM, so mixing DBM tech-
nology with a symbolic encoding of discrete states is difficult.

Directly interpreting models over a discrete time domain is usually easier to handle
than dense time because mechanisms elaborated for model checking of discrete systems
can be reused, even though state space explosion can be worse. The relations between
dense and discrete time analysis have been discussed for various models, showing that,
in many cases, discrete time computation is sufficient to preserve reachability or time-
bounded properties [14, 22]. Contrary to common belief, while the discretized approach
is sensitive to the maximum clock values in a model, it can often outperform dense time
approaches.

Contribution. In this work, we modify and extend the framework of Instantiable
Transition Systems proposed in [24] to include two new features. The first one is a spe-
cial operation of composition, building what we callscalar setsto capture symmetries
in components sharing the same structure. The second one is the implementation of
discrete time semantics for Time Petri Nets, following the latter approach to propose a
new fully symbolic technique for reachability analysis of discrete time specifications.
The new tool Roḿeo/SDD thus relies on hierarchical set decision diagrams (SDD [9])
that offer state of the art automatic symbolic saturation algorithms [12].

We experiment on two classical benchmark examples combining both features, and
compare the performances with those of several other tools handling discrete or dense
time, showing gains of several orders of magnitude.

Outline. We first recall the definition and semantics of Time Petri Nets in Section
2, along with the train crossing example. Section 3 describes the Instantiable Transi-
tion Systems framework with the additional features and briefly presents the encoding
technique. Finally, in Section 4, we give the performances obtained with our prototype
implementation, with comments and comparisons.

2 Discrete time Petri nets

To handle time constraints, we propose to use discrete time models. As mentioned in the
introduction, this can lead to larger state spaces due to sensitivity to constants. However,
the main advantage of this approach is to reduce the problem of timed verification to a
plain event-based verification.

Let us first recall the classical definition of Discrete Timed Transition Systems
(DTTS), where all standard actions (from some setA) are considered instantaneous
and delay transitions are added, in a time domain restricted to the setN of natural num-
bers. Without loss of generality, we consider only delay steps of exactly one time unit
(special action1 below). Having a single basic operation to handle time delay is more
effective in a symbolic setting than attempting to find at each step the maximal integer
delay consistent with synchronization of several components in a set of states.

Definition 1 (DTTS). Let A be a set of action labels and let1 /∈ A be a special action
representing a one time unit delay. A Discrete Timed Transition System over A is a
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tuple T = 〈S,s0,A,−→〉 where S is a set ofstates, s0 ∈ S is the initial state, and−→⊆
S× (A⊎{1})×S is the transition relation (⊎stands for disjoint union).

We consider the model of Time Petri Nets (TPN) with discrete time semantics.
TPN are used to compactly model concurrent timed behaviors. Besides, regarding the
problem of marking reachability, discrete time semantics capture all possible behaviors
[22, 18], even those with dense time semantics, which makes it possible to compare
experimentation results in both cases.

We choose an extended definition of TPN because this leads to easier and more
compact modeling abilities. There is a quite strong community of extended TPN users
and our definition below captures a wide superset of what is understood as TPN in the
literature: we consider an enabling predicate and a firing function as syntactic require-
ments, instead of defining various sorts of arcs. This homogeneously subsumes exten-
sions such as reset arcs, read (or test) arcs, inhibitor arcs, and even non-deterministic
extensions like hyper-arcs (becausefire maps to 2N

Pl
), which are offered for instance by

the Roḿeo tool [11]. The rich formalism demonstrates the flexibility of our tool, which
supports arbitrary models with (finite) DTTS semantics.

Definition 2 (TPN). A Time Petri Net is a tupleN = 〈Pl,Tr,A,enabled,fire, ℓ,m0,α,β〉
where:

– Pl is a finite set ofplaces, Tr is a finite set oftransitions(with Pl∩Tr = /0),
– A is a finite set (alphabet) ofaction labelswhich contains a distinguishedlocal

label⊤,
– enabled: NPl×Tr 7→ {true, f alse}is anenabling predicate, fire: NPl×Tr 7→ 2N

Pl

is a transition firing function,ℓ : Tr 7→ A is a labeling function,
– m0 ∈N

Pl is theinitial markingof the net,
– α : Tr 7→ N and β : Tr 7→ N∪ {∞} are functions satisfying∀t ∈ Tr,α(t) ≤ β(t)

called respectivelyearliest (α)and latest (β)transition firing times.

For instance, standard Place/Transition nets are usually defined using pre (noted
Pre) and post (notedPost) functions :Pl×Tr 7→N. Then, for a markingm∈N

Pl and
a transitiont ∈ Tr, enabling is defined byenabled(m,t) iff ∀p ∈ Pl, m(p)≥ Pre(p,t)
and transition firing byfire(m,t) = {m′} with ∀p ∈ Pl, m′(p) = m(p)−Pre(p,t) +
Post(p,t). Inhibitor arcsInh and test arcsTest are defined similarly and add enabling
conditions to a transition:enabled(m,t) iff ∀p∈Pl, m(p)< Inh( p,t)∧m(p)≥Test(p,t).
Note that theenablingpredicate only considers markings while timing conditions are
defined separately. In definition 2, transitions are equipped with labels for further com-
position of nets (see Section 3).

The classicaltrain crossing example[5] is partly described by the three TPNs in
Fig. 1. Each train triggers a sensor App when approaching the critical zone, then takes
3 to 5 time units to reach the crossing, and 2 to 4 time units to leave it, where it triggers
the Exit sensor. The controller of Fig. 2 keeps track of how many trains are in the critical
zone (this model considersn tracks go through the gate, so up ton trains could be in
the zone). It strives to identify when the first train enters the area, or when the last train
leaves it, essentially by counting trains as they trigger App and Exit sensors. Finally the
gate itself is modeled as a TPN which reacts to control commands (App and Exit) but
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with some delays introduced to model the time it takes to open or close the gate. These
three TPNmodels are building blocks we will assemble to build the full system model;
this allows us to easily build variations on a model while reusing parts of a model in
different scenarios.

In

Ex

App

on

close

far

left
Exit

[3,5]

[2,4] [0,0]

public

local (   )

Fig. 1.Train Component (default time interval is[0,∞[)

In

EnterFirst

far

2

2

Enter

ExitLast

Exit2

2

Fig. 2.Controller module for 2 trains

Down2

Down1
App

open

raising

closedleaving

coming

lowering
Exit

L

R

[0,0]

[0,0]

[0,0]

[1,2]

[1,2]

Up

Fig. 3.Gate module (default time interval is[0,∞[)

The discrete timesemantics of a TPN is described by a Discrete Time Transition
System (DTTS). Avaluation vis an element ofNT . Thus, for a transitiont ∈ T, v(t)
represents the value inN of an implicit clock associated witht.

Definition 3 (Discrete Time Semantics of a TPN).For a Time Petri NetN = 〈Pl,Tr,A,
enabled,fire, ℓ,m0,α,β〉, the semantics is a transition systemSN = 〈S,s0,A∪{1},→〉
where:

– S= N
Pl ×N

Tr is the set of states. An element s of S is a pair s= 〈m,v〉, where m is
the place marking and v is the transition clock valuation.

– s0 = 〈m0,0〉, where the tuple0 corresponds to the value0 for all transition clocks.
– −→⊆ S× (A⊎{1})×S is the transition relation defined for states〈m,v〉,〈m′,v′〉 by:

Thediscrete transition relation:
〈m,v〉

a
−→ 〈m′,v′〉 iff there is a transition t∈ Tr such that



















ℓ(t) = a∧enabled(m,t)∧v(t) ≥ α(t)

and m′ ∈ fire(m,t)

and∀t ′ ∈ Tr,v′(t ′) =

{

v(t ′) if enabled(m′, t ′)∧ t 6= t ′

0 otherwise
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Thedelay transition relation:

〈m,v〉
1
−→ 〈m′,v′〉 iff m′ = m and for all t∈ Tr,























enabled(m,t) =⇒ v(t) < β(t) (urgent clocks prevent elapse)

v′(t) =















v(t)+1 if enabled(m′, t)∧β(t) 6= ∞ (normal elapse)
v(t)+1 if enabled(m′, t)∧β(t) = ∞∧v(t) < α(t)

(only progress up toα)
v(t) otherwise

Note that we use hereatomicsemantics and anewly disabledcriterion to reset dis-
abled transition clocks, ensuring a disabled transition has a clock value set to 0.

The rule(only progress up toα) allows us to handle the infinity problem due to
unbounded latest firing times (e.g. for transitions with firing interval[α(t),∞[). With
this strategy, we do not let clocks of the corresponding transitions progress up to more
than their lowest significant valueα(t). The behavior can thus be accurately represented
on a finite support. If the logic used to express properties involves atomic propositions
with test of clock values, the rule can be relaxed to let the clock progress be tracked up
to the highest value tested in the logic, rather thanα(t).

3 Instantiable Transition Systems

This section defines Instantiable Transition Systems (ITS), a framework designed to
exploit the hierarchical characteristics of SDD [9], the data structure used in the tool
to encode the state space, for the description of component based systems. ITS were
introduced in [24], but the definitions below are more expressive. In particular,multisets
over an alphabet of action labels are replaced bywords. We then introduce additional
ITS types, to build ”regular” composite types and to capture the semantics of (discrete)
timed models.

3.1 ITS types, instances and composites

ITS describe a minimal Labeled Transition System (LTS) style formalism using notions
of typeand instanceto emphasize locality of actions and to exploit the similarity of
instances of a given type. The composition mechanism is based solely on transition
synchronizations(no explicit shared memory or channel).
Notations: The set of finite words over a finite alphabetA is denoted byA⋆, with ε for
the empty word and· (or no symbol) for the concatenation operation. We denote by
z.X,z.Y . . . the elementX (resp.Y. . . ) of a tuplez= 〈X,Y, · · ·〉.

Definition 4 sets an abstract contract or interface that must be implemented by con-
crete ITS types.

Definition 4 (ITS Semantics).An ITS type is a tupleτ = 〈S,A,Locals,Succ〉where:

– S is a set of states; A is a finite set of public action labels;
– Locals: S 7→ 2S is a local successors function;
– Succ: S×A⋆ 7→ 2S is a transition function satisfying:∀s∈ S,Succ(s,ε) = {s}.
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Let T be a set of ITS types. AnITS instance i is defined by an ITStype type(i) ∈ T and
a set of states type(i).S.

Reachability: A state s′ is reachable in an instance i from the state s0 iff ∃s1, . . .sn ∈
type(i).S such that s′ = sn and∀1≤ j ≤ n,sj ∈ type(i).Locals(sj−1).

The two functionsLocalsandSuccare used for different purposes:Locals repre-
sents moves that may occur within an instance autonomously or independently from
the rest of the system. Hence it returns states reachable through occurrences of local
events. The functionSuccproduces successors by explicitly synchronizing actions via
a word over the alphabet of action labels. Synchronizing on an empty word leaves the
state of the instance locally unchanged. Note thatSuccis the only way to control the
behavior of a (sub)system from outside.

Remark 1. The transition relation of a full system can only be defined in terms of sub-
system synchronizations usingSuccand of independent local behaviors. A full system
is defined by a single instance of a particular type in a specific initial state. Because it is
self-contained (there is no notion of environment that could triggerSucc) reachability
only depends on the definition ofLocals.
Remark 2. Apart from distinguishing the special time delay action label1, a DTTS
is thus simply a labeled transition system and is immediately compatible with the ITS
framework, if the DTTS has a local label⊤. Interpreting timed models such as Time
Petri Nets (but also Timed Automata) over discrete time makes it possible to use the ITS
model-checking engine, and also profit from the Composite and Scalar set definitions
below to build compositional models.

We now define acomposite ITS type, designed to offer support for the hierarchical
composition of ITS instances. A version of a composite type was presented in [24] but it
introduced more syntactic elements, and was less expressive than the version presented
here. This version is aligned with standard labeled synchronized product definitions (e.g
[3, 16]), with the addition of the possible aggregation of several steps into an atomic
transition sequence, by a word composed of action labels.
Notations: Given a cartesian productZ = Z1× ·· ·×Zn of setsZ1, · · · ,Zn, we denote
by πi the projection operatorZ 7→ Zi . For a setI = {i1, . . . , in} of ITS instances (where
an arbitrary order is chosen),SI is the settype(i1).S× . . .× type(in).SandAI is the set
type(i1).A⋆ × . . .× type(in).A⋆. Cardinality ofI is denoted by|I |.

Definition 5 (Composite).A composite is a tuple C= 〈I ,Sync,A,λ〉 where:

– I is a finite set of ITS instances, said to becontainedby C. We further require that
the type of each ITS instance already exists when defining I, in order to prevent
circular or recursive type definitions.

– Sync⊂ AI is the finite set of synchronizations; A is a set of action labels, which
contains the label⊤ andλ : Sync7→ A is the labeling function

Notations: The next state functionNextI : SI ×AI 7→ 2SI , used in definition 6 below, is
defined fors,s′ ∈ SI andσ ∈ AI by:

s′ ∈ NextI (s,σ) iff ∀i ∈ I ,πi(s′) ∈ type(i).Succ(πi(s),πi(σ))
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Definition 6 (ITS Semantics of a Composite).The ITS typeτ = 〈S,A,Locals,Succ〉
correspondingto a composite C= 〈I ,Sync,A′,λ〉, is defined by:

– S= SI ; A = A′ \{⊤};
– Locals: S 7→ 2S is defined for s,s′ ∈ S by: s′ ∈ Locals(s) iff

{

∃i ∈ I ,πi(s′) ∈ type(i).Locals(πi(s))∧∀ j ∈ I , j 6= i, π j(s′) = π j(s)
or ∃σ ∈ Sync,λ(σ) = ⊤,s′ ∈ NextI (s,σ)

– Succ: S×A⋆ 7→ 2S is defined for s,s′ ∈ S, w = a1 · · ·an ∈ A⋆ by: s′ ∈ Succ(s,w) iff
∃σ1, . . . ,σn ∈ Sync,∃s0, . . . ,sn ∈ S, ∀ j ∈ [1..n], λ(σ j) = a j ∧sj ∈ NextI (sj−1,σ j)∧
s0 = s∧sn = s′.

Definition 6 thus describes an implementation of the generic ITS type contract. It
contains either elementary instances (such as LTS, or as we will use later in this paper,
a discrete timed transition system), or inductively other instances of composite nature.

Locals(s) is defined as the set of states resulting from the action ofLocals in any
nested instance (without affecting the other instances), or states reachable fromsthrough
the occurrence of any synchronization associated to the local label⊤.

Succ(s,w) is obtained by composing the effects of each labela in the wordw using
the cartesian product. So the use of a word can force system progression by firing several
action labels in an atomic sequence. Firing an action label corresponds to arbitrarily
choosing a synchronization that bears this label, and firing it.

t0: train t1: train λ
App ε App

ε App App
Exit ε Exit

ε Exit Exit
1 1 1

Fig. 4.Synchronization for 2
trains

tg: TrainGroupcc: ContrGateλ
Exit Exit ⊤
App App ⊤
1 1 1

Fig. 5. Synchronization for the
complete system

g: gatec: controller λ
App EnterFirst App

ε Enter App
Exit ExitLast Exit

ε Exit Exit
1 1 1

Fig. 6. Synchronization for a 2
train controllerand a gate

Figures 4, 5 and 6 show the composite types used to model the train crossing ex-
ample. For instance, let us consider in Figure 4 a representation of a composite ITS
type. It contains two instancest0 andt1 of an ITS type “Train”, and defines five syn-
chronizations (lines in the table) and three labelsApp, Exit and1. A states of this
composite is thus defined as a cartesian product of the state of instancet0 (notedπt0(s))
and t1. The successors obtained bySucc(s, App) are the states in which eithert0 or
t1 have firedApp and the state of the other instance is unchanged (e.g.s′ such that
πt0(s

′) ∈ Train.Succ(πt0(s)) andπt1(s
′) = πt1(s) or vice versa). There is no local (⊤

labeled) synchronization in this example, thus successors byLocalsare states in which
eithert0 or t1 have progressed byTrain.Locals.

Although this tabular presentation for composite is directly linked to the formal
definition, Roḿeo/SDD uses a graphical syntax to express how instances are connected,
which is more user-friendly.
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3.2 Regular Models

While the definition of an ITS compositepermits hierarchical modeling, the notion
of Scalar SetITS type, where the synchronizations are defined in a parametric way,
deals with “regular” or symmetrically composed systems. This definition is not more
expressive than the one for a composite but it allows us to build several equivalent
composite representations of a system (see Figures 7 and 8), with a possible impact
on performances. We thus offer a way of describing symmetric models, so that the
manually built recursive encodings presented in [24] can be easily applied to symmetric
problems. The scalar set captures a frequent symmetric synchronization pattern when
using a set of identical instances and its definition is the same as those proposed in
symmetric Uppaal [17], Murphi [15] or in symmetric nets.

Definition 7 (Scalar Set).A scalar set is a tupleS = 〈τ,n,s0,D,CSync〉where:

– τ = 〈S,A,Locals,Succ〉is the ITS type of the contained instances.
– n∈N is the the number of instances
– s0 ∈ τ.S is the initial state of the instances
– D is a subset ofτ.A×{ANY,ALL}×{public,private}, called the set ofdelegates,
– CSync is a subset ofτ.A× τ.A×{public,private}, called the set ofcircular syn-

chronizations.

A scalar set can thus be seen as a subclass of composite, containingn identical
instances of a typeτ, and offering only two ways of synchronizing them,ANYandALL.
A delegated = 〈a,t,v〉 of typet = ANY affects exactly one of the contained instances,
chosen arbitrarily. In other words, anANY delegate maps ton synchronization lines:
each line affects a single instance with actiona. In contrast, a delegate of typet = ALL
targets all contained instances simultaneously, and maps to a single synchronization
line of as. Thevisibility v of a delegate gives the labeling function of the composite: the
label of the resulting synchronization lines is⊤ if privateis used, or actiona otherwise.

For instance, the train group model for 2 trains (see Figure 4) can be expressed as
the following scalar set:

〈Train,2,s0,{〈App,ANY, public〉,〈Exit,ANY, public〉,〈1,ALL, public〉}, /0〉.
A scalar set represents a regular model pattern and produces a homogeneous repre-

sentation of parametric models. Furthermore, because this pattern is very constrained,
different semantically equivalent encodings can be considered at the SDD level. In par-
ticular, as introduced in [24], recursive encodings can be used. For instance, the train
group model for 4 trains can be represented as a composite of 4 trains, or a composite
containing 2 instances of a composite with two trains (Figures 7 and 8).

Circular synchronizations (CSyncin Def. 7) capture another frequent composition
pattern: topological rings, where a component synchronizes with its successor in the
ring. For instance, Dijkstra’s classical dining philosophers example forN philosophers
can be written as:
〈PhiloFork,N,s0, /0,{〈getFork,getLe f t, private〉,〈putFork, f inishEating, private〉}〉.
In this set,PhiloFork is a composite of a Fork and a Philosopher,getForkandputFork
are actions that take or return the fork,getLeftandfinishEatingare actions where the
Philosopher acquires or releases his left neighbor’s fork.
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t0: train t1: train t2: train t3: train λ
App ε ε ε App

ε App ε ε App
ε ε App ε App
ε ε ε App App

Exit ε ε ε Exit
ε Exit ε ε Exit
ε ε Exit ε Exit
ε ε ε Exit Exit
1 1 1 1 1

Fig. 7.Flat representation of 4 trainscalar set.

t0: train2 t1: train2 λ
App ε App

ε App App
Exit ε Exit

ε Exit Exit
1 1 1

Fig. 8. Recursive representation of4
train scalar set, as two times two trains.
The type ”train2” corresponds to the
composite of figure 4

In [24], several strategies were manually experimented to encode such regular mod-
els, the most basic one building a composite containingn instances of the embedded
type. This can be generalized by building a composite ofn/k instances of a composite
containingk instances (ork+1 to capture the remainder of the divisionn/k) of the basic
type. More subtle are recursive encoding strategies, where the type of a (sub-)composite
containingk instances is itself defined as a group of groups of instances. This recursive
strategy leads in some cases (like for the dining philosophers) to logarithmic overall
complexity in time and memory.

With these additional definitions of scalar set, the encoding strategy can be config-
ured by the user at run time, by simply setting an option. Two parameters guide the
encoding: The width gives the number of variables at any given level of composite, and
the depth gives the number of levels of hierarchy or nesting introduced. The user can
choose to bound one or the other and select the more efficient. For instance the flat en-
coding of Fig. 7 has width 4 and depth 1, while the encoding of Fig. 8 has width 2 and
depth 2.

We thus generalize for easy reuse the very favorable encodings from [24] (for un-
timed systems), which thanks to hierarchy can be exponentially more efficient than what
is available with other decision diagram variants.

3.3 ITS Tools

The ITS tools can be used for modeling and analysis of ITS specifications. The graphi-
cal front-end is an Eclipse plugin built upon Coloane (configurecoloane.lip6.fr/night-
updates in eclipse update sites), thus runs on all platforms. The actual analysis tools
are provided onddd.lip6.fr as pre-compiled binaries for common platforms (Linux,
MacOS, Windows).

In the modeling environment, TPN can be used as building bricks to define ITS
instances. The tool currently features import/export functionality for both Roméo and
Tina formats, full modeling capability, the ability to ”flatten” a composite ITS defini-
tion to an equivalent TPN, use of variables in arc labels and time constraints, and CTL
model-checking for analysis. To jump-start new users, both examples used in this pa-
per are available directly through the ”New->Example” eclipse menu. Figure 9 shows
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if ti enabledthen
if clock(ti) < ti .l f t then

incrementclock(ti)
else

return /0
end

else
returnId

end
Algorithm 1: Part of the encoding for1 transition.

a screenshot of the modeling tool, where composite and scalar types use a graphical
syntax.

The analysis engine of the tool uses the powerful hierarchical set decision diagram
(SDD) technology. SDD are a variant of reduced decision diagrams producing a com-
pact representation of very large state spaces. Their main characteristic exploited in
this work is that edges of the decision diagram can bear references to SDD, allowing a
hierarchical encoding of the state-space.

The semantics of TPN and composite ITS are directly expressed by operations act-
ing on the SDD. The delay transition1 uses a conjunction (over all transitions) of
if-then-else constructs to increment the currently enabled clocks or forbid time elapse
if a latest firing time has been reached. An informal presentation is given for this1

operation on transitionti by Algorithm 1: returning/0 indicates there are no successors,
while returningId indicates that with respect to this transition no updates to the current
state are needed. This algorithm is slightly adapted to take into account infinite latest
firing times, as explained in the discrete TPN semantics paragraph above.

4 Experiments and comparisons to related work

Table 1 reports our results collected on a 1.83GHz Intel Xeon, with 4GB of RAM.
Two classical benchmark problems from the literature [4, 25, 17] are modeled using
ITS: Berthomieu’s version of the train-gate controller with multiple tracks and Fischer’s
mutual exclusion protocol (described below). These models are parameterized and thus
easily scalable for benchmarking.

Fischer’s protocol. This protocol is modeled using two elementary TPN. We use re-
set (respectively read) arcs, according to their classical definition, which means they
allow to reset (resp. check the non-emptiness) the marking of the associated place. The
process type (Fig.10) represents the behavior of a single process. The resource type
(Fig. 11) is used to block processes in theidle state during the execution of the protocol
(i.e.at least one process has already reachedwait or cs).

Then, we build a process group (Fig. 12) containing a scalar set of processes in
the system, similarly to the approach used for the train group. Finally, this group of
processes is composed with an instance of the resource according to the synchroniza-
tions defined in Fig. 13. Note (line 3) the use of a word inA⋆ for synchronisation: for a
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Fig. 9.Coloane based ITS modeler

given process to fireMytur n, we need to first reset allgo places of the processes, and
synchronouslyResetthe state of the resource.

In view of these performances, we now compare Roméo/SDD with existing tools.

Dense Time, Explicit data structures.The standard approach for verification of timed
models relies on difference bounded matrices (DBMs), an efficient data structure to rep-
resent time zones under dense time time hypothesis. Its efficiency has led to the devel-
opment of several verification tools (so-called timed model-checkers) such as TINA [4],
Roméo [11] for Time Petri Nets and UPPAAL [17], Kronos [26] for Timed Automata.

Roméo suffers from the discrete state space explosion (i.e.in number of classes).
It was stopped after one day of CPU and consumed a high amount of memory. The
performances of UPPAAL without symmetries (not reported due to lack of space in the
paper) are similar to those of Roméo’s. Underlying technology is DBM in both cases.

Thanks to the symmetry management, UPPAAL/sym copes very well with these
regular models. It uses a canonization procedure which is costly in time, but can in
favorable cases represent only a fraction of the state space. It significantly outperforms
all the other tools tested except our own tool. However, computation time grows quicker
than memory consumption (possibly due to the canonization complexity) and becomes
the limiting factor.
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idle

cs go

wait

waitcs

myturnEndcs

[0,0]

Wantcs
Delay

Myturn

Reset

Deny

Entercs

[0,0]

[2,2]

[1,1]

Fig. 10.Process type for Fischer.

Reset

Read

Put

lock
Test arc

Reset arc

Fig. 11.The resource type.

〈Process,N,s0,























〈Wantcs,ANY, public〉,
〈Myturn,ANY, public〉,
〈Endcs,ANY, public〉,
〈Reset,ALL, public〉,
〈1,ALL, public〉























, /0〉.

Fig. 12.A Scalar set type ProcessGroup

r: Resourcepg: ProcessGroupλ
Read Wantcs ⊤
Put Endcs ⊤

Reset Reset·Myturn ⊤
1 1 1

Fig. 13. Synchronization for the com-
pleteFischer system.

Dense Time, Symbolic data structures.To bring the benefits of BDD technology to
model-checking of TA, many fully symbolic encodings that use dedicated BDD-like
data structures have been proposed (e.g. DDD [20]). The most successful seems to be
Clock Restriction Diagrams used in the tool RED [25]. In some instances, this approach
can outperform DBM technology, particularly when the number of clocks increases,
and backward reachability is used. Other approaches that map the timed reachability
problem to a problem solvable using standard BDD exist (e.g.TMV tool [23]), but the
performances as reported are comparable to those using DBM.

We compare in this category to the tool RED, which builds a zone graph using
Clock Restriction Diagrams in a fully symbolic approach. The fully symbolic approach
implemented in RED is fast in CPU time, but also grows very fast in memory. This is
consistent with reports from experiments with RED [25], which manages to go a bit
further than DBM as it is more resistant to an increase in the number of locations.

Discrete Time, Symbolic data structures.When considering discrete time seman-
tics, the only viable way to tackle the combinatorial explosion seems to be symbolic
data structures. Direct encoding of counters with an explicit model-checker is bound to
fail (unless some abstraction or acceleration is used), the number of states grows very
fast (up to 10512 in our experiments). This excludes the use of non symbolic discrete
approaches, which could be experimented by using UPPAAL with discrete variables
instead of clocks.

Among the different tools based on standard BDD structures and discrete time se-
mantics, SMI (based on Kronos) [7], and Rabbit [6] are the closest to our approach with
Roméo/SDD, which also belongs to this category. Although this discretized approach is
sensitive to the maximum clock values in a model, it can often outperform dense time
approaches.

However, comparison is difficult because both SMI and Rabbit are old prototypes
no longer maintained (current distribution of Rabbit is from 2002). The input of Rabbit
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Fischer (N is the number of processes)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
8 1 051 282 108 740 633 11 278 028 0.01 160 137 0.1 2 020 1.17 106

9 73 0711.77 106 3.72 106 67 785 108 0.03 160 172 0.1 2 156 6.20 106

10 DNF - - 652 2.35 106 0.1 160 211 0.1 2 332 3.26 107

170 - - - - OOM 7 783 47 95657 971 23 101 896 2.27 10120

700 - - - - - DNF - - 1391 1.82 106 2.66 10491

730 - - - - - - - - 1803 2.33 106 2.58 10512

Train (N is the number of trains)
Roméo RED UPPAAL/sym Roméo/SDD

N tm mm sm tm mm tm mm sm tm mm sm
6 43.1 36 948 29 640 7 202 412 0.14 908 432 1.5 7 360 4.83 106

7 6 115 377 452 131 517 66 723 428 0.23 3 200 957 2.5 10 304 6.28 107

8 DNF - - - OOM 1 3 336 2 078 4 14 188 8.16 108

13 - - - - - 2 634 13 18879 598 26 56 660 3.02 1014

15 - - - - - 60 86061 256 42 86 360 5.11 1016

16 - - - - - DNF - - 52 104 848 6.65 1017

44 - - - - - - - - 1143 2.13 106 1.03 1049

Table 1.Performances measured for theFischerandtrain models. Executiontime is in
seconds (columntm), memory occupation in KB (columnmm). Columnsmprovides a
measure of the state space size. DNF means that the computation did not finish within
one day, while OOM means computation exceeds 2.4GB memory.

is a variant on a classical product of TA, but without the hierarchical characteristics of
ITS. Rabbit measures are not reported in the table because we were unable to operate
the tool on the Train model. The Fischer model which is part of Rabbit distribution was
managed up to 128 processes in 1587 seconds with 842 MB of memory, which is a
good result. We could not experiment further with this tool because it does not allow
the use of more than 880MB of memory.

Impact of Scalar set.Roméo/SDD relies on similar principles as Rabbit: discrete time
and a fully symbolic representation. The combinatorial explosion due to discrete time
is balanced by the efficiency of SDD encoding: over 10500 states can be represented.

Roméo/SDD is able to handle models up to much higher parameter values than the
other tools. This is due to the use of ITS/SDD that provide:(i) automatic saturation,(ii)
shared representation of subsystems and(iii) the cartesian product style definition of the
transition relation (involving composition of sums). Various strategies (see [24]) can be
used to encode regular models as ITS, in a way that allows to exploit the same kind of
symmetries as UPPAAL/sym. A strategy can be configured to encode the TrainGroup
or ProcessGroup composite types (which are both scalar sets) with varying width and
levels of depth in the hierarchy. We experimented with the standard flat setting (fixed
depth of 1 for scalar set) withn instances side by side for the train model (i.e. ngroups
of size 1). Other settings with less groups of higher cardinality (or more generally with
depth superior to 1) lead to lower performances. In fact, the final representation can be
smaller, but due to a peak effect, increasing the depth does not allow us to solve larger
models. This peak effect could result from the strong synchronization due to the delay
transition.
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For the Fischer model, we used a setting with a recursive definition of hierarchy
in the systembounded by 12 variables per level. In other words, the depth is left un-
bounded while the width is at most 12. The standard flat setting (depth = 1) was able to
reach 200 processes while a setting with groups of about 10 processes let us reach 400
processes (depth fixed at 2, 40 groups of ten process).

Although experimentation on industrial case studies remains to be done, this bench-
mark shows that appropriate data structures applied to discrete time can deal with mod-
els that could not be analyzed before due to combinatorial explosion in time and/or
memory.

5 Conclusion

This work proposes an approach to compute the state space for a large number of dis-
crete timed components, which relies on hierarchical set decision diagrams (SDD) and
scalar sets defined in the ITS framework. It allows a hierarchical definition of a timed
system, and offers an efficient fully symbolic reachability engine thanks to the auto-
matic activation of saturation. Because of its generality, ITS can be reused to encode
any formalism with discrete time semantics and mix several timed models within the
same specification while enabling efficient state space generation.

Performance comparisons with reference tools, for both discrete and dense time,
show gains of several orders of magnitude. This significant improvement is due to our
fully symbolic encoding, instead of a classical symbolic approach for time zones only.

SDD and ITS are both available as C++ libraries under the terms of GNU LGPL, at
http://ddd.lip6.fr. A new version of Roḿeo integrating a SDD engine will soon
be available. A front-end to build TPN and their composition is already provided within
the Coloane modeling environment. We are currently working at providing full dis-
crete temporal logic model-checking capabilities on top of this reachability computa-
tion, with a focus on TCTL.
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On the modularity in Petri Nets of Active
Resources?
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Abstract. Petri Nets of Active Resources (AR-nets) represent a dual
syntax of Petri nets with a single type of nodes (places and transitions
are united) and two types of arcs (input and output arcs are separated).
In AR-nets the same token may be considered as a passive resource
(produced or consumed by agents) and an active agent (producing or
consuming resources) at the same time.
It is shown that the homogeneous structure of nodes in AR-nets allows
some specific modular modeling and transformation techniques. Prop-
erties of net partitions and reachability-equivalent module replacements
are studied.

1 Introduction

Nowadays there exist a lot of Petri net modifications introducing different mod-
ular and/or hierarchical syntax. In particular, different high-level formalisms
appeared to be quite effective and useful in practice [6, 14]. Many authors use
algebraic approach to compositions and decompositions [3, 4], or apply some ef-
fective algebraic methods of modular verification [9]. Some models even allow a
recursion [7, 12].

As a rule, in compositional Petri nets modules may be linked by synchronized
transitions [5, 9, 12] or by common interface places [8]. This is a natural conse-
quence of Petri net syntax. Indeed, the structure of a net is explicitly divided
into two classes of elements: places and transitions. Places correspond to the
passive component of the system (state or resources), transitions correspond to
its active component (actions or events or agents).

However, explicit separation of nodes into places and transitions is not the
only way of Petri net definition. There exists a number of equivalent formalisms
with a different separation of elements. Some of them use the duality between
places and transitions (the importance of studying this duality was mentioned
by C.-A.Petri already in [13]).

In [11] K.Lautenbach introduced a notion of dual place/transition nets. In
this formalism the transitions are also marked by special tokens called “t-tokens”.
? This research is partially supported by Russian Fund for Basic Research (projects

09-01-00277, 11-01-00737) and Federal Program “Kadry” (project 02.740.11.0207).
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The meaning of t-tokens is that they prevent transitions from being enabled. A
transition carrying a t-token cannot be enabled by any marking of p-tokens. Place
in the net can be enabled and fired in the dual way. Place firing transforms the
marking of t-tokens, arcs for place firing are inverted. So the net can be dualized
in the obvious way. K.Lautenbach in his work proposed dual P/T nets as a model
of system fault propagation.

In [10] M.Köhler and H.Rölke introduced Super-Dual nets for modeling with
dynamic refinement of events. In this formalism transitions are also marked by
special tokens called “pokens”, but these pokens enable transition firings. Places
can also fire, but their firing use a special separate set of arcs called “glow
relation” in contrast to common “flow relation”. Super-Dual net can be dualized
by interchanging places and transitions, tokens and pokens, flow arcs and glow
arcs. In [10] it is proven that Super-Dual nets have the same expressive power
as ordinary Petri nets.

In both dual P/T nets and Super-Dual nets duality is based on two types of
elements of the system — resources and actions (places and transitions). These
elements are represented in the net by vertices of a bipartite oriented graph.
However, there is another (implicitly) divided set in every Petri net (and in
every other bipartite oriented graph) — the set of arcs. It contains arcs of two
crucially different types — input arcs from places to transitions remove tokens,
output arcs from transitions to places produce tokens. The explicit separation of
this notions allowed us to define an “orthogonal” syntax for Petri nets — Nets
of Active Resources (AR-nets) [1].

A definition of an AR-net is a dualized definition of a Petri net. The set of
arcs is explicitly transformed into two separate sets of input arcs and output
arcs. The sets of transitions and places are united into a single set of nodes.
Each node may contain tokens. A token in the node may fire, consuming some
tokens through input arcs and producing some other tokens through output arcs.
So a token simulates behaviour of both an active component (an agent) and a
passive component (a resource) at the same time. Therefore the formalism is
called “nets of active resources”. AR-nets are well-suited for modeling systems
with an explicit definition of an agent [2].

In this paper we study the compositional properties of AR-nets. A module
is represented as a subnet defined by some subset of nodes. An interface of the
module is a set of arcs linking its nodes with an outer subnet. A module may
have four types of links: input, output, production and consumption. First two
of them represent actions of the module itself, the other two represent actions of
its neighbours. Hence syntactically a module with adjacent links can be treated
as a node with adjacent arcs. This generalization is quite natural and does not
affects the homogeneity of the graph of the net.

It is shown that a number of net properties may be inherited from the prop-
erties of modules of particular types. It is proven that any nested decomposition
of the net can be transformed into an equivalent agent/resource decomposition.
For a flat decomposition these kinds of transformations are applicable depending
only on the chromatic number of the module linkage graph.
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A problem of module equivalence w.r.t. system reachability is also defined
and studied. A most general case of this equivalence is obviously undecidable.
For a simple case of replacement a criterion of equivalence is given. It is shown
how a module (with some additional requirements) can be replaced by a single
node without affecting the global reachability relation.

The paper is organized as follows. In section 2 we give basic definitions and
notations for nets of active resources. In section 3 an AR-module is introduced.
We study different types of modules, their properties and methods of decompo-
sitions. In section 4 two notions of module equivalence are defined and studied.
Section 5 contains some conclusions and directions for possible future work.

2 Preliminaries

Let S be a finite set. A multiset M over a set S is a mapping M : S → Nat,
where Nat is the set of natural numbers (including zero), i. e. a multiset may
contain several copies of the same element.

For two multisets M,M ′ we write M ⊆ M ′ iff ∀s ∈ S : M(s) ≤ M ′(s) (the
inclusion relation). The sum and the union of two multisets M and M ′ are defined
as usual: ∀s ∈ S : (M+M ′)(s) = M(s)+M ′(s), M∪M ′(s) = max(M(s),M ′(s)).

By M(S) we denote the set of all finite multisets over S.
For a multiset M ∈M(S) and a subset S′ ⊆ S denote a projection M [S′] ∈

M(S′) of M onto S′ as follows: ∀s ∈ S′ : M [S′](s) = M(s).
Similarly, for a binary relation R ⊆ M(S) × M(S) a projection R[S′] ⊆

M(S′)×M(S′) is defined as follows: ∀s1, s2 ∈ S′ (s1, s2) ∈ R[S′] ⇔ (s1, s2) ∈ R.

Definition 1. [1] A net of active resources is a tuple N = (V, I, O), where

– V is a finite set of resource nodes ( vertices);
– I ⊆M(V × V ) is a consumption relation ( input arcs);
– O ⊆M(V × V ) is a production relation ( output arcs).

In graphic form the nodes are represented by circles, the consumption relation
by dotted arrows and the production relation by solid arrows.

A marked net of active resources is a pair (N,M0) where N is an AR-net
and M0 ∈M(V ) is its initial marking.

As usual, pictorially the marking is denoted by black dots.
For a node v ∈ V by I(•, v), O(v, •), I(v, •) and O(•, v) denote the multisets

of nodes of preconditions, postconditions, consumers and producers: ∀w ∈ V

I(•, v)(w) =def I(w, v); O(v, •)(w) =def O(v, w);
I(v, •)(w) =def I(v, w); O(•, v)(w) =def O(w, v).

Definition 2. A node v ∈ V is active in a marking M iff

– M(v) > 0 (the node v is not empty);
– I(•, v) ⊆ M (there are enough tokens in all its input nodes).
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An active node v may fire yielding a new marking M ′ s.t.

M ′ =def M − I(•, v) + O(v, •) (denoted M
v→ M ′).

Some natural notions:
Let i ∈ I and i = (v1, v2). Then the arc i is called an input arc for the node v2

and a consuming arc for the node v1. A token in the node v1 may be consumed
through the arc i, a token in the node v2 can consume through the arc i.

Let o ∈ O and o = (v1, v2). Then the arc o is called an output arc for the
node v1 and a producing arc for the node v2. A token in the node v1 can produce
through the arc o, a token in the node v2 may be produced through the arc o.

It is impossible to define consuming output and producing input. The to-
ken may be producing, consuming, produced and consumed at the same time
(through different incident arcs). It can be even self-copied (by producing loop)
or self-consumed (by consuming loop).

� � � �

� � � � � 	 
 � �  � � � �

� � � � � � � � � � � � �

�  ! "

# $ % & ' ( )

* + , - . / 0

1 2 3 4 5 6 7 8 9

:<;>=@?BADC<EGF>H IKJMLONQP>RTSVUXWZY\[

Fig. 1. A model of mutex semaphore with three processes and two resources (AR-model
and an equivalent Petri net model).

An example of an AR-net is given on Fig. 1(a). Here we model a system, con-
taining three processes that request two shared resources. Processes are modeled
by tokens in the nodes ready-to-start and ready-to-stop, access keys – by
tokens in the node keys. The model guarantees that at most two processes can
work with resources at the same time. An example of a sequence of firings is given
on Fig. 2 (here r1 denotes ready-to-start and r2 denotes ready-to-stop).

On Fig. 1(b) an equivalent Petri net is also presented. Note the difference be-
tween two nets. In AR-net the more simple node structure and the more complex
arc structure allowed us to use the same node of the graph as a model for both
place and transition. For example, the node ready-to-start is a replacement
for both place waiting and transition start. Its tokens produce other tokens
(in ready-to-stop) and are produced by other tokens (by ready-to-stop).
They also consume other tokens (from keys) and are self-consumed (through
the loop).

Proceedings of CompoNet and SUMo 2011

36



���

���

���

��	


��

��

���

���

��� ��� ���

Fig. 2. A sequence of node firings in AR-net.

The notion of firing is extended to sequences in the standard way: for σ ∈ V ∗

s.t. σ = σ′v with v ∈ V we say that M
σ→ M ′ iff M

σ′

→ M ′′ v→ M ′ for some M ′′.
A set of reachable markings is defined as follows:

R(N,M0) =def {M ∈M(V ) | ∃σ ∈ T ∗ : M0
σ→ M}.

A node v is live in a marked net (N,M0) iff for any M ∈ R(N,M0) there
exists M ′ ∈ R(N,M) such that v is active in M ′. A marked net is live iff all its
nodes are live.

The reachability relation is defined as follows:

Reach(N,M0) =def {(M,M ′) ∈M(V )×M(V ) | ∃σ, σ′ ∈ T ∗ : M0
σ→ M

σ′

→ M ′}.

The syntax of AR-nets substantially differs from the syntax of Petri nets. It
may be considered dual: instead of two types of vertices and a single type of arcs
we use a single type of vertices and two types of arcs. However, AR-nets define
the same class of systems and hence represent yet another variant of Petri net
formalism:

Theorem 1. [1] Nets of active resources are equivalent to Petri nets.1

The proof of AR→PN transformation is based on the method, proposed in
[10] for Super Dual nets. A node of the AR-net is replaced in the Petri net by a
pair (place,transition) (as depicted in Fig. 3). This “flattening” allows to obtain
a Petri net with the same reachability relation without any additional loops in
the reachability graph.

3 Modular nets

Let N = (V, I, O) be an AR-net. A module µ of the net N is defined by some
subset of nodes Vµ ⊆ V (considered as internal nodes of the module).

For a module µ of N denote:
1 For each AR-net there exists a Petri net with the same reachability and vice versa.
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Fig. 3. Transformation of an AR-node into an equivalent Petri net.

– Iµ = {(v, v′) ∈ I | v, v′ ∈ Vµ} – internal input arcs;
– Oµ = {(v, v′) ∈ O | v, v′ ∈ Vµ} – internal output arcs;
– Nµ = (Vµ, Iµ, Oµ) – a net of the module µ;
– Ai

µ = {(v, v′) ∈ I | v ∈ (V \ Vµ), v′ ∈ Vµ} – input links;
– Ao

µ = {(v, v′) ∈ O | v ∈ Vµ, v′ ∈ (V \ Vµ)} – output links;
– Ri

µ = {(v, v′) ∈ I | v ∈ Vµ, v′ ∈ (V \ Vµ)} – consuming links;
– Ro

µ = {(v, v′) ∈ O | v ∈ (V \ Vµ), v′ ∈ Vµ} – producing links.

Informally, A-links represents the observable activity of the module, R-links
describe its role as a resource.

�
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Fig. 4. Four link types in modular AR-nets.

For a marked net (N,M0) and a module µ a marked net of the module
(Nµ, (M0)µ) is defined straightforwardly: (M0)µ =def M0[Vµ].

Define also a complement µ of the module µ as a module, defined by a subset
of nodes V \ Vµ. A complement of the module may be considered as a system
subnet of the net.

A well-known model of dining philosophers is given on Fig. 5. For the sake of
simplicity we consider only two participants. A module is defined representing
the first philosopher. Note that it has only input and output links (elements of
Ai

µ and Ao
µ), so the module may be considered as a pure agent.
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Fig. 5. Two dining philosophers.

A module in an AR-net has almost the same external appearance as a sin-
gle node: it may consume and produce resources of other modules, and its own
resources may be consumed and produced by other modules. Moreover, the rela-
tions between modules are naturally denoted by the same constructive elements
as at the underlying level of nodes: input and output arcs (links). Hence, the
induced hierarchical syntax is quite compact.

Modules having not all four types of links are of a particular interest. We
will call a module µ an A-module (resp. R-module) if it has only A-links (resp.
R-links). For example, the philosopher1 is an A-module. Modules with a more
restricted interfaces will be denoted using appropriate superscripts: for example,
AiRo-module has only input and producing links.

Any AR-net may be considered as a composition of modules of different types
(Fig. 6). Here are several trivial properties of some of these types:

Proposition 1. Let (N,M0) be a marked net and µ be a module of N . Then

1. (Nµ, (M0)µ) is unbounded and µ is an AoR-module ⇒ (N,M0) is unbounded;
2. (Nµ, (M0)µ) is not live and µ is an ARi-module ⇒ (N,M0) is not live;
3. (Nµ, (M0)µ) is live and µ is an Ao-module ⇒ (Nµ, (M0)µ) is unbounded.

Proof. 1. Since there are no input links, the behavior of the active nodes of
the module does not depend on the marking of the system part of the net.
Therefore we can take an unbounded run of the module as an unbounded
run of the whole net.

2. The ARi-module cannot obtain any additional tokens from the outside (there
are no producing links). So its nodes are not live in the whole net too.

3. Obviously, the live module with only output external links sends the un-
bounded number of tokens to the outside.
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Fig. 6. Links define the role of the module in the system.

Among all 11 possible types of modules pure A- and R-modules (agents and
resources) are the most important. Any interface between two modules may be
transformed into an equivalent2 A/R interface with one module being an agent,
and the other being a resource. Consider a simple procedure transforming input
and output links into producing and consuming links:

Lemma 1. Let (N,M0) be a marked AR-net and v ∈ V be a node such that
I(•, v) 6= ∅ or O(v, •) 6= ∅ ( v is active: it can consume or produce tokens).

Let N ′ be a net, constructed from N by removing all arcs, participating in
I(•, v) and O(v, •) ( v became passive), and adding a new node vt with I(vt, •) =
O(•, vt) = ∅ ( vt cannot be produced or consumed), I(•, vt) = I(•, v)∪{(v, vt)},
O(vt, •) = O(v, •) ∪ {(vt, v)} ( vt simulate in N ′ the firing of v in N).

Let M ′
0 be a marking of N ′ such that M ′

0[V ] = M0, M ′
0(vt) = 1. Then

Reach(N,M0) = Reach(N ′,M ′
0) ∩ (V ×V ) and ∀M ′ ∈ R(N ′,M ′

0) M ′(vt) = 1.

Proof. The illustration of such a transformation is given on Fig. 7.
The proof is straightforward – all possible links of a node are considered.

Actually, we just separated active and passive properties of node v (just like in
Fig. 3). The new node vt is a transition: it behaves completely like an ordinary
Petri net transition. Similarly, the node v in N ′ is a Petri net place.

The restructuring, described in Lemma 1, extends the set of nodes by a
transition, always marked by a single token. So we do not take this node into
account when considering the reachability set of the new net.

Corollary 1. 1) Any module of an AR-net may be transformed into R-module
without changing the reachability set of the net;
2) Any module of an AR-net may be transformed into A-module without changing
the reachability set of the net.
2 (w.r.t. reachability)
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Fig. 7. Transformation of a node into a pair (place,transition).

Proof. (1) Any active node v of the module, having an external link, is replaced
by a pair (v, vt) of a place and a transition. The new transitions are put outside
of the module (Fig. 7).

(2) A dual transformation: active nodes of the system part are transformed,
transitions are put into the module.

So the interface of any module can be simplified to R-interface or A-interface.
Of course, doing this we change the structure of the net (vt is added). However,
this modification is local and does not affect the “inner” part of the module.

In practice A- and R-modules may be considered as “active” and “passive”
parts of the system (“control” and “data”). Corollary 1 states that the separation
is “relative”: we can easily modify an agent to be a resource and vice versa. This
duality is quite trivial in modular AR-nets.

Definition 3. A flat modularization Ω of a net N is a partition of V into
non-intersecting modules {µ1, . . . , µn}.

A flat modularization is called a flat A/R-modularization iff every module is
either A-module or R-module.

Corollary 2. Let Ω = {µ1, . . . , µn} be a flat modularization of N . Let G be a
graph with vertices from Ω, such that two vertices µi and µj are connected in G
iff there is an arc between modules µi and µj in N .

The net N may be transformed into an equivalent (w.r.t. reachability) net N ′

such that Ω is an A/R-modularization of N ′ iff the chromatic number of G is 2.

Proof. Modules of one color are transformed into A-modules, of another – into
R-modules.

Corollary 2 states that any two-color partition of the net can be transformed
to an active/passive partition. Hence we can easely identify control and data
structures, corresponding to the given partition: control modules sharing the

Proceedings of CompoNet and SUMo 2011

41



� � �

Fig. 8. Flat A/R-modularization.

same data, data modules sharing the same control, chains of linked modules etc.
Moreover, control and data subnets are dualizable (Corollary 1).

Definition 4. A nested modularization Ω of a net N is a partition of V into
a module µ and a system part µ, where µ may also be modularized.

A nested modularization is called a nested A/R-modularization / A-modu-
larization / R-modularization iff every module is either A- or R-module / A-
module / R-module.

Corollary 3. For any nested modularization Ω of N this net may be trans-
formed into an equivalent (w.r.t. reachability) net N ′ such that Ω is a nested
α-modularization of N ′ (α ∈ {A/R,A,R}).

Proof. Straightforward. The transformation (if required) must be started from
the innermost module.

Fig. 9. Nested R-modularization.
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The nested modularization allows us to construct a hierarchical structure
with any kind of inter-level communication. The combinations of flat and nested
modularizations are also possible.

A/R-modularizations are interesting because they allow to incorporate a nat-
ural hierarchy into the set of modules. Such hierarchy may have many applica-
tions in extended formalisms. For example, active modules may be considered
responsible for intermodular data transfer. Another example is security: the R-
module is able to hide the exact moments of its transition firings from the agent
(the A-module), because agent observes only the already changed state of the
resource.

4 Modular reachability

In this section we consider equivalent modules. The key problem is to check
whether a particular module can be replaced by another one without harming the
behaviour of the whole system. We study the equality of reachability relations
of two nets – a fundamental behavioural equivalence, which is stronger than
language equivalence and bisimulation.

Definition 5. Consider AR-nets N1 and N2 and modules µ1 and µ2 of N1 and
N2 respectively, such that (N1)µ1

= (N2)µ2
= Nsys for some AR-net Nsys =

(Vsys, Isys, Osys) (a same system net). Consider markings M1,M2 and Msys of
µ1, µ2 and Nsys respectively.

Marked modules (µ1,M1) and (µ2,M2) are called equivalent w.r.t. system
reachability for a marked system net (Nsys,Msys) (SR-equivalent for short) iff

Reach(N1,M1 + Msys)[Vsys] = Reach(N2,M2 + Msys)[Vsys].

Informally, two SR-equivalent modules have the same effect on the system
part of the net. They can be replaced by each other without harming the system’s
reachability set.

An example is given on Fig. 10. The module Philosopher’ is SR-equivalent
to the module Philosopher1, shown on Fig. 5. Note that these modules are
different: Philosopher’ has additional state ready, in which it has both forks
but is not eating.

Theorem 2. SR-equivalence is undecidable for general AR-nets.

Proof. Follows from the undecidability of R-equivalence for general Petri nets (a
problem of deciding whether two nets have the same reachability set). Indeed, one
can put all “agent nodes” (“transitions”) of compared nets into corresponding
modules (and all “resource nodes” aka “places” into system nets) and try to
check their SR-equivalence.

Note that in the proof we used active modules (A-modules). Hence SR-
equivalence is undecidable even for A-modules. It may be interesting to study
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Fig. 10. An SR-equivalent philosopher.

the equivalence for other specific types of modules, in particular, for R-modules.
We believe that it is undecidable as well.

Consider a more restricted case of a module. Let both modules have the
same interface, i.e. the same set of links and adjacent nodes in the system net:
∀v ∈ Vsys∑

v1∈Vµ1

Ao
µ1

(v1, v) =
∑

v2∈Vµ2

Ao
µ2

(v2, v);
∑

v1∈Vµ1

Ri
µ1

(v1, v) =
∑

v2∈Vµ2

Ri
µ2

(v2, v);∑
v1∈Vµ1

Ai
µ1

(v, v1) =
∑

v2∈Vµ2

Ai
µ2

(v, v2);
∑

v1∈Vµ1

Ro
µ1

(v, v1) =
∑

v2∈Vµ2

Ro
µ2

(v, v2).

We will say that a module is compatible with a system net (and vice versa)
iff the net contains nodes required by all links of the module.

Definition 6. Marked modules (µ1,M1) and (µ2,M2), having the same inter-
face, are called universally equivalent w.r.t. system reachability (USR-equivalent
for short) iff they are SR-equivalent for any compatible marked system net.

The USR-equivalence of two modules means that they produce equal sets
of markings on passive interface nodes (by active agent links) and obey the
same sets of restrictions and commands, coming from active interface nodes (by
passive resource links).

A USR-equivalence is a restriction of an SR-equivalence. However, we believe
that it is also undecidable.

Consider one of the simplest nontrivial module replacement – let the first
module (denoted by µ) be a general AR-net (with some restrictions) and the
second one (denoted by ν) be a single node.

Theorem 3. Let (µ, M) be a marked module s.t.
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1. All active interface nodes of module µ have the same multisets of active links:

∃Ai, Ao ∈M(Vsys) ∀v ∈ Vµ

(Ai
µ(•, v) = Ao

µ(v, •) = ∅) ∨ (Ai
µ(•, v) = Ai ∧ Ao

µ(v, •) = Ao).

2. All active interface nodes of system net perform operations on the whole
numbers of the same multiset of internal nodes:

∃Rio ∈M(Vµ) ∀v ∈ Vsys ∃ki(v), ko(v) ∈ Nat
(Ri

µ(•, v) = ki(v)×Rio ∧ Ro
µ(v, •) = ko(v)×Rio).

3. All active internal nodes of the module, affecting nodes of Rio, perform the
same operation on the whole numbers of Rio’s:

∃kc, kp ∈ Nat ∀v ∈ Vµ (Ai
µ(•, v) ∩Rio 6= ∅ ∨ Ao

µ(v, •) ∩Rio 6= ∅) ⇒(
∃X, Y ∈M(Vµ) (X ∩Rio = Y ∩Rio = ∅) ∧

(Ai
µ(•, v) = kc ×Rio + X) ∧ (Ao

µ(v, •) = kp ×Rio + Y )
)
.

4. The initial marking M may be decomposed as M = M ′ + m × Rio, where
m ∈ Nat and M ′ ∩Rio = ∅.

5. The marked internal net (Nµ,M) is live, were M denotes a marking, pro-
duced from M by emptying all passive interface nodes of µ :

∀v ∈ Vµ M(v) =def

{
0 if (Ai

µ(•, v) ∪Ao
µ(v, •)) 6= ∅;

M(v) otherwise.

Then (µ,M) is USR-equivalent to a marked single-node module (ν,Mν), where

– Vν = {w};
– Iν(w,w) = kc; Oν(w,w) = kp;
– Ai

ν(•, w) = Ai; Ao
ν(w, •) = Ao;

– ∀v ∈ Vsys Ri
ν(w, v) = ki(v), Ro

ν(v, w) = ko(v);
– Mν(w) = m.

Proof. The proof is technical. It is based on the fact that the liveness of the
“unmarked” module implies the liveness of any node of the module in any bigger
initial marking (such a marking may be obtained by input from the system). The
system does not depend on the actual behaviour of the internal net (note that
the effect of all interface firings is the same). It is enough to know that any firing
is eventually possible.

An example of correct replacement is given on Fig. 11.
Here the module Procedure (live and unbounded) models some computation,

that may be performed by one of three computers, initially positioned in the node
idle. The service loader starts the computation, loading one of the computers
with an input data. The computer performs calculations (may be, infinitely) and
sometimes produces the results (to output). It also may be unloaded by another
service unloader.

The external behaviour of module Procedure is relatively simple, so it can
be replaced by a single node.
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Fig. 11. A module, replaced by a USR-equivalent node.

5 Conclusion and Future work

We tried to identify the distinctive features of AR-nets, that would possibly allow
them to be a successful base of some modular (and/or hierarchical) formalism.
We also performed some simple analyses of expressiveness of specific modular
constructs and decidability of basic module equivalences. It is also shown that
modular AR-nets may be a convenient modeling tool.

Since AR-nets are expressively equivalent to general Petri nets, all the results,
mentioned in the paper, can be applied to a standard Petri net syntax (in terms
of places and transitions). However, in contrast to ordinary Petri nets, the set of
nodes is homogeneous here and hence the syntax of module seems quite compact
and natural.

We also believe that our work shows the opportunities provided by “coloured”
arcs in Petri nets. Two-coloured arcs allowed us to remove the partition of nodes
into places and transitions. Obviously, the process of generalization can go fur-
ther, to a more complex/useful arcs/relations.

The possible directions of a future research in the area of modular AR-nets
are: the decidability of certain equivalences of modules; the problem of finding
the most effective (smallest/the least connected) decomposition of a given net;
the refinement of nodes; the algebraic manipulations with AR-nets and modules;
the synchronous compositions (requires additional constructs); etc.
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Abstract. Compilation of a Petri net model is one way to accelerate
its analysis through state space exploration. In this approach, code to
explore the Petri net states is generated, which avoids the use of a fixed
exploration tool involving an interpretation of the Petri net structure. In
this paper, we present a code generation framework for coloured Petri
nets targeting various languages (Python, C and LLVM) and featuring
optimisations based on peculiarities in models like places types, bound-
edness, invariants, etc. When adequate modelling tools are used, these
properties can be known by construction and we show that exploiting
them does not introduce any additional cost while further optimising the
generated code. The accelerations resulting from this optimised compi-
lation are then evaluated on various Petri net models, showing speedups
and execution times competing with state-of-the-art tools.
Keywords: explicit model-checking, acceleration, model compilation

1 Introduction

System verification through model-checking is one of the major research domains
in computer science [3]. It consists in defining a formal model of the system to
be analysed and then use an automated tool to check whether the expected
properties are met or not. In this paper, we consider more particularly the do-
main of coloured Petri nets [18], widely used for modelling, and the explicit
model-checking approach that enumerates all the reachable states of a model
(contrasting with symbolic model-checking that handles directly sets of states).

Among the numerous techniques to speedup explicit model-checking, model
compilation may be used to generate source code then compiled into machine
code to produce a high-performance implementation of the state space explo-
ration. For instance, this approach is successfully used by Helena [5, 24] that
generates C code and the same approach is also used by the well-known model-
checker Spin [16]. This accelerates computation by avoiding an interpretation of
the model that is instead dispatched within a specially generated analyser.

The compilation approach can be further improved by exploiting peculiari-
ties in the model of interest in order to optimise the generated code [19]. For
instance, we will see in the paper how 1-boundedness of places may be exploited.
Crucially, this information about the model can often be known by construction
if adequate modelling techniques are used [27], avoiding any analysis before state
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space exploration, which would reduce the overall efficiency of the approach. This
differs from other optimisations (that can be also implemented at compile time)
like transitions agglomeration implemented in Helena [6].

In this paper, we present a Petri net compiler infrastructure and consider
simple optimisations, showing how they can accelerate state space computation.
Theses optimisations are not fundamentally new and similar ideas can be found
in Spin for example. However, to the best of our knowledge, this is the first time
such optimisations are considered for coloured Petri nets. This allows us for in-
stance to outperform the well-known tool Helena, often regarded as the most
efficient explicit model-checker for coloured Petri nets. Moreover, our approach
makes use of a flexible high-level programming language, Python, as the colour
domain of Petri nets, which enables for quick and easy modelling. By exploiting
place types provided in the model, most of Python code in the model can be actu-
ally statically typed, allowing to generate efficient machine code to implement it
instead of resorting to Python interpretation. This results in a flexible modelling
framework that is efficient at the same time, which are in general contradictory
objectives. Exploiting a carefully chosen set of languages and technologies, our
framework enables the modeller for using an incremental development process
based on quick prototyping, profiling and optimisation.

The rest of the paper is organised as follows: we first recall the main no-
tions about coloured Petri nets and show how they can be compiled into a set
of algorithms and data structures dedicated to state space exploration. Then
section 3 discusses basic optimisations of these elements and section 4 presents
benchmarks to evaluate the resulting performances, including a comparison with
Helena. For simplicity, we restrict our algorithms to the computation of reacha-
bility sets, but they can be easily generalised to compute reachability graphs.

2 Coloured Petri nets and their compilation

A (coloured) Petri net involves a colour domain that provides data values, vari-
ables, operators, a syntax for expressions, possibly typing rules, etc. Usually,
elaborated colour domains are used to ease modelling; in particular, one may
consider a functional programming language [18, 29] or the functional fragment
(expressions) of an imperative programming language [24, 26]. In this paper we
will consider Python as a concrete colour domain. Concrete colour domains can
be seen as implementations of a more general abstract colour domain providing
D the set of data values, V the set of variables and E the set of expressions. Let
e ∈ E, we denote by vars(e) the set of variables from V involved in e. Moreover,
variables or values may be considered as (simple) expressions, i.e., we assume
D ∪ V ⊆ E. At this abstract level, we do not make any assumption about the
typing or syntactical correctness of expressions; instead, we assume that any ex-
pression can be evaluated, possibly to ⊥ /∈ D (undefined value) in case of any
error. More precisely, a binding is a partial function β : V → D ∪ {⊥}. Then,
let e ∈ E and β be a binding, we extend the application of β to denote by β(e)
the evaluation of e under β; if the domain of β does not include vars(e) then
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β(e)
df
= ⊥. The evaluation of an expression under a binding is naturally extended

to sets and multisets of expressions.

Definition 1 (Petri nets). A Petri net is a tuple (S, T, `) where S is the finite
set of places, T , disjoint from S, is the finite set of transitions, and ` is a
labelling function such that:

– for all s ∈ S, `(s) ⊆ D is the type of s, i.e., the values that s may contain;
– for all t ∈ T , `(t) ∈ E is the guard of t, i.e., a condition for its execution;
– for all (x, y) ∈ (S×T )∪ (T ×S), `(x, y) is a multiset over E and defines the

arc from x toward y.

A marking of a Petri net is a map that associates to each place s ∈ S a multiset
of values from `(s). From a marking M , a transition t can be fired using a
binding β and yielding a new marking M ′, which is denoted by M [t, β〉M ′, iff:

– there are enough tokens: for all s ∈ S, M(s) ≥ β(`(s, t));
– the guard is validated: β(`(t)) is true;
– place types are respected: for all s ∈ S, β(`(t, s)) is a multiset over `(s);
– M ′ is M with tokens consumed and produced according to the arcs: for all
s ∈ S, M ′(s) = M(s)− β(`(s, t)) + β(`(t, s)).

Such a binding β is called a mode of t at marking M .
For a Petri net node x ∈ S ∪ T , we define •x

df
= {y ∈ S ∪ T | `(y, x) 6= ∅} and

x•
df
= {y ∈ S ∪ T | `(x, y) 6= ∅} where ∅ is the empty multiset. Finally, we extend

the notation vars to a transition by taking the union of the variable sets in its
guard and connected arcs.

In the rest of this section and in the next two sections, we consider a fixed
Petri net N

df
= (S, T, `) to be compiled.

2.1 Compilation of coloured Petri nets

In order to allow for translating a Petri net into a library, we need to make
further assumptions about its annotations. First, we assume that the considered
Petri net is such that, for all transition t ∈ T , and all s ∈ S, `(s, t) is either
empty or contains a multiset of variables denoted by Xs,t

df
= {xs,t,i | 1 ≤ i ≤

As,t}, where As,t denotes the arity of the arc from s to t. We also assume that
vars(t) =

⋃
s∈S vars(`(s, t)), i.e., all the variables involved in a transition can be

bound using input arcs. The second assumption is a classical one that allows to
simplify the discovery of modes. The first assumption is made to simplify the
presentation: our implementation actually allows for more complex input arcs
with pattern matching of structured tokens.

The following definition allows to relate the Petri net to be compiled to
the chosen target language, assuming it defines notions of types (statical or
dynamical) and functions (with parameters). We need to concretise place types
and implement expressions.
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Definition 2. A Petri net is compilable to a chosen target language iff:

– for all place s ∈ S, `(s) is a type of the target language, interpreted as a
subset of D;

– for all transition t ∈ T , `(t) is a call to a Boolean function whose parameters
are the elements of vars(t);

– for all s ∈ t•, `(t, s) can be evaluated calling a function ft,s whose parameters
are the elements of vars(t) and that returns a multiset over `(s), i.e., ft,s is
equivalent to a single instruction “ return `(t, s)”;

– all the functions involved in the annotations terminate.

Given an initial marking M0, we want to compute the set R of reachable
markings, i.e., the smallest set such that M0 ∈ R, and if M ∈ R and M [t, β〉M ′
then M ′ ∈ R also. To achieve this computation, we compile the underlying Petri
net into a library. The compilation process aims to avoid the use of a Petri net
data structure by providing exploration primitives that are specific to the model.
These primitives manipulate a unique data structure, Marking, that stores a
state of the Petri net. The generated library will be used by a client program, a
model-checker or a simulator for instance, and used to explore the state space.
Thus, it has to respect a fixed API to ensure a correct interfacing with the client
program. Moreover, the library relies on primitives (like an implementation of
sets) that are assumed to be predefined, as well as code directly taken from the
compiled model. This structure is presented in figure 1.

client program (e.g., model-checker)

model code interfaces

predefined code (core lib, model libs)

exploration primitives

data structures:

– Marking

– · · ·

functions:

– succ

– succt1

– · · ·

– init

– firet1

– · · ·

hand written
by tool programmer

generated
by compiler

assumed
by compiler

provided
by existing libraries

hand written
by modeller

Fig. 1. The compiler generates a library (data structures and functions) that is used
by a client program (e.g., a model-checker or a simulator) to explore the state space.
This library uses code from the model (i.e., Petri nets annotations) as well as existing
data structures (e.g., sets and multisets) forming a core libraries, and accesses them
through normalised interfaces. Model code itself may use existing code but it is not
expected to do it through any particular interface.
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The compiled library is formed of two main parts, data structures which
contain the marking structure plus auxiliary structures, and functions for state
space exploration. The marking structure is generated following peculiarities of
the Petri net in order to produce an efficient data structure. This may include
fully generated components or reuse generic ones, the latter have been hand-
written and forms a core library that can be reused by the compiler. To make
this reusing possible as well as to allow for using alternative implementations
of generic components, we have defined a set of interfaces that each generic
component implementation has to respect.

A firing function is generated for each transition t to implement the successor
relation M [t, β〉M ′: given M and the valuation corresponding to β, it computes
M ′. A successor function succt is also generated for each transition t to compute
{M ′ | M [t, β〉M ′} given a marking M . More precisely, this function searches
for all modes at the given marking and produces the set resulting from the
corresponding firing function calls. We also produce a function init that returns
the initial marking of the Petri net, and a global successor function succ that
computes {M ′ | M [t, β〉M ′, t ∈ T} given a marking M , and thus calls all the
transition specific successor functions. These algorithms are presented below.

Let t ∈ T be a transition such that •t = {s1, . . . , sn} and t• = {s′1, . . . , s′m}.
Then, the transition firing function firet can be written as shown in figure 2. This
function simply creates a copy M ′ of M , removes from it the consumed tokens
(xs1,t,1, . . . , xs1,t,As1,t

, . . . , xsn,t,1, . . . , xsn,t,Asn,t
) and adds the produced ones

before to return M ′. One could remark that it avoids a loop over the Petri net
places but instead it executes a sequence of statements. Indeed, this is more
efficient (no branching penalties, no loop overhead, no array for the functions
ft,s′j , . . . ) and the resulting code is simpler to produce. It is important to notice
that we do not need a data structure for the modes. Indeed, for each transition
t we use a fixed order on •t, which allows to implicitly represent a mode though
function parameters and avoids data structure allocation and queries.

The algorithm to compute the successors of a marking through a transition
enumerates all the combinations of tokens from the input places. If a combination
validates the guard then the suitable transition firing function is called and
produce a new marking. This is shown in figure 3. The nesting of loops avoids
an iteration over •t, which saves from querying the Petri net structure and avoids
the explicit construction of a binding. Moreover, like ft,s′j above, gt is embedded
in the generated code instead of being interpreted.

The global successor function succ returns the set of all the successors of a
marking by calling all transition specific successor functions and accumulating
the discovered markings into the same set. This is shown in figure 4.

2.2 Structure of our compilation framework

As shown in figure 5, our compilation framework comprises a frontend part
that translates a Petri net into an abstract representation of the target library
(including abstracted algorithms and data structures). This representation is
then optimised exploiting Petri net peculiarities. For each target language, a
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firet : M, xs1,t,1, . . . , xs1,t,As1,t , . . . , xsn,t,1, . . . , xsn,t,Asn,t →M ′

M ′ ← copy(M) // copy marking M
M ′(s1)←M ′(s1)−Xs1,t // consume tokens
· · ·
M ′(sn)←M ′(sn)−Xsn,t

M ′(s′1)←M ′(s′1) + ft,s′1(xs1,t,1, . . . , xsn,t,Asn,t) // produce tokens
· · ·
M ′(s′m)←M ′(s′m) + ft,s′m(xs1,t,1, . . . , xsn,t,Asn,t)
return M ′ // return the successor marking

Fig. 2. Transition firing algorithm.

succt : M, next→ ⊥

// enumerate every binding of the variables in Xsn,t

for Xsn,t in M(sn) do // binds xsn,t,1, . . . , xsn,t,Asn,t

· · ·
for Xs1,t in M(s1) do

if gt(xs1,t,1, . . . , xsn,t,Asn,t) then // guard check
next ← next ∪ {firet(M,xs1,t,1, . . . , xsn,t,Asn,t)} // add a successor marking

endif
endfor
· · ·

endfor

Fig. 3. Transition specific successors computation algorithm.

succ : M → next

next ← ∅
succt1(M ,next)
· · ·
succtn(M ,next)
return next

Fig. 4. Computation of a marking successors.

dedicated backend translates the abstract representation into code in the target
language, and integrate the result with existing components from the core library
as well as with the code embedded within the Petri net annotations.

We currently have implemented three backends targeting respectively Python,
Cython and LLVM languages. Python is a well-known high-level, dynamically
typed, interpreted language [28] that is nowadays widely used for scientific com-
puting [23]. Cython is an extension of Python with types annotations, which
allows Cython code to be compiled into efficient C code, thus removing most of
the overheads introduced by the Python interpretation [1]. The resulting C code
is then compiled to a library that can be loaded as a Python module or from
any program in a C-compatible language. The Cython backend is thus also a C
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Petri net model

peculiarities

structure

annotations

frontend

abstract codecompiler

optimisers

backend

core lib

code generator

target code

Fig. 5. Structure of the compilation framework.

backend. LLVM is a compiler infrastructure that features a high-level, machine-
independent, intermediate representation that can be seen as a typed assembly
language [21]. This LLVM code can be executed using a just-in-time compiler or
compiled to machine code on every platform supported by the LLVM project.

We consider Petri nets models using Python as their colour domain. The
compatibility with the Python and Cython backends is thus straightforward. In
order to implement the LLVM backend, we reuse the Cython backend to generate
a stripped down version of the target library including only the annotations from
the model. This simplified library is then compiled by Cython into C code that
can be handled by the LLVM toolchain.

3 Optimisations guided by Petri net structures

3.1 Statically typing a dynamically typed colour domain

This optimisation aims at statically typing the Python code embedded in a Petri
net model. In this setting, place types are specified as Python classes among
which some are built-in primitive types (e.g., int , str , bool , etc.) actually imple-
mented in C. The idea is to use place types to discover the types of variables,
choosing the universal type (object in Python) when a non-primitive type is
found. When all the variables involved in the computation of a Python expres-
sion can be typed with primitive types, the Cython compiler produces for it an
efficient C implementation, without resorting to the Python interpreter. This
results in an efficient pure C implementation of a Python function, similar to
the primitive functions already embedded in Python.

In the benchmarks presented in the next section, this optimisation is always
turned on. Indeed, without it, the generated code runs at the speed of the Python
interpreter, that may dramatically slower, especially when most of data can be
statically typed to primitive types (see section 4.3).

3.2 Improving binding discovery

Each function succt enumerates the variables from the input arcs in an arbitrary
order. The order of the loops thus has no incidence on the algorithm correction,
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but it can produce an important speedup as shown in [8]. For instance, consider
two places s1, s2 ∈ •t. If we know that s1 is 1-bounded but not s2, then it is
more efficient to enumerate tokens in s1 before those in s2 because the former
enumeration is cheaper than the latter and thus we can iterate on s2 only if
necessary. More generally, the optimisation consists in choosing an ordering of
the input arcs to enumerate first the tokens from places with a lower boundary or
a type with a smaller domain. The optimisation presented in [8] is actually more
general and also relies on observations about the order in which variables are
bound, which is off-topic in our case considering the restrictions we have imposed
on input arcs and guard parameters. However, in the more general setting of our
implementation, we are using the full optimisation as described in [8].

In general, place-bounds for an arbitrary Petri net are usually discovered
by computing the state space or place invariants [14, 17]. However, using ade-
quate modelling tools or formalisms, this property may be known by construction
for many places: in particular, control-flow places in algebras of coloured Petri
nets [27] can be guaranteed to be 1-bounded by construction.

3.3 Exploiting 1-bounded places

Let M be a marking and assume a place sk ∈ •t that is 1-bounded. In such a
case, we can replace the kth “for” loop by an “if” block in the t-specific successor
algorithm. Indeed, we know that sk may contain at most one token and so,
iterating over M(sk) is equivalent to check whether sk is not empty and then
retrieve its unique token. This is shown in figure 6, combined with the following
optimisation.

3.4 Efficient implementations of place markings

This optimisation consists in replacing a data structure by another one but
preserving the interfaces. As a first example, let us consider a 1-bounded place
sk of type {•}. This is the case for instance for control-flow places in algebras
of coloured Petri nets [27]. We assume that Xsk,t = {xsk,t,1} otherwise the
transition is dead and can be removed by the compiler. The optimisation consists
in replacing the generic data structure for multisets by a much more efficient
implementation storing only a Boolean value (i.e., one bit) to indicate whether
the place is marked or not.

Similarly, a 1-bounded coloured place may be implemented using a single
value to store a token value together with a Boolean to know whether a token
is actually present or not. (Another implementation could use a pointer to the
token value that would be null whenever the place is empty, but this version
suffers from the penalty of dynamic memory management.) An example is given
in figure 6 in conjunction with the optimisation from section 3.3.

Finally, a place whose type is bool may be implemented as a pair of counters
to store the number of occurrences of each Boolean value present in the place.
This is likely to be more efficient than a hashtable-based implementation and
may be generalised to most types with a small domain.
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succt : M, next→ ⊥

. . . // as in figure 3
for Xsk−1,t in M(sk−1) do

if M(sk) 6= ∅ then // tests one bit
xsk,t,1 ← getsk (M, 1) // directly accesses the unique token
for Xsk+1,t in M(sk+1) do

. . . // as in figure 3
endfor

endif
endfor
. . . // as in figure 3

Fig. 6. An optimisation of the algorithm presented in figure 3 where function
getsk (M, i) returns the i-th token in the domain of M(sk).

4 Experimental results

The compilation approach presented in this paper is currently being imple-
mented. We use a mixture of different programming languages: LLVM, C, Python
and Cython (both to generate C from Python, and as a glue language to inter-
face all the others). More precisely, we use the SNAKES toolkit [25, 26], a library
for quickly prototyping Petri net tools, it is used here to import Petri nets and
explore their structure. We also use LLVM-Py [22], a Python binding of the
LLVM library to write LLVM programs in a “programmatic” way, i.e., avoiding
to directly handle source code. It is used here to generate all the LLVM code
for state space algorithms. Finally, the core library is implemented using either
Python, Cython, LLVM and C. For instance, we directly reuse the efficient sets
implementation built into Python, multisets are hand-written in Cython on the
top of Python dictionaries (based on hash tables) and a few auxiliary data struc-
tures are hand-written directly in C or LLVM. All these language can be mixed
smoothly because they are all compatible with C (Python itself is implemented
in C and its internal API is fully accessible). The compiler is fully implemented
in Python, which is largely efficient enough as shown by our experiments below.

As explained already, the compilation process starts with the front-end that
analyses the Petri net and produces an abstract representation (AR) of the
algorithms and data structures to be generated. Algorithmic optimisations are
performed by the front-end directly on the AR. Then, depending on the selected
target language, a dedicated backend is invoked to generate and compile the
target code. Further optimisations on data-structure implementation are actually
performed during this stage. To integrate these generated code with predefined
data structures, additional glue code is generated by the backend. The result
is a dynamic library that can be loaded from the Python interpreter as well as
called from a C or LLVM program.

The rest of the section presents three case studies allowing to demonstrate
the speedups introduced by the optimisations presented above. The machine
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used for benchmarks was a standard laptop PC equipped with an Intel i5-520M
processor (2.4GHz, 3MB, Dual Core) and 4GB of RAM (2x2GB, 1333MHz
DDR3) with virtual memory swapping disabled. We compare our implemen-
tation with Helena (version 1.5) and focus on three main aspects of computa-
tion: total execution time, model compilation time and state space search time.
Each reported measure is expressed in seconds and was obtained as the aver-
age of ten independent runs. Finally, in order to ensure that both tools use the
same model and compute the same state space, static reduction were disabled
in Helena. In order to generate the state space, a trivial client program was
produced to systematically explore and store all the successors of all reached
markings. All the presented results are obtained using the Cython backend that
is presently the most efficient of our three backends, and is as expressive as
Python. All the files and programs used for these benchmarks may be obtained
at 〈http://www.ibisc.fr/~lfronc/SUMO-2011〉.

4.1 Dinning Philosophers

The first test case consists in computing the state space of a Petri net model of
the Dinning Philosophers problem, borrowed from [4]. The considered Petri is a
1-bounded P/T net so we use the corresponding optimisation discussed above.
The results for different numbers of philosophers are presented in table 1. We
can observe that our implementation is always more efficient than Helena and
that the optimisations introduce a notable speedup with improved compilation
times (indeed, optimisation actually simplifies things). In particular, we would
like to stress that the compilation time is very satisfactory, which validates the
fact that it is not crucial to optimise the compiler itself.

We also observe that without optimisations our library cannot compute the
state space for more than 33 philosophers, and with the optimisations turned
on, it can reach up to 36 philosophers. Helena can reach up to 37 philosophers
but fails with 38, which can be explained by its use of a state space compression
technique that stores about only one out of twenty states [5, 9]. The main conclu-
sion we draw from this example is that our implementation is much faster than
Helena on P/T nets, even without optimisations and that compilation times are
much shorter. We observe also that it is also faster on bigger state spaces (cases
35 and 36). Following [15], we believe that this is mainly due to avoidance of hash
clashes and state comparison when storing states, which validates the efficiency
of the model-specific hash functions we generate.

Moreover, with respect to a direct interpretation using SNAKES, our com-
piler is much faster, for instance, about 900 times faster for 25 philosophers.

4.2 A railroad crossing model

This test case is a model of a railroad crossing system, that generalises the
simpler one presented in [27, sec. 3.3] to an arbitrary number of tracks. This
system comprises a gate, a set of tracks equipped with green lights, as well as
a controller to count trains and command the gates accordingly. For n tracks,
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n states
not optimised optimised

speedup
Helena

speedup
t c s t c s t c s

24 103 682 4,7 3,8 0,9 2,4 1,8 0,6 2,0 14,7 12,1 2,6 6,2

25 167 761 5,7 4,0 1,6 3,0 1,8 1,2 1,9 17,5 13,0 4,5 5,8

26 271 443 7,0 4,1 3,0 4,1 1,9 2,2 1,7 20,8 13,0 7,8 5,1

27 439 204 9,6 4,3 5,3 5,9 1,9 4,0 1,6 27,5 14,0 13,5 4,7

28 710 647 14,0 4,8 9,2 9,0 2,0 7,0 1,6 39,1 14,0 25,1 4,3

29 1 149 851 20,9 4,8 16,1 14,9 2,1 12,8 1,4 57,7 15,0 42,7 3,9

30 1 860 498 34,3 5,0 29,3 24,5 2,1 22,4 1,4 92,5 15,0 77,5 3,8

31 3 010 349 56,6 5,4 51,2 41,2 2,1 39,1 1,4 158,0 16,0 142,0 3,8

32 4 870 847 92,8 5,7 87,1 69,8 2,2 67,6 1,3 277,5 16,0 261,5 4,0

33 7 881 196 155,7 6,0 149,8 114,2 2,3 111,9 1,4 437,1 17,0 420,1 3,8

34 12 752 043 m.e. m.e. m.e. 193,4 2,3 191,1 m.e. 860,1 17,0 843,1 4,4

35 20 633 239 m.e. m.e. m.e. 345.1 2.4 342.7 m.e. 1905.7 18.5 1887.2 5.5

36 33 385 282 m.e. m.e. m.e. 598.9 2.4 596.5 m.e. 4253.8 18.5 4235.3 7.1

37 54 018 521 m.e. m.e. m.e. m.e. m.e. m.e. m.e. 10217 19.0 10198.1 m.e.

Table 1. Performance tests based on n philosophers, where t is the total execution
time, s is the total state space search time and c is the compilation time. The left-most
column entitled “speedup” corresponds to the total time in the unoptimised model
divided by the total time in the optimised model. The right-most “speedup” column is
the total time spent by Helena divided by the total time in the optimised model. “m.e.”
stands for “memory exhausted”.

n states
not optimised optimised

speedup
Helena

speedup
t c s t c s t c s

7 30 626 3.7 3.5 0.2 2.2 2.1 0.2 1.6 14.4 14.0 0.4 6.4

8 124 562 5.1 3.9 1.2 3.1 2.2 0.9 1.6 17.4 15.0 2.4 5.6

9 504 662 10.6 4.3 6.3 6.7 2.4 4.3 1.6 28.9 17.0 11.9 4.3

10 2 038 166 33.9 4.8 29.1 23.8 2.6 21.3 1.4 73.0 18.0 55.0 3.1

11 8 211 530 140.7 5.2 135.5 108.5 2.8 105.7 1.3 345.0 20.0 325.0 3.2

12 33 023 066 m.e. m.e. m.e. m.e. m.e. m.e. m.e. 2721.6 23.0 2698.6 m.e.

Table 2. Performance tests based on n tracks of the railroad model, where t, s, c and
“speedup” are as in table 1.

this Petri net has 5n+ 11 black-token 1-bounded places (control flow or flags), 2
integer-typed 1-bounded places (counter of trains and gate position), 3 integer-
typed colour-safe places (tracks green lights) and 1 black-token n-bounded place
(signals from track to controller). The benchmarks results are shown in table 2.

As above, we notice that our implementation is faster than Helena even
without optimisations, and that the optimisations result in similar speedups. We
could compute the state space for at most 11 tracks while Helena can reach 12
tracks but fails at 13. As previously, when compared with direct interpretation,
we notice that compiled code is much faster: about 350 times faster for 8 tracks
(the maximum number SNAKES could handle).
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not optimised optimised
speedup

exploration
t c s t c s speedup

with Python 5.00 0.07 4.93 4.18 0.07 4.11 1.20 1.20
attacker Cython 5.50 2.36 3.14 4.83 2.02 2.82 1.14 1.11

without Python 2.58 0.07 2.51 1.85 0.07 1.78 1.40 1.41
attacker Cython 3.32 2.36 0.97 2.79 2.02 0.77 1.19 1.26

Table 3. Computation of the state space of the security protocol model, where t, s, c
and “speedup” columns are as in table 1.

4.3 Security protocol model

The last test case is a model of the Needham-Schroeder public key cryptographic
protocol, borrowed from [13]. It embeds about 350 lines of Python code to im-
plement the learning algorithm of a Dolev-Yao attacker. This model comprises
17 places optimised as discussed above whenever possible: 11 are black-token
1-bounded places to implement the control-flow of agents; 6 are coloured 1-
bounded places to store the agents’ knowledge; 1 is an unbounded coloured
place to store the attacker’s knowledge. Coloured tokens are Python objects or
tuples of Python objects. Such a Petri net structure is typical for models of
cryptographic protocols like those considered in [13].

For this example, it is not possible to draw a direct comparison with Helena
since there is no possible translation of the Python part of the model into the
language embedded in Helena. However, compared with a Helena model of the
same protocol from [2], we observe equivalent execution times for a SNAKES-
based exhaustive simulation and a Helena run. The state space exploration is
much faster using Helena but its compilation time is very long (SNAKES does
not compile). In our current experiment, we can observe that the compilation
time is as good as with other models because the annotations in this model
are Python expressions that can be directly copied to the generated code, while
Helena needs to translate the annotation of its Petri net model into C code.

The results of the computation of the state space are shown in table 3. We
have first presented the whole execution times, then when have excluded the time
spent in the Dolev-Yao attacker algorithms that is user-defined external code
that no Petri net compiler could optimise. This allows to extract a more relevant
speedup that is similar with the previous tests. However, one could observe that
the Python version outperforms the Cython version and executes faster and with
better speedups. This is actually due to the small size of the state space (only
1234 states), which has two consequences. First, it gives more weight to the
compilation time: the Python backend only needs to produce code, whereas the
Cython backend also calls Cython and a C compiler. Second, the benefits from
Cython can be better observed on the long run because it optimises loops in
particular. This is indeed shown in figure 7 that depicts the speedups obtained
by compiling to Cython instead of Python with respect to the number of parallel
session of the Needham-Schroeder protocol without attacker. To provide an order
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10

12 C vs P

sessions

not optimised

optimised

↑Cython faster than Python

↓Cython slower than Python

117,649 states

n = 6 not optimised optimised speedup

Python 403.9 109.1 3.7

Cython 37.4 29.2 1.3

C vs P 10.8 3.7

Fig. 7. Speedup of Cython backend compared with Python backend for n sessions
of the protocol. Row “C vs P” shows the speedups obtained by compiling to Cython
instead of Python, which correspond to the right-most white and black dots on the
graph.

of magnitude, we have also shown the number of states for 6 sessions and the
speedups obtained from the optimisations. This also allows to observe that our
optimisations perform very well on Python also and reduce the execution times,
which in turn reduces benefits of using Cython. This is not true in general but
holds specially on this model that comprises many Python objects that cannot
be translated to C efficient code. So, the Cython code suffers from many context
switching between C and Python parts.

We would like to note also that the modelling time and effort is much larger
when developing a model using the language embedded in Helena rather than
using a full-featured language like Python. So, there exists a trade-off between
modelling, compilation and verification times that is worth considering. This is
why we consider as crucial for our compiler to enable the modeller for quick
prototyping with incremental optimisation, as explained in [1]. In our case, the
Python implementation of the attacker may be compiled using Cython and op-
timised by typing critical parts (i.e., main loops). Compared with the imple-
mentation of the Dolev-Yao attacker using Helena colour language from [2], the
Python implementation we have used is algorithmically better because it could
use Python efficient hash-based data structures (sets and dictionaries) while He-
lena only offers sequential data structures (arrays and lists), which is another
argument in favour of using a full-featured colour language.

As a conclusion about performances for this test case, let us sum up inter-
esting facts: SNAKES and Helena versions run in comparable times, the latter
spends much more time in compilation but the former has more efficient data
structures; our compilation is very efficient; our Python backend is typically 10
times faster than SNAKES simulation; our Cython backend performs as well
as the Python backend in this case. So we could reasonably expect very good
performances on a direct comparison with Helena, for not too large state spaces.
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5 Conclusion

We have shown how a coloured Petri net can be compiled to produce a library
that provides primitives to compute the state space. Then, we have shown how
different kinds of optimisations can be considered, taking into account peculiari-
ties in the model. We have considered places types and boundaries in particular.
Finally, our experiments have demonstrated the relevance of the approach, show-
ing both the benefits of the optimisations (up to almost 2 times faster) and the
overall performance with respect to the state-of-the-art tool Helena (up to 7
times faster). With respect to direct interpretation, our compilation approach
is up to 900 times faster. Moreover, we have shown that a well chosen mixture
of high- and low-level programming languages enables the modeller for quick
prototyping with incremental optimisation, which allows to obtain results with
reduced time and efforts. Our comparison with Helena also showed that our
compilation process is much faster in every case (around 7 times faster). Our
optimisations rely on model-specific properties, like place types and boundaries,
and do not introduce additional compilation time, instead optimisation may ac-
tually simplifies things and fasten compilation.

The idea of exploiting models properties has been defended in [27] and suc-
cessfully applied to the development of a massively parallel state space explo-
ration algorithm for Petri net models of security protocols [13], or in [20] to
reduce the state space of models of multi-threaded systems. Let us also remark
that the LLVM implementation of the algorithms and code transformations (i.e.,
optimisations) presented in this paper has been formally proved in [11, 12], which
is an important aspect when it comes to perform verification. Crucially, these
proofs rely on our careful modular design using fixed and formalised interfaces
between components.

Our current work is focused toward finalising our compiler, and then in-
troducing more optimisations. In particular, we would like to improve memory
consumption by introducing memory sharing, and to exploit more efficiently the
control flow places from models specified using algebras of Petri nets [27]. In par-
allel, we will develop more case studies to assess the efficiency of our approach.
We are also investigating a replacement of the Helena compilation engine with
ours, allowing to bring our performances and flexible modelling environment to
Helena while taking advantage of its infrastructure, in particular the memory
management strategies [7, 9, 10] and the static Petri nets reductions [6].
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of Évry, 2009.
20. H. Klaudel, M. Koutny, E. Pelz, and F. Pommereau. State space reduction for

dynamic process creation. Scientific Annals of Computer Science, 20, 2010.
21. C. Lattner and al. The LLVM compiler infrastructure. 〈http://llvm.org〉.
22. R. Mahadevan. Python bindings for LLVM. 〈http://www.mdevan.org/llvm-py〉.
23. K.J. Millman and M. Aivazis, editors. Python for Scientists and Engineers, volume

13(2) of Computing in Science & Engineering. IEEE Computer Society, 2011.
24. C. Pajault and S. Evangelista. Helena: a high level net analyzer. 〈http://helena.

cnam.fr〉.
25. F. Pommereau. SNAKES is the net algebra kit for editors and simulators. 〈http:

//www.ibisc.univ-evry.fr/~fpommereau/snakes.htm〉.
26. F. Pommereau. Quickly prototyping Petri nets tools with SNAKES. Petri net

newsletter, 2008.
27. F. Pommereau. Algebras of coloured Petri nets. LAMBERT Academic Publishing,

October 2010, ISBN 978-3-8433-6113-2.
28. Python Software Foundation. Python programming language. 〈http://www.

python.org〉.
29. C. Reinke. Haskell-coloured Petri nets. In IFL’99, volume 1868 of LNCS. Springer,

1999.

Proceedings of CompoNet and SUMo 2011

63



Proceedings of CompoNet and SUMo 2011

64



Generalized Büchi Automata versus Testing Automata
for Model Checking

A.-E. Ben Salem1,2, A. Duret-Lutz1, and F. Kordon2

1 LRDE, EPITA, Le Kremlin-Bicêtre, France
ala@lrde.epita.fr, adl@lrde.epita.fr

2 LIP6, CNRS UMR 7606, Université P. & M. Curie — Paris 6, France
Fabrice.Kordon@lip6.fr

Abstract. Geldenhuys and Hansen have shown that a kind of ω-automaton known
as testing automata can outperform the Büchi automata traditionally used in the
automata-theoretic approach to model checking [8]. This work completes their
experiments by including a comparison with generalized Büchi automata; by us-
ing larger state spaces derived from Petri nets; and by distinguishing violated
formulæ (for which testing automata fare better) from verified formulæ (where
testing automata are hindered by their two-pass emptiness check).

1 Introduction

Context The automata-theoretic approach to model checking linear-time properties [23]
splits the verification process into four operations:
1. Computation of the state-space for the model M. This state-space can be seen as an

ω-automaton AM whose language, L (AM), represent all possible executions of M.
2. Translation of the temporal property ϕ into a ω-automaton A¬ϕ whose language,

L (A¬ϕ), is the set of all executions that would invalidate ϕ.
3. Synchronization of these automata. This constructs a product automaton AM⊗A¬ϕ

whose language, L (AM)∩L (A¬ϕ), is the set of executions of M invalidating ϕ.
4. Emptiness check of this product. This operation tells whether AM⊗A¬ϕ accepts an

infinite word, and can return such a word (a counterexample) if it does. The model
M verifies ϕ iff L (AM⊗A¬ϕ) = /0.

Problem Different kinds of ω-automata have been used with the above approach. In
the most common case, a property expressed as an LTL (linear-time temporal logic)
formula is converted into a Büchi automaton with state-based acceptance, and a Kripke
structure is used to represent the state-space of the model.

In our tools, we prefer to represent properties using generalized (i.e., multiple)
Büchi acceptance conditions on transitions rather than on states [7]. Any algorithm
that translates LTL into a Büchi automaton has to deal with generalized Büchi accep-
tance conditions at some point, and the process of degeneralizing the Büchi automaton
often increases its size. Several emptiness-check algorithms can deal with generalized
Büchi acceptance conditions, making such an a degeneralization unnecessary and even
costly [5]. Moving the acceptance conditions from the states to the transitions also re-
duces the size of the property automaton [3, 10].
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Unfortunately, having a smaller property automaton A¬ϕ does not always imply
that the product with the model (AM ⊗A¬ϕ) will be smaller, and it is the size of this
product that really affects the efficiency of the model checking. Instead of targeting
smaller property automata, some people have attempted to build automata that are more
deterministic [21]; however even this does not guarantee the product to be smaller.

Hansen et al. [11] introduced a new kind of ω-automaton called Testing Automaton.
These automata are less expressive than Büchi automata since are tailored to repre-
sent stuttering-insensitive properties (such as any LTL property that does not use the
X operator). Also they are often a lot larger than their equivalent Büchi automaton, but
surprisingly their good determinism often lead to a smaller product. The reasons why
and the conditions under which testing automata perform better are still mysterious [8].

Objectives The objective of this paper is to evaluate efficiency of LTL model checking
with these three kinds of ω-automata: classical Büchi Automata (BA), Transition-based
Generalized Büchi automata (TGBA), and Testing Automata (TA). Our main motivation
is to try to establish some rough rules to choose automatically and a priori the technique
that seems most suitable to check a given stuttering-insensitive property on a given
model. This is of interest when a tool offers the choice of several techniques, which is
the case for our model checker Spot [16].

Contents Section 2 provides a brief summary of the three ω-automaton and pointers to
their associated operations for model checking. Then section 3 reports our experimen-
tation procedure and its results before a discussion in section 4.

2 Presentation of the three Approaches

Let AP designate the set of atomic proposition of the model that we might want to use
to build a linear-time property. Any state of the model can be labeled by a valuation
of these atomic propositions. We denote by K = 2AP the set of these valuations. For
instance if AP = {a,b}, then K = 2AP = {āb̄, āb,ab̄,ab}. An execution of the model is
simply an infinite sequence of such valuations, i.e., an element from Kω. A property
can be seen as a set of sequences, i.e. a subset of Kω.

This section presents the three kinds of automata we compare in this paper: Transi-
tions-based Generalized Büchi Automata, Büchi Automata and Testing Automata. For
all of them, we explain how they recognize subsets of Kω to show their differences.
We do not detail the actual operations that must be performed to model check a system
which each approach because this has already been done in other works.

(a) ϕ

āb̄

āb

ab

ab̄ (b) aUGb Gb

ab,ab̄

āb,ab
āb,ab

Fig. 1: (a) A TGBA with acceptance conditions F = { , } recognizing the LTL prop-
erty ϕ = GFa∧GFb. (b) A TGBA with F = { } recognizing the LTL property aUGb.

Proceedings of CompoNet and SUMo 2011

66



2.1 Transition-based Generalized Büchi Automata

A Transition-based Generalized Büchi Automata (TGBA) [10] over an alphabet K =
2AP is an ω-automaton where transitions are labeled by letters from K and some accep-
tance conditions. In our context, the TGBA represents the LTL property to verify.

Definition 1 A TGBA can be formally represented by a tuple G = 〈S, I,R,F〉 where:
– S is finite set of states,
– I ⊆ S is the set of initial states,
– F is a finite set of acceptance conditions,
– R ⊆ S× 2K × 2F × S is the transition relation, where each element (si,Ki,Fi,di)

represents a transition from state si to state di labeled by the non-empty set of
letters Ki, and the set of acceptance conditions Fi.

An execution w = k0k1k2 . . . ∈ Kω is accepted by G if there exists an infinite path
(s0,K0,F0,s1)(s1,K1,F1,s2)(s2,K2,F2,s3) . . . ∈ Rω where:

– s0 ∈ I, and ∀i ∈N, ki ∈ Ki ⊆ K (the execution is recognized by the path),
– ∀ f ∈F, ∀i∈N, ∃ j≥ i, f ∈Fj (each acceptance condition is visited infinitely often).

Fig. 1 shows two examples of TGBA: one deterministic TGBA derived from the
LTL formula GFa∧GFb, and one non-deterministic TGBA derived from aUGb. The
LTL formulæ that label states represent the property accepted starting from this state
of the automaton: they are shown for the reader’s convenience but not used for model
checking. As can be inferred from Fig. 1(a), an LTL formula such as

∧n
i=1 GF pi can be

represented by a one-state deterministic TGBA with n acceptance conditions.

Model checking using TGBA When doing model checking with TGBA the two im-
portant operations are the translation of the linear-time property ϕ into a TGBA A¬ϕ and
the emptiness check of the product AM⊗A¬ϕ. We know of at least four algorithms that
purposedly translate LTL formulæ into TGBA [10, 3, 4, 22]. The one we use is based on
Couvreur’s LTL translation algorithm [3].

Testing a TGBA for emptiness amounts to the search of a strongly connected com-
ponent that contains at least one occurrence of each acceptance condition. It can be
done in two different way: either with a variation of Tarjan or Dijkstra algorithm [3] or
using several nested depth-first searches to save some memory [22]. The latter proved
to be slower [5], so we are using Couvreur’s SCC-based emptiness check algorithm [3].
Another advantage of the SCC-based algorithm is that their complexity does not depend
on the number of acceptance conditions.

2.2 Büchi Automata

A Büchi Automaton (BA) has only one acceptance condition that is state-based.

Definition 2 A BA over the alphabet K = 2AP is a tuple B = 〈S, I,R,F〉 where:
– S is a set of finite set states,
– I ⊆ S is the set of initial states,
– F ⊆ S is a finite set of acceptance states,
– R⊆ S×2K×S is the transition relation where each transition is labeled by a set of

letters of K.
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An execution w = k0k1k2 . . . ∈ Kω is accepted by B if there exists an infinite path
(s0,K0,s1)(s1,K1,s2)(s2,K2,s3) . . . ∈ Rω such that:

– s0 ∈ I, and ∀i ∈N, ki ∈ Ki (the execution is recognized by the path),
– ∀i ∈N, ∃ j ≥ i, s j ∈ F (at least one acceptance state is visited infinitely often).

Model checking using BA A BA can be obtained from a TGBA by a procedure known
as degeneralization [3, 10]. In a worst case, a TGBA with s states and n acceptance
conditions will be degeneralized into a BA with s× (n+1) states (and one acceptance
condition). This is what we do in our experiments. Alternatives include the translation
of the property into a state-based generalized automaton which can then also be degen-
eralized, or the translation of the property into an alternating Büchi automaton that is
then converted into a BA using the Miyano-Hayashi construction [15].

The emptiness check algorithms that can deal with TGBA will also work on BA
(a BA can be seen as a TGBA by pushing the acceptance conditions on the transition
leaving acceptance states). But it can also be done using two nested depth-first searches.
The comparison of these different emptiness checks has raised many studies [9, 20, 5].

Fig. 2 shows the same properties as Fig. 1, but expressed as Büchi automata. The
automaton from Fig. 2(a) was built by degeneralizing the TGBA from Fig. 1(a). The
worst case of the degeneralization occurred here, since the TGBA with 1 state and n
acceptance conditions was degeneralized into a BA with n+ 1 states. It is known that
no BA with less than n+ 1 states can recognize the property

∧n
i=1 GF pi so this Büchi

automaton is optimal [2]. The property aUGb, on the other hand, is easier to express:
the BA has the same size as the TGBA.

(a) ϕ

ϕ

ϕ

ab

ab̄, āb̄

āb

ab̄, āb̄
ab

āb
āb, āb̄

ab,ab̄

(b) aUGb Gb

ab,ab̄

āb,ab

āb,ab

Fig. 2: Two example BA, with acceptance states shown as double circles. (a) A BA for
the LTL property ϕ = GFa∧GFb obtained by degeneralizing the TGBA for Fig. 1(a).
(b) A BA for the LTL property aUGb.

2.3 Testing Automata

A property, i.e., a set of infinite sequences P ⊆ Kω, is stuttering-insensitive iff any
sequence k0k1k2 . . . ∈ P remains in P after repeating any valuation ki. In other words,
P is stuttering-insensitive iff

k0k1k2 . . . ∈ P ⇐⇒ ki0
0 ki1

1 ki2
2 . . . ∈ P for any i0 > 0, i1 > 0 . . .

It is well known that any LTL\X formula (i.e. an LTL formula that does not use
the X operator) describes a stuttering-insensitive property. (It is possible to build some
stuttering-insensitive LTL formulæ using the X operator [6].)
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Testing Automata (TA) were introduced by Hansen et al. [11] to represent stuttering-
insensitive properties. While a Büchi automaton observes the value of the atomic propo-
sitions AP, the basic idea of TA is to detect the changes in these values; if a valuation
of AP does not change between two consecutive valuations of an execution, the TA can
stay in the same state. To detect execution that ends by stuttering in the same TA state,
a new kind of acceptance states is introduced: "livelock acceptance states".

If A and B are two valuations, let us note A⊕B the symmetric set difference, i.e. the
set of atomic propositions that changed. E.g. ab̄⊕ab = {b}.

Definition 3 A TA over the alphabet K = 2AP is a tuple T = 〈S, I,U,R, F,G〉. where:
– S is a finite set of states,
– I ⊆ S is the set of initial states,
– U : I→ K is a function mapping each initial state to a symbol of K interpreted as a

valuation (the initial configuration),
– R⊆ S×K×S is the transition relation where each transition (s,k,d) is labeled by

a changeset: k ∈ K = 2AP is interpreted as a set of atomic propositions that should
change between states s and d,

– F ⊆ S is a set of Büchi acceptance states,
– G⊆ S is a set of livelock acceptance states.

An execution w = k0k1k2 ... ∈ Kω is accepted by T if there exists an infinite sequence
(s0,k0⊕ k1,s1)(s1,k1⊕ k2,s2) . . .(si,ki⊕ ki+1,si+1) . . . ∈ (S×K×S)ω such that:

– s0 ∈ I with U(s0) = k0,
– ∀i∈N, either (si,ki⊕ki+1,si+1)∈ R (we are progressing in the testing automaton),

or ki = ki+1∧ si = si+1 (the execution is stuttering and the TA does not progress),
– Either, ∀i ∈N, (∃ j ≥ i, k j 6= k j+1)∧ (∃l ≥ i, sl ∈ F) (the automaton is progressing

in a Büchi-accepting way), or, ∃n ∈ N, (sn ∈ G∧ (∀i ≥ n, si = sn ∧ ki = kn)) (the
sequence reaches a livelock acceptance state and then stay on that state because
the execution is stuttering).

Construction of a Testing Automaton from a Büchi Automaton From a BA B =
(SB, IB,RB,FB) over the alphabet K = 2AP, we obtain a TA T = (ST , IT ,UT ,RT ,FT ,GT )
representing the same property in two steps [8]:
1. Converting B into an intermediate form of T with GT = /0:

– ST = SB×K, IT = IB×K, FT = FB×K, and GT = /0

– ∀(s,k) ∈ IT ,UT ((s,k)) = k
– ∀(s1,k1) ∈ ST ,∀(s2,k2) ∈ ST ,

((s1,k1),k1⊕ k2,(s2,k2)) ∈ RT ⇐⇒ ∃k ∈ 2K , ((s1,k,s2) ∈ RB)∧ (k1 ∈ k)
2. Filling GT to simplify T . For that, compute all strongly connected components

using only stuttering transitions (i.e., transitions labeled by /0). If such a SCC is not
trivial (i.e., it contains a cycle) and contains a Büchi acceptance state, then add all
its states to GT . Add to IT or GT any state that can respectively reach IT or GT using
only stuttering transitions. Finally remove all stuttering transitions from RT .

Additionally, the TA can be minimized by merging bisimilar states.
Fig. 3 shows the automaton constructed for aUGb by applying the above construc-

tion on the automaton from Fig. 2(b). The TA for GFa∧GFb is too big to be shown: it
has 11 states and 64 transitions.
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aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb Gb,ab

Gb, āb

{b} {a,b}{b}

{a}

{a}

{a}
{a} {a}

(a) Before reduction.

aUGb, ab̄ab̄

aUGb, abab

aUGb, ābāb

Gb,b

{b} {a,b}{b}

{a}

{a}

{a}

{a}

(b) After reduction by bisimulation.

Fig. 3: Two TA for the LTL formula aUGb. States with a double enclosure belong to
either F or G: states in F \G (none here) have a double plain line, states in G\F have
a double dashed line, and state in F ∩G use a mixed dashed/plain style.

Emptiness check using TA A first difference between the BA and TA approaches ap-
pears in the product computation. Indeed, a testing automaton remains in the same state
when the Kripke structure executes a stuttering step.

The emptiness check also requires a dedicated algorithm because there are two
ways to accept an execution: Büchi acceptance or livelock acceptance. In the algo-
rithm sketched by Geldenhuys and Hansen [8], a first pass is used with an heuristic to
detect both Büchi and livelock acceptance cycles. Unfortunately, in certain cases this
first pass fails to report existent livelock acceptance cycles. This implies that when no
counterexample is found by the first pass, a second one is required to double-check for
possible livelock acceptance cycles. These two passes are annoying when the property
is satisfied (no counterexample) since the entire state-space has to be explored twice.

Optimizations Looking at Fig. 3 inspires two optimizations. The first one is based
on the fact that the construction of testing automata described in previous section will
generate a lot of bisimilar states such as (Gb, āb) and (Gb,ab). This is because the
construction considers all the elements of K that are compatible with Gb. Had the LTL
formula been over AP= {a,b,c}, e.g., (a∨c)UGb, then we would have had four bisim-
ilar states: (Gb, ābc̄), (Gb, ābc), (Gb,abc̄), and (Gb,abc). These state are necessarily
isomorphic, because they only differ in a and c, some propositions that the formula Gb
does not observe.

A more efficient way to construct the testing automaton (and to construct the au-
tomaton from Fig. 3b directly) would be to consider only the subset of atomic propo-
sitions that are observed by the corresponding state of the Büchi automaton or its de-
scendants (if the state is labeled by an LTL formula, the atomic propositions occurring
in this formula give an over-approximation of that set).

A second optimization relies on the fact any state that no part of a SCC (also called
trivial SCC) can be added to F without changing the language of the automaton. This
is true for the three kinds of automata. For instance on Fig. 3 the state (aUGb, āb) can
be added to F . Since this state is not part of any cycle, it cannot occur infinitely often
and therefore cannot change the accepted language of the automaton.
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This change allows further simplifications
aUGb, ab̄ab̄

aUGb, abab

Gb,b

āb

{b}

{a,b}

{b}

{a}

{a}

Fig. 4: Reduced TA for aUGb.

by bisimulation: the state (aUGb, āb) is now
obviously equivalent to the (Gb,b) state. Fig. 4
shows the resulting automaton. Note that putting
any trivial SCC x in F before preforming bisim-
ulation could hinder the reduction if x was
isomorphic to some state not in F . However
if x has only successors in F , as in our exam-
ple, then it can be put safely in F : indeed, it can only be isomorphic to an F-state, or to
another trivial SCC that will be added to F . This condition is similar to the one used by
Löding before minimizing deterministic weak ω-automata [14].

3 Experimentation

This section presents our experimentation of the various types of automata within our
tool Spot [16]. We first present the Spot architecture and the way the variation on the
model checking algorithm was introduced. Then we present our benchmarks (formulæ
and models) prior to the description of our experiments.

3.1 Implementation on top of Spot

Spot is a model-checking library offering several algorithms that can be combined to
build a model checker [7]. Fig. 5 shows the building blocks we used to implement the
three approaches. The TGBA and BA approaches share the same synchronized product
and emptiness check, while a dedicated algorithms is required by the TA approach.

In order to evaluate our approach on “realistic” models, we decided to couple the
Spot library with the CheckPN tool [7]. CheckPN implements Spot’s Kripke structure
interface in order to build the state space of a Petri net on the fly. This Kripke structure
is then synchronized with an ω-automaton (TGBA, BA, or TA) on the fly, and fed
to the suitable emptiness check algorithm. The latter algorithm drives the on-the-fly
construction: only the explored part of the product (and the associated states of the
Kripke structure) will be constructed.

Constructing the state space on-the-fly is a double-edged optimization. Firstly, it
saves memory, because the state-space is computed as it is explored and thus, does not
need be stored. Secondly, it also saves time when a property is violated because the

Kripke
Structure

LTL
Formula

Synchr.
Product

LTL2TGBA

TGBA2BA

BA2TA

Synchr.
Product 2

Emptiness
Check

Emptiness
Check 2

TRUE or
counterexample

Fig. 5: The experiment’s architecture. Two command-line switches controls which one
of the three approaches is used to verify an LTL formula on a Kripke structure.
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emptiness check can stop as soon as it has found a counterexample. However, on-the-
fly exploration is costlier than browsing an explicit graph: an emptiness check algorithm
such as the one for TA [11] that does two traversals of the full state-space in the worst
case (e.g. when the property holds) will pay twice the price of that construction.

In the CheckPN implementation of the Kripke structure, the Petri Net marking are
compressed to save memory. The marking of a state has to be uncompressed every time
we compute its successors, or when we compute the value of the atomic properties on
this state. These two operations often occur together, so there is a one-entry cache that
prevents the marking from being uncompressed twice in a row.

3.2 Benchmark Inputs

We selected some Petri net models and formulæ to compare these approaches.

Toy Examples A first class of four models were selected from the Petri net literature [1]:
the flexible manufacturing system (FMS), the Kanban system, the dining philosophers,
and the slotted-ring system. All these models have a parameter n. For the dining philoso-
phers, and the slotted-ring, the model are composed of n identical 1-safe subnets. For
FMS and Kanban, n only influences the number of tokens in the initial marking.

We chose values for n in order to get state space having between 2×105 to 3×106

nodes. The objective is to have comparable state spaces to be synchronized.

Case Studies The following two bigger models, were taken from actual cases studies.
They come with some dedicated properties to check.

MAPK models a biochemical reaction: Mitogen-activated protein kinase casca-
de [12]. For a scaling value of 8 (that influences the number of tokens in the initial
marking), it contains 22 places and 30 transitions. Its state space contains 6.11× 106

states. The authors propose to check that from the initial state, it is necessary to pass
through states RafP, MEKP, MEKPP and ERKP in order to reach ERKPP. In LTL:

Φ1 = ¬((¬RafP)UMEKP)∧¬((¬MEKP)UMEKPP)∧
¬((¬MEKPP)UERKP)∧¬((¬ERKP)UERKPP)

PolyORB models the core of the µbroker component of a middleware [13] in an
implementation using a Leader/Followers policy [18]. It is a Symmetric Net and, since
CheckPN processes P/T nets only, it was unfolded into a P/T net. The resulting net, for
a configuration involving three sources of data, three simultaneous jobs and two threads
(one leader, one follower) is composed of 189 places and 461 transitions. Its state space
contains 61 662 states3. The authors propose to check that once a job is issued from a
source, it must be processed by a thread (no starvation). It corresponds to:

Φ2 = G(MSrc1→ F(DOSrc1))∧G(MSrc2→ F(DOSrc2))∧G(MSrc3→ F(DOSrc3))

Types of Formulæ As suggested by Geldenhuys and Hansen [8], the type of formula
may affect the performances of the various algorithms. In addition to the formulæ Φ1
and Φ2 above, we consider two classes of formulæ:

3 This is a rather small value compared to MAPK but, due to the unfolding, each state is a 189-
value vector. PolyORB with three sources of data, three simultaneous jobs and three threads
would generate 1 137 096 states with 255-value vectors, making the experiment much too slow.
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– RND: randomly generated LTL formulæ (without X operator). Since random for-
mulæ are very often trivial to verify (the emptiness check needs to explore only a
handful of states), for each model we selected only random formulæ that required
to explore more than 2000 states with the TGBA approach.

– WFair: properties of the form (
∧n

i=1 GF pi)→ ϕ, where ϕ is a randomly gener-
ated LTL formula. This represents the verification of ϕ under the weak-fairness
hypothesis

∧n
i=1 GF pi. The automaton representing such a formula has at least n

acceptance conditions which means that the BA will in the worst case be n+1 times
bigger than the TGBA. For the formulæ we generated for our experiments we have
n≈ 3.19 on the average.
All formulæ were translated into automata using Spot, which was shown experi-

mentally to be very good at this job [19].

3.3 Results

Table 1 and 2 show how the three approaches deal with toy models and random formulæ
(Table 1) and with toy models against WFair formulæ (Table 2). Table 3 shows the
results of the two cases studies against random, weak-fairness, and dedicated formulæ.

These tables separate cases where formulæ are verified from cases where they are
violated. In the former (left sides of the tables), no counterexample are found and the
full state space had to be explored; in the latter (right sides) the on-the-fly exploration of
the state space stopped as soon as the existence of a counterexample could be computed.

The numbers displayed in parentheses on both sides of the tables are the number
of formulæ involved in the experiment. For instance (reading Table 2) we checked
Kanban5 against 98 weak-fairness formulæ that had no counterexample, and against
102 weak-fairness formulæ that had a counterexample. The average and maximum are
computed separately on these two sets of formulæ.

Column-wise, these tables show the average and maximum sizes (states and transi-
tions) of: (1) the automata A¬ϕi expressing the properties ϕi; (2) the products A¬ϕi⊗AM
of the property with the model; and (3) the subset of this product that was actually ex-
plored by the emptiness check. For verified properties, the emptiness check of TGBA
and BA always explores the full product so these sizes are equal, while the emptiness
check of TA always performs two passes on the full product so it shows double values.
On violated properties, the emptiness check aborts as soon as it finds a counterexample,
so the explored size is usually significantly smaller than the full product.

The emptiness check values show a third column labeled “T”: this is the time (in
hundredth of seconds, a.k.a. centiseconds) spent doing that emptiness check, includ-
ing the on-the-fly computation of the subset of the product that is explored. The time
spent constructing the property automata from the formulæ is not shown (it is negligible
compared to that of the emptiness check). These tests were performed on a 64bit Linux
system running on an Intel Core i7 CPU 960 at 3.20GHz, with 24GB of RAM. Running
this entire benchmark with four tasks in parallel took us two days.
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4 Discussion

Although the state space of cases studies can be very different from random state
spaces [17], a first look at our results confirms two facts already observed by Gelden-
huys and Hansen using random state spaces [8]: (1) although the TA constructed from
properties are usually a lot larger than BA, the average size of the full product is smaller
thanks to the more deterministic nature of the TA. (2) For violated properties, the TA
approach explores less states and transitions on the average than the BA.

We complete this picture by showing run times, by separating verified properties
from violated properties, and by also evaluating the TGBA approach.

On verified properties, the results are very straightforward to interpret: the BA are
slightly worse than the TGBA because they have to be degeneralized. In fact, the av-
erage number of acceptance conditions needed in random formulæ (Table 1 and 3) is
so close to 1 that the degeneralization barely changes the sizes of the automata. With
weak-fairness formulæ (Table 2 and 3), the number of acceptance conditions is greater,
so TGBA are favored over BA. Surprisingly, both TGBA and BA, although they are
not tailored to stuttering-insensitive properties like TA, appear more effective to prove
that a stuttering-insensitive property is verified. In the three tables, although the full
product of the TA approach is smaller than the other approaches, it has to be explored
twice (as explained in section 2.3): the emptiness-check consequently explores more
states and transitions. This double exploration is not enough to explain the big runtime
differences. Two other subtler implementation details contribute to the time difference:

– To synchronize a transition of a Kripke structure with a transition (or a state in
case of stuttering) of a TA, we must compute the symmetric difference l(s)⊕ l(d)
between the labels of the source and destination states. The same synchronization
in the TGBA and BA approaches requires to know only the source label.
Computing these labels is a costly operation in CheckPN because Petri net marking
are compressed in memory to save space. Although we implemented some (limited)
caching to alleviate the number of such label computation, profiling measures re-
vealed the TA approach was 3 times slower than the TGBA and BA approaches,
but that labels where computed 9 times more.

– A second implementation difference, this time in favor of the TA approach, is that
transitions of testing automata are labeled by elements of K, while transitions of
TGBA and BA are labeled by elements of 2K . That means that once l(s)⊕ l(d) ∈ K
has been computed, we can use a hash table to immediately find matching transi-
tions of the testing automaton. In the TGBA and BA implementations, we linearly
scan the list of transitions of the property automaton until we find one compatible
with l(s). The BA and TGBA approaches could be improved by replacing each
transition labeled by an element of 2K by many transitions labeled by an elements
of K, and then using a hash table, but we have not implemented it yet.
In an implementation where computing labels is cheap, the run time should be pro-

portional to the number of transitions explored by the emptiness check, so it is important
not to consider only the run time provided by our experiments.

On violated properties, it is harder to interpret these tables because the emptiness
check will return as soon as it finds a counterexample. Changing the order in which
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non-deterministic transitions of the property automaton are iterated is enough to change
the number of states and transitions to be explored before a counterexample is found: in
the best case the transition order will lead the emptiness check straight to an accepting
cycle; in the worst case, the algorithm will explore the whole product until it finally finds
an accepting cycle. Although the emptiness check algorithms for the three approaches
share the same routines to explore the automaton, they are all applied to different kinds
of property automata, and thus provide different transition orders.

This ordering luckiness explains why the BA approach sometimes outperforms the
TGBA approach: one very bad case is enough to bias the average case. For instance this
occurred on the Philo8 model with random formulæ: the worst TGBA case explored 4
times more transitions than the BA case, although the full product was twice smaller.

We believe that the TA, since they are more deterministic, are less sensible to this
ordering. They also explore a smaller state space on the average. This smaller explo-
ration is not always tied a good runtime because of the extra computation of labels
discussed previously. Again, looking at the average number of transition explored by
the emptiness check indicates that the TA approach would outperform the others if the
computation of labels was cheap.

Finally in all of our experiments the TA approach has always found the counterex-
ample in the first pass of the emptiness check algorithm. This supports Geldenhuys
and Hansen’s claim that the second pass was seldom needed for debugging (less than
0.005% of the cases in their experiments [8]).

5 Conclusion

Geldenhuys and Hansen have evaluated the performance of the BA and TA approaches
with small random Kripke structures checked against LTL formulæ taken from the lit-
erature [8]. In this work, we have completed their experiments by using actual models
and different kinds of formulæ (random formulæ not trivially verifiable, random for-
mulæ expressing weak-fairness formulæ, and a couple of real formulæ), by evaluating
the TGBA approach, and by distinguishing violated formulæ and verified formulæ in
the benchmark.

For verified formulæ, we found that the state space reduction achieved by the TA
approach was not enough to compensate for the two-pass emptiness check this approach
requires. It is therefore better to use the TGBA approach to prove that a stuttering-
insensitive formula is verified and TA approach in an earlier “debugging phase”.

When the formulæ are violated, the TA approach usually processes less transitions
than the BA approach and TGBA to find a counterexample. This approach should there-
fore be a valuable help to debug models (i.e. when counterexamples are expected). This
is especially true on random formulæ. With weak-fairness formulæ, generalized au-
tomata are advantaged and are able to beat the TA on the average in 3 of our 6 examples
(Philo8, Ring6, PolyORB 3/2/2).
Future work We plan to combine the ideas of TA and TGBA approaches. We believe
it would be interesting to have testing automata with transition-based generalized ac-
ceptance conditions. We think the LTL translation algorithm we use to produce TGBAs
could be adjusted to product such automata directly.
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When Graffiti Brings Order?

Alban Linard and Didier Buchs

Université de Genève, Centre Universitaire d’Informatique
7 route de Drize, 1227 Carouge, Suisse

Abstract. Most researchers use Petri nets as a formal notation with
mathematically defined semantics. Their graphical part is usually only
seen as a notation, that does not carry semantics.
Contrary to this tradition, we show in this article that, when created by a
human, there is inherent semantics in the positions of places, transitions
and arcs. We propose to use the full definition of Petri nets: whereas they
have been deteriorated to their mathematically defined part only, their
graphical information should be considered in their definition.

1 Introduction

Graphical information of Petri nets usually does not appear in their formal
definitions. For instance, Figure 1 presents the traditional graphical Petri net
representation of two dining philosophers, a textual, and a mathematical repre-
sentation of the same Petri net. In research, we almost always consider them as
equivalent. The graphical representation is used by the modeler, or for figures in
articles, the textual representation is an example of input format for a tool, and
the mathematical representation is used for scientific publications.

Are all these representations really equivalent? When we ask researchers in
Petri nets, they often believe it. But their equivalence is only an assumption,
it might thus be false. Why do people strive to maintain layouts in the model
transformation field, for instance in [1]? Our doubts for Petri nets are exposed
in Dialogue 1, through a fictional dialogue between two elements of a Petri net:

master transition: Why does graphical information of Petri nets disappear in their
formal definitions?

placehopper: Because graphical information has no semantics.
master transition: If there is no semantics in graphical information, why are Petri

nets represented graphically?
placehopper: Because it helps the modelers to write and understand the models.
master transition: But how does graphical information help the modelers if it has

no semantics?

Dialogue 1: Question of Placehopper

Throughout this article, we propose to investigate the problem raised by
Master Transition, by extracting semantics from the graphical part of Petri

?Thanks to Matteo Risoldi for proposing this title.
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Fork0 , Fork1 = 1
Left0 , Right0 , Eat0 = 0
Left1 , Right1 , Eat1 = 0

Transitions
Think0 + Fork0 → Left0
Think0 + Fork1 → Right0
Left0 + Fork1 → Eat0
Right0 + Fork0 → Eat0
Eat0 → Fork0 + Fork1 + Think0
Think1 + Fork1 → Left1
Think1 + Fork0 → Right1
Left1 + Fork0 → Eat1
Right1 + Fork1 → Eat1
Eat1 → Fork0 + Fork1 + Think1

PN = 〈P, TA〉
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{
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r0 1 0 0 0 1 0 0 0 0 0
s0 1 0 0 0 0 0 0 0 0 1
t0 0 1 0 0 0 0 0 0 0 1
u0 0 0 1 0 1 0 0 0 0 0
v0 0 0 0 1 0 0 0 0 0 0
r1 0 0 0 0 0 1 0 0 0 1
s1 0 0 0 0 1 1 0 0 0 0
t1 0 0 0 0 1 0 1 0 0 0
u1 0 0 0 0 0 0 0 1 0 1
v1 0 0 0 0 0 0 0 0 1 0
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r0 0 1 0 0 0 0 0 0 0 0
s0 0 0 1 0 0 0 0 0 0 0
t0 0 0 0 1 0 0 0 0 0 0
u0 0 0 0 1 0 0 0 0 0 0
v0 1 0 0 0 1 0 0 0 0 1
r1 0 0 0 0 0 0 1 0 0 0
s1 0 0 0 0 0 0 0 1 0 0
t1 0 0 0 0 0 0 0 0 1 0
u1 0 0 0 0 0 0 0 0 1 0
v1 0 0 0 0 1 1 0 0 0 1

Fig. 1: Graphical, textual and mathematical representations of a Petri net
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nets. This semantics is unclear, as it depends on the modeler and the model.
Thus, we check that the extracted semantics can be useful to improve model
checking performance of the Petri nets.

Section 2 presents the methodology of this work: how semantics extracted
from the graphical information is used to improve model checking performance.
Then we propose to use alignments of places and transitions in Section 3. As
this only information is not always sufficient to improve model checking perfor-
mance, we also propose to use graphical distances in Section 3. Then we propose
in Section 4 to use surfaces delimited by arcs, for models with no alignments.
The approach is generalized to colored Petri nets in Section 5. As we cannot
give semantics to graphical information of all models, two counter-examples are
provided in Section 6. Section 7 discusses about when and how graphical infor-
mation can be used, before conclusion in Section 8.

2 How do we assess the quality of semantics extracted
from graphical information?

The Software Modeling and Verification Group has developed the Algebraic
Petri Net Analyzer (AlPiNA) [2], a model checker for Algebraic Petri nets.
For efficient state space computation, this tool is based on Decision Diagrams
(DDs) [3,4]. In this approach, a Decision Diagram, which is a particular kind of
Directed Acyclic Graph, represents the state space. A node in the graph, called
“variable”, represents the marking of each color for each place. When using DDs,
the efficiency highly depends on the variable order in the graph [5].

By default, AlPiNA has rather good computation times [6], but its efficiency
can be improved by orders of magnitude when the user provides “clustering”
information, to group related variables. It is given in a textual notation. For
instance, Listing 1 shows a clustering for the Philosophers model1. Variables for
the black token in places Think0 .. Eat0 are put in the same cluster (group of
variables) c0. The same applies for in Think1 .. Eat1, put in cluster c1.

Clusters c0 , c1;
Rules

cluster of
in Think0 , Left0 , Right0 , Fork0 , Eat0
i s c0;

cluster of
in Think1 , Left1 , Right1 , Fork1 , Eat1
i s c1;

c0 < c1;

Listing 1: Example of clustering

Several articles already give heuristics to infer variable orders from Petri
nets [7]. Clustering is less precise, as it only defines groups of variables, and

1 This is not the exact syntax used in AlPiNA, but a very near one.
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groups order. It does not define the order of variables within each group. How-
ever, AlPiNA also allows to define an order over places.

In this article, we propose to use the graphical information of Petri nets to
define the clustering, together with ordering of the variables in the clusters. We
try to group together tokens and places that belong to the same process.

To assess the inferred clustering, we check if it improves the model checker
performances. Instead of using AlPiNA, we use PNXDD [8]. It is another Decision
Diagram-based model checker that provides several clustering and ordering al-
gorithms, contrary to AlPiNA. By using it, we can easily compare our approach
with these algorithms. Because they are simpler, we begin our experiments with
Place/Transition Petri nets and then use a Symmetric Petri net.

All the examples in this article are taken from the Model Checking Contest of
the SUMo 2011 workshop. Choosing models that were not created by our group
allows us to avoid a possible bias that may be introduced if we had too much
knowledge about the models.

For each model, we compare the efficiency of our graphical clustering and
ordering with fully random ones (500 random clusterings and orderings for each
clustering proposed in this article). This benchmark shows the experimental
probability of obtaining clustering and ordering with the same efficiency. Then
we compare our graphical clustering and ordering with all the algorithms imple-
mented in PNXDD. It shows how we perform against several existing algorithms.

The results are not intended to show that our approach is more efficient
than other ordering algorithms, for instance those used by [9]. We provide them
primarily to assess how much semantics is put in the graphical information of
Petri nets, and also to assess if the semantics we extract makes sense. Therefor,
we propose throughout this article informal ways to extract semantics from the
graphical representation of Petri nets, instead of well defined algorithms.

We provide a VirtualBox image of the tools and scripts used
in the benchmarks at http://smv.unige.ch/members/dr-alban-linard/
sumo2011-when-graffiti-brings-order-image (use login/pass: sumo2011
for the Linux session).

3 Using alignment of places and transitions

We start the exploration of usual graphical semantics in Petri nets with the
Flexible Manufacturing System (FMS) model. It is a Place/Transition Petri net
represented in Figure 2. Initial marking is not shown as it is irrelevant in our
approach. Note that this model is parameterized by its initial marking. The full
model is presented in the SUMo 2011 workshop.

3.1 Alignment only
Even with absolutely no knowledge of the modeled system, it is obvious

that the PN has vertically aligned places and transitions, linked by arcs in the
alignment. Alignment, either vertical or horizontal, is one usual way for the
modelers to show graphically the processes. Figure 2a shows the four vertical
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(a) Aligned places and transitions (b) With places added to nearest group

Fig. 2: Flexible Manufacturing System

alignments of places and transitions, and one horizontal alignment. Thus, max-
imal non-overlapping chains of consecutive and aligned places and transitions
define groups. All the places of each group can be put in a same cluster. From
this example, we can state Assumption 1:

Assumption 1 Aligned places and transitions may correspond to a process.

3.2 Alignment with graphical distance
After applying Assumption 1, some places do not belong to any group. Usu-

ally, the modelers use them either to represent shared data or for local data.
In Figure 2a, the horizontal alignment shows a shared data. The remaining
marked places are each near the middle of a cluster, and thus are likely to rep-
resent local data. On the contrary, the remaining unmarked places are found at
the extremity of the clusters, and thus they can either represent the processes or
local data. So, after defining the groups, we extend them using Assumption 2:

Assumption 2 Local data of a process is more likely to be near its process.

Figure 2b shows the result of application of Assumption 2 to the groups
of Figure 2a. Each place is added to the nearest group it is related to, where
nearest means graphical distance. For instance, the unmarked places are added
to the vertical groups instead of the horizontal one, because they are linked to
transitions aligned with the vertical clusters.
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We also define ordering of the places inside the clusters and ordering of the
clusters. Inside each cluster, the places are ordered from top to bottom or from
left to right. The local data places are put randomly before or after the nearest
process place. To order the clusters, we also chose graphical distance. In the FMS
model, and are next to each other. is far from all other
clusters, but its nearest neighbor is . As is between and

, we get the following order for the clusters:

< < < <

The results of the benchmarks for the FMS 50, i.e., with initial marking pa-
rameter set to 50. All random clusters and orders were too slow, and thus could
not finish computation. Graphical clustering and ordering gives better results
than all algorithms implemented in PNXDD. We give only the number of the algo-
rithm, instead of its name, for a concise diagram. The corresponding algorithm
names are found in [9] and in the documentation of the tool [8].
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4 Using surfaces

Unlike the fms model, the kanban model shown in Figure 3 contains almost no
alignments. The modeler has used different graphical semantics for this model.

For the human eye, the kanban model is composed of four components, each
one with four places. All components have rather similar shapes. They differ by
some arcs and also by a symmetry. Detecting these small differences is not a
trivial task.

The components are visible because the arcs draw the shapes of the compo-
nents. For instance, the modeler used arcs with two inflexion points where he
could have drawn a direct arc. From this example, we can deduce Assumption 3:

Assumption 3 Arcs may draw shapes, the surface of which may contain related
places.

We investigate different ways to use the shapes. First, Figure 3a identifies
three different components in the model. Each one is found by searching maximal
surfaces in the graphical Petri net. When two surfaces are linked by a place, they
are merged, as one place can only belong to one cluster.

The maximal surfaces approach can lead to huge clusters. The worst case
is when the whole Petri net is enclosed by arcs, and thus all its places are in
the same cluster. We thus propose a second way to search surfaces. Instead of
identifying maximal surfaces, we can use minimal surfaces. They are defined
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(a) Maximal surfaces (b) Minimal surfaces (c) Minimal connected surfaces
with nearest remaining places

Fig. 3: Kanban System

as the surfaces that do not enclose another surface. Figures 3b and 3c show the
Kanban model with minimal surfaces. In Figure 3b, the choice of minimal surfaces
to consider leads to four clusters, whereas in Figure 3c another choice leads to
three clusters. As the surfaces that touch the same place must be merged, we
have to choose either Figure 3b or Figure 3c. Otherwise, the three surfaces in the
middle block are merged, and the clustering is equivalent to the one of Figure 3a.

We compare Figure 3a and Figure 3b in the benchmarks. Places are ordered
inside the clusters by following the boundaries of minimal surfaces. Clusters are
ordered by graphical proximity, giving the clusters below:

< < (Figure 3a)
< < < (Figure 3b)

The results of the benchmarks for the Kanban model are given below. All
random clusters and orders were again too slow, and thus could not finish com-
putation. The same applies to some algorithms of PNXDD (1,2,6,12,21). Whereas
graphical clustering shows a small improvement over existing algorithms for the
FMS model, it gives here huge improvements over algorithms in PNXDD.
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5 Extension to colored Petri nets

The Shared Memory model of the SUMo 2011 workshop is given in Figure 4.
It is a Symmetric Petri net, which is a particular kind of colored Petri net. Of
course, our approach can be extended to the unfolded Place/Transition Petri net
equivalent to a colored Petri net, when this equivalence exists. But the unfolding
must then generate positions (possibly in three or more dimensions) to avoid
superposition of unfolded places and transitions.

Without unfolding, we can still in some cases use graphical information to
define clusters. Clusters for colored Petri nets are groups of unfolded places, i.e.,
places together with colors. Two policies can coexist:

– Grouping in the same cluster all colors for one place,
– Distributing in its own cluster each color for one place.

The first policy works usually well for places representing shared data, whereas
the second one leads usually to good results for places representing processes or
data local to a process. Assumptions 4 and 5 describe these two policies.

Assumption 4 One place related to other places using different variables may
represent a shared data.

Assumption 5 Several places related to each other using the same variable, or
equal ones, may represent a process.

In the Shared Memory model, both Assumption 1 and Assumption 3 can be
applied, as we find both aligned places and transitions and surfaces.

5.1 Using surfaces
To consider surfaces, we use Assumption 3. Its clustering is given in Figure 4a.

We divided the model in four minimal surfaces. As there are places common to
several surfaces, we obtain two groups. All places (a, b, c, e) in the group
have the same domain, except one (e) that is not colored (shown using ).
We create one cluster for each color 1 , 2 , 3 , or 4 , as shown in Listing 2. Place e
can only belong to one cluster, as its domain is the black token . Thus, we also
create its own separate cluster.

Clusters c, c1, c2 , c3 , c4;
Rules

cluster of in e i s c;
cluster of 1 in a, b, c i s c1;
cluster of 2 in a, b, c i s c2;
cluster of 3 in a, b, c i s c3;
cluster of 4 in a, b, c i s c4;

Listing 2: Clustering using surfaces for places a, b, c, e

The group contains two places: d and f . Place f has domain
{ 1 , 2 , 3 , 4}, whereas the domain of the place d is a couple of colors. For each
color, we create one cluster. Listing 3 completes Listing 2 with the new clusters.
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Fig. 4: Shared Memory

Each token in place f is put in the cluster of its color. In place d, each token is
a couple of colors. We have to choose which component of the couple predomi-
nates. Here, there is no obvious choice, so we choose the first element. Thus all
tokens in place d are put in the cluster of the color of the first component.

Clusters d1 , d2 , d3, d4;
Rules

cluster of 1 in f i s d1;
cluster of 2 in f i s d2;
cluster of 3 in f i s d3;
cluster of 4 in f i s d4;
cluster of { 1 } × { 1, 2, 3, 4 } in d i s d1;
cluster of { 2 } × { 1, 2, 3, 4 } in d i s d2;
cluster of { 3 } × { 1, 2, 3, 4 } in d i s d3;
cluster of { 4 } × { 1, 2, 3, 4 } in d i s d4;
c < c1 < d1 < c2 < d2 < c3 < d3 < c4 < d4;

Listing 3: Clustering using surfaces for places d, f

5.2 Using alignments

Using Assumption 1 gives a totally different result. It is shown in Figure 4b.
Listing 4 shows the clustering obtained using Assumption 1.
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We first identify aligned places and transitions: places b, c, d belong to one
group. Places b and c have the same colored domain, whereas the tokens of
place d are couples of colors.

We then try to add to the group what seems local data or part of the pro-
cesses. All places a, f, e are near the group. Place a is linked to the group using
only variable x. This clearly shows that an identity is passed along the arcs. So,
this place is added to the group.

Place e contains black tokens. Because of this domain, it cannot be added in
the clusters of colors, so we create its own cluster, as in Listing 2.

The last place is f . The variables that relate this place to d are used in the
second part of the couple, whereas the variables that relate d to the places in
its group are in the first part. So, f probably represents a shared data. We thus
put place f in its own cluster, for all colors.

Clusters c, c1, c2 , c3 , c4, f;
Rules

cluster of in e i s c;
cluster of 1 in a, b, c i s c1;
cluster of 2 in a, b, c i s c2;
cluster of 3 in a, b, c i s c3;
cluster of 4 in a, b, c i s c4;
cluster of 1 in f i s f;
cluster of 2 in f i s f;
cluster of 3 in f i s f;
cluster of 4 in f i s f;
cluster of { 1 } × { 1, 2, 3, 4 } in d i s c1;
cluster of { 2 } × { 1, 2, 3, 4 } in d i s c2;
cluster of { 3 } × { 1, 2, 3, 4 } in d i s c3;
cluster of { 4 } × { 1, 2, 3, 4 } in d i s c4;
c < c1 < c2 < c3 < c4 < f;

Listing 4: Clustering using alignment

Figure 4b shows the result of this analysis. Note that for each color 1 , 2 , 3 ,
or 4 , we create a cluster that contains all the highlighted places for this color
only. For place d, each cluster contains all possible colors for the second part of
the Cartesian product.

We compare both clusterings below. For this third model, the state space
generation could not finish using some algorithms of PNXDD (2,12,21). Graphical
clustering and ordering is still better than all algorithms implemented in PNXDD.
As for other models, none of the random clusterings could finish.
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6 When we fail at understanding the model

The Model Checking Contest of SUMo 2011 workshop uses seven models, three of
which are Place/Transition Petri nets and the four others Symmetric Petri nets.
In this article, we provide clustering for Flexible Manufacturing System, Kanban
and Shared Memory. Two models are not discussed: Philosophers and Token Ring.
The Philosophers model has been studied a lot for use with Decision Diagrams.
Before writing this article, we already knew that the best order is when each
philosopher and its left (or right) fork is put in its own cluster. Because of this
knowledge, trying to find graphical information would be biased. The Token Ring
model does not contain enough places (1) and transitions (2).

The two remaining models are MAPK (Figure 5) and Peterson’s algorithm
(Figure 6). For them, we did not find how to give semantics to the graphical
information. Note that these two models are considered as hard to understand
by humans. This might be an explanation: because their modelers could not
find a good disposition of places and transitions, we cannot give semantics to
graphical information, and thus the models are hard to understand.

7 Discussion on the approach

We propose in this article to extract semantics from the graphical part of a Petri
net. It works on some models, but does not work on some others. Moreover,
all people do not always agree on how to identify the processes in the Petri
net. This approach is thus fragile. We provide in this section some remarks on
its applicability, and on other techniques that could be used along graphical
information to improve clustering.

7.1 This approach depends on the school of modeling.
Depending on where we have studied, and where we work, we may not create

models in the same way. The most obvious difference is putting aligned processes
horizontally or vertically. But some people can also prefer to show processes using
surfaces instead of alignments. We should investigate which representations are
used, and where they are modeled.

A side effect is that every Petri net should define an author and the insti-
tutes where the author has studied and workse Using this information, giving
semantics to graphical information could be enhanced. The “author” field is al-
ready present in the Petri Net Markup Language [10], but there is currently no
traceability of the author’s institutions, nor of the school of modeling for this
Petri net.

7.2 Graphical information cannot be processed easily
The Petri Net Markup Language handles absolute positions for the Petri net

elements (places, transitions, labels. . . ). The problem with absolute positioning
is that analysis of the graphical information is not easy. Some other positioning
schemes exist. For instance, TikZ [11] provides a way to define a position relative
to another one (above, below, . . . ). Such positions can be processed more easily.
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7.3 Labels can also be used to detect components.
We use only graphical information on Place/Transition Petri nets in this

article. For Symmetric Petri nets, we also use domains and variables on the arcs.
Another interesting information to compute clustering is the labels of places
and transitions. In Place/Transition Petri nets, they are often composed of a
textual prefix, a textual suffix, and some numbers in the middle. These numbers
correspond to colors in an equivalent colored Petri nets. Extracting the naming
patterns of places can greatly enhance the clustering.

7.4 This approach may be redundant with graph analysis.
Ordering the Decision Diagrams used during the model checking of a Petri

net has been explored for a long time. We can cite again [7], which is a survey
of existing algorithms.

Instead of using the graphical information, they are usually based on the
graph structure of the Petri net. These techniques, from the structural analysis
field, can lead to very good results. Note that combining them with graphical
information and naming analysis is often possible.

First, traps and siphons [12] are a way to detect components, and thus clus-
ters. They can be computed efficiently, for instance in [13]. Invariants are another
way to define clusters, but they show both processes and data. A good point is
that they can even be computed in colored Petri net [14].

8 Conclusion

Throughout this article, we show Petri nets from the Model Checking Contest
of SUMo 2011 workshop. For each one, we try to understand how their modelers
put semantics in their graphical information. Whereas we cannot identify such
information in some models (MAPK and Peterson’s algorithm), it provides really
good results for the others.

We extract semantics from several kinds of graphical information: the align-
ment of places and transition, the graphical proximity of places and groups, and
the surfaces delimited by arcs. This semantics is used to define clustering and
ordering of the places and tokens.

For all these examples, we use the graphical information to improve symbolic
model checking of the Petri net. To do so, we extract clustering and ordering
from the graphical part of each model. Using them, we compare the time taken to
generate the state space with several clustering and ordering algorithms imple-
mented in PNXDD, and with fully random clusters and orders. In all models where
graphical clustering could be defined, we obtain improvements over PNXDD. No
random clusters and orders could run in the time and memory limits, which
shows that the semantics extracted from graphical information makes sense.

At the beginning of this work, we were only hoping to obtain improvements
over some of the algorithms in PNXDD. Prior the benchmarks, we did no selection
of the models, and of the inferred graphical semantics. Thus, the good results
seem promising.

Proceedings of CompoNet and SUMo 2011

92



From these examples, two conclusions arise: (1) in education, Petri nets are
always introduced as a graphical formalism. In research, they have been deteri-
orated into a mathematical only formalism, by losing graphical information; (2)
graphical information in Petri nets has semantics, but unclear one.

We believe that, contrary to their usual presentation in scientific publications,
Petri nets are truly a graphical formalism, and their mathematical representation
is only a projection.

Further work should identify more graphical semantics, and the cases in
which they apply. We may not be able to create algorithms to extract always
semantics from graphical information. But when it is possible, a study with fully
automatic algorithms should check that the inferred semantics can be used with
no user knowledge of the models.

References

1. Sun, Y., Gray, J., Langer, P., Wimmer, M., White, J.: A WYSIWYG Approach for
Configuring Model Layout using Model Transformations. In: DSM’10: Workshop
on Domain-Specific Modeling @ Splash. (2010)

2. SMV Group: Algebraic Petri Nets Analyzer (2010) http://alpina.unige.ch.
3. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers 35(8) (1986) 677–691
4. Couvreur, J.M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.A.:

Data Decision Diagrams for Petri Net analysis. In: ICATPN ’02: 23rd International
Conference on Applications and Theory of Petri Nets. (2002) 101–120

5. Bollig, B., Wegener, I.: Improving the variable ordering of obdds is np-complete.
IEEE Transactions on Computers 45(9) (1996) 993–1002

6. Buchs, D., Hostettler, S., Marechal, A., Risoldi, M.: AlPiNA: A symbolic model
checker. In: Petri Nets ’10: International Conference on Theory and Applications
of Petri nets. (2010) 287–296

7. Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient
BDD/MDD construction. Technical report, UC riverside (2008)

8. Hong, S., Paviot-Adet, E., Kordon, F.: PNXDD Model Checkers –
https://srcdev.lip6. fr/trac/research/neoppod/ https://srcdev.lip6. fr/trac/re-
search/NEOPPOD/.

9. Hong, S., Kordon, F., Paviot-Adet, E., Evangelista, S.: Computing a Hierarchical
Static Order for Decision Diagram-Based Representation from P/T Nets. ToPNoC:
Transactions on Petri Nets and Other Models of Concurrency (submitted) (2010)

10. Hillah, L.M., Kindler, E., Kordon, F., Petrucci, L., Trèves, N.: A primer on the
Petri Net Markup Language and ISO/IEC 15909-2. Petri Net Newsletter 76 (2009)

11. Tantau, T., Feuersaenger, C.: TikZ ist kein Zeichenprogramm
http://www.ctan.org/tex-archive/graphics/pgf/.

12. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

13. Barkaoui, K., Lemaire, B.: An Effective Characterization of Minimal Deadlocks
and Traps in Petri nets Based on Graph Theory. In: 10th Int. Conf. on Application
and Theory of Petri Nets ICATPN’89. (January 1989) 1–21

14. Couvreur, J.M., Haddad, S., Peyre, J.F.: Computation of generative families of
positive semi-flows in two types of coloured nets. International Conference on
Theory and Applications of Petri Nets (1991)

Proceedings of CompoNet and SUMo 2011

93

http://alpina.unige.ch


k16

k5

k17
k30

k27

k13

k14

k28

k29

k4

k19k22

k11

k8

k26 k25

k7

k10
k23

k20

k12

k9
k24

k15

k6

k3

k18
k21

k2

k1

2
R
asG

TP

8
R
af

R
afP

R
af_R

asG
T
P

M
EK
_R
afP

R
afP_Phase1

M
EK
P_Phase2

M
EK
P_R

afP

6
ER
K

M
EK
PP_Phase2

6
Phase3

4
Phase2

ER
K
PP

M
EK
P

ER
K
P_Phase3

ER
K
PP_Phase3

M
EK
PP

ER
K
P

ER
K
P_M

EK
PP

ER
K
_M
EK
PP

4
M
EK

6
Phase1

F
ig.5:

MAPK:M
itogen-activated

protein
kinase

kaskade

Proceedings of CompoNet and SUMo 2011

94



<i, F>
<i, T>

<i, j++1>

<i>

<i>

<i>

<i, N-1><i, j>

<i, j, k>

<i, j, k>
<i, j , i>

<i, j, k>

<j, k>
<j, i>

<i, j>

<i, j>

<i, F>
<i, T>

<i, 0>

<i>

<i, j>

<i, j, 0>
<i, j>

<i, j>

<j, i>
<j, i>

<j, k>
<j, k>

<i, j, k>

<i, j, k>
<i, j, k>

<k, F>
<k, F>

<k, T>
<k, T>

<i, j>

<i, j, k++1>

<i, j ,k>
<i, j, k>

<i, j, N>

<i, j>

<i, j , i>
BecomeIdle

Process
CS

AccessCS

[j <> N-1]
ProgressTurn

Identity[i <> k]
NoIdentity

ProcTourProc
TestIdentity

UpdateTurn

<Tour.all, 0>
TourProc
Turn

ProcTour

TestTurn

ProcBool

<Process.all, F>
WantSection

ProcTour
AskForSection

Ask

Process
<Process.all>

Idle

CLASS
  Process is 0..N;
  Tour is 0..N-1;
  Bool is [T, F];
DOMAIN
  ProcTour is <Process, Tour>;
  TourProc is <Tour, Process>;
  ProcTourProc is <Process, Tour, Process>;
  ProcBool is <Process, Bool>;
VAR
  i in Process;
  k in Process;
  j in Tour;
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BeginLoop

[i<>k]
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EndTurn

ContinueLoop

ProcTourProc TestAlone

NotAlone
Alone1

[k <> N]
Loop
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Fig. 6: Peterson’s algorithm
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