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A modular, qualitative modelling of
regulatory networks using Petri nets

C. Chaouiya, H. Klaudel, F. Pommereau

Abstract Advances in high-throughput technologies have enabled the de-
lineation of large networks of interactions that control cellular processes. To
understand behavioural properties of these complex networks, mathematical
and computational tools are required. The multi-valued logical formalism, ini-
tially defined by R. Thomas and co-workers, proved well adapted to account
for the qualitative knowledge available on regulatory interactions, and also
to perform analyses of their dynamical properties. In this context, we present
two representations of logical models in terms of Petri nets. In a first step,
we briefly show how logical models of regulatory networks can be transposed
into standard (place/transition) Petri nets, and discuss the capabilities of
such representation. In the second part, we focus on logical regulatory mod-
ules and their composition, demonstrating that a high-level Petri net repre-
sentation greatly facilitates the modelling of interconnected modules. Doing
so, we introduce an explicit means to integrate signals from various intercon-
nected modules, taking into account their spatial distribution. This provides
a flexible modelling framework to handle regulatory networks that operate
at both intra- and intercellular levels. As an illustration, we describe a sim-
plified model of the segment-polarity module involved in the segmentation of
the Drosophila embryo.
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1 Introduction

Great advances in molecular biology, genomics and functional genomics open
the way to the understanding of regulatory mechanisms controlling essential
biological processes. These mechanisms interplay and operate at diverse levels
(transcription and translation of the genetic material, protein modifications,
etc.). They define large and complex networks, which in turn constitute a
relevant functional integrative framework to study the regulation of cellu-
lar processes. To assess the behaviours induced by such networks, dedicated
mathematical and computational tools are very much required. In general,
mathematical models for concrete regulatory networks are defined as a unique
whole, considering networks of limited sizes (up to few dozens of components).
This approach is not scalable and has to be modified as networks are increas-
ing in size and complexity. One main purpose of this chapter is to present a
compact, qualitative modelling framework to represent large regulatory net-
works and analyse them.

We rely on a qualitative discrete framework for the modelling of regula-
tory networks, namely the generalised logical formalism, initially proposed
by R. Thomas in the 70s [43, 44, 45]. The logical formalism has been applied
to a variety of regulatory networks comprising relatively large numbers of
components (e.g. [34, 35]). To tackle the modelling of networks encompassing
hundreds of nodes or interacting cells, we propose here to resort to modular
modelling. In particular, in the case of patterning in developmental processes,
one has to consider patches of communicating cells. In such processes, mod-
ularity clearly arises, each intra-cellular network defining a module. More
precisely, in this chapter, we provide a convenient way to define the mod-
elling of interacting regulatory modules.

After defining the semantics underlying regulatory interactions (as op-
posed to biochemical reactions that compose e.g. metabolic networks), the
Section 2 gives the basis of the logical formalism. In [6, 7, 11, 41], standard
(i.e., P/T) Petri net representation of logical regulatory graphs have been
proposed. This representation is summarised and discussed in Section 3.

The rest of the chapter is dedicated to the specification of a framework
that addresses module composition in the context of patches of communicat-
ing cells. In Section 4, we show how, based on the logical framework, high-
level Petri net representation provides a very compact and efficient means to
compose regulatory modules.

Finally, to illustrate the modelling framework delineated in Section 4, we
show the dynamical analyses (in particular expression pattern identification)
for various composition scenarios of a simple module, and of the segment-
polarity module involved in the segmentation of the Drosophila embryo.
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2 Logical modelling of regulatory networks

Regulation refers to the molecular mechanisms responsible for the changes
in the concentration or activity of a functional product. Such mechanisms
range from DNA-RNA transcription to post-translational protein modifica-
tions. In regulatory networks, details on the precise molecular mechanisms
that drive the regulation are often abstracted, the semantics associated to the
interactions mostly reduces to activatory or inhibitory effects. Among the di-
versity of modelling frameworks used to model such regulatory networks (see
[14, 38]), one successful qualitative formalism is the logical approach, initially
developed by R. Thomas and co-workers [43, 44, 45]. The logical formal-
ism has been applied to model and analyse regulatory networks controlling
a variety of cellular processes from pattern formation and cell differentiation
(e.g [36, 37, 35, 26]) to cell cycle (e.g. [18]). A software has been developed,
GINsim, which enables the definition and analysis of logical models [20, 28]
(see also Section 3.1). GINsim provides a number of exports of logical models
among which several exports into Petri net formats.

When considering regulatory networks, the semantics associated with the
interactions between components varies compared to that of e.g. reaction net-
works: levels of regulators do not change during the regulatory process. At
this level of abstraction conveyed by the logical formalism, regulatory net-
works can be viewed as influence networks. In terms of PNs, to represent
such interactions, test arcs provide a convenient solution. Moreover, in the
case of an activation, the presence of an activator enhances the level of its
target, but the absence of the activator may also have an effect on the target,
decreasing its level (and the other way around for a repression). Such situa-
tions can be represented in PNs using inhibitor arcs that allow a test to zero.
However, the analysis methods based on the matrix representation of PNs
are no more valid when using inhibitor arcs. Opportunely, when places are
bounded (their markings are limited), it is possible to replace inhibitor arcs
by adding new complementary places. Section 3 relies on these principles to
define a systematic translation of logical into Petri net models (see Part I,
Chapter 3).

In the sequel, the definitions of logical regulatory graphs and their associ-
ated transition graphs are given, further details might be found in [10, 30].

2.1 Logical Regulatory Graphs (LRGs)

A Logical Regulatory Graph (LRG) is a graph, where each node represents
a regulatory component, associated with a range of discrete functional levels
(of expression or of activity). In most of the cases, the Boolean abstrac-
tion is sufficient (e.g. a gene is expressed or not, a protein is active or not),
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but there are situations where more than two levels are necessary to convey
the functional role of a regulator that varies when the concentration of its
product crosses different thresholds. In particular, this is the case when a
product regulates several targets, these regulations possibly occuring at dis-
tinct thresholds. This leads to the arcs of the LRG that represent regulatory
interactions. Finally, one needs to define the behaviours of the components
submitted to regulatory interactions. This is done by setting up logical func-
tions that define the target levels of the components (within the admissible
ranges) for each possible combinations of incoming interactions. The formal
definition of LRGs is provided below, and Figure 1 page 6 gives a simple
example.

Definition 1. A logical regulatory graph (LRG) is defined as a labelled di-
rected multigraph1 R = (G ,E ,K ) where,

• G = {g1, . . . ,gn} is the set of nodes, representing regulatory components.
Each gi ∈G is associated to its maximum level Maxi ( Maxi ∈N∗), its current
level being represented by the variable xi (xi ∈ {0, . . . ,Maxi}). We define
x df= (x1, . . . ,xn) the current state, and S

df= ∏gi∈G {0, . . . ,Maxi} the set of all
possible states.

• K = (K1, . . . ,Kn) defines the logical functions attached to the nodes spec-
ifying their behaviours: K j is a multi-valued logical function that gives
the target level of g j, depending on the state of the system: K j : S →
{0, . . .Max j}.

• E is the set of oriented edges (or arcs) representing regulatory interactions.
An arc (gi,g j) specifies that gi regulates g j (when there is no possible
confusion, i stands for gi), i.e., K j varies with xi. A regulatory graph may
contain self-loops (an arc (i, i) represents a self-regulation of gi).
For each g j ∈ G , Reg( j) denotes the set of its regulators: i ∈ Reg( j) if and
only if (i, j) ∈ E .

Several remarks follow from Definition 1.

Remark 1. It is clear that, to determine the target level of a component, only
the levels of its regulators are required (other components have no effet). In
other words: K j can be defined on the restricted domain ∏gi∈Reg( j){0, . . .Maxi}.
For example, in Figure 1, since G1 is the sole regulator of G0, we could re-
strict the domain of KG0 to {0, . . .MaxG1} (indeed, in the table defining KG0,
we can verify that the values of G0, G2 and G3 do not matter).

Remark 2. If gi ∈ Reg( j) and Maxi > 1 (gi regulates g j and is multi-valued),
gi may have different effects onto a component g j, depending on the current
level of gi, leading to the definition of a multi-arc between gi and g j. Such
a situation typically happens when a component has a dual regulatory role,
e.g. activation at low and repression at high concentrations.

1 A multigraph is a graph with possibly several edges between a pair of nodes.
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Here, to avoid the cumbersome notations resulting from such multi-arcs,
we assume that all interactions are simple. However, it is straightforward to
generalise all the definitions introduced in this chapter to LRGs encompassing
multi-arcs (see e.g. [30]).

Remark 3. The biologists often associate signs to the regulatory interactions,
distinguishing between positive effect (activation or enhancing) and negative
effect (repression or silencing). However the actual effect of an interaction
on its target may depend on the presence of co-factors; its sign may even
change depending on the context. In any case, the signs of interactions can
be derived from the logical functions K s. Moreover, a threshold θ associated
to an interaction from g j to gi with 1≤ θ ≤Max j indicates for which level of
g j the interaction is active (i.e., when x j ≥ θ , (g j,gi) is active). This threshold
can also be recovered from the function Ki: θ is the value for which there
exists x ∈S such that for x′ defined as x′k

df= xk, ∀k 6= j and x′j
df= x j + 1 = θ ,

we have Ki(x) 6= Ki(x′). For example, in Figure 1 the interaction from G0
to G1 is associated with a threshold 1 and a positive sign; this is visible
by comparing the first and third rows of the table defining KG2 (also the
second and the fourth rows), where, for fixed values of the other components,
changing G0 level from 0 to 1 leads to a change in the target value of G1 from
0 to 1. Whereas the interaction from G0 to G3 is associated with a threshold 2
with a negative sign (determined by comparing second and third lines of KG3
table).

Finally, it is worth noting that a set of logical functions Ki, i = {1, . . .n},
fully defines an LRG encompassing n regulatory components. In particular,
for each i∈ {1, . . .n}, its maximum level is given by the maximum value of Ki.

2.2 Logical functions representation based on decision
diagrams

In [30], logical functions were represented by means of Reduced Ordered
Multi-valued Decision Diagrams (ROMDD, referred to as MDD in the follow-
ing). This representation, internally used in GINsim for efficiency purposes,
facilitates the definition of algorithms for the analysis of logical models (e.g.
see the stable state determination described in [30]). The use of MDDs also
makes the definition of the P/T net representation of logical models easier
and more consise than that proposed in e.g. [6]. This representation, which
is quite intuitive, is informally presented below.

Binary Decision Diagrams (BDD) are a convenient data structure to rep-
resent Boolean functions [5]. A BDD is a rooted, directed, acyclic graph,
encompassing decision nodes (labelled by a Boolean variable) and two leaves
(also called terminal-nodes) labelled respectively 0 (false) and 1 (true). De-
cision nodes have two successors (or children): the left (resp. right) outgoing
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G0 G1 G2 G3 KG0
∗ 0 ∗ ∗ 0
∗ 1–2 ∗ ∗ 2

G0 G1 G2 G3 KG1
0 ∗ 0 ∗ 0
0 ∗ 1 ∗ 1

1–2 ∗ 0 ∗ 1
1–2 ∗ 1 ∗ 2

G0 G1 G2 G3 KG2
0 ∗ ∗ 0 0
0 ∗ ∗ 1 1

1–2 ∗ ∗ ∗ 1

G0 G1 G2 G3 KG3
0–1 0–1 ∗ ∗ 0
0–1 2 ∗ ∗ 1

2 ∗ ∗ ∗ 0

x1

0 2

[0,0] [1,2]

x0

x2 x2

0 1 2

[0,0]

[0,0]

[1,2]

[1,1][0,0][1,1]

x0

x2

0 1

[0,0]

[0,0]

[1,2]

[1,1]

x0

x1

0

[0,1]

1

[2,2]

[0,1]

0

[2,2]

Fig. 1 Example of an LRG. The regulatory graph is displayed in the higher level,
with the nodes denoting components and the arcs denoting interactions (arcs with
normal arrows denote activations whereas arcs with blunt end denote repressions).
The logical functions are then given in the form of tables (one for each component),
where each row corresponds to (a set of) state(s) with the corresponding function
values (∗ denotes one value among all possible values, 1–2 denotes value 1 or 2, etc.).
For example, the table on the left defines the logical function KG0, which only depends
on the levels of G1, the sole regulator of G0. The MDD representation of each logical
function is given in the lower level (see Section 2.2 for explanations). For instance,
G3 has two regulators (G0 and G1), its logical function KG3 specifies that, when
both regulator levels are lower than 2, whatever the levels of the other components
(which have indeed no effect on G3), the target level of G3 is 0 (first row of the table
defining KG3. The MDD representing KG3 encompasses the decision variables x0 and
x1 (the levels of G3 regulators) and the case just described is recovered by following
the branchs going out x0 and x1 labelled [0,1], which leads to a leaf labelled 0 (for
readability, this leaf has been duplicated).

edge represents an assignment of the variable to 0 (resp. to 1). Most of BDD
are ordered and reduced, meaning that variables appear in the same order
along all the paths from the root, and that all isomorphic (equal) subgraphs
are merged and nodes having two isomorphic children are deleted (see Fig-
ure 2 for an illustration). This structure has been naturally extended to handle
discrete multi-valued functions, which are then represented by Multi-valued
Decision Diagrams (MDD), where the decision nodes have as many children
as the number of their possible values and the leaves (or terminal nodes) are
labelled by the values of the function [23]. The ordering and reduction rules
defined for binary decision diagrams apply also to this multi-valued generali-
sation (see [5] for further details). A path from the root to a leaf represents a
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(possibly partial) assignment of the decision variables for which the function
takes the value carried by the leaf (see Figure 2).

f1(A,B,C) = A∨ (B∧C)

A B C f1
0 0 * 0
0 * 0 0
0 1 1 1
1 ∗ ∗ 1

A

B

C

0 1

f2(A,B) =


0 i f (A = 0)∧ (B = 0)
1 i f ((A = 0)∧ (B = 1))∨ (A = 1)

∨((A = 2)∧ (B = 0))
2 i f (A = 2)∧ (B = 1)

A B f2
0 0 0
0 1 1
1 * 1
2 0 1
2 1 2

A

B B

0 1 2

Fig. 2 Decision diagrams representing logical functions. The Boolean function f1
(top part) of the Boolean variables A,B,C, evaluates 1 (i.e. true) if A or B and C (∧
stands for and, ∨ stands for or); f1 can be equivalently defined by a truth table (where
∗ denotes all possible values, here 0 and 1) and by a binary decision diagram. For
instance, A,B,C all set to 0 (first line of the table) corresponds to the path in the
diagram following the leftmost edges going out A and B and leading to the leaf 0,
indicating that, for these assignments of A,B,C, the function f1 evaluates to 0. The
multi-valued function f2 (bottom part) evaluates to 0, 1 or 2, depending on the values
of the discrete variables A and B. Similarly, f2 can be defined by means of a table or
a decision diagram. For instance, in this diagram, the variable assignments A = 2 and
B = 1 (last line of the table) define the path comprising the rightmost edge going out
A followed by the righmost edge going out B, leading to the value 2.

In the MDD representation of the function Ki of a regulatory component
gi, the decision variables are the variables associated to the regulators of gi,
and the leaves take their values in [0,Maxi]. Note that the use of MDD leads
to a simplified expression of Ki, but the resulting diagram and its complexity
may vary depending on the ordering of the decision variables [23].

Finally, it is possible to consider a compact representation of the usual
MDD by merging consecutive edges leading to the same child as explained
hereafter.

Given gi ∈ G , for each decision variable x j that appears in the diagram
of Ki, there are Max j + 1 outgoing edges, implicitly labelled with the corre-
sponding value in [0,Max j]. An alternative diagram can thus be considered by
merging consecutive edges (i.e. labelled with consecutive values) towards the
same child into a unique edge, which is then labelled with the integer interval
of these consecutive values. Remaining edges are labelled by intervals contain-
ing a unique value for the decision variable. Then, in the resulting diagram,
each decision path Φ (from the root node to a leaf labelled vΦ ∈ [0,Maxi])
corresponds to a set of assignments of the regulators g j ∈ Reg(i) for which the
value of Ki is vΦ (see Exercise 1):



8 C. Chaouiya, H. Klaudel, F. Pommereau

• If path Φ encompasses an edge going out the decision variable x j, the set
of assignments of x j is equal to the label [φ j,φ ′j] ( [0,Max j] (called the Φ
assignment interval for x j) of the edge going out the decision variable x j.

• If, along the path Φ , a decision variable x j does not appear (due to the
simplication of the MDD), it means that Ki(x) = vΦ does not depend on x j.

Such diagrams were introduced in [42] as a generalisation of MDD and
refered to as Interval Decision Diagrams (IDD). Here, we deal with a specific
class of IDD, since our decision variables are discrete and bounded.

Remark that, because we have assumed that regulatory graphs do not
encompass multi-arcs, in this IDD representation, each decision variable has
exactly two children.

Figure 1 illustrates an LRG together with the functions K s represented
by means of IDDs. For a better readability, IDD are often not fully reduced.

2.3 State Transition Graphs associated to LRGs

The behaviour of a logical regulatory graph is defined by the logical functions
introduced in Definition 1. For any state of the system (i.e. a vector encom-
passing the levels of all the regulatory components), these functions indicate
the target level of each component, that is the level to which it evolves.
State Transition Graphs (STGs) constitute a classical and convenient way of
representing the behaviour of such systems. In these directed graphs, nodes
represent states, and arcs represent transitions between states that amount
to update one component level (increasing or decreasing it by one).

Definition 2. Given an LRG R = (G ,E ,K ), its full State Transition Graph
(STG) is a directed graph (S ,T ) such that:

• the set of nodes is the set of states S as defined above,
• T ⊆S 2 defines the set of transitions (arcs) as follows. For all (x,y) ∈S 2:

(x,y) ∈T ⇔∃gi ∈ G s.t.

Ki(x) 6= xi,
yi = δi(x) df= xi + sign(Ki(x)− xi),
y j = x j , ∀ j 6= i .

Given an initial state x0, we further define the STG (S|x0 ,T|x0), which
contains all states reachable from x0:

• x0 ∈S|x0 ,
• ∀x ∈S|x0 , ∀y ∈S , (x,y) ∈T ⇒ y ∈S|x0 and (x,y) ∈T|x0 .

The updating function δi of a regulatory component gi, as defined above,
specifies the update of xi, the level of gi; depending on the current state x
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Fig. 3 State transition graphs corresponding to the LRG of Figure 1. On top, the
full STG, encompassing all 36 states. Note that there are two stable states indicated
as ellipse nodes: (xG0,xG1,xG2,xG3) = (2,2,1,0) and (0,0,0,0). Other transient states
are denoted as rectangular nodes. The two graphs in the lower part of the figure
correspond to sub-graphs of the full STG for the initial states (0,0,1,0) (on the left)
and (1,2,1,0) (on the right). Note that, for the initial state (1,2,1,0), one stable state
is lost.

of the network, the value of δi(x) is either xi (no change), xi + 1 (increase by
one) or xi−1 (decrease by one).

Analysing the STG, we can recover important properties of an LRG,
among which:

• Single point attractors or stable states (e.g. corresponding to stable ex-
pression patterns) are nodes of the STG with no successor; in other words,
they are states in which all component levels are equal to the target value
indicated by the logical functions.

• Complex attractors (e.g. corresponding to oscillatory behaviours) are ter-
minal strongly connected components encompassing more than one node,
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i.e. sets such that all nodes are reachable from each other along directed
paths, and there is no outgoing transition; in other words, the system is
trapped in such a set once it has reached one of its state (see Exercice 2).

• Reachability of given attractors from initial conditions corresponds to the
existence of path(s) in the STG.

3 P/T Petri net representation

The Definition 3 below explicitly defines a P/T net associated to an LRG,
using the MDD representation of the functions Kis (as introduced in Section
2.1). Further details, basic properties and applications of this P/T net repre-
sentation of LRGs are provided in [6] for the Boolean case, and in [7, 9] for
the multi-valued one.

Definition 3. Given an LRG R = (G ,M ax,E ,K ), we define the correspond-
ing Multi-valued Regulatory Petri Net (MRPN) as follows:

• For each gi ∈G , two complementary places are defined, gi and g̃i, satisfying,
for all marking M:

M(gi)+ M(g̃i) = Maxi. (1)

• For each gi ∈ G , for each path Φ from the root to a leaf of the MDD
representing Ki, at most two transitions are defined, one accounting for
the increasing shift (denoted t+

i,Φ), the second accounting for the decreasing
shift (denoted t−i,Φ) (this simplifies when the leaf is associated with an
extreme value, see below). Recall that Φ defines assignment intervals of
the levels of g j in Reg(i): x j ∈ [φ j,φ ′j], with φ j,φ ′j ∈ [0,Max j] and φ j ≤ φ ′j.

• Transitions t+
i,Φ and t−i,Φ are connected to:

– place g j, j ∈ Reg(i), with a test arc weighted φ j,
– place g̃ j, j ∈ Reg(i), with a test arc weighted Max j−φ ′j.

Transition t+
i,Φ is further connected to:

– place gi, with an outgoing arc (increasing the level of gi),
– place g̃i, with an incoming arc weighted Maxi−vΦ +1 (ensuring that the

current level of gi is less than the focal value vΦ) and an outgoing arc
weighted Maxi−vΦ (accounting for the decreasing by one of the current
marking of this complementary place).

Symmetrically, transition t−i,Φ is further connected to:

– place g̃i, with an outgoing arc (decreasing the level of gi),
– place gi, with an incoming arc weighted vΦ + 1 (ensuring that the cur-

rent level of gi is greater than the focal value vΦ) and an outgoing
arc weighted vΦ (accounting for the decreasing by one of the current
marking).
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From the definition above, it follows that, for all gi ∈ G and Φ a path
in the decision diagram associated to Ki, when vΦ = 0 or vΦ = Maxi (the
value of the Ki for this assignment of the regulators is extreme), only one
transition is relevant. Indeed, if vΦ = 0, transition t+

i,Φ can be omitted as,
by construction, there will never be Maxi + 1 tokens in place g̃i. Similarly,
if vΦ = Maxi, transition t−i,Φ can be omitted as there will never be Maxi + 1
tokens in place gi. Moreover, for g j ∈ Reg(i), when φ j = φ ′j, from Equation 1,
it suffices to consider only one test arc (that towards place g j for example).

Given an LRG R and an MDD representation of its logical functions,
the Definition 3 uniquely specifies a P/T net. It can be shown that, given an
initial state x0, the STG (S|x0 ,T|x0) is isomorphic to the marking graph of the
P/T net with the initial marking defined as M0(gi) = x0

i and M0(g̃i) = 1− x0
i ,

for all components gi (see proof in [9]). Hence, properties of an LRG can be
derived from the analysis of the marking graph of its P/T net representation.

The MDD representation of the logical function leads to more compact
Petri nets compared to those obtained by using decision trees or truth table
representations (as in [7]). Different orderings of the variables in the MDD
may generate different reductions. However, although the number of transi-
tions may vary, it can be proved that the resulting dynamics (the marking
graphs) are identical [9].

Figure 4 illustrates this P/T net representation for the LRG of the Figure 1.

3.1 Tools support

GINsim is a software dedicated to the definition and analyse of regulatory
networks logical models [20, 28]. With the representation presented in Sec-
tion 3 we can also employ PN tools to analyse (larger) LRGs. GINsim has
been equipped with export functionalities generating files in the INA [21]
format, PNML (Petri net markup language) [31] and APNN (Abstract Petri
Net Notation) [4].

In the case of the analysis of the segment-polarity system as defined in [35],
the reachability analysis of the expected patterns was performed using INA.
We have also assessed the high complexity of the STG of this model, using
tools such as the model-checking tool DSSZ-MC [8] and Tina [46].

3.2 Related works

Related works include the representation of logical regulatory networks by
means of high-level Petri Nets. In [7] a high-level PN representation of LRGs
is defined, encompassing one place and one transition for each regulatory
component. The even more compact representation defined in [13] enables
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K0

x1

0

Φ1

[0,0]

2

Φ2

[1,1]

K1

x0

x2

0

Φ1

[0,0]

1

Φ2

[1,1]

[0,0]

x2

1

Φ3

[0,0]

2

Φ4

[1,1]

[1,2]

K2

x0

x3

0

Φ1

[0,0]

1

Φ2

[1,1]

[0,0]

1

Φ3

[1,2]

K3

x0

x1

0

Φ1

[0,0]

1

Φ2

[1,1]

[0,1]

0

Φ3

[2,2]

Fig. 4 P/T net representation for the LRG of the Figure 1. In each row, the MDD
giving the node logical function in displayed on the left, and the corresponding piece
of P/T net is displayed on the right. Test arcs are depicted as dotted lines. Paths
in the MDD are indicated with their respective transition(s). For example, for G0,
path Φ1 (in red) corresponds to the situation where the absence of G1 leads to a
decrease of G0’s value, represented in the P/T net by the transition in red t−0,Φ1

. For

G1 path Φ3 gives rise to the two transitions t−1,Φ3
and t+

1,Φ3
(in blue), since it leads to

the intermediate value 1.
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the verification of the model coherence under various hypotheses (accounting
for observed biological behaviours such as homeostasis, multistationarity, or
even more specific temporal properties).

Based on similar principles as exposed in this section, Steggles et al. have
defined a Petri net representation of Boolean regulatory graphs [41]. However,
to account for Boolean networks as introduced by S. Kauffman [24] which are
synchronously updated (meaning that all components are updated at once),
a two-phase method is defined to ensure the synchronisation of the updates.
The first phase identifies all components that are called to change their values,
the second phase performs this update synchronously.

Finally, the PN representation of regulatory networks as presented here,
enables the delineation of integrated models of regulated metabolic pathways,
considering a logical model of the level (a PN representation) linked to a
classical PN model of the metabolic part. In [40], this approach is illustrated
with a qualitative modelling of the biosynthesis of tryptophan (Trp) in E. coli.

4 Modules, their composition and high-level Petri net
representation

The framework presented in this section deals with collections of spatially dis-
tributed abstract modules (non-nested) which may be cells, compartments in
cells or any subsystems that one wants to model separately. Each such mod-
ule is defined by a regulatory network with identified inputs. The regulation
functions take into account spatial configuration between modules.

In a first step, we introduce Logical Regulatory Modules (LRMs) as LRGs
equipped with external input nodes and arcs. Then, we define how such mod-
ules can be spatially located and interconnected in order to form a Collec-
tion of interconnected Logical Regulatory Modules (CLRMs). Finally, given
a collection of logical regulatory modules, we define its high-level Petri net
representation.

4.1 Interconnecting logical regulatory modules

In what follows, a Logical Regulatory Module is defined as a uniquely identified
logical regulatory network associated with a set of input components that
regulate internal ones. Notice that no output nodes are defined because any
internal component may generate an external signal towards other modules;
moreover, input components are not effective regulatory components in that
they do not introduce any intermediary step in the signalling. These inputs
are meant to combine (or integrate) external signals from other modules.
Functions σ in Definition 4 perform such combinations by calculating the



14 C. Chaouiya, H. Klaudel, F. Pommereau

levels of the integrated signals, depending on the levels of the corresponding
individual incoming signals and on their attributed weights. These weights,
defined as real numbers on the interval [0;1], encode neighbouring relations,
which in turn are defined when interconnecting the modules (see Definition 5).
Hence, at this stage, in order to define a logical regulatory module, one has to
specify the components that are likely to signal the module, and how input
signals are combined through the functions σ . If needed, both constraints
could be relaxed. In particular, postponing the specification of functions σ
to the actual connexion of modules would be a straightforward extension of
the current framework.

Definition 4. Given Γ a domain of regulatory components, a Logical Regu-
latory Module (LRM) M is a tuple (G ,E ,γ,σ ,K ), where

• G ⊆ Γ is the set of internal components;
• E ⊆ G ×G is the set of internal interactions between internal components;
• γ ⊆ Γ is the set of input components;
• σ = {σv,g | (v,g) ∈ E ⊆ γ×G } is a set of integration functions,

σv,g : ({0, . . . ,Maxv}×]0;1])∗→{0, . . . ,Maxg}

computing the combined level for all inputs v regulating g. Their arguments
are pairs (xv,dv) where each xv is the level of v in one neighbour, weighted
by dv > 0;

• K is a set of logical functions defined on G giving, for each component g∈
G , its target level in {0, . . . ,Maxg}, depending on the levels of its regulators.
For an internal regulator r (r ∈ G ) the level used to evaluate Kg is xr as
usual, while for an input regulator v (v ∈ γ), the level used to evaluate Kg
is the current value of σv,g. We denote by args(Kg) the set of arguments
of Kg.

Figure 5 provides a simple example of an LRM. If σv,g ∈ args(Kg) then, v
is an input regulator of g; in the pictures, this is denoted by an v-labelled arc
toward the node g.

A

B

C

B

KA(xB) df= 1 if (xB = 1), else 0

KB(xC) df= 1 if (xC = 1), else 0

KC(xA,σB,C) df= 1 if (xA = 1∧σB,C = 0), else 0

Fig. 5 A “toy” LRM M with: G
df= {A,B,C}, E

df= {(A,C),(C,B),(B,A)}, γ df= {B}, with,
e.g., σB,C

df= (y j,d j) j≥0 7→ round(max(y j · d j)), and K being defined on the right part of
the figure. The input node B is depicted as a gray node. We have args(KC) = {A,σB,C}.

An LRM can be viewed as an encapsulated regulatory network with in-
put nodes behaving as integrators of external signals of the corresponding
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components from other modules. For example, for the LRM depicted in Fig-
ure 5, the level of external signal corresponding to B will be calculated as
a weighted maximum over all the levels of B in neighbouring modules (i.e.
having a non-zero weight). Hence, this level can be evaluated only when the
module is connected to other modules (see Definition 5). Nevertheless, at this
stage, it is possible to recover a fully defined LRG, by setting the integration
functions and specifying the behaviours of the input components (for example
as having constant levels).

Notice that, like in the Figure 5, it is not required that G ∩ γ = /0. For
example, we may have g ∈ G ∩ γ when the regulatory component g has both
autocrine (acting on the same cell) and paracrine effects (acting on neighbour-
ing cells). Then g ∈ G accounts for the autocrine effect and g ∈ γ accounts
for the paracrine effect (as in the case of Wingless in the Drosophila segment
polarity module depicted in Section 5).

We now proceed with collections of LRMs, which contain all the infor-
mation needed to interconnect LRMs through their input nodes. It simply
consists in defining a set of LRMs and a topological relation between these
LRMs that establishes the actual connexions between modules and allows the
evaluation of the levels of input components.

Definition 5. A Collection of interconnected Logical Regulatory Module (or
CLRM) is defined as a triplet (I,M,T), where:

• I⊂ N is a finite set of integers (module identifiers);
• M = {(m,M ) |m∈ I} is a set of LRMs, each being associates to an identifier

in I;
• T : I×I\{(m,m) |m∈ I}→ [0;1], is a topological (or neighbouring) relation

between modules in M; the values of T can be interpreted as weights
associated to external signals.

In a CLRM, one can define several copies of the same LRM (these copies
are distinguished by their identifiers). This is the case in Figure 6 that shows
a CLRM encompassing three times the LRM of Figure 5. Notice the dashed
arcs that represent how each LRM signals its neighbours according to the
topological relation.

Given a CLRM, the integration functions are expressible as logical terms.
Indeed, the topological relations are fixed and the values of the σ functions de-
pend on discrete bounded variables and take discrete bounded values. Hence,
it is possible to recover an LRG (a logical model for the whole set of mod-
ules). For example, consider the CLRM in Figure 6, its associated LRG is
shown in Figure 7.
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(0,M ) (1,M ) (2,M )

T(0,1)=T(1,0)=1 T(1,2)=T(2,1)=1

A

B

C

B

A

B

C

B

A

B

C

B

Fig. 6 A CLRM (I,M,T) encompassing three copies of the LRM M of Figure 5,
where: I = {0,1,2}, M df= {(0,M ),(1,M ),(2,M )}, and T df= {(0,1) 7→ 1;(1,2) 7→ 1;(2,0) 7→ 0}
completed to symmetry. Function σB,C in module 0 depends on the level of B in module
1 (the sole connected module containing B) while σB,C in module 1 depends on the
levels of B in both modules 0 and 2 (which is depicted using dashed arcs).

A0

B0

C0 A1

B1

C1 A2

B2

C2 σ0
B,C

df= σB,C((xB1 ,1))

σ1
B,C

df= σB,C((xB0 ,1),(xB2 ,1))

σ2
B,C

df= σB,C((xB1 ,1))

KC0 (xA0 ,xB1 ) df= 1 if (xA0 = 1∧ xB1 = 0), else 0

KC1 (xA1 ,xB0 ,xB2 ) df= 1 if (xA1 = 1∧ xB0 = 0∧ xB2 = 0), else 0

K ′
C1

(xA1 ,xB0 ,xB2 ) df= 1 if (xA1 = 1∧ (xB0 = 0∨ xB2 = 0)), else 0

Fig. 7 The LRG obtained from the CLRM of Figure 6 with integration functions
defined on the right and logical functions on the bottom. If we choose σm

B,C as the

maximal value of its argument levels (σm
B,C = max(xBn ·T(n,m))) as suggested in the

caption of Figure 5, then, the logical function of C0 is KC0 , and the logical function
of C1 is KC1 . Now, if σm

B,C = min(xBn ·T(n,m)), then, KC0 remains the same, but KC1 is

replaced by K ′
C1

. Notice that KC2 is similar to KC0 (replace xA0 with xA2 ), moreover,
KAi and KBi for 0≤ i≤ 2 are exactly as in Figure 5.

4.2 High-level Petri net representation

We first define a class of high-level Petri nets [25] especially crafted to our
needs.

Intuitively, the main difference between such high-level Petri nets and the
usual P/T Petri nets is that now places may carry tokens that have a value.
In our particular case, these values will be pairs (i,v) where i is the identifier
of a module and v the level of one of the components of this module.

In order to consume and produce tokens when a transition fires, arcs are
labelled with expressions involving variables; an empty label denotes the ab-
sence of arc. At fire time, it is necessary to bind (i.e., to map) each such
variable to a concrete value so that the annotation on each arc can be evalu-
ated to a collection of tokens. A binding β is a function that maps variables
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to values. We denote β (expr) the evaluation of an expression expr under the
binding β .

More precisely, a high-level Petri net is a tuple (S,T, `), where:

• S is the set of places, each place is allowed to carry structured tokens from
N×N;

• T , disjoint from S, is the set of transitions;
• ` : (S×T )∪ (T ×S) defines the labelling of the arcs by expressions.

In general, a marking M of a high-level Petri net is a mapping associating
to each place s ∈ S a multiset over N×N representing the tokens held by s
at M. However, in our case, markings are always sets (in all evolutions, no
token may be duplicated in the same place). So, we assume that arc labels
always evaluate to sets of tokens.

A transition t may fire at a marking M with binding β if there are enough
tokens in the input places of t: for all s ∈ S, β (`(s, t))⊆M(s). If so, t may fire
and produce a new marking M′, where M′ is M in which consumed tokens are
removed and produced tokens are added, i.e., for all s ∈ S: M′(s) df=

(
M(s) \

β (`(s, t))
)∪β (`(t,s)), see Figure 8.

(0,1)
(1,0)

A

(0,0)
(1,0)

B

tA
(µ,xBµ )

(µ,xAµ )

(µ,δA(xAµ ))

(0,0)
(1,0)

A

(0,0)
(1,0)

B

tA
(µ,xBµ )

(µ,xAµ )

(µ,δA(xAµ ))

Fig. 8 The marking depicted on the left represents the fact that, for module 0, xA = 1
and xB = 0, and, for module 1, xA = 0 = xB. For this marking, transition tA is enabled
for the binding β = (µ→ 0,xAµ → 1,xBµ → 0). Suppose δA(1) = 0 (δA being the updating
function), the firing of tA leads to the marking depicted on the right of the picture.
This correspond to a state change in the biological system.

Remark 4. For the sake of simplicity, Definition 6 below is valid only if
modules do not overlap, i.e., for (m,M ) and (n,N ) two LRMs in M,
(M 6= N )⇒ (G m ∩G n = /0). This means that the set of all regulatory com-
ponents is partitioned and we can focus on the evolution of each species in
the context of the set of (identical) modules it belongs to.

Let Kg be the logical function of g. As previously, we define the updat-
ing function δg(xgm) df= xgm + sign(Kg(· · ·)− xgm) where Kg is computed with
the appropriate arguments (including integration functions calls) as defined
above.

Each internal regulatory component g ∈ G is modelled by a high-level
Petri net place sg that stores the numeric value of the corresponding level
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for each module m. In order to model several modules (each having a unique
identifier), each place holds tokens of the form (m,xg), where m ∈ I and xg
is the level of g in module m. The evolution of each regulatory component
g ∈ G is implemented by a unique transition tg that consumes the value of
g in m (token (m,xg) from place sg), reads the values of the regulators of g,
and produces the new level δg(xgm) of g in m. Thus, transition tg has all the
necessary arcs to the places modelling g and its regulators.

Definition 6. Let (I,M,T) be a CLRM. We denote G
df=
⋃

m∈I G
m the set of

components involved in the CLRM. The high-level Petri net associated to
(I,M,T) is (S,T, `), defined as:

• S df= {sg | g ∈ G }
• T df= {tg | g ∈ G };
• For each g∈ G , let m denotes the LRM such that g∈ G m, the arcs attached

to each tg ∈ T are as follows:

– First a pair of arcs allows to read and update the current level of g for
module M , whose identifier m is captured by a net variable µ:
· if σg,g /∈ args(Kg), there is one arc (sg, tg) labelled by {(µ,xgµ )} and

one arc (tg,sg) labelled by {(µ,δg(xgµ ))};
· otherwise, there is one arc (sg, tg) labelled by {(µ,xgµ )}∪{(η ,xgη ) |
∀η : T(µ,η) > 0} and one arc (tg,sg) labelled by {(µ,δg(xgµ ))} ∪
{(η ,xgη ) | ∀η : T(µ,η) > 0}; it means that the levels of g in all mod-
ules η in the neighbouring of m are read and only the level of g in m
is updated;

– Then, for each g′ ∈ G m \ {g}, a test arc (sg′ , tg) is added to bind the
parameters of the logical and integration functions, with net variable µ
capturing as above the identity of module m:
· if (g′,g) ∈ E m and σg′,g /∈ args(Kg), this arc is labelled by {(µ,xg′µ )},
· if (g′,g) ∈ E m and σg′,g ∈ args(Kg), this arc is labelled by {(µ,xg′µ )}∪
{(η ,xg′η ) | ∀η : T(µ,η) > 0},

· if (g′,g) /∈ E m and σg′,g ∈ args(Kg), this arc is labelled by {(η ,xg′η ) |
∀η : T(µ,η) > 0}.

For the collection in Figure 7, we obtain the Petri net depicted in Figure 9.

4.3 Implementation

A prototype of the construction presented above has been implemented on
the top of snakes toolkit [32]. snakes is a full featured Petri net library
intended for quick prototyping; it uses Python programming language [33] to
express the various Petri net annotations. Using this implementation:

• LRMs can be fully specified as Python classes;
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A

B

C

tA

tB

tC
{(µ,xBµ )}∪{(µ j,xB j ) | T(µ,µ j) > 0}

(µ,xBµ )

(µ,xAµ )

(µ,δA(xAµ ))

(µ,xCµ )

(µ,δB(xBµ ))
(µ,xBµ )

(µ,xAµ )

(µ,δC(xCµ ))

(µ,xCµ )

M0(sA) df= {(0,1),(1,0),(2,1)}
M0(sB) df= {(0,1),(1,1),(2,0)}
M0(sC) df= {(0,0),(1,1),(2,0)}

Fig. 9 The high-level Petri net representation of the CLRM of Figure 7. A possible
initial marking may be M0 as given below the Petri net.

• arbitrary integration functions can be user-defined, some are predefined;
• CLRMs can be defined by composing LRM instances with arbitrary topolo-

gies;
• CLRMs topology can be drawn with automatic layout;
• all possible stable states of a CLRM can be computed;
• reachable states from an initial one can also be computed, with extraction

of the reachable stable states.

5 Modelling of interconnected LRMs using high-level
Petri nets

In this section, we illustrate the modelling of interconnected logical regulatory
modules by means of high-level Petri nets. In a first step, we analyse nine
cases of collections of several copies of our toy LRM (as defined in Figure 5).
We show how variations of the topological or the integration functions can
affect the behaviours of the whole model. Then, we discuss the application of
our framework to the modelling of the segment-polarity module involved in
the segmentation of the Drosophila embryo.

In both cases, the considered collection of modules is composed of copies
of the same LRM. This indeed will be the case when modelling patches of
identical cells, but one should be aware that the proposed framework does
not impose such a restriction.
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5.1 Interconnecting occurrences of the toy LRM

Let consider the toy LRM M as defined in Figure 5. In this section, we analyse
the behaviours of a series of collections encompassing a number of occurrences
of M . All the considered collections are based on a tape of modules of width 2,
with various lengths and topologies as depicted in Figure 10. Each topological
relation Tk is so called because modules may have neighbours in k directions.
Moreover, we denote Toy(n,k) the CLRM containing 2 ·n copies of M arranged
using Tk on a tape, as illustrated in Figure 10.

T4(i, j) df= T4( j, i) df=
{

1 if j = i + 2∨ (i mod 2 = 0∧ j = i + 1)
0 otherwise

0

1

2

3

4 · · ·

5 · · ·

T8(i, j) df= T8( j, i) df=

 1 if j = i + 1∨ j = i + 2
∨ (i mod 2 = 0∧ j = i + 3)

0 otherwise

0

1

2

3

4 · · ·

5 · · ·

T6(i, j) df= T6( j, i) df=
{

1 if j = i + 1∨ j = i + 2
0 otherwise

0

1

2

3

4 · · ·

5 · · ·

Fig. 10 The various topologies considered for 2-width tapes. On the left, the graph-
ical view showing the organisation of the connexions. Definitions on the right side
rely on the assumption that modules on the top line of the tape are numbered with
consecutive even numbers, while modules on the bottom line are numbered (follow-
ing the same direction) with consecutive odd numbers. All topologies considered here
are symmetrical, the subscript k indicates the maximal number of neighbours in the
topology Tk in an extended grid (e.g. with the topological relation T4, any module
has at most 4 neighbours).

All stable states of systems Toy(n,k) are such that the levels of the com-
ponents in each module are equal (components A,B and C all equal to 0 or
all to 1). So, to depict such a module stable state, we shall print a black
and white grid, where black (resp. white) positions correspond to modules
whose components are all 1 (resp. all 0), these positions respecting the topo-
logical relations of the modules. To simplify the presentation, we have also
considered initial states that can be represented in this way.

Figure 11 shows the stable states that can be reached from chosen initial
states. We can observe variations in the number of reachable states (which
correspond to the size of the marking graph) and of reachable stable states;
moreover, the stable states themselves are different.
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All these examples have been obtained using the integration function σB,C
defined as (yi,di)1≤i≤k → round(max(yi · di | 1 ≤ i ≤ k)) (i.e. σB,C evaluates to
the maximal value of B in neighbouring modules; that is to say σB,C is 1
provided that at least one neighbouring module encompasses a component B
which level is 1). We may consider instead a function that returns 1 if at least
two components B in the neighbouring modules are equal to 1, and return
0 otherwise. In this case, the behaviours of the collections might be rather
different; in particular, the initial states considered for Toy(3,4) and Toy(4,4)
(Figure 11, fourth and seventh rows) turn to be stable.

5.2 The Drosophila segment-polarity module

Early development of the fruit fly embryo is an ideal, very well-studied system
for developmental biologists (see [48, 19] for good introductions to this topic).
The embryo is organised into a series of segments along its antero-posterior
axis (from the head to the tail). These segments will give rise to adult struc-
tures (legs, halteres, wings, etc.). This organisation is initiated by maternal
morphogens, which control few dozens of genes involved in the initial seg-
mentation. These genes have been split into several classes. The first classes,
called gap, pair-rule and segment-polarity modules, constitute a temporal hi-
erarchichal genetic system. Segment-polarity genes are under the control of
the pair-rule genes. Their patterns of expression define the anterior and poste-
rior parts of the segments and they are responsible for the stabilisation of the
borders between embryonic segments (see Figure 12). The segment-polarity
module involves about twenty genes, cross-regulations and intercellular sig-
nallings. It has been the subject of a wealth of theoretical modelling studies,
in both continuous (e.g. [47, 22]) and logical (e.g. [2, 12, 35]) frameworks.

In [35], a logical model is defined and analysed, based on an intracellu-
lar interaction network of a dozen of components, submitted to two exter-
nal inputs (the Wingless (Wg) and Hedgehog (Hh) signallings). Six copies
of this module have been interconnected in a stripe to allow the represen-
tation of the different gene expression domains flanking the parasegmental
borders (parasegments correspond to portions of two adjacent segments, see
Figure 12). The cells are numbered from 1 to 6, with cell 3 denoting the
cell just anterior to the border, cell 4 the cell just posterior to the border.
This stripe of six cells represents a full parasegment traversed by the future
border at its middle (see Figure 14). Connexions between these cells are set
up through Hh and Wg signals, and in the wild-type case, these intercel-
lular interactions are restricted to neighbouring cells. This fully defines the
topological and integration functions of our collection of six modules.

In [35], the whole logical regulatory graph encompassing the six intercon-
nected modules has been translated into its standard Petri net representation.
This allowed us, by using INA [21], to verify the reachability of expected sta-
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Toy(2,4) 1 reachable state (1 stable)

Toy(2,8) 64 reachable states (3 stable)

Toy(2,6) 64 reachable states (3 stable)

Toy(3,4) 54 reachable states (3 stable)

Toy(3,8) 512 reachable states (5 stable)

Toy(3,6) 512 reachable states (5 stable)

Toy(4,4) 64 reachable states (3 stable)

Toy(4,8) 4096 reachable states (8 stable)

Toy(4,6) 512 reachable states (5 stable)

Fig. 11 Impact of the topological relation on the behaviours of the collections
Toy(n,k), defined on the LRM of Figure 5. In each row, a different combination of
values of n and k (i.e. different number of modules and topological relation) is con-
sidered: on the left, the initial collection state is depicted, i.e. the initial state of each
of its modules (black if internal A, B, C are all 1, white if they are all 0), and on the
right, the total number of reachable states is given and the reachable stable states
are depicted. The top-left module of each state is decorated with links showing the
directions of its potential neighbours, e.g. in T(3,8), a module has possibly 8 neigh-
bours (see Figure 10). This series of experiments shows that, for the same initial
condition, a collection of interconnected modules can behave differently, depending
on the signalling capacities (expressed here in terms of topological relations). For
example, in the first collection T(2,4), the modules are not able to signal along the
diagonal, contrary to the collection T(2,8). In the first, the initial pattern is stable,
whereas it is not in T(2,8), which instead will stabilize in one of three other patterns.
The integration function σB,C considered here takes the maximal value of B over the
neighbouring modules.
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Fig. 12 Schematic illustration of the patterns of expression along the antero-
posterior axis, in the last step of the genetic hierarchy controlling the Drosophila
segmentation: (top) the antero-posterior axis; (middle) initial activation of En (En-
grailed) and Wg (Wingless) by the pair-rule signals in stripes of cells (here, we con-
sidered that six cells are sufficient to represent the different regions of a parasegment,
which includes the posterior part of a segment and the anterior part of the next seg-
ment; (bottom) the consolidation and refinement of the parasegmental border by the
action of the polarity genes, which requires cell-cell communication.

ble states from a given initial pattern set up by the pair-rule module (see
Figure 14). The proper construction of the model, by correctly interconnect-
ing the six modules was rather cumbersome, justifying the development of a
framework to support modular modelling.

In the context of this chapter, we will rely on a very much reduced version
of the intracellular network. This reduced network has been obtained by the
application of a systematic reduction method defined in [29], which preserves
the essential dynamical properties (in particular the stable states). Our aim
is not to give details on the properties of the segment-polarity module but
rather to illustrate the potential of our framework. The LRM is depicted in
Figure 13.

We study the reachable stable states for a collection of six cells arranged
on a line as depicted in Figure 14. The initial state (defined by the action
of the previous pair-rule module, as illustrated in Figure 12) is specified in
Figure 14. We consider two topological relations (or signalling distances) and
three integration functions, defined below.

• T1 defined such that T1(i, j) df= 1 if j = i + 1, T1(i, j) df= 0 otherwise, and
T( j, i) df= T(i, j) meaning that cells can only signal their immediate neigh-
bours (plain lines in Figure 14);
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Node Target level Logical rule
Wg 2 ((En = 0∧Wg = 0∧σWg,Wg = 2)∨ (En = 0∧Wg > 1))∧σHh,Wg = 1

0 otherwise
En 1 ((Wg = 0∧σWg,En = 2)∨Wg > 1)∧En = 1

0 otherwise
Hh 1 En = 1

0 otherwise

Fig. 13 A reduced version of the segment-polarity logical regulatory module (ob-
tained from the model of 12 components of Sánchez et al. [35], applying the reduction
method presented in [29]). In this network, we kept the components exerting ex-
ternal signals (Wg and Hh) and the read-out genes of the action of this regulatory
network (En and Wg). The external signals (coming from neighbouring cells) are de-
noted by gray nodes, rectangular nodes denote multi-valued components (Wg) and
ellipse nodes denote Boolean components. The logical functions of the three internal
components are given as logical rules.

• T2 defined such that T2(i, j) df= 1 if j = i + 1, T1(i, j) df= 1/2 if j = i + 2,
T j(i, j) df= 0 otherwise, and T( j, i) df= T(i, j), meaning that cells can signal
their immediate neighbours (plain lines), but also their second neighbours,
but with a lower weight (dotted lines in Figure 14).

0
0,0,0

1
1,0,0

2
2,0,0

3
0,1,0

4
0,1,0

5
0,0,0

Fig. 14 A stripe of six cells with three cells accounting for the posterior region of a
parasegment (cells 1, 2, and 3) and three cells accounting for the anterior region of
the next parasegment (cells 4, 5, and 6), the parasegmental border being established
between cells 3 and 4. In each cell, the initial levels of the components are indicated;
each cellular state is given as a triple xWg,xEn,xHh. Plain lines denote where T1 and T2
are equal to 1 and dotted lines denote where T2 is equal to 1/2 (in other words, these
lines denote the signalling capacities between the cells).

The integration functions we consider are:
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- maximum weighted level:
σmax

df= (vi,di)1≤i≤k → round(max(vi ·di | 1≤ i≤ k))

- maximum level of direct neighbours:
σmax≥1

df= (vi,di)1≤i≤k → max(vi | 1≤ i≤ k,di = 1)

- maximum level for neighbours with weight at least 1/2:
σmax≥1/2

df= (vi,di)1≤i≤k → max(vi | 1≤ i≤ k,di ≥ 1/2)

For example, let consider the topology T2 and σHh,Wg, which integrates the
Hh signal acting on Wg. If σHh,Wg = σmax, the value of the integrated signal is
the maximal level of Hh in neighbouring cells (including second neighbours).
If σHh,Wg = sigmamax≥1, the value of the integrated signal is the maximal level
of Hh in direct neighbouring cells.

Figure 15 shows the results for various combinations of these parameters.
When T1 is used, all neighbour signals have a weight 1, so we have σmax =
σmax≥1 = σmax≥2.

In [35], the model considered for the six cell stripe was based on the as-
sumption of short range Wg and Hh signals. Hence, to analyse the case of
nkd loss-of-function (naked cuticle is one of the segment-polarity genes), it
was necessary to consider a rewired network, accounting for the increased
diffusion of Wg. In the framework presented here, such a change would only
consist in modifying the topological function.

Fig. 15 Reachable states and reachable stable states for various configurations:
(1) σHh,Wg = σWg,Wg = σWg,En = σmax; (2) σHh,Wg = σWg,Wg = σWg,En = σmax≥1; (3) σHh,Wg =
σmax≥1 and σWg,Wg = σWg,En = σmax≥1/2. For each configuration, we have indicated the
total number of reachable state and drawn the reachable stable states. White squares
correspond to cells where all the component levels are zero; red squares correspond
to cells where xWg = 2 and xHh = xEn = 0; and green squares correspond to cells where
xWg = 0 and xHh = xEn = 1. Note that the expected wild-type pattern as shown in the
lower part of Figure 12, with a Wg expressing cell (red) and an En expressing cell
(green) flancking the border, is recovered with topology T1 and with T2 if choosing
σmax≥1.
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6 Conclusions

In this chapter, we have presented a modelling framework combining the log-
ical formalism with Petri nets (PNs). The standard Petri net representation
of logical regulatory graphs, although not very legible, enables the use of ex-
isting PN analysis tools such as INA. In this respect, GINsim provides export
facilities to generate files in the format expected by PN tools (e.g. INA [21]).

A challenging problem arises when considering regulated metabolic net-
works. PNs open the way to a qualitative integrated modelling of regulated
metabolic pathways as proposed in [40], properly connecting PN models of
the biochemical pathway and the regulatory control (this being modelled as
a logical regulatory graph expressed in terms of a PN).

Developmental processes relate to cell differentiation and pattern forma-
tion. In particular, in this chapter, we have delineated a framework that
allows the modelling of patches of communicating cells. To illustrate the po-
tential of this framework, we have considered the segment-polarity module
involved in the segmentation of the Drosophila embryo. In such processes,
one has to consider connexions of several (intra)cellular regulatory networks.
We propose to define these individual regulatory networks as logical regu-
latory modules (LRMs), identifying input signals they can receive from the
outside. Then, a collection of such modules (a CLRM) can be defined, by
setting up the number and type of LRMs, as well as the rules governing their
interconnexions. From such a CLRM, a large logical regulatory network can
be recovered. This procedure could be easily implemented in GINsim.

More importantly, we have defined a compact and legible high-level Petri
net (HLPN) representation of a CLRM. Implementation of the construction
has been provided. This HLPN provides a flexible framework, which allows
to easily model different configurations of a patch of cells, the impact of the
topology (e.g. the range of a signal).

It is worth noting here, that the proposed framework allows the considera-
tion of other situations than communicating cells within a patch. For example,
in large regulatory networks, modularity arises from physical delimitation or
cellular compartements (e.g. nucleus, cytoplasm) or from functional role (e.g.
core cell cycle control).

Recently, a modular logical modelling of the budding yeast cell cycle has
been delineated in [17]. In this case, modules corresponding to regulatory
networks with distinct functional roles in the cell cycle control, have common
components. Hence, while composing these modules, one has to properly set
up the logical rules of these common components. Based on the methodology
proposed in [17], the framework presented in this chapter could be extended
to this case of overlapping modules.

Although modularity is now recognized as an important feature for large
biological networks, little formal work and tool development support combi-
nation or composition of regulatory networks (see [39] and references therein).
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In [39], the authors address this question and distinguish between fusion, com-
position, aggregation and flattening as distinct processes for building larger
models from smaller ones. The HLPN framework presented in Section 4 can be
viewed as a model aggregation, in that it is a reversible process (the modules
are conserved). In terms of modelling tools, it is worth noting that ProMoT,
a tool that eases the definition and edition of modular models, supports the
logical formalism [27]. It is based on principles that are quite similar to those
developed in Section 4.

The main motivation to develop the framework proposed here is to study
how existing cellular processes are controlled. However, it could be useful in
the field of synthetic biology that aims at designing novel artificial biological
systems (see [15] and references therein). Indeed, synthetic biology relies on
the concept of modularity, by conceiving building blocks and combining them
[1]. So far, synthetic biology mainly designed intracellular gene networks, but
synthetic multicellular systems involving cell-cell communication emerged in
recent years (see e.g. [3]).

The complexity of regulatory networks dealt by modellers calls for the
development of original and efficient computational means. Here, we have
defined a framework that greatly facilitates the definition of models encom-
passing interconnected regulatory modules. However, we still need to make
progresses to analyse such large models. Combining the logical and PN for-
malisms, as well as taking advantage of the modular structure of the models
should allow the development of more efficient tools.

Acknowledgements We thank G. Batt, A. Naldi, E. Remy, S. Soliman, D. Thieffry
for fruitful discussions. This work was supported by the French Research Agency
(project ANR-08-SYSC-003).

Problems

1. Give the MDD representation of the function f2 given in Figure 2 consid-
ering the variables A and B in the reverse order (i.e. first B, then A). Then
transform the obtained MDD into an IDD (labelling the edges with integer
intervals, and merging them when possible as explain in Section 2.2.

2. Consider the genetic regulatory network called repressilator as defined by
Elowitz and Leibler [16], which consists of three genes (denoted here A, B and
C), connected in a negative circuit (each component represses its successor
in the circuit, and is repressed by its predecessor): Assuming Boolean levels
for A, B and C, all interaction thresholds are equal to 1, and the components
share the same logical rule: K (0) = 1 and K (1) = 0, i.e. if the inhibitor is at
level 0 the regulated component target level is 1, and the other way around.
Draw the full STG of this model and verify that it encompasses a unique
complex attractor, reachable from any initial state.
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A B C

3. Consider an LRG encompassing a component C regulated by A and B,
both positively auto-regulated, with MaxA = MaxB = 2 and MaxC = 1. The
logical functions KA, KB and KC given by their MDD representations below
(note that KA and KB are the identity function). Give the logical expressions
defining these three functions (using the connectors ∧ and ∨ as in Figure
2. Give the P/T representation of this LRG (verify that the autoregulations
define transitions that are useless since they are never enabled, see [9]).

KA KB KC

xA

0 1

B

0 1

A

B B

0 1 2

4. Find another enabling binding for the high-level Petri net depicted in Fig-
ure 8. Which module is involved by this binding and what are the corre-
sponding levels xA and xB? Assume that δA(xA) = 1 and fire the transition
accordingly.

5. Construct the high-level Petri net representation of the CLRM depicted
in Figure 14, including the initial marking. Indications:

1. Start with determining the arguments of each regulatory function, sepa-
rating internal and external regulators.

2. Draw each Petri net transition separately, together with the places for the
needed regulatory components.

3. Merge these Petri net parts by collapsing the places that implement the
same regulators.

4. Add the initial marking, corresponding to the expression levels indicated
in Figure 14.

Solution 1. 1 The MDD representation of f2, considering the decision vari-
ables B and A in this order is given below (on the left side), with the corre-
sponding IDD on the right.

B

A A

0 1 2

B

A A

0 1 2

[0,0]

[0,0]

[1,1]

[2,2][0,1][1,2]
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Solution 2. The full STG contains 8 nodes (i.e. 23, since each of the 3 com-
ponents can take 2 values) and is displayed below. The cyclical attractor is
emphasised with bold arcs and contains 6 nodes. The only states which are
not in the attractor are (0,0,0) and (1,1,1). These states are not reachable,
and their succesors are all in the attractor. Hence, whatever the initial state,
in at most one step, the system will be trapped in a cyclical trajectory, which
consists in oscillations of the components A, B and C.

(0,0,0) (1,0,0)

(0,1,0) (1,1,0)

(0,0,1)

(0,1,1)

(1,0,1)

(1,1,1)

Solution 3. First, we give below the logical expressions of the functions:

KA(A) =
{

0 i f (A = 0)
1 i f ((A = 1) KB(B) =

{
0 i f (B = 0)
1 i f ((B = 1)

KC(A,B) =

0 i f (A = 0)∧ (B = 0)
1 i f ((A = 0)∧ (B = 1))∨ ((A = 1∧ (B = 0))
2 i f (A = 1)∧ (B = 1)

The corresponding P/T net is given below. Note that transition t−A,Φ1
,

which corresponds to the leftmost path in the MDD representation of KA is
never enabled (it requires that xA = 0 i.e. one token must be present in place
Ã, which makes impossible the presence of a token in A).
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Solution 4. The alternative enabling binding is β2 = (µ → 1,xAµ → 0,xBµ →
0). This corresponds to xA = xB = 0 for module 1. The firing of transition tA
with β2 leads to marking M′ such that M′(A) = {(0,1),(1,1)} and M′(B) =
{(0,0),(1,0)}.
Solution 5. The high level Petri net representation of the segment polarity
module interconnected as specified in Figure 14 is given below:

Wg

En

Hh

tEn

tHh

tWg

{(µ,xWgµ )}∪{(µ j ,xWg j ) | T(µ,µ j)>0}

{(µ,δEn(xEnµ ,σWg,En))}{(µ,xEnµ )}

{(µ,xEnµ )}

{(µ,δHh(xHhµ ,xEnµ ))}{(µ,xHhµ )}

{(µ j ,xHh j ) | T(µ,µ j)>0}

{(µ,xEnµ )}

{(µ,xWgµ )}∪{(µ j ,xWg j ) | T(µ,µ j)>0}

{(µ,δWg(σWg,Wg,xEnµ ,σHh,Wg))}∪{(µ j ,xWg j ) | T(µ,µ j)>0}

The initial marking is M defined for each place as:

M(Wg) df= {(0,0),(1,1),(2,2),(3,0),(4,0),(5,0)}
M(En) df= {(0,0),(1,0),(2,0),(3,1),(4,1),(5,0)}
M(Hh) df= {(0,0),(1,0),(2,0),(3,0),(4,0),(5,0)}
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