
HAL Id: hal-02309992
https://hal.science/hal-02309992

Submitted on 23 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Two-stage solution-based tabu search for the
multidemand multidimensional knapsack problem

Xiangjing Lai, Jin-Kao Hao, Dong Yue

To cite this version:
Xiangjing Lai, Jin-Kao Hao, Dong Yue. Two-stage solution-based tabu search for the multidemand
multidimensional knapsack problem. European Journal of Operational Research, 2019, 274 (1), pp.35-
48. �10.1016/j.ejor.2018.10.001�. �hal-02309992�

https://hal.science/hal-02309992
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ACCEPTED MANUSCRIPT

Two-stage solution-based tabu search for the

multidemand multidimensional knapsack

problem

Xiangjing Lai a, Jin-Kao Hao b,c,∗, Dong Yue a

aInstitute of Advanced Technology, Nanjing University of Posts and

Telecommunications, Nanjing 210023, China

bLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

cInstitut Universitaire de France, 1 Rue Descartes, 75231 Paris, France

Abstract

The multidemand multidimensional knapsack problem (MDMKP) is a significant
generalization of the popular multidimensional knapsack problem with relevant ap-
plications. In this work we investigate for the first time how solution-based tabu
search can be used to solve this computationally challenging problem. For this pur-
pose, we propose a two-stage search algorithm, where the first stage aims to locate
a promising hyperplane within the whole search space and the second stage tries
to find improved solutions by exploring the reduced subspace defined by the hyper-
plane. Computational experiments on 156 benchmark instances commonly used in
the literature show that the proposed algorithm competes favorably with the state-
of-the-art results. We analyze several key components of the algorithm to highlight
their impacts on the performance of the algorithm.
Keywords: Metaheuristics; Multidemand multidimensional knapsack problem; Two-
stage optimization; Solution-based tabu search; Combinatorial optimization.

1 Introduction

Given a set V = {1, 2, . . . , n} of n items, a set R = {r1, r2, . . . , rm} of m
resources with a capacity upper limit bi for resource ri (1 ≤ i ≤ m), where

∗ Corresponding author.
Email addresses: laixiangjing@gmail.com (Xiangjing Lai),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), medongy@vip.163.com (Dong Yue).

2

ACCEPTED MANUSCRIPT

each item j of V is associated with a profit cj and consumes a given quantity
aij for each resource ri (i ∈ {1, 2, . . . ,m}), the popular NP-hard 0–1 multidi-
mensional knapsack problem (MKP) involves selecting a subset of items from
V such that the resource consummation of the selected items does not exceed
the given capacity upper limit for each resource in R (knapsack constraints),
while maximizing the total profit of the selected items. Formally, the MKP
can be written as follows:

(MKP) Maximize z =
n∑

j=1

cjxj (1)

s.t.
n∑

j=1

aijxj ≤ bi, ∀i ∈ {1, 2, . . . ,m} (2)

xj ∈ {0, 1}, ∀j ∈ {1, 2, . . . , n} (3)

where cj ≥ 0, aij > 0, bi > 0, ∀i ∈ {1, 2, . . . ,m}, ∀j ∈ {1, 2, . . . , n} and Eq.
(3) indicates that the binary decision variable xj (1 ≤ j ≤ n) takes the value
of 1 if the item j is selected, 0 otherwise.

The multidemand multidimensional knapsack problem (MDMKP) studied in
this work is an important extension of the MKP, where q greater-than-or-
equal-to constraints are imposed, in addition to m less-than-or-equal-to con-
straints (Eq. (2)). Moreover, unlike the MKP, the profit cj in the MDMKP
can take a positive, negative or zero value for each item j (j ∈ V). Formally,
the MDMKP can be formulated as follows [1,5]:

(MDMKP) Maximize z =
n∑

j=1

cjxj (4)

s.t.
n∑

j=1

aijxj ≤ bi, ∀i ∈ {1, 2, . . . ,m} (5)

n∑

j=1

aijxj ≥ bi, ∀i ∈ {m+ 1,m+ 2, . . . ,m+ q} (6)

xj ∈ {0, 1}, ∀j ∈ {1, 2, . . . , n} (7)

where the following conditions are assumed:

bi > 0, aij ≥ 0 ∀i ∈ {1, 2, . . . ,m+ q}, ∀j ∈ {1, 2, . . . , n} (8)
n∑

j=1

aij > bi ∀i ∈ {1, 2, . . . ,m+ q} (9)

maxj{aij} ≤ bi ∀i ∈ {1, 2, . . . ,m} (10)

minj{aij} < bi ∀i ∈ {m+ 1, 2, . . . ,m+ q} (11)

3

ACCEPTED MANUSCRIPT

In above formulas, the inequalities in Eq. (5) are called the knapsack con-
straints, and those in Eq. (6) are called the demand constraints.

Clearly, the classic MKP is a special case of the MDMKP when q equals 0
and the profit cj of item j takes a nonnegative value (i.e., cj ≥ 0, ∀j ∈ V).

Like the MKP, the MDMKP has a number of practical applications [5] like ob-
noxious and semiobnoxious facility location [4,22,24], capital-budgeting, and
portfolio-selection [3], among others. On the other hand, the MDMKP is com-
putationally challenging, given that it generalizes the NP-hard multidimen-
sional knapsack problem. Consequently, there is no polynomial-time algorithm
for the MDMKP, unless P = NP.

Unlike the MKP that has been subject of intensive studies in the past decades
(see e.g., [9,11,13,15,20,21,23,25–28]), the MDMKP receives much less atten-
tion until now. Still, there exist several exact and heuristic approaches in
the literature. For example, general mixed integer programming solvers like
CPLEX can be used to solve instances with n ≤ 100 to optimality within an ac-
ceptable time. However, it is usually difficult for the existing exact approaches
to find an optimal solution for larger instances. As a result, several heuristic
algorithms have been proposed to solve large instances approximately.

Specifically, in 2005, Cappanera and Trubian presented a nested-tabu-search
heuristic [5], which combines a standard attribute-based tabu search with
an oscillation method presented in [13]. In 2006, Arntzen et al. proposed an
adaptive memory search method called Almha in [1], which uses a dynami-
cal tabu search mechanism and a weighting scheme to handle infeasible solu-
tions. Their computational results show the Almha algorithm outperforms the
previous best MDMKP methods and can be viewed as one of the best per-
forming MDMKP algorithms in the literature. In 2007, Hvattum and Løkke-
tangen investigated the behavior of scatter search on the MDMKP [16]. In
2009, Gortázar et al. introduced a black box scatter search method for general
classes of binary optimization problems, and assessed their method on the
MDMKP and some other binary problems [14]. In particular, their method
uses a static penalty approach proposed in [32] to handle the constraints of
the MDMKP. In 2010, Hvattum et al. proposed an alternating control tree
(ACT) search framework for the MDMKP [17], which can lead to an exact al-
gorithm or heuristic algorithm by choosing the routine of solving subproblems.
Their computational results show that the associated ACT algorithms have
a high performance compared to a previous tabu search algorithm and scat-
ter search algorithm. At the same year, Balachandar proposed a dominance
principle based heuristic for the MDMKP [2].

In addition to these studies, there exist some theoretical investigations dedi-
cated to the MDMKP in the literature. For example, Delissa investigated the

4

ACCEPTED MANUSCRIPT

existence and usefulness of equality cuts for the MDMKP [10], while Wishon
and Villalobos studied robust efficiency measures for the MDMKP [30].

To enrich the solution arsenal for the MDMKP, we present in this work the
first study of using solution-based tabu search [6,7,31] to effectively solve the
MDMKP. Actually, unlike the popular attribute-based tabu search approach
[12], solution-based tabu search began to attract attention only very recently.
Interestingly, this approach already showed excellent performances on sev-
eral binary optimization problems as reported in [19,20,29]. This work aims
thus to investigate the interest of the solution-based tabu search approach
for the MDMKP. Compared to attribute-based tabu search, solution-based
tabu search has at least two appealing features. First, this approach ensures
a stronger intensification ability, which is crucial for locating good local op-
tima. Second, this approach makes the notion of tabu tenure irrelevant, thus
simplifying the design of the algorithm and reducing the number of required
parameters.

We summarize the contributions of this work as follows. First, based on
the solution-based tabu search approach, we introduce an effective two-stage
search algorithm for the MDMKP. The first search stage aims to identify a
promising hyperplane within the whole search space while the second search
stage tries to find improved solutions by examining both feasible and infeasi-
ble solutions on the identified hyperplane. For both stages, the solution-based
tabu search strategy is employed, which relies on a one-flip and swap neigh-
borhoods and a hash-based mechanism to efficiently determine the tabu status
of neighbor solutions. Second, we assess the performance of the proposed al-
gorithm based on 96 benchmark instances commonly used in the literature
(n = 100, 250,m = 5, 10 and q = 2, 5, 10). The computational results show
that the algorithm improves and matches the best known solutions for 17 and
71 instances respectively. Moreover, we report detailed computational results
of the proposed algorithm for 60 additional instances with a large number of
constraints (with n = 100, 500,m = q = 30). Third, given that the ideas of
the two-stage search framework and solution-based tabu search developed in
this work are quite general, they could be applied to solve other related binary
optimization problems.

The remaining parts of the paper are structured as follows. In the next section,
the proposed two-stage tabu search algorithm is described. In Section 3, we
present the computational assessment of the proposed algorithm and report
experimental results on the well-known benchmark instances. In Section 4,
several essential ingredients of the algorithm are investigated to show how they
affect the performance of the algorithm. In the last section, we summarize the
present work and provide research perspectives.

5

ACCEPTED MANUSCRIPT

2 Two-stage tabu search algorithm for the MDMKP

Our two-stage solution-based tabu search (TSTS) algorithm combines two
search procedures working on two different search spaces. The first stage of the
algorithm performs an exploratory search within the whole search space to find
a feasible solution as good as possible. Starting from this solution, the second
stage carries out a focused exploitation within the reduced space composed
of candidate solutions with exactly k selected items (k being identified by
the final solution of the first search stage). To explore both search spaces,
TSTS relies on two solution-based tabu search procedures guided by a penalty-
based evaluation function. One notices that the two-stage search strategy has
been used with success to solve other knapsack problems like the Quadratic
Knapsack Problem [8] and the classic MKP [26].

2.1 General Procedure

Algorithm 1: General procedure of two-stage tabu search algorithm for the
MDMKP

1 Function TSTS()
Input: Instance I, time limit tmax

Output: The best solution s∗ found
2 begin

/* Initialization of solution */
3 s← InitialSolution(I) /* Sections 2.2 */

/* Optimization of the first stage */
4 {s, t} ← TabuSearch1(s) /* Sections 2.3 */

/* Optimization of the second stage */
5 s← TabuSearch2(s, t, tmax) /* Sections 2.4 */
6 return s
7 end

The proposed TSTS algorithm is thus composed of two optimization stages,
where the first stage identifies a suitable hyperplane Ω[k] (see Section 2.4.2 for
the definition of hyperplane) that is exploited intensively during the second
optimization stage to locate improved solutions (see Algorithm 1).

Specifically, the TSTS algorithm first generates randomly an initial solution
by its initialization procedure (Section 2.2). Then the algorithm enters the
first search stage where the initial solution is improved by the solution-based
tabu search procedure presented in Sections 2.3 (line 4). During this search
stage, the algorithm explores both feasible and infeasible solutions within the
whole search space to find a high-quality feasible solution. At the end of its
search stage, the best (feasible) solution found and the consumed time t are
returned. At this point, the second search stage is triggered, which starts from

6

ACCEPTED MANUSCRIPT

the solution returned by the first stage and uses another solution-based tabu
search procedure (Section 2.4) to seek improved solutions (line 5). During this
stage, the search is limited to the hyperplane Ω[k] (k being the number of the
selected items in the returned solution of the first stage, see Section 2.4.1).
Finally, the whole algorithm terminates when a given time limit tmax is met,
and the best solution found during the search process is returned as the final
result of the algorithm (line 6).

2.2 Initial Solution

Algorithm 2: Procedure of Generating Initial Solution

1 Function InitialSolution()
Input: An instance I, the size of instance (n)
Output: An initial solution s = (x1, x2, . . . , xn)

2 begin

3 for i← 1 to n do

4 xj ← rand() mod 2 /* rand() denotes a random integer */

5 end

6 s← (x1, x2, . . . , xn)
7 return s

8 end

The initial solution of the TSTS algorithm is generated by a randomized
procedure whose pseudo-code is given in Algorithm 2. Specifically, given an
instance with n items, the initialization procedure assigns randomly a value
from the set {0, 1} to each component xi (i = 1, 2, . . . , n) to obtain an initial
solution s = (x1, x2, . . . , xn). This random initialization has the advantage of
being simple and fast. However, an initial solution generated in this way can
be infeasible. If this is the case, its feasibility will be established during the
first search stage described below.

2.3 Tabu Search Method of the First Search Stage

The first search stage is ensured by a solution-based tabu search algorithm
(denoted by TabuSearch1()), whose pseudo-code is given in Algorithm 3. Af-
ter initiating its tabu lists (lines 3–5), TabuSearch1() performs a number of
iterations to improve the current solution until 1) a feasible solution is found
and no improvement can be observed during α consecutive iterations, where
α is a parameter called the depth of tabu search, or 2) the allowed maximum
time limit tmax is reached (lines 8–17). At each iteration, according to the tabu
rule and the penalty-based evaluation function defined in Sections 2.3.2 and

7

ACCEPTED MANUSCRIPT

Algorithm 3: Tabu search method used in the first search stage

1 Function TabuSearch1()
Input: Initial solution s, extended evaluation function F , hash vectors H1,

H2, H3 of length L, hash functions h1, h2, h3, depth of tabu search
α, time limit tmax

Output: The best solution s∗ found, the time t consumed by the search
2 begin

/* Initialization of hash vectors (i.e., tabu lists) */

3 for i← 0 to L− 1 do

4 H1[i]← 0; H2[i]← 0; H3[i]← 0;
5 end

6 s∗ ← s
7 NoImprove← 0

/* Main search procedure */

8 while (time() < tmax) ∧ ((NoImprove < α) ∨ (s∗ is infeasible)) do

9 Find in N1(s)
⋃
N2(s) a best non-tabu solution s′ in terms of the

extended evaluation function F in Eq. (17)
/* N1(s) and N2(s) are defined in Eqs. (13) and (14), and

the tabu rule is given in Section 2.3.2 */

10 s← s′ /* Update the current solution */

11 if (F (s) > F (s∗) then

12 s∗ ← s
13 NoImprove← 0

14 end

/* Update the hash vectors (i.e., tabu lists) with s */

15 H1[h1(s)]← 1; H2[h2(s)]← 1; H3[h3(s)]← 1
16 NoImprove← NoImprove+ 1

17 end

18 t← time()
19 return {s∗,t}

20 end

2.3.3, a best non-tabu neighbor solution is selected to replace the current solu-
tion, and then the tabu lists are accordingly updated. Finally, the best feasible
solution found s∗ during this search stage and the computation time elapsed
t are returned as the results of the first search stage. As our experiments in
Section 3 show, the first search stage always ends up with a feasible solution
for all tested instances, including those with 30 demand constraints and 30
knapsack constraints. In other words, the first solution-based tabu search al-
gorithm is typically able to locate a promising valid hyperplane for the second
search stage.

The ingredients of this tabu search algorithm, including the search space, the
neighborhood structures and the tabu strategy, are respectively described in

8

ACCEPTED MANUSCRIPT

the following subsections.

2.3.1 Search Space and Neighborhood

The search space Ω explored by the TabuSearch1() procedure is composed of
all feasible and infeasible solutions of the given problem instance, i.e.,

Ω = {(x1, x2, . . . , xn)|xi ∈ {0, 1}, 1 ≤ i ≤ n} (12)

The neighborhood used by TabuSearch1() is a combined neighborhood com-
posed of two basic neighborhoods, namely the one-flip neighborhood N1 and
the swap neighborhood N2. The one-flip neighborhood N1 is defined by the
one-flip operator (denoted by Flip(·)). Given a solution s = (x1, x2, . . . , xn),
a one-flip move Flip(q) consists of changing the value of a variable xq to its
complementary value 1 − xq. As such, the neighborhood N1(s) of solution s
includes all possible solutions that can be obtained by applying the one-flip
operator to s. Formally, the N1(s) can be written as follows:

N1(s) = {s⊕ Flip(q) : 1 ≤ q ≤ n} (13)

The neighborhood N2 is defined by the swap operator (denoted by Swap(·, ·)).
Given a solution s = (x1, x2, . . . , xn), let I1 = {q : xq = 1 in s} and I0 = {q :
xq = 0 in s}, the swap neighborhood N2(s) can be written as follows:

N2(s) = {s⊕ Swap(i, j) : i ∈ I1, j ∈ I0; } (14)

The first tabu search algorithm explores the union of these two neighborhoods,
i.e., N(s) = N1(s)∪N2(s), whose size equals to n+|I1|×|I0|. At each iteration
of the algorithm, a best non-tabu solution from N(s) according to the extended
evaluation function defined by Eq. (17) in Section 2.3.3 and the tabu strategy
explained in Section 2.3.2 is selected to replace the current solution s.

2.3.2 Tabu Strategy

In the present tabu search method, we adopt the solution-based tabu strategy
to determine the tabu status of neighbor solutions. Specifically, the tabu lists
are based on three hash vectors H1, H2, and H3 of length of L, where each
position of them represents a binary variable, and each hash vector Ht is
associated with a hash function ht. In particular, the effect of hash functions
is to map a candidate solution of the search space Ω to an index of Ht, i.e.,
ht : Ω→ {0, 1, 2, . . . , L− 1}.

9

ACCEPTED MANUSCRIPT

Based on these hash vectors and the associated hash functions, we determine
the tabu status of candidate solutions by the following rule. Given a candidate
solution s, the hash vectors Ht (t = 1, 2, 3) and the associated hash functions
ht, s is identified as a tabu solution if H1(h1(s)) ∧H2(h2(s)) ∧H3(h3(s)) = 1.
Otherwise, s is determined as a non-tabu solution.

Following previous studies [6,29,31], we define our hash functions as follows.
Let s = (x1, x2, . . . , xn) be a candidate solution, our hash functions ht (t =
1, 2, 3) are given by:

ht(s) = (
n∑

i=1

⌊iγt⌋ × xi) mod L (15)

where γt is a parameter that is used to define each hash function and L is the
length of hash vectors that is empirically set to 108 in this work.

Given a solution s and its hash value h(s), the hash value of its neighbor
solutions can be determined in O(1) according to Eq. (15). Thus, the time
complexity of determining the tabu status of a neighbor solution is O(1).

2.3.3 Extended Evaluation Function

Since the search space explored by the first tabu search algorithm contains
both feasible and infeasible solutions, we devise an extended evaluation func-
tion F which uses a penalty function P to assess constraint violations.

Let s be a candidate solution in Ω, the penalty value P (s) is defined as the
summation of all constraint violations, i.e.,

P (s) =
m∑

i=1

Max{0,
n∑

j=1

aijxj − bi}+
q+m∑

i=q+1

Max{0, bi −
n∑

j=1

aijxj} (16)

Thus, a small (large) function value P (s) means a weak (strong) constraint
violation in s. In particular, P (s) = 0 means that s is a feasible solution.

Given this penalty function, the extended evaluation function F (s) is defined
as a linear combination of the objective function f(s) in Eq.(4) and P (s):

F (s) =
n∑

j=1

cjxj − λ× P (s) (17)

where λ is a weighting factor that is empirically set to 102 in this work.

10

ACCEPTED MANUSCRIPT

For any two solutions s′ and s′′ in Ω[k], s
′ is considered to be better than s′′ if

F (s′) > F (s′′).

As shown in our experimental results (Section 3, Section 4.2 and the Ap-
pendix), the first search stage equipped with the extended evaluation function
always ends up with a feasible solution for all tested instances, including those
with 30 demand constraints and 30 knapsack constraints. In other words, the
first solution-based tabu search algorithm is typically able to locate a promis-
ing valid hyperplane that is further explored by the second search stage.

2.4 Tabu Search Method of the Second Search Stage

The second optimization stage of the TSTS algorithm uses another tabu search
algorithm (denoted by TabuSearch2(), Algorithm 4) to examine candidate
solutions of a given hyperplane Ω[k] (see below). Unlike the first tabu search
algorithm, TabuSearch2() explores only solutions that contain exactly k se-
lected items. TabuSearch2() first initializes the hash vectors (lines 3–5), and
then performs a number of iterations to improve the current solution (lines
7–14). At each iteration, the algorithm replaces the current solution by a best
non-tabu neighbor solution s′ in terms of the evaluation function in Eq. (17).
During the search, the best feasible solution encountered s∗ is updated each
time a better feasible solution is found, and the hash vectors are accordingly
updated by the new solution (line 13). Finally, the algorithm terminates if the
time limit tmax is reached, and then returns the best feasible solution s∗ found
during the search process.

2.4.1 Search Space, Tabu Strategy and Evaluation Function

The search space Ω[k] explored by TabuSearch2() is composed of both feasible
and infeasible solutions with a fixed number of k selected items. In other words,
Ω[k] contains all n-dimensional 0–1 vectors with

∑n
i=1 xi = k, i.e., Ω[k] = {x ∈

{0, 1}n|
∑n

i=1 xi = k}. Ω[k] is also called a hyperplane of the search space Ω
defined in Section 2.3.1, i.e., Ω = ∪nk=1Ω[k].

Additionally, like the first tabu search algorithm, TabuSearch2() uses the
solution-based tabu strategy described in Section 2.3.2 to determine the tabu
status of neighbor solutions, and employs the extended evaluation function in
Eq. (17) to evaluate the solutions in the search space Ω[k].

11

ACCEPTED MANUSCRIPT

Algorithm 4: The tabu search method used in the second search stage

1 Function TabuSearch2()
Input: Initial solution s, extended evaluation function F , penalty function

P , hash vectors H1, H2, H3 of length L, hash functions h1, h2, h3,
time limit tmax, and time (t) consumed in the first search stage.

Output: The best solution s∗ found
2 begin

/* Initialization of hash vectors (i.e., tabu lists) */

3 for i← 0 to L− 1 do

4 H1[i]← 0; H2[i]← 0; H3[i]← 0
5 end

6 s∗ ← s
/* Main search procedure */

7 while time() < tmax − t do

8 Find in N3(s) a best non-tabu solution s′ in terms of the extended
evaluation function F in Eq. (17) /* N3(s) is defined in Eq.

(18), and the tabu rule is given in Section 2.4.1. */

9 s← s′ /* Update the current solution */

10 if F (s) > F (s∗) ∧ P (s) = 0 then

11 s∗ ← s
12 end

/* Update the hash vectors (i.e., tabu lists) with s */

13 H1[h1(s)]← 1; H2[h2(s)]← 1; H3[h3(s)]← 1

14 end

15 return s∗

16 end

2.4.2 Neighborhood Structure

To search effectively the hyperplane Ω[k], TabuSearch2() uses a constrained
swap neighborhood N3(s). Formally, given a solution s = (x1, x2, . . . , xn), the
neighborhood N3(s) is given by:

N3(s) = {s⊕ Swap(i, j) : i ∈ I1, j ∈ I0; f(s⊕ Swap(i, j)) > f(s∗)} (18)

where f(·) is the objective function of the MDMKP in Eq. (4), s∗ is the best
feasible solution found so far in the current tabu search run, I1 and I0 denote
respectively the sets of indices having the value of 1 (selected items) and 0
(non selected items) in s. Clearly, the size of this neighborhood is bounded
by O(|I1| × |I0|). It is worth noting that we constraint the neighborhood
by f(s ⊕ Swap(i, j)) > f(s∗) to eliminate non-promising neighbor solutions.
Similar idea was previously investigated for the related MKP in [26].

12

ACCEPTED MANUSCRIPT

2.5 Space and Time Complexities of the Algorithm

At each stage of our TSTS algorithm, in addition to three hash vectors (i.e.,
H1, H2 and H3) with a length of L, we maintain three solutions (i.e., s, s

′

,
and s∗) to follow the search process, where each solution is stored by two
vectors (i.e., I1 and I0) with a maximum length of n and a vector W =
(w1, w2, . . . , wm+q) where wi =

∑n
j=1 aijxj (j ∈ V) holds. Thus, the space

complexity of our TSTS algorithm is bounded by O(n+m+ q + L).

In addition, for each neighbor solution in the search space, the time complex-
ity of evaluating its quality is bounded by O(m + q), since there are m + q
constraints needed to be checked. Hence, for each iteration, the time complex-
ities of the first and second tabu search stages are respectively bounded by
O((m+ q)× (n+ |I1| × |I0|)) and O((m+ q)× (|I1| × |I0|)) according to the
size of neighborhoods explored by the algorithm (see Sections 2.3.1 and 2.4.2).

3 Experimental Results and Comparisons

We evaluate the proposed TSTS algorithm by conducting extensive computa-
tional experiments based on four sets of benchmark instances commonly used
in the literature and by making a comparison between our results and the
state-of-the-art results in the literature.

3.1 Benchmark Instances

In this study, we employed four sets of benchmark instances to assess the
performance of our TSTS algorithm, where the first two sets of benchmark
instances are available at http://www.optsicom.es/binaryss, and the third
and fourth sets of benchmark instances are available in OR-Library 1 . The
first set contains 48 small instances with n = 100, and the second set contains
48 larger instances with n = 250. In addition, for the instances in the first
two sets, the number of knapsack constrains m varies from 5 to 10, and the
number of demand constraints q belongs to {2, 5, 10}. The third set includes
30 instances with n = 100, where both the number of knapsack constrains
m and the number of demand constraints q equal to 30. The fourth set is
composed of 30 large instances with n = 500, m = 30 and q = 30.

1 http://people.brunel.ac.uk/~mastjjb/jeb/info.html

13

ACCEPTED MANUSCRIPT

3.2 Parameter Settings and Experimental Protocol

Table 1
Settings of parameters

Parameters Section Description Values

α 2.3 tabu depth of TabuSearch1() 5× 103

γ1 2.3 parameter used in the hash function 1.9

γ2 2.3 parameter used in the hash function 2.1

γ3 2.3 parameter used in the hash function 2.3

Our TSTS algorithm employs four parameters, including γ1, γ2 and γ3 that
are used to define the hash functions, and the depth α of tabu search used
in the first search stage. The parameters γ1, γ2 and γ3 are set as in Table 1
according to the analysis shown in Section 4.3 while α is empirically set to
5× 103.

In addition, our algorithm was implemented in C++ and compiled by g++
compiler with -O3 option 2 . All computational experiments were carried out
on a computer with an Intel E5-2670 processor (2.5 GHz and 2G RAM),
running the Linux operating system. Moreover, when running the DIMACS
machine benchmark procedure dmclique 3 , our processor requires 0.19, 1.17,
and 4.54 seconds to solve the graphs r300.5, r400.5, and r500.5, respectively.
Finally, due to the stochastic nature of the algorithm, we independently ran
the algorithm 30 times to solve each instance, where the time limit tmax for
each run was set to 60 seconds for instances with n ≤ 250 according to [14].
For the large instances with n = 500, the time limit tmax was set to n seconds,
where n is the size of instances.

3.3 Computational Results and Comparison

In this section, we report the computational results of our TSTS algorithm
on the first two sets of benchmark instances. We provide in the Appendix
the computational results of TSTS on the third and fourth sets of benchmark
instances for which no detailed results are available for existing algorithms in
the literature.

The computational results of our TSTS algorithm on the first set of benchmark
instances with n = 100 are summarized in Table 2, together with the results
of the Almha algorithm implemented in [14]. Column 1 gives the names of
instances. Columns 2 and 3 indicate respectively the best known objective

2 The source code of our TSTS algorithm will be available at our website: http:
//www.info.univ-angers.fr/pub/hao/mdmkp.html
3 ftp://dimacs.rutgers.edu/pub/dsj/clique

14

ACCEPTED MANUSCRIPT

Table 2
Computational results and comparison on the 48 instances with n = 100. In terms
of fbest, the improved results are indicated in bold compared to the best known
objective values (BKV).

TSTS (this work)

Instance BKV Almha fbest favg fworst σf

100-5-2-0-0 28384 28384 28384 28374.63 28103 50.44

100-5-2-0-1 26386 26386 26386 26386.00 26386 0.00

100-5-2-0-2 23484 23424 23484 23450.83 23285 74.16

100-5-2-0-3 27374 27374 27374 27365.33 27290 20.45

100-5-2-0-4 30632 30632 30632 30632.00 30632 0.00

100-5-2-0-5 44674 44614 44674 44650.93 44518 51.70

100-5-2-1-0 10379 10307 10379 10359.13 10276 22.53

100-5-2-1-1 11114 11074 11114 11114.00 11114 0.00

100-5-2-1-2 10124 10022 10124 10108.53 10066 25.65

100-5-2-1-3 10567 10559 10567 10567.00 10567 0.00

100-5-2-1-4 10658 10658 10658 10566.00 10451 49.10

100-5-2-1-5 17550 17550 17550 17540.30 17494 14.72

100-5-5-0-0 21892 21892 21892 21831.20 21740 74.46

100-5-5-0-1 26280 26280 26280 26280.00 26280 0.00

100-5-5-0-2 20628 20628 20628 20628.00 20628 0.00

100-5-5-0-3 21547 21547 21547 21547.00 21547 0.00

100-5-5-0-4 25074 25067 25074 25074.00 25074 0.00

100-5-5-0-5 40327 40327 40327 40320.47 40272 16.80

100-5-5-1-0 10263 10263 10263 10248.87 10210 23.44

100-5-5-1-1 10625 10625 10625 10625.00 10625 0.00

100-5-5-1-2 10198 10126 10198 10149.27 10124 34.47

100-5-5-1-3 10030 9959 10030 10019.60 9874 38.91

100-5-5-1-4 9964 9838 9964 9926.20 9775 64.25

100-5-5-1-5 15603 15591 15603 15603.00 15603 0.00

100-10-5-0-0 21852 21843 21852 21852.00 21852 0.00

100-10-5-0-1 20645 20586 20645 20593.10 20514 45.39

100-10-5-0-2 19517 19517 19517 19507.37 19228 51.88

100-10-5-0-3 20596 20556 20596 20514.20 20454 69.20

100-10-5-0-4 19423 19278 19423 19248.37 19218 41.68

100-10-5-0-5 35933 35903 35933 35856.00 35743 92.42

100-10-5-1-0 10018 10000 10018 10018.00 10018 0.00

100-10-5-1-1 9839 9839 9839 9837.83 9804 6.28

100-10-5-1-2 10000 10000 10000 9989.60 9688 56.01

100-10-5-1-3 10544 10544 10544 10535.33 10479 22.10

100-10-5-1-4 10011 9878 10011 9961.57 9908 46.28

100-10-5-1-5 16230 16210 16230 16220.33 16095 33.69

100-10-10-0-0 22054 22054 22054 22054.00 22054 0.00

100-10-10-0-1 20103 20103 20103 20103.00 20103 0.00

100-10-10-0-2 19381 19312 19381 19371.80 19312 23.46

100-10-10-0-3 17434 17434 17434 17434.00 17434 0.00

100-10-10-0-4 18792 18792 18833 18794.73 18792 10.23

100-10-10-0-5 33837 33833 33837 33832.23 33702 24.20

100-10-10-1-0 8560 8560 8560 8513.17 8475 26.22

100-10-10-1-1 8493 8493 8493 8489.80 8397 17.23

100-10-10-1-2 9266 9227 9266 9266.00 9266 0.00

100-10-10-1-3 9823 9823 9823 9819.13 9707 20.82

100-10-10-1-4 8929 8929 8929 8914.00 8839 33.54

100-10-10-1-5 14152 14151 14152 14144.33 14106 17.14

Avg. 18108.10 18083.17 18108.96 18088.27 18023.38 24.98

#Better 1

#Equal 47

#Worse 0

p-value 3.2e-1 8.7e-1

15

ACCEPTED MANUSCRIPT

Table 3
Computational results and comparison on the 48 instances with n = 250. In terms of
fbest, the improved results are indicated in bold and the worse results are indicated
in italic compared to the best known objective value (BKV).

TSTS (this work)

Instance BKV Almha fbest favg fworst σf

250-5-2-0-0 78486 78413 78486 78289.00 77644 146.76

250-5-2-0-1 75132 75086 75132 74833.33 73702 269.45

250-5-2-0-2 71003 70895 70898 70674.93 69762 285.03

250-5-2-0-3 80311 80227 80311 80206.57 80065 51.12

250-5-2-0-4 70935 70918 70935 70834.30 70583 70.55

250-5-2-0-5 130981 130863 130191 129271.40 127061 780.97

250-5-2-1-0 26666 26529 26666 26573.83 26457 54.46

250-5-2-1-1 26864 26778 26864 26806.77 26690 46.08

250-5-2-1-2 27280 27158 27280 27235.83 27109 47.32

250-5-2-1-3 26269 26160 26250 26173.90 26098 37.88

250-5-2-1-4 27293 27149 27287 27204.13 27131 25.01

250-5-2-1-5 44419 44216 44395 44302.57 44163 58.29

250-5-5-0-0 68026 68000 68026 68017.03 67978 15.64

250-5-5-0-1 60795 60727 60766 60627.90 60258 141.78

250-5-5-0-2 62093 62093 62093 62072.57 61960 28.50

250-5-5-0-3 66567 66513 66567 66519.80 66384 42.28

250-5-5-0-4 61929 61929 61929 61925.90 61878 11.66

250-5-5-0-5 127934 127890 127922 127708.10 127211 181.12

250-5-5-1-0 26966 26898 26973 26918.43 26853 31.01

250-5-5-1-1 26665 26520 26665 26576.10 26462 54.58

250-5-5-1-2 26648 26468 26648 26556.97 26403 49.58

250-5-5-1-3 25923 25701 25885 25784.30 25695 38.65

250-5-5-1-4 26021 25931 26060 25992.03 25882 41.71

250-5-5-1-5 41372 41131 41338 41237.67 41104 49.44

250-10-5-0-0 56306 56142 56260 55900.43 55344 274.20

250-10-5-0-1 59564 59504 59619 59551.47 59330 64.43

250-10-5-0-2 54898 54817 54890 54657.33 54367 109.54

250-10-5-0-3 52399 51987 52249 52105.73 51588 155.34

250-10-5-0-4 58234 57970 58119 57750.73 57113 291.28

250-10-5-0-5 99682 99452 99512 99201.73 98604 213.06

250-10-5-1-0 26867 26845 26961 26866.77 26716 59.78

250-10-5-1-1 26585 26441 26658 26538.87 26390 62.11

250-10-5-1-2 25737 25543 25737 25598.13 25322 83.93

250-10-5-1-3 27162 26982 27159 27089.60 26952 60.98

250-10-5-1-4 26816 26774 26815 26729.87 26635 46.01

250-10-5-1-5 46244 46087 46244 46145.40 46112 18.18

250-10-10-0-0 52441 52343 52407 52326.03 52045 113.59

250-10-10-0-1 53720 53603 53745 53663.80 53493 48.05

250-10-10-0-2 46927 46703 46927 46770.97 46487 81.50

250-10-10-0-3 54782 54779 54831 54745.93 54441 84.37

250-10-10-0-4 49675 49562 49660 49575.43 49327 72.88

250-10-10-0-5 92959 92792 92975 92821.53 92473 98.62

250-10-10-1-0 26696 26651 26696 26667.67 26564 40.85

250-10-10-1-1 25757 25692 25876 25786.43 25721 28.17

250-10-10-1-2 26356 26438 26517 26470.70 26418 32.17

250-10-10-1-3 26684 26443 26684 26614.77 26518 50.58

250-10-10-1-4 26554 26428 26676 26617.33 26511 28.13

250-10-10-1-5 42528 42284 42629 42464.80 42376 64.06

Avg. 49836.48 49717.81 49821.10 49687.60 49403.75 98.76

#Better 12

#Equal 18

#Worse 18

p-value 2.7e-1 4.0e-2

16

ACCEPTED MANUSCRIPT

values (BKV) and the results of the Almha algorithm, which were reported
in [14] and available at http://www.optsicom.es/binaryss. The results of
our TSTS algorithm are reported in columns 4–7, including the best objective
value obtained over 30 runs (fbest), the average objective value (favg), the
worst objective value (fworst), and the standard deviation (σf) of objective
values. The row Avg. shows the average result over all instances tested for
each column. The rows #Better, #Equal, and #Worse respectively show
the number of instances for which our best result fbest is better than, equal to,
worse than the BKV. Moreover, in terms of fbest, our improved results (new
lower bounds) are indicated in bold and our worse results are indicated in italic
compared to the BKV . Finally, to verify whether there exists a significant
difference between our best results (fbest) and the BKV, we provide in the
last row the p-values (∈ [0, 1]) from the non-parametric Friedman test, where
a p-value less than 0.05 means a significant difference between the compared
results. This test was also performed to compare the results of the Almha
algorithm and our average results (favg)

4 .

Table 2 shows that our TSTS algorithm matches the best known results for
47 out of 48 instances, and improves the best known result for the remaining
one instance, leading to an improved Avg. value compared to the averaged
BKV (18108.96 vs. 18108.10). When comparing the average objective values
favg of our TSTS algorithm with the results of the Almba algorithm, one can
find that both algorithms have a very similar performance, which is confirmed
by a large p-value of 0.87. In addition, regarding the average results over all
instances (Avg.), the value of favg of our TSTS algorithm is 18088.27, which
is slightly better than that of Almba (i.e., 18083.17). These outcomes show
that our TSTS algorithm performs similarly on these small instances n = 100
compared to the state-of-the-art Almba algorithm.

The second experiment aims to evaluate our TSTS algorithm on the set of 48
larger instances with n = 250, and the computational results are summarized
in Table 3, where we report the same statistics as in Table 2. We observe
from Table 3 that our algorithm matches the best known results for 18 out
of 48 instances, improves the best known results for 12 instances, and misses
the best known results for the remaining 18 instances. In terms of Avg., the
value of fbest of TSTS is slightly worse than the value of BKV (i.e., 49821.10
vs. 49836.48), and slightly better than the result of Almha (i.e., 49821.10 vs.
49717.81), which is however slightly better than the value of favg of TSTS (i.e.,
49687.60 vs. 49717.81). This experiment indicates that under the short time
limit tmax = 60 seconds, TSTS performs globally well on these larger instance
with n = 250 especially by finding 12 improved best solutions. Additionally, we
observe from Table 3 that TSTS performs particularly well for instances with

4 Since the results of Almha are based on only one run, we mainly use our average
results for this comparison.

17

ACCEPTED MANUSCRIPT

a large number of constraints and achieves a better result than Almha for most
of the 12 instances with 10 demand constraints and 10 knapsack constraints.
Finally, we mention that the results of TSTS can be further improved by
increasing the time limit (see the detailed results in the Appendix), implying
that the current time limit (tmax = 60) is too short for the TSTS algorithm
on these instances.

4 Analysis and Discussions

To shed light on the functioning of the proposed algorithm, we now analyze
and discuss several essential components of the TSTS algorithm.

4.1 Effectiveness and Robustness Analysis for Two-Stage Strategy

To study the effectiveness of the underlying two-stage search strategy, we
summarize in Table 4 the computational results about the k values returned
by the TSTS algorithm, where the results are based on the experiments in
Section 3.3 and the value of k represents the number of selected items in
the solution found. It is worth noting that the purpose of the first search
stage is just to discover a promising hyperplane Ω[k] that contains high quality
solutions, and the second search stage aims to locate improved solutions in
the given hyperplane. Hence, the two-stage search strategy can be considered
to be relevant and robust if the first search stage is able to reach very stably
the identical or close hyperplane to the best known solution (i.e., Ω[kbest]).

The results of small instances with n = 100 are reported in the first 4 columns
of Table 4, including the name of instances, the k value of the best solution
obtained over 30 runs (kbest), the average k value of solutions obtained, and the
standard deviation of k values obtained (σk). The results of larger instances
with n = 250 are reported in columns 5–8, with the same statistics as in
columns 1–4. In addition, the row Avg. shows the average results of standard
deviations σk of k values over all tested instances of each test set.

Table 4 shows that the value of kavg is very close to that of kbest for most tested
instances, which means that the first search stage of the TSTS algorithm is
able to find a hyperplane that is very close to the best hyperplane containing
the current best known solution. On the other hand, we observe that the
standard deviations σk of k values obtained are very small for most instances.
In particular, the average standard deviations of k values are respectively 0.22
and 0.66 for the set of small instances with n = 100 and the set of larger
instances with n = 250. Hence, this experiment confirms to some extend the

18

ACCEPTED MANUSCRIPT

Table 4
Statistical results over 30 runs in terms of the number k of items in the obtained
solutions.

n=100 n=250

Instance kbest kavg σk Instance kbest kavg σk

100-5-2-0-0 30 29.97 0.30 250-5-2-0-0 79 78.47 0.85

100-5-2-0-1 31 31.00 0.34 250-5-2-0-1 78 76.00 0.89

100-5-2-0-2 31 30.83 0.34 250-5-2-0-2 78 77.03 1.08

100-5-2-0-3 32 31.83 0.42 250-5-2-0-3 79 79.07 0.44

100-5-2-0-4 31 31.00 0.00 250-5-2-0-4 79 78.33 0.54

100-5-2-0-5 56 55.83 0.40 250-5-2-0-5 137 134.87 1.50

100-5-2-1-0 28 27.00 0.30 250-5-2-1-0 71 70.03 0.66

100-5-2-1-1 29 29.00 0.00 250-5-2-1-1 69 69.23 0.67

100-5-2-1-2 27 27.27 0.34 250-5-2-1-2 72 72.07 0.63

100-5-2-1-3 29 29.00 0.00 250-5-2-1-3 69 68.57 0.72

100-5-2-1-4 29 28.17 0.44 250-5-2-1-4 70 70.67 0.83

100-5-2-1-5 54 53.00 0.31 250-5-2-1-5 129 127.70 1.07

100-5-5-0-0 28 28.40 0.46 250-5-5-0-0 76 75.50 0.50

100-5-5-0-1 30 30.00 0.00 250-5-5-0-1 74 71.87 1.02

100-5-5-0-2 30 30.00 0.00 250-5-5-0-2 74 74.37 0.55

100-5-5-0-3 30 30.00 0.00 250-5-5-0-3 76 75.40 0.66

100-5-5-0-4 29 29.00 0.00 250-5-5-0-4 76 76.00 0.26

100-5-5-0-5 54 54.00 0.18 250-5-5-0-5 136 134.60 0.80

100-5-5-1-0 27 26.73 0.48 250-5-5-1-0 68 66.90 0.65

100-5-5-1-1 28 28.00 0.00 250-5-5-1-1 66 65.40 0.55

100-5-5-1-2 27 27.37 0.47 250-5-5-1-2 65 65.53 0.62

100-5-5-1-3 28 27.93 0.34 250-5-5-1-3 65 65.80 0.65

100-5-5-1-4 27 27.07 0.18 250-5-5-1-4 66 66.90 0.60

100-5-5-1-5 52 52.00 0.00 250-5-5-1-5 126 126.23 0.80

100-10-5-0-0 28 28.00 0.00 250-10-5-0-0 69 67.20 1.05

100-10-5-0-1 28 27.40 0.50 250-10-5-0-1 71 71.07 0.44

100-10-5-0-2 27 26.97 0.00 250-10-5-0-2 70 69.23 0.56

100-10-5-0-3 28 27.43 0.42 250-10-5-0-3 68 67.33 0.94

100-10-5-0-4 28 27.07 0.25 250-10-5-0-4 69 67.53 0.96

100-10-5-0-5 53 52.60 0.47 250-10-5-0-5 130 128.93 0.81

100-10-5-1-0 26 26.00 0.18 250-10-5-1-0 65 65.13 0.62

100-10-5-1-1 26 26.03 0.00 250-10-5-1-1 67 66.73 0.63

100-10-5-1-2 26 26.03 0.25 250-10-5-1-2 65 63.97 0.71

100-10-5-1-3 26 26.13 0.30 250-10-5-1-3 65 65.03 0.60

100-10-5-1-4 27 26.47 0.50 250-10-5-1-4 66 65.43 0.50

100-10-5-1-5 51 50.93 0.18 250-10-5-1-5 128 127.20 0.40

100-10-10-0-0 28 28.00 0.00 250-10-10-0-0 68 66.83 0.58

100-10-10-0-1 27 27.00 0.00 250-10-10-0-1 68 68.47 0.56

100-10-10-0-2 27 27.00 0.00 250-10-10-0-2 67 66.70 0.64

100-10-10-0-3 27 27.00 0.26 250-10-10-0-3 68 67.30 0.59

100-10-10-0-4 28 27.30 0.45 250-10-10-0-4 67 66.13 0.56

100-10-10-0-5 53 52.97 0.00 250-10-10-0-5 130 129.53 0.56

100-10-10-1-0 24 24.77 0.42 250-10-10-1-0 64 63.70 0.46

100-10-10-1-1 25 25.03 0.00 250-10-10-1-1 63 63.03 0.18

100-10-10-1-2 26 26.00 0.00 250-10-10-1-2 64 63.63 0.48

100-10-10-1-3 25 25.03 0.37 250-10-10-1-3 63 63.40 0.49

100-10-10-1-4 25 25.17 0.30 250-10-10-1-4 65 64.00 0.37

100-10-10-1-5 50 49.83 0.30 250-10-10-1-5 123 123.70 0.46

Avg. 0.22 0.66

19

ACCEPTED MANUSCRIPT

effectiveness and robustness of the two-stage search strategy employed by the
TSTS algorithm.

4.2 Effects of Two Stages on the Performance of Algorithm

Table 5
Comparison between the two search stages on the instances with n = 250.

Instance f1 t1(s) f2 t2 (s) f2 − f1 ρ

250-5-2-0-0 78029.83 9.60 78289.00 31.53 259.17 0.33

250-5-2-0-1 74599.40 11.44 74833.33 25.52 233.93 0.31

250-5-2-0-2 70402.30 13.79 70674.93 34.09 272.63 0.39

250-5-2-0-3 79927.80 4.89 80206.57 32.33 278.77 0.35

250-5-2-0-4 70555.47 2.91 70834.30 24.41 278.83 0.40

250-5-2-0-5 128985.57 11.40 129271.40 28.83 285.83 0.22

250-5-2-1-0 26322.20 3.98 26573.83 37.52 251.63 0.96

250-5-2-1-1 26522.33 4.43 26806.77 30.21 284.43 1.07

250-5-2-1-2 26945.23 4.75 27235.83 31.91 290.60 1.08

250-5-2-1-3 25892.27 4.91 26173.90 38.03 281.63 1.09

250-5-2-1-4 26997.30 5.39 27204.13 39.99 206.83 0.77

250-5-2-1-5 44068.70 5.99 44302.57 28.11 233.87 0.53

250-5-5-0-0 67902.80 7.89 68017.03 10.63 114.23 0.17

250-5-5-0-1 60341.40 7.58 60627.90 37.09 286.50 0.47

250-5-5-0-2 61948.87 5.17 62072.57 16.03 123.70 0.20

250-5-5-0-3 66363.73 7.16 66519.80 16.84 156.07 0.24

250-5-5-0-4 61803.67 3.57 61925.90 4.69 122.23 0.20

250-5-5-0-5 127473.87 10.57 127708.10 26.23 234.23 0.18

250-5-5-1-0 26574.67 2.38 26918.43 35.36 343.77 1.29

250-5-5-1-1 26197.30 2.56 26576.10 26.45 378.80 1.45

250-5-5-1-2 26129.73 3.26 26556.97 34.95 427.23 1.64

250-5-5-1-3 25386.40 2.84 25784.30 34.02 397.90 1.57

250-5-5-1-4 25586.80 2.34 25992.03 31.64 405.23 1.58

250-5-5-1-5 40721.77 4.86 41237.67 37.49 515.90 1.27

250-10-5-0-0 55376.00 10.35 55900.43 31.43 524.43 0.95

250-10-5-0-1 59234.87 7.83 59551.47 37.65 316.60 0.53

250-10-5-0-2 54262.60 8.68 54657.33 35.68 394.73 0.73

250-10-5-0-3 51626.67 9.97 52105.73 34.57 479.07 0.93

250-10-5-0-4 57155.03 8.66 57750.73 36.08 595.70 1.04

250-10-5-0-5 98688.90 13.45 99201.73 34.25 512.83 0.52

250-10-5-1-0 26410.57 5.71 26866.77 34.05 456.20 1.73

250-10-5-1-1 26189.03 4.29 26538.87 33.99 349.83 1.34

250-10-5-1-2 25149.17 5.15 25598.13 35.00 448.97 1.79

250-10-5-1-3 26671.27 3.54 27089.60 38.49 418.33 1.57

250-10-5-1-4 26317.50 5.12 26729.87 34.43 412.37 1.57

250-10-5-1-5 45787.90 6.45 46145.40 31.66 357.50 0.78

250-10-10-0-0 51902.63 8.52 52326.03 36.24 423.40 0.82

250-10-10-0-1 53349.40 4.96 53663.80 33.53 314.40 0.59

250-10-10-0-2 46352.07 7.58 46770.97 38.03 418.90 0.90

250-10-10-0-3 54397.33 9.80 54745.93 25.69 348.60 0.64

250-10-10-0-4 49214.60 5.47 49575.43 44.01 360.83 0.73

250-10-10-0-5 92424.20 9.18 92821.53 35.22 397.33 0.43

250-10-10-1-0 26297.53 4.05 26667.67 28.92 370.13 1.41

250-10-10-1-1 25386.40 4.20 25786.43 35.09 400.03 1.58

250-10-10-1-2 25963.63 5.58 26470.70 21.09 507.07 1.95

250-10-10-1-3 25996.40 5.25 26614.77 27.03 618.37 2.38

250-10-10-1-4 26132.07 2.62 26617.33 39.61 485.27 1.86

250-10-10-1-5 41890.40 9.74 42464.80 32.11 574.40 1.37

Avg. 49330.32 6.45 49687.60 31.41 357.28 0.96

To investigate the respective role of the two stages of our algorithm, we carried

20

ACCEPTED MANUSCRIPT

out an experiment based on the instances with n = 250. We ran our TSTS
algorithm 30 times to solve each instance according to the experimental pro-
tocol of Section 3.2. The average results from the first stage and the second
stage over 30 independent runs are summarized in Table 5. The first column
gives the name of instances, columns 2 and 3 show the objective value (f1)
obtained by the first stage and computation time (t1) in seconds needed to
reach f1. Columns 4 and 5 show the objective value (f2) obtained by the sec-
ond stage and the computation time (t2) needed to reach f2 from f1. The last
two columns indicate the gap between f2 and f1 and the improvement ratio
(ρ) of f2 over f1, which is calculated as ρ = 100× (f2 − f1)/f1.

We observe from Table 5 that the first search stage of the TSTS algorithm
is able to obtain a high-quality feasible solution for each instance and the
solutions obtained in the first stage can be further improved during the second
search stage. Furthermore, the improvements of f2 over f1 are significant with
an average improvement ratio ρ close to 1%. On the other hand, regarding
the computation times needed by the two search stages, we observe that most
computational efforts are required by the second search stage and that t2 is
about five times larger than t1. Of course, this proportion depends also on the
setting of the parameters α and tmax. These outcomes indicate that both search
stages of the TSTS algorithm are indispensable for the high performance of
the algorithm. The first search stage is able to generate high-quality feasible
solutions while the second search stage is able to further improve the solutions
by performing an intensified search in the reached hyperplane.

4.3 Sensitivity Analysis of Hash functions

Now, we investigate the impacts of hash functions on the performance of the
algorithm and discuss the sensitivity of the associated parameters. For this
purpose, we carried out an additional experiment based on 30 representative
instances in terms of the numbers of knapsack and demand constraints. We
ran our TSTS algorithm 30 times for each instance and each parameter com-
bination of (γ1, γ2, γ3), where γi (i = 1, 2, 3) are the parameters used to define
the hash functions hi (see Section 2.3.2 for details). Specifically, we tested 10
different settings, i.e., (γ1, γ2, γ3) ∈ {(1.1, 1.5, 1.8), (1.3, 1.5, 1.8), (1.3, 1.5, 2.0),
(1.5, 2.0, 2.5), (1.6, 1.8, 2.0), (1.6, 1.8, 2.5), (1.8, 2.0, 2.2), (1.8, 2.0, 2.5), (1.9, 2.1, 2.3),
(2.0, 2.2, 2.5)}.

The experimental results are summarized in Table 6, where the first column
gives the name of instances, the second row shows the settings of parameters,
and the average objective values (favg) obtained over 30 runs are reported in
columns 2–11 for each parameter combination and each instance, respectively.
In addition, the rows #Best and Avg. of the table indicate respectively the

21

ACCEPTED MANUSCRIPT

T
ab

le
6.

In
flu

en
ce

of
th

e
ha

sh
fu

nc
ti

on
s

on
th

e
p
er

fo
rm

an
ce

of
al

go
ri

th
m

.
E

ac
h

in
st

an
ce

w
as

in
de

p
en

de
nt

ly
so

lv
ed

30
ti

m
es

fo
r

ea
ch

pa
ra

m
et

er
co

m
bi

na
ti

on
,
an

d
th

e
av

er
ag

e
ob

je
ct

iv
e

va
lu

es
(f

a
v
g
)

ov
er

30
ru

ns
ar

e
re

p
or

te
d.

f
a
v
g

In
st

a
n
c
e
/
(γ

1
,
γ
2
,
γ
3
)

(1
.1
,
1
.5
,
1
.8
)

(1
.3
,
1
.5
,
1
.8
)

(1
.3
,
1
.5
,
2
.0
)

(1
.5
,
2
.0
,
2
.5
)

(1
.6
,
1
.8
,
2
.0
)

(1
.6
,
1
.8
,
2
.5
)

(1
.8
,
2
.0
,
2
.2
)

(1
.8
,
2
.0
,
2
.5
)

(1
.9
,
2
.1
,
2
.3
)

(2
.0
,
2
.2
,
2
.5
)

2
5
0
-5

-2
-0

-0
7
8
2
2
1
.2

3
7
8
2
5
7
.7

0
7
8
2
4
0
.2

0
7
8
3
0
6
.5

0
7
8
2
2
2
.9

7
7
8
2
5
9
.9

0
7
8
3
3
0
.
1
0

7
8
2
4
9
.1

3
7
8
2
7
1
.7

0
7
8
3
1
4
.2

3

2
5
0
-5

-2
-0

-1
7
4
7
1
1
.6

7
7
4
8
2
3
.2

0
7
4
8
1
0
.5

7
7
4
8
2
0
.7

7
7
4
7
4
9
.4

3
7
4
7
1
9
.0

0
7
4
7
9
6
.4

7
7
4
8
7
1
.3

0
7
4
8
8
1
.
4
0

7
4
7
6
3
.9

7

2
5
0
-5

-2
-0

-2
7
0
6
6
8
.7

3
7
0
6
1
2
.3

7
7
0
5
8
9
.1

3
7
0
7
1
7
.4

3
7
0
5
2
2
.2

0
7
0
7
3
3
.
5
0

7
0
6
8
3
.4

3
7
0
6
8
7
.3

3
7
0
6
1
5
.7

7
7
0
6
8
2
.9

0

2
5
0
-5

-2
-0

-3
8
0
1
5
2
.9

3
8
0
1
5
0
.6

7
8
0
1
7
9
.6

3
8
0
1
7
7
.4

7
8
0
1
9
2
.5

0
8
0
2
0
5
.
6
7

8
0
2
0
0
.0

3
8
0
1
9
6
.3

3
8
0
1
8
2
.6

7
8
0
1
8
4
.6

0

2
5
0
-5

-2
-0

-4
7
0
8
0
5
.2

0
7
0
8
0
2
.1

3
7
0
8
2
8
.4

7
7
0
8
0
8
.8

3
7
0
8
2
7
.3

0
7
0
8
2
5
.4

7
7
0
8
3
6
.8

0
7
0
8
3
8
.9

0
7
0
8
5
4
.
1
7

7
0
8
2
3
.1

7

2
5
0
-5

-2
-0

-5
1
2
9
1
5
2
.1

7
1
2
9
1
5
6
.7

3
1
2
9
1
0
1
.9

7
1
2
8
9
3
4
.4

0
1
2
9
1
4
1
.5

7
1
2
9
0
2
2
.1

3
1
2
8
9
1
0
.6

0
1
2
9
0
2
8
.7

0
1
2
9
2
0
5
.9

0
1
2
9
2
4
5
.
5
7

2
5
0
-5

-2
-1

-0
2
6
5
4
4
.9

0
2
6
5
3
1
.3

7
2
6
5
4
7
.1

3
2
6
5
7
7
.3

3
2
6
5
6
1
.6

0
2
6
5
6
6
.5

7
2
6
5
9
2
.
3
0

2
6
5
7
9
.2

0
2
6
5
7
6
.8

7
2
6
5
5
7
.9

7

2
5
0
-5

-2
-1

-1
2
6
7
4
4
.3

3
2
6
7
5
0
.0

3
2
6
7
6
4
.2

3
2
6
8
0
2
.1

0
2
6
7
8
9
.8

0
2
6
8
0
3
.2

0
2
6
7
9
4
.6

0
2
6
8
1
7
.
8
3

2
6
8
1
2
.8

7
2
6
8
1
7
.2

0

2
5
0
-5

-2
-1

-3
2
6
1
2
5
.6

3
2
6
1
2
2
.3

3
2
6
1
4
3
.1

0
2
6
1
6
1
.4

3
2
6
1
5
4
.0

3
2
6
1
7
0
.1

0
2
6
1
8
5
.
4
7

2
6
1
8
3
.4

0
2
6
1
8
5
.4

0
2
6
1
6
5
.0

3

2
5
0
-5

-2
-1

-4
2
7
1
6
4
.0

3
2
7
1
6
6
.2

7
2
7
1
8
5
.9

0
2
7
2
0
2
.9

3
2
7
2
0
6
.2

7
2
7
2
0
4
.7

3
2
7
2
1
2
.
9
7

2
7
2
0
5
.2

3
2
7
2
0
8
.0

3
2
7
1
9
5
.5

3

2
5
0
-5

-2
-1

-5
4
4
2
5
2
.0

7
4
4
2
6
7
.7

3
4
4
2
8
4
.8

3
4
4
2
9
1
.5

3
4
4
2
7
7
.1

3
4
4
2
8
3
.0

7
4
4
3
0
0
.1

7
4
4
2
8
0
.5

3
4
4
3
0
6
.
1
7

4
4
2
8
5
.6

7

2
5
0
-5

-5
-0

-4
6
1
9
1
1
.1

7
6
1
9
1
0
.4

0
6
1
9
1
4
.8

0
6
1
9
2
3
.1

0
6
1
9
1
8
.3

7
6
1
9
1
4
.8

7
6
1
9
2
6
.
2
0

6
1
9
2
3
.5

3
6
1
9
2
0
.0

0
6
1
9
1
7
.2

0

2
5
0
-5

-5
-0

-5
1
2
7
5
4
5
.6

0
1
2
7
6
2
2
.3

3
1
2
7
6
7
3
.7

0
1
2
7
7
4
0
.
2
3

1
2
7
6
4
3
.8

3
1
2
7
6
0
2
.0

0
1
2
7
7
1
8
.6

7
1
2
7
5
2
6
.4

3
1
2
7
6
1
8
.5

7
1
2
7
6
4
9
.4

0

2
5
0
-5

-5
-1

-0
2
6
8
7
0
.8

7
2
6
8
7
1
.2

3
2
6
8
7
8
.2

0
2
6
9
0
8
.6

3
2
6
8
9
8
.8

3
2
6
9
0
0
.0

3
2
6
9
1
0
.
9
3

2
6
9
0
2
.0

7
2
6
9
0
8
.8

7
2
6
9
0
7
.3

3

2
5
0
-5

-5
-1

-1
2
6
5
2
7
.9

0
2
6
5
6
0
.8

3
2
6
5
7
0
.0

3
2
6
5
8
6
.5

7
2
6
5
7
5
.4

7
2
6
5
6
4
.9

3
2
6
5
9
8
.
2
7

2
6
5
7
6
.5

3
2
6
5
9
3
.8

7
2
6
5
8
6
.7

7

2
5
0
-1

0
-5

-0
-0

5
5
8
5
5
.8

0
5
5
9
0
7
.3

3
5
5
8
8
2
.5

0
5
5
9
3
0
.
3
3

5
5
9
0
7
.2

7
5
5
8
9
8
.9

0
5
5
8
8
8
.2

3
5
5
9
1
3
.9

0
5
5
8
4
3
.8

3
5
5
9
0
4
.9

0

2
5
0
-1

0
-5

-0
-1

5
9
4
8
4
.6

3
5
9
4
8
8
.4

0
5
9
4
9
6
.3

3
5
9
5
1
3
.6

7
5
9
5
3
3
.0

7
5
9
5
2
7
.0

7
5
9
5
3
4
.9

7
5
9
5
3
4
.1

7
5
9
5
5
8
.
0
7

5
9
5
0
0
.8

3

2
5
0
-1

0
-5

-0
-2

5
4
5
5
8
.8

7
5
4
5
4
2
.5

7
5
4
5
5
3
.7

7
5
4
6
3
9
.6

3
5
4
6
0
3
.2

3
5
4
6
4
2
.9

7
5
4
6
7
0
.
9
7

5
4
5
4
5
.7

0
5
4
5
8
6
.1

7
5
4
6
0
2
.5

3

2
5
0
-1

0
-5

-0
-3

5
2
0
7
0
.4

3
5
2
0
0
9
.4

7
5
2
0
8
2
.1

7
5
2
1
1
2
.6

3
5
2
0
6
5
.6

7
5
2
0
4
3
.6

7
5
2
1
1
3
.
0
3

5
2
0
8
9
.0

0
5
2
0
8
2
.6

3
5
2
1
1
1
.4

7

2
5
0
-1

0
-5

-1
-2

2
5
5
3
0
.0

0
2
5
5
1
5
.1

7
2
5
5
6
2
.5

0
2
5
5
8
9
.8

7
2
5
5
6
7
.8

3
2
5
5
9
1
.3

0
2
5
6
1
4
.
0
3

2
5
5
8
6
.7

7
2
5
5
9
4
.5

7
2
5
5
7
9
.1

7

2
5
0
-1

0
-5

-1
-3

2
7
0
2
4
.4

0
2
6
9
9
9
.2

3
2
7
0
5
7
.5

7
2
7
0
8
2
.
4
0

2
7
0
6
8
.9

0
2
7
0
4
2
.2

7
2
7
0
7
8
.2

0
2
7
0
8
1
.8

3
2
7
0
8
0
.1

0
2
7
0
6
6
.0

0

2
5
0
-1

0
-5

-1
-4

2
6
6
7
5
.0

0
2
6
6
9
4
.2

3
2
6
7
1
8
.7

3
2
6
7
4
0
.4

0
2
6
7
1
7
.3

7
2
6
7
2
2
.4

3
2
6
7
2
5
.9

3
2
6
7
4
1
.3

3
2
6
7
1
5
.9

0
2
6
7
5
8
.
1
0

2
5
0
-1

0
-5

-1
-5

4
6
0
9
0
.0

7
4
6
0
9
4
.9

3
4
6
1
2
2
.9

3
4
6
1
4
5
.2

3
4
6
1
2
3
.7

7
4
6
1
3
7
.6

3
4
6
1
2
9
.5

7
4
6
1
3
2
.3

0
4
6
1
5
4
.
6
3

4
6
1
3
8
.3

0

2
5
0
-1

0
-1

0
-0

-4
4
9
4
8
8
.5

0
4
9
5
3
8
.8

7
4
9
5
2
4
.6

0
4
9
5
6
5
.6

7
4
9
5
2
5
.0

7
4
9
5
6
4
.5

3
4
9
5
4
8
.5

0
4
9
5
5
1
.3

0
4
9
5
7
7
.
3
3

4
9
5
5
5
.6

0

2
5
0
-1

0
-1

0
-0

-5
9
2
7
5
7
.0

3
9
2
7
8
9
.7

3
9
2
7
9
5
.1

3
9
2
7
9
8
.9

7
9
2
8
1
3
.9

0
9
2
8
0
0
.3

7
9
2
8
3
1
.4

3
9
2
7
5
7
.3

3
9
2
8
3
3
.
1
7

9
2
8
1
2
.4

0

2
5
0
-1

0
-1

0
-1

-0
2
6
6
1
0
.3

3
2
6
6
2
4
.8

3
2
6
6
4
5
.8

0
2
6
6
5
6
.1

3
2
6
6
5
6
.1

7
2
6
6
4
5
.9

7
2
6
6
5
4
.0

3
2
6
6
6
6
.3

0
2
6
6
6
8
.
7
3

2
6
6
4
2
.8

7

2
5
0
-1

0
-1

0
-1

-1
2
5
7
2
7
.5

0
2
5
7
3
6
.7

3
2
5
7
5
8
.3

3
2
5
7
7
2
.7

3
2
5
7
5
4
.3

3
2
5
7
7
3
.7

7
2
5
7
7
2
.2

3
2
5
7
6
5
.0

7
2
5
7
8
1
.
7
0

2
5
7
7
6
.6

0

2
5
0
-1

0
-1

0
-1

-2
2
6
4
3
9
.2

0
2
6
4
2
7
.0

7
2
6
4
6
1
.9

0
2
6
4
6
9
.0

3
2
6
4
6
3
.2

0
2
6
4
6
9
.1

7
2
6
4
6
3
.1

0
2
6
4
7
0
.7

7
2
6
4
6
4
.5

7
2
6
4
7
3
.
9
3

2
5
0
-1

0
-1

0
-1

-4
2
6
5
4
6
.3

7
2
6
5
6
3
.3

7
2
6
5
7
2
.8

7
2
6
5
9
2
.5

3
2
6
5
9
0
.9

3
2
6
6
0
2
.
6
3

2
6
5
9
8
.9

0
2
6
5
8
9
.4

7
2
6
6
0
0
.0

3
2
6
6
0
0
.3

3

2
5
0
-1

0
-1

0
-1

-5
4
2
3
8
4
.3

0
4
2
3
7
7
.8

7
4
2
4
1
8
.4

7
4
2
4
5
0
.7

3
4
2
4
3
1
.6

7
4
2
4
6
2
.7

3
4
2
4
3
8
.9

0
4
2
4
7
2
.
5
0

4
2
4
5
5
.5

3
4
2
4
4
1
.1

7

A
v
g
.

5
1
1
5
4
.7

0
5
1
1
6
3
.8

4
5
1
1
7
8
.8

5
5
1
2
0
0
.6

4
5
1
1
8
3
.4

6
5
1
1
9
0
.0

2
5
1
2
0
1
.9

7
5
1
1
9
2
.1

4
5
1
2
0
4
.
6
4

5
1
2
0
2
.0

2

#
B

e
st

0
0

0
3

0
3

1
0

2
9

3

22

ACCEPTED MANUSCRIPT

number of instances for which the associated setting of parameters yielded the
best results and the average results over all instances tested.

We observe from Table 6 that the algorithm is sensitive to the setting of the pa-
rameters γ1,γ2, and γ3. For the parameter combinations containing two small
parameter values, the TSTS algorithm performed badly. For example, the algo-
rithm with the combination (1.1, 1.5, 1.8) yielded the worst results in terms of
Avg. However, when all parameters in (γ1, γ2, γ3) take a relatively large value,
the algorithm obtained a much better performance. Taking (1.9, 2.1, 2.3) as an
example, the algorithm achieved the best results on 9 instances. In summary,
the parameters γ1,γ2, and γ3 have an important impact on the performance
of the algorithm, and parameter combinations containing at least two large
parameter values lead usually to a good performance of the algorithm.

4.4 Effectiveness of Solution-based Tabu Strategy

The solution-based tabu strategy is an essential ingredient of our TSTS algo-
rithm. To show its effectiveness with respect to the popular attribute-based
tabu strategy, we created a variant A-TSTS of the TSTS algorithm by replac-
ing the solution-based tabu strategy with the popular attribute-based tabu
strategy, while keeping the other TSTS components unchanged. In A-TSTS,
the adopted tabu strategy can be simply described as follows. Given an incum-
bent solution s = (x1, x2, . . . , xn), once a 0–1 variable xi (1 ≤ i ≤ n) is flipped
as xi ← 1 − xi, xi is forbidden to be flipped again for the next tt iterations
(tt is the tabu tenure) and the associated neighbor solutions are excluded for
consideration during the period identified by the tabu tenure. We empirically
set tt = C + rand[0, 2] where C is a parameter that takes the value of 20 and
rand[0, 2] is a random integer in [0, 2]. Finally, the tabu status of a variable is
disabled if flipping the variable leads to a solution better than all previously
visited solutions (this is the so-called aspiration criterion).

To compare TSTS and A-TSTS, we carried out an experiment based on the
set of 48 large instances with n = 250, where both algorithms were run 30
times according to the experimental protocol given in Section 3.2. The compu-
tational results are summarized in Table 7 where we show for each algorithm
the best results (fbest) obtained over 30 runs, the average results (favg), and
the worst results obtained (fworst). In addition, the row ’Avg.’ shows the av-
erage results for each performance indicator. Finally, to check whether there
exists a significant difference between the two algorithms in terms of fbest, favg
and fworst, we provide the p-values from the non-parametric Friedman test in
the last row, where a p-value smaller than 0.05 implies a significant difference
between the compared results.

23

ACCEPTED MANUSCRIPT

Table 7
Comparison between the solution-based and attribute-based tabu strategies on the
instances with n = 250. The better results between the two algorithms are indicated
in bold in terms of fbest, favg and fworst.

fbest favg fworst

Instance A-TSTS TSTS A-TSTS TSTS A-TSTS TSTS

250-5-2-0-0 72278 78486 69459.47 78289.00 66794 77644

250-5-2-0-1 68945 75132 65578.57 74833.33 62546 73702

250-5-2-0-2 65744 70898 62624.13 70674.93 60403 69762

250-5-2-0-3 75654 80311 71754.33 80206.57 69139 80065

250-5-2-0-4 66935 70935 63119.17 70834.30 60155 70583

250-5-2-0-5 125571 130191 122346.53 129271.40 118507 127061

250-5-2-1-0 25126 26666 23250.10 26573.83 20310 26457

250-5-2-1-1 25352 26864 23872.30 26806.77 22806 26690

250-5-2-1-2 25204 27280 23651.70 27235.83 21274 27109

250-5-2-1-3 24796 26250 23342.57 26173.90 21765 26098

250-5-2-1-4 25474 27287 24349.20 27204.13 22944 27131

250-5-2-1-5 42388 44395 40612.43 44302.57 37348 44163

250-5-5-0-0 64755 68026 62158.80 68017.03 58973 67978

250-5-5-0-1 58390 60766 56174.20 60627.90 53842 60258

250-5-5-0-2 59571 62093 57389.37 62072.57 53856 61960

250-5-5-0-3 64279 66567 61548.97 66519.80 59335 66384

250-5-5-0-4 59003 61929 56954.03 61925.90 54735 61878

250-5-5-0-5 123840 127922 121678.73 127708.10 116272 127211

250-5-5-1-0 25188 26973 23643.70 26918.43 21024 26853

250-5-5-1-1 24472 26665 23106.03 26576.10 21433 26462

250-5-5-1-2 24316 26648 23054.23 26556.97 20703 26403

250-5-5-1-3 24165 25885 22694.20 25784.30 20186 25695

250-5-5-1-4 23813 26060 22712.63 25992.03 21016 25882

250-5-5-1-5 38977 41338 37637.83 41237.67 34688 41104

250-10-5-0-0 53124 56260 50822.33 55900.43 47977 55344

250-10-5-0-1 56060 59619 53640.83 59551.47 50706 59330

250-10-5-0-2 51944 54890 49772.90 54657.33 47349 54367

250-10-5-0-3 49409 52249 47341.53 52105.73 44605 51588

250-10-5-0-4 54681 58119 52606.43 57750.73 49637 57113

250-10-5-0-5 96521 99512 94044.77 99201.73 89840 98604

250-10-5-1-0 25431 26961 23844.97 26866.77 21589 26716

250-10-5-1-1 25399 26658 23638.70 26538.87 21920 26390

250-10-5-1-2 23836 25737 21624.83 25598.13 15478 25322

250-10-5-1-3 24940 27159 23633.13 27089.60 21621 26952

250-10-5-1-4 24819 26815 23390.37 26729.87 20190 26635

250-10-5-1-5 43814 46244 42276.70 46145.40 40483 46112

250-10-10-0-0 49931 52407 48520.97 52326.03 45896 52045

250-10-10-0-1 52102 53745 50398.53 53663.80 47944 53493

250-10-10-0-2 44797 46927 43186.07 46770.97 40408 46487

250-10-10-0-3 52271 54831 50908.37 54745.93 48603 54441

250-10-10-0-4 47965 49660 46648.33 49575.43 44642 49327

250-10-10-0-5 90501 92975 88609.13 92821.53 83712 92473

250-10-10-1-0 24671 26696 22845.10 26667.67 20131 26564

250-10-10-1-1 24350 25876 22838.50 25786.43 19149 25721

250-10-10-1-2 24341 26517 22613.70 26470.70 20116 26418

250-10-10-1-3 24577 26684 23209.00 26614.77 21611 26518

250-10-10-1-4 24679 26676 23352.07 26617.33 21524 26511

250-10-10-1-5 39576 42629 37427.70 42464.80 34366 42376

Avg. 47166.15 49821.10 45206.42 49687.60 42490.65 49403.75

p-value 4.26e-12 4.26e-12 4.26e-12

24

ACCEPTED MANUSCRIPT

We observe from Table 7 that the solution-based algorithm TSTS dominates
the attribute-based algorithm A-TSTS in terms of all indicators, by reporting
better results in terms of fbest, favg and fworst on all the instances. Further-
more, the small p-values indicate that the performance differences between
the compared results are statistically significant. Therefore, this experiment
confirms that under the two-stage framework of this work, the solution-based
tabu strategy is much more suitable than the attribute-based tabu strategy
for solving the MDMKP.

4.5 Discussion about the Solution-based and Attribute-based Tabu Search Ap-
proaches

Attribute-based tabu search is a popular approach, whose key idea is to pre-
vent one attribute or a combination of several attributes of a solution from
being changed during a number of iterations since their last changes. For such a
method, a tabu attribute or a combination of several attributes is usually asso-
ciated with a number of tabu solutions. However, unlike attribute-based tabu
search, solution-based tabu search tries to record all the visited solutions and
prevent them from being revisited during the following search process. Thus,
solution-based tabu search ensures a stronger intensification search ability.

Recent studies on several binary optimization cases including two dispersion
problems (minimum difference dispersion [29] and maximum min-sum dis-
persion [19]) and the classic multidimensional knapsack problem [20] demon-
strate that solution-based tabu search is more suitable than attribute-based
tabu search. On the other hand, our experience on another dispersion problem
(max-mean dispersion [18]) does not confirm the advantage of the solution-
based tabu search approach over the attribute-based tabu search approach.
So one interesting question concerning the solution-based and attribute-based
tabu search approaches is under what circumstances one approach will be more
suitable than the other. Given that solution-based tabu search has been inves-
tigated only very recently, little knowledge is currently available, which makes
it difficult to provide a meaningful guidance on the choice between these two
approaches. To fully characterize these approaches and understand the rela-
tionships between these approaches and the optimization problem under con-
sideration, more studies are clearly needed, which constitutes an interesting
research perspective.

Finally, the ideas of the present solution-based tabu search algorithm being
quite general, they could conveniently be tested on other binary optimization
problems, by adjusting the γ parameters of the hash functions (Eq. (15), Sec-
tion 2.3.2) or by increasing the number of the hash vectors and the associated
hash functions.

25

ACCEPTED MANUSCRIPT

5 Conclusions

In this work, we investigated the NP-hard multidemand multidimensional
knapsack problem, by proposing a two-stage tabu search (TSTS) algorithm
that combines two solution-based tabu search procedures and a penalty-based
evaluation function to explore different search spaces. Computational results
on 156 benchmark instances showed that the proposed algorithm is competi-
tive compared to the state-of-art results in the literature, especially for those
instances with a large number of knapsack and demand constraints.

The experimental analysis showed the usefulness of the two-stage search strat-
egy and the respective impacts of two stages on the performance of the algo-
rithm. The first search stage is able to reach a promising hyperplane containing
high-quality solutions, and the second search stage is able to find elite solutions
by an intensified examination of the given hyperplane. We also showed that
the hash functions used by the tabu search algorithms are a key component
that significantly influences the performance of the algorithm.

This work enriches the existing tools for effectively solving the MDMKP and
invites more research and attention on solution-based tabu search for solving
binary optimization problems in the future. Specifically, given that the ideas
of the two-stage strategy and the solution-based tabu search procedures devel-
oped in this work are quite general, it would be interesting to investigate their
effectiveness on other problems, especially those related to subset selection
problems for which the search space can be divided into a series of hyper-
planes. It is also interesting to study search strategies mixing solution-based
and attribute-based approaches. As a more fundamental research perspec-
tive, studies on a characterization of both solution-based and attribute-based
search approaches are needed, which could ease the choice of one or the other
approach to solve additional binary optimization problems.

Acknowledgments

We are grateful to the reviewers for their valuable comments which helped
us to improve the paper. This work is partially supported by the National
Natural Science Foundation of China (Grant No. 61703213), the Natural Sci-
ence Foundation of Jiangsu Province of China (Grant No. BK20170904), and
NUPTSF (Grant No. NY217154).

26

ACCEPTED MANUSCRIPT

References

[1] Arntzen H., Hvattum L.M., Lokketangen A., 2006, Adaptive memory search
for multidemand multidimensional knapsack problems. Computers and Operations

Research, 33, 2508–2525.

[2] Balachandar S.R., 2010, On efficient techniques for NP-hard problems. PhD

Thesis, Chapter 5, Sastra University, http://hdl.handle.net/10603/17553

[3] Beaujon G.J., Marin S.P., McDonald G.C., 2001. Balancing and optimizing a
portfolio of R&D projects. Naval Research Logistics, 48(1), 18–40.

[4] Cappanera P., Gallo G., Maffioli F., 2004, Discrete facility location and routing
of obnoxious activities. Discrete Applied Mathematics, 133, 3–28.

[5] Cappanera P., Trubian M., 2005, A local search based heuristic for the
demand constrained multidimensional knapsack problem. INFORMS Journal on

Computing, 17(1), 82–98.

[6] Carlton W.B., Barnes J.W., 1996, A note on hashing functions and tabu search
algorithms. European Journal of Operational Research, 95(1), 237–239.

[7] Carlton W.B., Barnes J.W., 1996, Solving the traveling salesman problem with
time windows using tabu search. IIE Transactions, 28, 617–629.

Carrasco, R., Anthanh P.T., Gallego M., Gortázar F., Duarte A., Martí R., 2015,
Tabu search for the max-mean dispersion problem. Knowledge Based System, 85,
256–264.

[8] Chen Y. and Hao J.K., 2017, An iterated “hyperplane exploration" approach for
the Quadratic Knapsack Problem. Computers & Operations Research, 77, 226–239.

[9] Chu P.C., Beasley J.E., 1998, A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics, 4, 63–86.

[10] Delissa L., 2014, The existence and usefulness of equality cuts in the
multidemand multidensional knapsack problem. Thesis, Kansas State University,
http://krex.k-state.edu/dspace/handle/2097/17399.

[11] Fréville A., 2004, The multidimensional 0–1 knapsack problem: An overview.
European Journal of Operational Research, 155, 1–21.

[12] Glover F., Laguna. M., 1997, Tabu search. Kluwer Academic Publishers, Boston.

[13] Glover F., Kochenberger. G.A., 1996, Critical event tabu search for
multidimensional knapsack problems. Osman I.H., Kelly J.P., eds. Metaheuristics:
Theory and Applications. Kluwer Academic Publishers, Boston, MA, 407–427.

[14] Gortázar F., Duarte A., Laguna M., Martí R., 2010, Black box scatter search
for general classes of binary optimization problems. Computers & Operations

Research, 37, 1977–1986.

27

ACCEPTED MANUSCRIPT

[15] Hanafi S., A. Fréville A., 1998, An efficient tabu search approach for the 0-1
multidimensional knapsack problem. European Journal of Operational Research,
106, 659–675.

[16] Hvattum L.M., Løkketangen A., 2007, Experiments using scatter search for the
multidemand multidimensional knapsack problem. In: Doerner K.F., Gendreau
M., Greistorfer P., Gutjahr W., Hartl R.F., Reimann M. (eds) Metaheuristics.
Operations Research/Computer Science Interfaces Series, vol. 39. Springer,
Boston, MA.

[17] Hvattum L.M., Arntzen H., Løkketangen A., Glover F., 2010, Alternating
control tree search for knapsack/covering problems. Journal of Heuristics, 16(3),
239–258.

[18] Lai X.J., Hao J.K., 2016, A tabu search based memetic search algorithm for the
max-mean dispersion problem, Computers & Operations Research, 72, 118–127.

[19] Lai X.J., Yue D., Hao J.K., Glover F., 2018, Solution-based tabu search for the
maximum min-sum dispersion problem. Information Sciences, 441, 79–94.

[20] Lai X.J., Hao J.K., Glover F., Lü Z.P., 2018, A two-phase hybrid evolutionary
algorithm for the 0–1 multidimensional knapsack problem. Information Sciences,
436, 282–301.

[21] Mansini R., Speranza M.G., 2012, CORAL: an exact algorithm for the
multidimensional knapsack problem. INFORMS Journal on Computing, 24(3),
399–415.

[22] Plastria F., 2001, Static competitive facility location: An overview of
optimisation approaches. European Journal of Operational Research, 129, 461–470.

[23] Puchinger J., Raidl G.R., Pferschy U., 2009, The multidimensional knapsack
problem: structure and algorithms. INFORMS Journal on Computing, 22(2), 250–
265.

[24] Romero-Moraleses D., Carrizosa E., Conde E., 1997, Semi-obnoxious location
models: A global optimization approach. European Journal of Operational

Research, 102, 295–301.

[25] Shih W., 1979, A branch & bound method for the multiconstraint zero-one
knapsack problem. Journal of the Operational Research Society, 30, 369–378.

[26] Vasquez M., Hao J.K., A hybrid approach for the 0–1 multidimensional knapsack
problem. Proc. of the 17th Intl. Joint Conference on Artificial Intelligence (IJCAI-
01), pages 328-333, Seattle, Washington, USA, August 2001. Morgan Kaufmann
Publishers.

[27] Vasquez M., Vimont Y., 2005, Improved results on the 0–1 multidimensional
knapsack problem. European Journal of Operational Research, 165, 70–81.

[28] Vimont Y., Boussier S., Vasquez M., 2008, Reduced costs propagation in an
efficient implicit enumeration for the 0–1 multidimensional knapsack problem.
Journal of Combinatorial Optimization, 15, 165–178.

28

ACCEPTED MANUSCRIPT

[29] Wang Y., Wu Q., Glover F., 2017, Effective metaheuristic algorithms for
the minimum differential dispersion problem. European Journal of Operational

Research, 258, 829–843.

[30] Wishon C., Villalobos J.R., 2016, Robust efficiency measures for linear knapsack
problem variants. European Journal of Operational Research, 254(2), 398–409.

[31] Woodruff D.L., Zemel E., 1993, Hashing vectors for tabu search, Annals of

Operations Research, 41(2), 123–137.

[32] Yeniay Ö., 2005, Penalty function methods for constrained optimization with
genetic algorithms. Mathematical and Computational Applications, 10(1), 45–56.

A Appendix

This Appendix presents the detailed computational results of the proposed
TSTS algorithm for the third and fourth sets of benchmark instances for
which no detailed results are available in the literature. These instances have
100 or 500 items, 30 knapsack constraints and 30 demand constraints, making
them more difficult to solve. For each of these instances, the TSTS algorithm
was run 30 times under the condition presented in Section 3.2 and the com-
putational results are summarized in Table A.1, where the symbols have the
same meanings as in the previous tables.In addition, we report in Table A.2
the computational results of our TSTS algorithm on instances with n = 250
under a long time limit of tmax = 300 (instead of tmax = 60 used in Section
3). The results reported in this Appendix can serve as references for future
comparative studies of new MDMKP algorithms.

We observe from Table A.1 that TSTS is able to reach the best result (fbest)
with a success rate of 100% for 15 out of 30 small instances with n = 100, which
means a good robustness of our TSTS algorithm on these instances. Note that
for some small instances with n = 100, m = 30, and q = 30, it is difficult
for some state-of-the-art algorithms in the literature [17] to obtain a feasible
solution. However, it is very easy for our TSTS algorithm to obtain a feasible
solution for all these instances. For other instances, the standard deviation
(σf) of objective values obtained by the TSTS algorithm is relatively small,
which indicates a good robustness of the algorithm. Regarding the value of
k which represents the number of items selected, it can be seen that the gap
between kbest and kavg and the standard deviation (σk) of k values obtained
are very small, implying that the two-stage strategy of the algorithm is very
robust and effective.

Table A.2 shows that our TSTS algorithm improves the best known results
for 16 out of 48 instances, matches the best known results for 24 instances,
and misses the best known results for only 8 instances. These results indicate

29

ACCEPTED MANUSCRIPT

that the performance of our TSTS algorithm can be further improved when a
longer computation time is available.

30

ACCEPTED MANUSCRIPT

Table A.1
Computational results of the TSTS algorithm on the instances with a large number of
constraints under the condition presented in Section 3.2. For each of these instances,
there are 30 knapsack constraints and 30 demand constraints.

Instance fbest favg fworst σf kbest kavg σk

100-30-30-0-2-1 11312 11300.00 11252 24.00 25 25.20 0.40
100-30-30-0-2-2 9945 9945.00 9945 0.00 25 25.00 0.00
100-30-30-0-2-3 11195 11130.33 10225 241.96 25 25.07 0.25
100-30-30-0-2-4 11324 11290.40 11198 55.72 25 25.00 0.00
100-30-30-0-2-5 9704 9704.00 9704 0.00 25 25.00 0.00
100-30-30-0-2-6 23296 23296.00 23296 0.00 50 50.00 0.00
100-30-30-0-2-7 22442 22224.40 22126 125.49 51 50.27 0.44
100-30-30-0-2-8 23452 23312.90 23182 45.57 51 50.13 0.34
100-30-30-0-2-9 22756 22756.00 22756 0.00 50 50.00 0.00
100-30-30-0-2-10 24371 24323.60 24287 28.16 50 50.00 0.00
100-30-30-0-2-11 33472 33472.00 33472 0.00 75 75.00 0.00
100-30-30-0-2-12 32670 32670.00 32670 0.00 75 75.00 0.00
100-30-30-0-2-13 32942 32942.00 32942 0.00 75 75.00 0.00
100-30-30-0-2-14 35106 35106.00 35106 0.00 75 75.00 0.00
100-30-30-0-2-15 30930 30788.73 30767 55.41 75 75.00 0.00
100-30-30-1-5-1 5340 5340.00 5340 0.00 26 26.00 0.00
100-30-30-1-5-2 4390 4390.00 4390 0.00 25 25.00 0.00
100-30-30-1-5-3 4227 4227.00 4227 0.00 25 25.00 0.00
100-30-30-1-5-4 4706 4433.40 4424 50.62 25 25.97 0.18
100-30-30-1-5-5 2597 2591.90 2546 15.30 25 25.00 0.00
100-30-30-1-5-6 10808 10647.60 10462 92.10 50 50.00 0.00
100-30-30-1-5-7 9807 9789.37 9766 5.37 51 50.03 0.18
100-30-30-1-5-8 10882 10865.47 10753 42.27 50 50.10 0.30
100-30-30-1-5-9 10595 10595.00 10595 0.00 50 50.00 0.00
100-30-30-1-5-10 10297 10285.87 9963 59.95 50 50.03 0.18
100-30-30-1-5-11 11029 11029.00 11029 0.00 75 75.00 0.00
100-30-30-1-5-12 11884 11823.27 11747 45.74 75 75.00 0.00
100-30-30-1-5-13 10751 10751.00 10751 0.00 75 75.00 0.00
100-30-30-1-5-14 11567 11567.00 11567 0.00 75 75.00 0.00
100-30-30-1-5-15 10671 10368.47 10351 59.75 75 75.00 0.00
500-30-30-0-2-1 85188 84991.27 84418 185.69 128 127.57 0.62
500-30-30-0-2-2 82073 81856.17 81504 141.84 129 128.07 0.44
500-30-30-0-2-3 77393 76995.10 76516 205.93 129 127.40 0.80
500-30-30-0-2-4 82304 82049.27 81628 158.83 128 127.37 0.75
500-30-30-0-2-5 83525 83300.07 82779 170.66 129 127.87 0.72
500-30-30-0-2-6 145967 145705.17 145474 88.16 253 252.73 0.68
500-30-30-0-2-7 152246 152019.70 151665 132.72 253 252.67 0.79
500-30-30-0-2-8 157687 157487.13 157087 129.19 254 253.30 0.82
500-30-30-0-2-9 153751 153548.53 153365 87.25 254 252.33 0.75
500-30-30-0-2-10 142173 141943.90 141721 110.37 253 252.67 0.75
500-30-30-0-2-11 185226 184986.67 184781 91.72 377 376.97 0.55
500-30-30-0-2-12 194614 194444.30 194275 72.88 376 376.87 0.67
500-30-30-0-2-13 208246 208129.67 207904 76.15 378 377.53 0.72
500-30-30-0-2-14 215849 215693.30 215381 90.85 378 377.67 0.65
500-30-30-0-2-15 194224 194037.03 193788 91.74 376 376.57 0.62
500-30-30-1-5-1 51666 51574.93 51359 65.87 126 126.50 0.56
500-30-30-1-5-2 50101 49871.50 49566 123.11 126 126.33 0.54
500-30-30-1-5-3 51226 50979.60 50842 88.53 126 126.13 0.62
500-30-30-1-5-4 51637 51483.20 51261 91.69 127 126.77 0.42
500-30-30-1-5-5 52078 51860.97 51655 103.52 128 127.00 0.63
500-30-30-1-5-6 84052 83834.80 83548 104.57 251 251.03 0.41
500-30-30-1-5-7 82850 82637.00 82342 116.19 250 250.87 0.56
500-30-30-1-5-8 82722 82576.90 82419 74.14 250 250.70 0.46
500-30-30-1-5-9 82825 82451.43 81944 146.82 250 250.23 0.62
500-30-30-1-5-10 82845 82559.93 82098 143.15 249 249.67 0.60
500-30-30-1-5-11 88887 88756.90 88556 75.33 374 374.23 0.42
500-30-30-1-5-12 87254 87136.80 86815 82.34 374 374.20 0.65
500-30-30-1-5-13 87315 87167.80 87028 61.20 375 374.80 0.54
500-30-30-1-5-14 87583 87486.57 87261 89.89 374 373.90 0.65
500-30-30-1-5-15 87956 87814.97 87616 72.05 374 374.10 0.40
Avg. 62265.52 62139.10 61957.25 70.33 150.88 150.78 0.34

31

ACCEPTED MANUSCRIPT

Table A.2
Computational results of the TSTS algorithm on the instances with n = 250 under
a time limit of tmax = 300 seconds. In terms of fbest, the improved results are
indicated in bold and the worse results are indicated in italic compared to the best
known objective value (BKV) reported in the literature.

Instance BKV fbest favg fworst σf kbest kavg σk

250-5-2-0-0 78486 78486 78282.30 77986 173.14 79 78.17 0.73
250-5-2-0-1 75132 75132 74849.07 74152 232.22 78 76.10 0.94
250-5-2-0-2 71003 70898 70676.77 70137 217.86 78 76.87 0.92
250-5-2-0-3 80311 80311 80250.07 80131 53.66 79 79.10 0.54
250-5-2-0-4 70935 70935 70856.43 70805 63.06 79 78.40 0.49
250-5-2-0-5 130981 130448 129283.31 127720 686.96 138 134.23 1.36
250-5-2-1-0 26666 26666 26603.30 26504 47.41 71 70.23 0.62
250-5-2-1-1 26864 26864 26841.70 26727 35.40 69 68.97 0.55
250-5-2-1-2 27280 27280 27232.97 27052 54.88 73 72.30 0.86
250-5-2-1-3 26269 26269 26217.17 26148 37.72 69 68.63 0.84
250-5-2-1-4 27293 27293 27233.30 27184 29.95 70 70.40 0.84
250-5-2-1-5 44419 44386 44318.67 44022 90.92 129 127.97 1.40
250-5-5-0-0 68026 68026 68023.43 68019 3.37 76 75.63 0.48
250-5-5-0-1 60795 60785 60675.60 60456 82.68 73 72.27 0.68
250-5-5-0-2 62093 62093 62072.10 61960 35.00 74 74.23 0.56
250-5-5-0-3 66567 66567 66522.10 66400 41.43 76 75.27 0.57
250-5-5-0-4 61929 61929 61920.00 61878 18.10 76 75.93 0.44
250-5-5-0-5 127934 127922 127769.60 127240 187.71 136 134.67 0.70
250-5-5-1-0 26966 26973 26925.60 26869 31.43 68 66.93 0.77
250-5-5-1-1 26665 26665 26616.73 26520 59.80 66 65.73 0.57
250-5-5-1-2 26648 26648 26586.10 26536 22.47 65 65.63 0.48
250-5-5-1-3 25923 25923 25813.13 25684 64.51 66 65.83 0.78
250-5-5-1-4 26021 26064 26008.77 25823 44.13 67 66.93 0.63
250-5-5-1-5 41372 41372 41270.67 41129 53.23 126 126.30 0.64
250-10-5-0-0 56306 56221 56008.07 55430 158.01 69 67.67 0.65
250-10-5-0-1 59564 59619 59575.30 59447 52.03 71 71.00 0.52
250-10-5-0-2 54898 54912 54700.40 54367 179.52 70 69.17 0.78
250-10-5-0-3 52399 52388 52209.00 51975 98.42 68 67.57 0.67
250-10-5-0-4 58234 58234 57833.13 57156 222.30 69 67.60 0.71
250-10-5-0-5 99682 99646 99359.67 99023 176.86 130 129.07 0.73
250-10-5-1-0 26867 26976 26918.33 26766 55.74 66 65.03 0.48
250-10-5-1-1 26585 26658 26562.03 26486 35.34 67 66.73 0.68
250-10-5-1-2 25737 25749 25661.60 25515 59.69 64 64.20 0.60
250-10-5-1-3 27162 27181 27138.93 26971 46.61 65 64.93 0.36
250-10-5-1-4 26816 26856 26776.10 26706 55.74 66 65.47 0.50
250-10-5-1-5 46244 46244 46170.97 46137 23.64 128 127.10 0.30
250-10-10-0-0 52441 52441 52363.33 52171 78.20 68 67.07 0.57
250-10-10-0-1 53720 53745 53689.97 53607 33.25 68 68.60 0.49
250-10-10-0-2 46927 46927 46830.67 46546 87.89 67 66.47 0.62
250-10-10-0-3 54782 54856 54780.47 54507 60.51 68 67.50 0.56
250-10-10-0-4 49675 49675 49578.80 49342 104.58 67 66.03 0.71
250-10-10-0-5 92959 92989 92823.07 92465 141.18 130 129.27 0.73
250-10-10-1-0 26696 26696 26678.47 26606 28.58 64 63.63 0.48
250-10-10-1-1 25757 25893 25822.07 25771 29.03 62 63.07 0.44
250-10-10-1-2 26356 26517 26490.50 26438 35.14 64 63.70 0.46
250-10-10-1-3 26684 26684 26641.83 26598 37.16 63 63.47 0.50
250-10-10-1-4 26554 26676 26630.10 26603 18.02 65 64.10 0.30
250-10-10-1-5 42528 42629 42520.90 42306 70.96 123 123.80 0.48

Avg. 49836.48 49840.56 49721.10 49500.44 88.66 79.65 79.15 0.64
#Better 16
#Equal 24
#Worse 8

32

