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Abstract. We define an algebraic framework based on non-safe Petri
nets, which allows one to express operations such as iteration, parallel
composition, and transition synchronisation. This leads to an algebra of
process expressions, whose constants and operators directly correspond
to those used in Petri nets, and so we are able to associate nets to process
expressions compositionally. The semantics of composite nets is then used
to guide the definition of a structured operational semantics of process
expressions. The main result is that an expression and the corresponding
net generate isomorphic transition systems. We finally discuss a partial
order semantics of the two algebras developed in this paper.
Keywords. Petri nets, process algebra, operational semantics.

1 Introduction

To relate process algebras, such as CCS [17] or CSP [13], and Petri nets [20],
the approaches proposed in the literature often aim at providing a Petri net
semantics to an existing process algebra as, e.g., in [5,6,10-12, 18]. Another way
is to translate elements from Petri nets into process algebras as, e.g., in [1].

A specific framework we are concerned with here is the Petri Net Algebra
(PNA [4]) and its precursor, Petri Box Calculus (PBC [3]). This framework is
composed of an algebra of process expressions (called box expressions) together
with a fully compositional translation into labelled safe Petri nets (called bozes).
(Recall that in a safe Petri net no place ever holds more than one token.)

The variant of the safe box algebra relevant to this paper comprises: sequence
E; F (the execution of E is followed by that of F); choice EQF (either E
or F' can be executed); parallel composition E||F (E and F' can be executed
concurrently); iteration E® F (E can be executed an arbitrary number of times,
and then be followed by F'); and scoping E sca (all handshake synchronisations
involving pairs of a- and a-labelled transitions are enforced). Consider, as an
example, three processes modelling a critical section and two user processes:
CRITSECT = ((a1;71) 0 (az;72)) ® f, USER; = @1;71 and USERy = dy; 5. The
atomic actions a1 and as (together with the matching @3 and @3) model getting
the access to a shared resource, 1 and ro (together with 77 and 73) model
its release, and f models a final action. The box expression where these three
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Fig. 1. Boxes and corresponding box expressions.

processes operate in parallel is MUTEX = CRITSECT||USER, ||USER; (operators
like parallel composition associate to the right), and the corresponding box is
shown on the left of figure 1. In a box, places are labelled by their status (e
for entry, x for exit and i for internal) while transitions are labelled by CCS-like
communication actions; such as a1, a3 and 7 (as in CCS, 7 is an internal action).

Though the box of MUTEX specifies the three constituent processes, it does
not allow for interprocess communication. This can be achieved by applying the
scoping w.r.t. the synchronisation actions a; and 7;, which results in MUTEX' =
MUTEX scaj scag scry scre , with the corresponding box shown in figure 1.

The operational semantics of box expressions is given through SOS rules in
Plotkin’s style [19]. However, instead of rules like a.E — E in CCS, the current
state of an evolution is represented using overbars and underbars, marking re-
spectively the initial and final states of (sub)expressions. E.g., in figure 1, the box
on the right represents MUTEX after the two user processes have terminated, and
the critical section is still in its initial state. There are two kinds of SOS rules:
structural rules specify when distinct expressions denote the same state, e.g.,
one can deduce that CRITSECT| USER; ||[USERz = CRITSECT || USER1||USER2
CRITSECT || USER; || USERq, while evolution rules specify when we may have
a state change due to the execution of some of the actions, e.g., one can de-

duce that ((a1;71) O (az;7m2)) ® f REAA ((a1;71) O (az2;r2)) ® f. The two algebras
of PNA are fully compatible, in the sense that a box expression and the corre-
sponding box generate isomorphic transition systems. It will be our goal here to
retain this property in a more expressive framework based on non-safe boxes.

Recently, [7,15] introduced a novel feature into the above model, aimed
at the modelling of asynchronous communication (used, e.g., to model time-
dependent or preemptive concurrent systems [15,16]). Consider the following
process expressions modelling a producer and consumer processes (each can
perform exactly one action, after which it terminates): PRODONE < pbT and
CONSONE = ¢b~. The pb* is an atomic action whose role is to ‘produce’ a token
(resource) in a buffer identified by b; in doing so, it generates the visible label p.
The ¢b™ is an atomic action which ‘consumes’ a resource from buffer b, generat-
ing the visible label c¢. The boxes of these processes are shown in figure 2, where
the buffer places are identified by the b labels.

An intuitive meaning of a b-labelled place is that some transitions can insert
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Fig. 2. Asynchronous communication.

tokens into it, while other transitions can later remove them. This gives rise to
asynchronous communication as, e.g., in the parallel composition of the producer
and consumer processes, SYST = PRODONE||CONSONE, and the corresponding
box in figure 2, where the two b-labelled buffer places are merged into a single b-
labelled place (this place can later be merged with other b-labelled buffer places).
An abstraction mechanism for asynchronous communication comes in the form of
the buffer restriction operator, tie b, which changes the b-labelled buffer place into
a b-labelled one. Such a place can no longer be merged with other buffer places,
and so b-labelled places may be viewed as internal places. This is illustrated in
figure 2 for SysTtieb. The resulting model is no longer based on safe Petri nets
since the buffer places are in general non-safe.

In this paper, we develop further the above approach, introducing the Asyn-
chronous Box Calculus (or ABC) model. In particular, we no longer enforce the
safeness of the non-buffer places, which may be undesirable for practical applica-
tions since this leads to the imposition of awkward syntactic constraints (see [4]).
Safeness was needed in the original PNA to support a simple concurrency se-
mantics of boxes and expressions based on causal partial orders. In this paper, it
is replaced by auto-concurrency freeness which is a property guaranteeing con-
currency semantics in terms of event structures as shown in [14], and so is highly
relevant from a theoretical point of view. Moreover, we argue that in the case
of ABC without buffer places (but still with non-safe places), one can retain the
simple causal partial order semantics.

In short, ABC will comprise an algebra of non-safe boxes, and an algebra
of box expressions. The two algebras will be related through a mapping which,
for a box expression, returns a corresponding box with an isomorphic transition
system. All the proofs can be found in the technical report [8].

Two examples. Consider three process expressions: PROD £ PRODONE ® f,
PRODPAR = (PRODONE||PRODONE) ® f and CoNs = CONSONE® f. When
operating in parallel, PROD can repeatedly send a token to a b-labelled buffer
place, which can then be repeatedly removed by the CONS process.

The first example, SYST; = s; (PROD||PROD||CONS) on the left of figure 3,
models a system composed of two producers and one consumer operating in
parallel and preceded by a ‘startup’ action s. The example SYsTy; = (PRODPAR||
CONSONE) tieb, shown on the right of figure 3, illustrates the encapsulating
feature of buffer restriction which makes the buffer place b-labelled, and so no

longer available for future merging. This example also shows that even if we
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Fig. 3. Boxes for the two execution scenarios (double-headed arrows are self-loops).

disregard the buffer place, the resulting box is still non-safe as executing either
of the p-labelled transitions adds a second token to one of the e-labelled places.
Hence SysTy; cannot be handled by the preliminary version of ABC presented
in [7].

The operational semantics is illustrated using the following two execution
scenarios (in each case the system starts from its implicit initial state, e.g., we
consider SYsTy rather than SysTy). In the first scenario, we consider the net X
shown in figure 3 and the following evolution:

— the system is started up by executing the s-labelled transition;

— the two producers send a token each to the b-labelled (buffer) place;

— the consumer takes one of the two tokens from the buffer place and, at the
same time, the first producer sends there another;

— the two producers and the consumer finish their operation by simultaneously
executing the three f-labelled transitions.

This corresponds to X7 [{t1}{te, ts}{t2, ta}{ts, %6, t7}) X}, which is a step se-
quence such that X7 is X with two tokens in the buffer place, one token in
each of the x-labelled places, and no token elsewhere. Since each x-labelled place
has exactly one token, we consider X to be in a final marking (or state). In
terms of labelled step sequences, we have Xt [{s}{p,p}{p, c}{f, f, f}) X7

In the second scenario, we only consider labelled steps, for the net X; in
figure 3, and the following evolution:

— the system begins by executing the left p-labelled transition, which puts a
token in the buffer place, and another one in the third e-labelled place;

— the consumer takes the token from the buffer place and the right p-labelled
transition puts another token in the buffer place;

— the system finishes by executing the two f-labelled transitions.

Such a scenario corresponds to X [{p}H{p, cH{ f, f}) 2;, which is a labelled step
sequence such that X7; is X'y with one token in the buffer place and each of the
x-labelled places, and no token elsewhere. Notice that X%, is also in a final state.
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Basic notations and definitions. Throughout the paper, we use the standard
Petri net notions (see, e.g., [20]) and (multi)set notation. In particular, + and
- denote multiset addition and multiplication by a natural number, mult(X)
comprises all finite multisets over a set X, and < is used to compare multisets.
A subset of a set X may be treated as a multiset over X, through its characteristic
function, and a singleton set can be identified with its sole element. The specific
Petri net framework is sketched below.

We assume that there is a set A of (atomic) actions representing synchronous
interface activities used, in particular, to model handshake communication. Sim-
ilarly as in CCS, A, £ AW {7} and, for every a € A, @ is an action in A such
that @ = a. There is also a finite set B of buffer symbols for asynchronous com-
munication.

A (marked) labelled net is here a tuple X = (S,T,W,\, M) such that: S and
T are finite disjoint sets of respectively places and transitions; W is a weight
function from the set (SxT) U (T'xS) to N; X is a labelling for places and tran-
sitions such that for every place s € S, A(s) is a symbol in {e,i,x,b} W B, and
for every transition t € T, A(¢) is an action in A.; and M is a marking, i.e., a
multiset over S.

If the labelling of a place s is e, i or x, then s is an entry, internal or exit place,
respectively. If the labelling is b then s is a closed buffer place, and if it is b € B,
then s is an open buffer place. Collectively, the e-, i- and x-labelled places are
called control (flow) places. Moreover, the set of all entry (resp. exit) places will
be denoted by °X (resp. X°). To avoid ambiguity, we will sometimes decorate
the various components of X' with the index X' and, to simplify diagrams, omit
isolated unmarked buffer places.

For every place (transition) z, we use ®x to denote its pre-set, i.e., the set of all
transitions (places) y such that there is an arc from y to x, that is, W(y,x) > 0.
The post-set z°* is defined in a similar way.

For a marking M of a labelled net X, we use M°" to denote M restricted
to the control places. Then we say that M is clean if °X < M = M =°x
and X° < M = M = X°. Moreover, M is ac-free if, for every t € T, there
is a control place s € * such that M (s) < 2-Wx(s,t), i.e., the marking of s does
not allow auto-concurrency of t.

2 An algebra of boxes

To model concurrent systems, we use a class of labelled nets called asynchronous
bozes. To model operations on such nets, we use operator boxes (a particular
kind of labelled nets where all transitions are intended to be substituted by
asynchronous boxes) and the net substitution meta-operator (called also refine-
ment [4]), which allows one to realise this substitution.

An (asynchronous) boz is a labelled net X such that each transition is labelled
by an action in A, and the net is:

— ex-restricted: there is at least one entry place and at least one exit place;
— B-restricted: for every b € B, there is exactly one b-labelled place;
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Fig. 4. Asynchronous and operator boxes of ABC, where a € A, and b € B.

— control-restricted: for every transition ¢ there is at least one control place in
°*t, and at least one control place in ¢°.

The execution semantics of X is based on finite steps, which capture the potential
concurrency in its behaviour. A step is a finite multiset of transitions U and, when
enabled, it can be executed leading to a new net ©; we denote this by X'[U)6O or
O € [X). Transition labelling may be extended to steps, leading to labelled steps
of the form X' [I"), X’ which means that there is a step U such that X' [U) 2’ and
I' = A\(U). Although we will use the same term ‘step’ to refer both to a finite
multiset of transitions and to a finite multiset of labels, it will always be clear
from the context which one is meant.

A box X is static (resp. dynamic) if M g™ = & (resp. Mg" # &) and all the
markings reachable from M, °X or X° in the box X" are both clean and
ac-free, where X ¢" is X with all its buffer places and adjacent arcs removed. The
asynchronous boxes, static boxes and dynamic boxes will respectively be denoted
by abox, abox**® and abox®". Static boxes do not admit non-empty steps, and
if X is a dynamic box, then U is a set of transitions (but if X' [I")y X’, then the
labelled step I' may be a true multiset of actions, as illustrated in the execution
scenarios in the introduction) and X’ is a dynamic box.

The upper row in figure 4 shows four kinds of static boxes X, used in ABC,
where o € A £ {a,abt, ab™, ab* | a € A, Ab € B}. They are the basic
building blocks, from which other static and dynamic boxes are constructed.

The complete behaviour of a static or dynamic box can be represented by a
transition system. And, since we have two kinds of possible steps, we introduce
two kinds of transition systems. The full transition system of a dynamic box X'
is ftsy = (V, L, A, init) where V < [X) are the states; L = 275 are arc labels;
AZ{(ZU,E") eV xLxV |X[U)L"} is the set of arcs; and init = ¥ is
the initial state. For a static box X, ftsy 2 fts. The labelled transition system
of a static or dynamic box X, denoted by lItsy, is defined as ftsy with each arc
label U changed to Ax(U) (note that different arcs between two states in ftsy
may give rise to a single arc in ltsy).

The presentation of the operators of ABC starts with marking operators,
which modify the marking of a box X' (below b € B and B € mult(B)):
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— X.B adds B(b) tokens to the b-labelled open buffer place of X, for each b € B;
moreover, X.b = 5.{b} (this operation is called buffer stuffing);

— X (resp. X)) is X with one additional token in each entry (resp. exit) place,
i.e., M5 = My +°5 (vesp. My = My + 2°);

— | X is X with the empty marking.

For the remaining operators, the identities of transitions will play a key role,
especially when defining the SOS semantics of process expressions. More pre-
cisely, transition identities will come in the form of finite labelled trees retracing
the operators used to construct a box.

We assume that there is a set 1 of basic transition identities and a corre-
sponding set of basic labelled trees with a single node labelled with an element
of n. All the transitions in figure 4 are assumed to be of that kind. To express
more complex (unordered) finite trees, or sets of trees, used as transition iden-
tities in nets obtained through net substitution, we will use the following linear
notations (see figure 5 page 9 for an illustration):

— v T, where v € 1 is a basic transition identity and T is a finite set of finite
labelled trees, denotes a tree where the trees of the set T are appended to a
v-labelled root;

— v<1t denotes v< {t} and v<«T denotes the set of trees {v<it |t e T}.

A similar naming discipline could be used for the places of the constructed nets
following the scheme used in [4]. However, since place trees were essentially
needed for the definition of recursion which is not considered in the present
paper, we will not use them. Instead, when applying net substitution, we will
assume that the place sets of the operands are renamed to make them disjoint.
We then construct new places by aggregating the existing ones; e.g., if s; and sg
are places from some boxes, (s1,s2) may be the identity of a newly constructed
place. We start with the two unary operations (we define them directly, rather
than through net substitution).

Scoping X sca. Parameterised by a communication action a € A and with the
domain of application domsc, = abox®* Uabox™", ¥ sca is a labelled net which
is like X' with the only difference that the set of transitions comprises all trees
w = v {t,u} with t,u € T such that {\(t), \(u)} = {a,a}, as well as all trees
2z Z v*?Qr with 7 € T such that A\(r) ¢ {a,a}. The label of w is 7, and that of
z is A(r); the weight function is given by W eca(p, w) = W(p,t) + W(p,u) and
Wssca(p, 2) = W(p,r), and similarly for W e o(w, p) and Wy eca(z,p).

Buffer restriction X tieb. Parameterised by a buffer b € B and with the domain of
application domgie, = abox®* Uabox™", X'tieb is like X' with the only difference
that the identity of each transition ¢ is changed to v%€®<¢, the label of the only
b-labelled place is changed to b, and a new unmarked unconnected b-labelled
place is added.
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Choice X1 O X, iteration X1 ® Yo, sequence X1 ; Yo, and parallel composition
X1]|¥2. We consider here a binary operator box (2,in € {20, 2¢, 12, QH}, as
shown in figure 4 (the labels of the transitions will be irrelevant here), and its
application X7 bin X5. The first three binary operator boxes specify different
ways to sequentially compose behaviours and have the domain of application
dompin = (abox®™)2 U (abox™™ x abox**®) U (abox** x abox™™). The last one has
the domain of application dom| = (abox®™)2 U (abox™™)2, i.e., its components
may evolve concurrently. The net & = X; bin X5 is defined as follows.

The transitions of @ are the set of all trees v?" <1t (with ¢ € T, and i = 1,2).
The label of each vP" <1 ¢ is that of ¢t. Each i-labelled or b-labelled place p € S =,
belongs to Sg. Its label and marking are unchanged and, for every transition
vPi" G ¢, the weight function is given by We(p, v <1 t) = W, (p,t) if 7 = i and
Wa(p,vP" < t) = 0 otherwise, and similarly for Wa(vP" < t, p).

For every place s € S, with ®s = {vlbli",...,vlb;"} and s®* = {v?i",...,v;’j:
(k,m € {0,1,2}), we construct in Sg all the places of the form p = (x1,. .., xy,
€1,...,em), where each z, (if any) is an exit place of X, , and each e, (if any) is
an entry place of ;. The label of p is that of s, its marking is the sum of the
markings of x1,...,Zk,€1,...,€em, and for every transition Ufi“ < t, the weight
function is given by:

Wy, (zr,t) + W, (eg,t) if 02" € ®sNs® and i = [, = j,

bin at ) Wy, (2r,t) if Ufi“ €%\ s*andi=1I,
Wa(p, 07" <t) = W, (eq, 1) if vPin € 5%\ *s and i = j,
0 otherwise,

and similarly for Wg (vP" <1 ¢, p).

For every b € B, there is a unique b-labelled place p® £ (ph,p%) € Sp which
merges the two b-labelled places, pb and pj, of the two operands. The marking
of p® is the sum of the markings of p} and p$, and for each transition v?" < ¢,
the weight function is given by W (p,vP" <1 t) = Wi, (p?,t), and similarly for
We(w< t, pb).

Properties. The net operations of ABC (other than ¥ and X) always return a
syntactically valid object, i.e., a box with a clean and ac-free marking. If one
makes no use of buffer stuffing nor buffer restriction nor basic nets other than
Y., one gets net operations similar to those defined in the standard box algebra
(see [3,4]), except for the additional b-labelled places which are all isolated and
unmarked.

The net operations are illustrated in figure 5, where explicit transition iden-
tities are shown for various stages of the construction, from the basic net and
transition identities shown in figure 4.

Relating structure and behaviour. We now investigate how the behaviour of com-
posite boxes depends on the behaviours of the boxes being composed. We provide
full details for sequential composition (other operators are treated in [8]).
First, we capture situations where different application of sequential com-
position lead to the same result. For two pairs of boxes, ¥ = (X1, %5) and
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e (601, 603), we define:

— ¥ = © if there are boxes ¥; and W, such that {E, 0} = {(¥1,¥s), (¥1,¥s)}.
In other words, if the first operand has reached a final state, then this is
equivalent to the second operand being in an initial state;

— X =" © if there are boxes ¥; and ¥, and B, Bs, B, B € mult(B) such
that Bl + 32 = Bi + Bé, 2 = (Wl.Bl,yv/Q.Bg) and © = (WlBi,WgBé)
In other words, ¥ and © are the same except perhaps the distribution of
tokens in open buffer places corresponding to the same b but coming from
different components (buffer stuffing never changes the marking of closed
buffer places). The sequence operator will glue the corresponding open buffer
places thus merging their markings.

We then define =g to be (=" Uidapox) © =", where idapox is the identity on abox.

Relations =g, like that above are defined for all binary operators of ABC.
It may be shown that, if ¥ =g ©, then X € dompin = © € dompin, and | X;] =
H.QlJI (Z = 1,2), and if H.EZJ] = "}@J] (Z = 1,2), then 21 bin 22 = @1 bin @2 iff
Y =p,, ©. Hence, when restricted to dompin, =g, is an equivalence relation
which identifies the tuples of boxes which give rise to the same composite nets.

The next result captures the behavioural compositionality of our model, i.e.,
the way the behaviours of composite nets (in terms of enabled steps) are related
to the behaviours of the composed nets. Basically, we want to establish what
steps are enabled by X bin X5 knowing the steps enabled by X, and Xs.

Theorem 1. Let X1 bin Xy be a valid application of a binary ABC operator bin.
— If Zi[Ui) W; (i = 1,2), then Xy bin X5 [V) @y binWy, where V = (v} aUy)
(’US'”‘UQ).
— If Z1bin Xy [V) A then there are ©, V, Uy and Us, such that: © =g, ¥,
O, UNY; (i=1,2), 1 binWs = A and V is as above.

Various important consequences may be derived from the result presented
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above and a similar result which holds for the unary operators; e.g., the way
static and dynamic boxes are composed guarantees that the result is a static or
dynamic box when the domain of application of the operators is respected, i.e.,
every composite net of ABC is a static or dynamic box.

3 An algebra of asynchronous box expressions

We consider an algebra of process expressions over the signature:

AU{(),OYu{l,;,0,®}U{sca |acA}U{tieb, b |be B},

where A is the set of constants. The binary operators ||, ;, O and ® will be
used in the infix mode; the unary operators sca, tieb and .b will be used in the
postfix mode; and (-) and (-) are two positional unary operators (the position
of the argument being given by the dot).

There are two classes of process expressions corresponding respectively to
the static and dynamic boxes: the static E and dynamic D expressions, denoted
respectively by aexpr®* and aexpr®™. Collectively, we will refer to them as the
(asynchronous) box expressions, aexpr. Their syntax is given by:

E := o | Esca | Etieb | Eb | E||E | EbinE

D :=FE|E|Dsca| Dtieb| D.b| D||D | Dbin E | Ebin D
where o € A, a € A, b € B, and bin is a binary operator other than ||. In the
following, we will use E or F' to denote any static expression, J or K any dynamic
expression, and G or H any static or dynamic expression. For an expression G,
|G] is G with all occurrences of (-), (-) and .b removed.

Essentially, a box expression encodes the structure of a box, together with
the current marking of the control places (with the bars) and the buffer places
(with the .b’s). Thus, a box expression E represents E in its initial state (in
terms of nets, this corresponds to the initially marked box of E). Similarly, E
represents E in final state. Note that the .b notation is needed for static as well
as for dynamic box expressions because a static part of a dynamic box expression
may have .b’s which can be used by the active part.

The denotational semantics of box expressions, box : aexpr — abox, is given
compositionally. Assuming that o € A, b € B, una stands for an unary and bin for
a binary operator of ABC, we have: box(a) = X, box(E) = box(E), box(E) =
box(E), box(G'una) = box(G) una and box(G bin H) = box(G) bin box(H). One
can show that the semantical mapping always returns a static or dynamic box,
and that box(G) is static iff G is static. We now set out to define an operational
semantics of box expressions.

A structural similarity relation on box expressions, denoted by =, is defined
as the least equivalence relation on box expressions such that all the equations in
the upper part of table 1 are satisfied. The rules either directly follow those of the
original PNA or capture the fact that an asynchronous message, produced by a
ab™ expression and represented by .b, can freely move within a box expression in
order to be received by some action of the form ab~. However, the .b may never
cross the boundary imposed by the tieb operator (notice that moving outside a




An Algebra of Non-safe Petri Boxes

11

{a}
ab=.b —— ab” ()

— {a}
ab®.b —— ab®.b (%)

G=H G=H,G =H E=F
Guna = Huna GbinG' = HbinH’' E=F, E=F
EOF=EQF EOF=EQF EOF=EQOF
EQF=EQF E|F = E|F E|E = E|F
EFE®F=E®F E®eF=E®F E®F=E®F
E®@F=E®F E.F=E,F E.F=E;F
E;F=EF (G.b)binH = (GbinH).b  Gbin(H.b) = (GbinH).b
Euna= Funa (G.b)una’ = (Guna’).b Euna = Euna
‘ una € {scc,tieb,.b}  una’ € {scc,tied’,.b’} ‘

e "y )
ab*b — ab®.b abt — abt.b ab=b — ab”
a a4 (%)

—— {a}
abt — ab™.b (%)

ey e RNy

GbinG' s Hbin H'

ey,

vtieb<U

Gtieb H tied

{t1,w1.. .t ,ug,21...2; }

D/

{y1sypz1.zy}

Dscc ——— D'scec

V= (v)"4U) W (v3"4U’)

{AQ), AM(ui) } = {e, ¢}

Y = v°°° {ti,ui}

A(z;) & {c,¢} x; =0 "<z
c=a' L uw=H ¢ % H
G =G () (1) (t)
¢ L g abv-L Hb
g GLH,G'LH/ Dm
— (%) o (*) P (%)
Gtieb - Htieb G bin G’ —— Hbin H' Dscc — 2 D'sce

Table 1. Structural similarity, and two operational semantics for ABC, where a € A,
ceA, b#£V €Bandbine{],;,0®}.

buffer restriction context is only allowed if b # b’). It may be observed that the
equivalence relation so defined is in fact a congruence for all the operators of the
algebra. It is easy to see that the structural similarity relation is closed in the
domain of expressions, in the sense that if a box expression matches one of the
sides of any rule then the other side defines a legal box expression. Moreover,
it captures the fact that box expressions have the same net translation, i.e.,
box(G) = box(H) iff G = H, provided that |G| = | H].
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SOS semantics. In developing the operational semantics of ABC, we first in-
troduce operational rules based on transitions of boxes which provide the de-
notational semantics of box expressions. Based on these, we formulate our key
consistency result. Then we introduce the label based rules, together with the
derived consistency results.

Consider the set T of all transition trees in the boxes derived through the box

mapping. The first operational semantics has moves of the form G Y, H such
that G and H are box expressions and U € U, where U is the set of all finite
subsets of T. The idea here is that U is a valid step for the boxes associated with
G and H, i.e., that box(G) [U) box(H) holds. Note that each ¢ € T has always
the same label in the boxes derived through the box mapping; such a label will
be denoted by A(t).

Formally, we define a ternary relation — which is the least relation compris-
ing all (G,U, H) € aexpr x U x aexpr such that the relations in table 1 (middle
and bottom parts) other than those marked by (x) hold, where G Y, H denotes
(G,U,H) € —. In the rule for binary operators, we make no restriction on U
and U’ but the domain of application of bin ensures that this rule will always be
used with the correct static/dynamic combination of boxes. E.g., in the case of
the choice operator, U or U’ will always be empty.

Let D be a dynamic box expression. We will use [D) to denote all the box
expressions derivable from D, i.e., the least set of expressions containing D such
that if J € [D) and J Y, K for some U € U, then K € [D). Moreover, [J]=
will denote the equivalence class of = containing J. The full transition system of
Disftsp = (V,L, A, mit) where V = {[J]= | J € [D)} are the states; L = U are
arc labels; A = {(M)=,U,[K]2) e VxUx V| JLK} is the set ofarcs and
init = [D]E is the 1n1tlal state. For a static box expression F, ftsp = ftsz. Note
that we base transition systems of box expressions on the equivalence classes
of =, rather than on box expressions themselves, since we may have D 2,
for two different expressions D and J, whereas in the domain of boxes, X' [&) O
always implies X' = 6.

We now state a fundamental result which demonstrates that the operational
and denotational semantics of a box expression capture the same step based
operational behaviour, in arguably the strongest sense.

Theorem 2. For every G, isoq = {([H]=,box(H)) | [H]= is a node of ftsg} is
an isomorphism between the full transition systems ftsg and ftspox(q)-

To define a label based operational semantics of box expressions, we first
retain the structural similarity relatlon = on box expressions without any change.
Next, we define moves of the form G L, H, where G and H are box expressions
as before7 and [' is a finite multiset of labels in A,. Referring to table 1, we
keep the rules marked with () with @ now denoting the empty multiset of
labels, and U being changed to I', and add those marked with (%) (instead of
the corresponding rules based on transitions).

The two types of operational semantics are clearly related; essentially, each
label based move is a transition based move with only transitions labels being
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recorded. As a result, the properties concerning transition based operational
semantics directly extend to the label based one. For a box expression G, the
label based operational semantics is captured by its labelled transition system,
denoted by ltsg, and defined as ftsg with each arc label U changed to A(U). We
then obtain the following result.

Theorem 3. For every G, isog = {(|G]=, box(H)) | [H]= is a node of ltsg} is
an isomorphism between the labelled transition systems Itsg and Itspox(q)-

Hence ABC supports two consistent (in a very strong sense since the cor-
responding transition systems are isomorphic and not only bisimilar, as in [7])
concurrent semantics for a class of process expressions with both synchronous
and asynchronous communication.

The rules of the label based operational semantics are put into work below,
where we use the second scenario presented in the introduction:

(b [Ipb*) ® Pl (cb= @ ) tieb = ((pbT[[pb¥) ® f)||(cb™ @ f)) tieb

L (bt b7 @ )| (5 @ F)) tieb = ((pb* | 757) @ F)I|(@F D@ /) tieb
P (b [lpb*b) ® )| (b= ® f)) tieb = ((pb* b+ b) @ F)(ch~ @ ) tieb
{f,f}

— (o™ [Ipb*.b) ® [)[[(cb™ @ f)) tieb = (((pb*[[pb™) ® [)[|(cb” ® f)) tieb

4 Causality in boxes and box expressions

We now discuss causality in the fragment of the ABC model without buffer-
specific construct. This still leads to the possibility of deriving boxes which are
non-safe, unlike in PNA (and PBC). Consider, for example, the expression D =
(alc)® f and the box ¥ = box(D) in figure 6, focussing on the behaviours
involving a single execution of each of the transitions of X.

As we have seen, the step sequences are exactly the same for D and X' (see
theorems 2 and 3). Let us investigate whether the same will hold for causality
semantics. For X', we have three possible process nets in this case (see, e.g.,
[2] for the definition of process nets of Petri nets), two of which are shown in
figure 6: 7 specifies that the occurrences of t5 and t3 are concurrent and both
precede the occurrence of ¢1, while 7y specifies that the occurrences are causally
ordered as totsty (the third possibility is w3 with the occurrences ordered tstoty).

Whereas the causality expressed by m; is something to be expected and can
easily be matched using a suitable execution of the expression D, the case of
7o is less clear. For instance, consider the only possible (up to the structural
equivalence of expressions) execution corresponding to the scenario captured
by ms:

@oer=@Per 2 woer ™ @woes=(@loef ™ @oer

It is not difficult to see that in the above the occurrences of t, and t3 are totally
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- g
box((ch)@f) @ @
XOS5 Uyt T

Fig. 6. A box and two of its processes.

unrelated. Indeed, if we replace the a with any expression (even one which is
deadlocked), we still can derive:

t-
CT9ef= (e f (- l)ef
indicating that the overbar responsible for the occurrence of ¢3 does not depend
on executing anything else. Thus, on the level of box expressions, the partial order
semantics does not seem to be suffering from the token swapping phenomenon
discussed in [2] and which is illustrated by 7; and 7. As a result, the causality
relationship is as in the case of safe nets, despite the fact that we are now working
with non-safe nets. This is highly relevant both from the theoretical and practical
point of view (e.g., the unfolding technique based on branching processes is
more efficient if token swapping is absent, see [9]). Briefly, to implement such a
semantics one can annotate the overbars and underbars with the positions of the
atomic actions responsible for their creation. For our example, this would yield:
— P {t=} _
(alle)® f {E} @)e?)®f — (ag, ll?) ® f
t3 —
— (g llee,)®f = (all)@ T
where & = v?vﬂv“, & = v?vgvc and & = v5v/. Then we generate a causal
precedence relation between occurrences of t; and t; provided that there is a path

& from the root to a leaf of ¢; labelling an overbar used to generate the occurrence

of ¢;. Since, in our case, t; = v3 < v/, to = v¥ < Uﬂ <Qv® and t3 = v < vg <0,

the causality relation generated is exactly as in w1, and not as in 7.

To transfer the above way of generating causal partial orders for box expres-
sions into the domain of boxes amounts to requiring that whenever there is a
choice between two occurrences of the same place (like s3 in figure 6 needed to
generate an instance of t3), then the one which leads to lesser causal orderings
is chosen (and so neither w5 nor w3 would be generated).

{t1}
2 @oey,

5 Concluding remarks

In this paper, we proposed a framework which supports two consistent (in a very
strong sense, since the corresponding transition systems are isomorphic and not
only bisimilar) concurrent semantics for a class of process expressions with both
synchronous and asynchronous communication. We eliminated the need to main-
tain the safeness of the non-buffer places (required in the original PNA), which
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might be awkward for practical applications. It was replaced by auto-concurrency
freeness which is a property still guaranteeing suitable concurrency semantics.
We then discussed how a partial order semantics of boxes in a fragment of PNA
could be obtained using additional annotations in process expressions.
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