

Intensification-driven tabu search for the minimum differential dispersion problem

Xiangjing Lai, Jin-Kao Hao, Fred Glover, Dong Yue

► To cite this version:

Xiangjing Lai, Jin-Kao Hao, Fred Glover, Dong Yue. Intensification-driven tabu search for the minimum differential dispersion problem. Knowledge-Based Systems, 2019, 167, pp.68-86. 10.1016/j.knosys.2019.01.010. hal-02309983

HAL Id: hal-02309983 https://hal.science/hal-02309983

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Intensification-driven tabu search for the minimum differential dispersion problem

Xiangjing Lai^a, Jin-Kao Hao^{b,c,*}, Fred Glover^d, Dong Yue^a

^aInstitute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

^bLERIA, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers, France

^cInstitut Universitaire de France, 1 Rue Descartes, 75231 Paris, France

^d OptTek Systems, Inc., 2241 17th Street Boulder, Colorado 80302, USA Submitted 19 July 2018, revised 13 Nov. 2018 (Clean Version)

1 Abstract

The minimum differential dispersion problem is a NP-hard combinatorial optimization problem with numerous relevant applications. In this paper, we propose an 3 intensification-driven tabu search algorithm for solving this computationally chal-4 lenging problem by integrating a constrained neighborhood, a solution-based tabu strategy, and an intensified search mechanism to create a search that effectively ex-6 ploits the elements of intensification and diversification. We demonstrate the competitiveness of the proposed algorithm by presenting improved new best solutions 8 for 127 out of 250 benchmark instances (> 50%). We study the search trajectory of 9 the algorithm to shed light on its behavior and investigate the spatial distribution 10 of high-quality solutions in the search space to motivate the design choice of the 11 intensified search mechanism. 12 Keywords: Combinatorial optimization; Dispersion problem; Tabu search; Candi-13

¹⁴ date list strategy; Intensification mechanism; Heuristics.

15 1 Introduction

¹⁶ Dispersion problems are an important class of subset selection problems in ¹⁷ binary optimization that have recently received substantial attention from the

Email addresses: laixiangjing@gmail.com (Xiangjing Lai),

jin-kao.hao@univ-angers.fr (Jin-Kao Hao), glover@opttek.com (Fred Glover), medongy@vip.163.com (Dong Yue).

Preprint submitted to Elsevier

13 November 2018

^{*} Corresponding author.

combinatorial optimization community for their extensive practical applications. Dispersion problems can be roughly described as follows. Given a set $N = \{1, 2, ..., n\}$ of n elements and a distance matrix $[d_{ij}]_{n \times n}$ $(d_{ij} \ge 0)$ defined on these elements, a dispersion problem is to select a subset M from Nto optimize an objective f over the elements of M.

By varying the optimization objective, a variety of dispersion problems have 23 been introduced and investigated in the literature, including notably the max-24 imum diversity problem (MDP) [2,16,29,32], the max-min diversity problem 25 (Max-Min DP) [11,24,26], the minimum differential dispersion problem (Min-26 Diff DP) [3,13,22,27,33], the maximum min-sum dispersion problem (Max-27 Minsum DP) [1, 19, 21, 25], and the maximum mean dispersion problem (MaxMean 28 DP) [6,12,17]. While MDP and Max-Min DP focus only on the dispersion cri-29 terion of the selected elements, Min-Diff DP, Max-Minsum DP, and MaxMean 30 DP additionally consider the dispersion equity of solutions. 31

Practical application of dispersion problems covers a wide range, as represented by the problems of maximally diverse or similar group selection [1], urban public facility location [4], densest k-subgraph identification [5], equitybased measures in network flows [7], selection of homogeneous groups [8], facility location [14], web page ranking [20], and community mining [31]. These dispersion problems are NP-hard in the general case [25], and thus it is unlikely that a polynomial time algorithm exists to solve them unless P = NP.

In this study, we focus on Min-Diff DP that is known to be particularly difficult 39 from a computational point of view [25]. Specifically, Min-Diff DP can be 40 described as follows. Given a set $N = \{1, 2, ..., n\}$, an associated distance 41 matrix $[d_{ij}]_{n \times n}$ $(d_{ij} \ge 0$ for $i \ne j$; $d_{ii} = 0$ for $\forall i$), and a fixed positive integer 42 m, Min-Diff DP involves selecting a subset M of exactly m elements from 43 N, such that the difference between the maximum sum and minimum sum 44 of distances between a selected element and other selected elements in M is 45 minimized. Formally, the Min-Diff DP problem can be written as: 46

Minimize
$$Max_{i\in M}\left\{\sum_{j\in M} d_{ij}\right\} - Min_{i\in M}\left\{\sum_{j\in M} d_{ij}\right\}$$
 (1)

Subject to
$$M \subset N, |M| = m$$
 (2)

⁴⁷ Due to its strongly NP-hard character and its potential applications, Min-Diff ⁴⁸ DP has received particular attention within the general class of dispersion ⁴⁹ problems and has been the subject of a variety of solution approaches. In ⁵⁰ 2009, Prokopyev et al. [25] proposed a linear 0–1 mixed integer programming ⁵¹ (MIP) formulation for Min-Diff DP and solved a number of small instances ⁵² with $n \leq 100$ by means of the CPLEX 9.0 solver. Their computational results ⁵³ showed that the CPLEX solver used in these tests is very time-consuming even for small instances with n = 50. For example, for the instances with n = 50and m = 15, the CPLEX 9.0 solver failed to obtain the optimal solution under a time limit of one hour. More modern versions of CPLEX run faster based on exploiting multiple cores, but without this boost the run times are very similar. Thus, for larger instances, heuristic algorithms are more appropriate to obtain near-optimal solutions and noteworthy advances have been made in just the past few years.

In 2015, Aringhieri et al. introduced a construction and improvement heuristic 61 (CIH) algorithm for solving Min-Diff DP, which is composed of an initial solu-62 tion construction stage and an improvement stage [3]. In the same year, Duarte 63 et al. proposed a sophisticated evolutionary path relinking (EPR) algorithm 64 by integrating a GRASP procedure, a variable neighborhood search (VNS) 65 procedure, and an exterior path relinking operator [13]. Their computational 66 results show that the EPR algorithm outperforms the basic GRASP algorithm 67 in [25]. In 2016, based on the popular swap neighborhood, Mladenović et al. 68 presented a basic VNS algorithm [22], and performed the experimental tests 69 showing that this algorithm significantly outperformed the previous EPR al-70 gorithm. Recently (2017), Zhou et al. proposed an iterated local search (ILS) 71 algorithm [33], which improved the best known results for a number of in-72 stances commonly used in the literature. Very recently (2017), Wang et al. 73 devised a solution-based tabu search algorithm and a memetic algorithm [27], 74 showing that their tabu search algorithm improved 71% of the previous best 75 results and the memetic algorithm (which contained an embedded tabu search 76 algorithm) improved 62% of the previous best results. This naturally raises 77 the question of whether some combination of metaheuristics strategies may 78 make it possible to do still better. 79

Recent studies show that solution-based tabu search [9,10,30] is more effective 80 than the traditional attribute-based tabu search [15] for solving certain classes 81 of binary optimization problems [27]. As reported in [27], the solution-based 82 tabu search has been especially effective for Min-Diff DP. In this work, we 83 go a step further by introducing an intensification-driven tabu search (IDTS) 84 algorithm that extends the solution-based tabu search framework by inte-85 grating three special features: a new constrained swap neighborhood relying 86 on a candidate list strategy, an enhanced tabu list management using three 87 hash functions, and an intensified search mechanism to reinforce the search 88 around high-quality solutions discovered. Computational results on 250 in-89 stances show that our IDTS algorithm is very competitive compared to the 90 state-of-the-art algorithms in the literature, improving more than half of the 91 currently best known solutions (127 out of 250 instances) while consuming a 92 short computational time. 93

The remainder of the paper is organized as follows. Section 2 describes our IDTS algorithm in greater detail. In Section 3, we assess its performance in a computational study of 250 benchmark instances commonly used in the
literature and provide a direct comparison with state-of-the-art algorithms
for this problem. In Section 4, we discuss essential components of the IDTS
algorithm and study their influence on its behavior. Section 5, which concludes
the paper, summarizes the present work and provides research perspectives for
future work.

¹⁰² 2 Intensification-driven tabu search for Min-Diff DP

103 2.1 General Procedure

We elaborate the elements of the IDTS algorithm by means of the pseudocode in Algorithm 1, where H_1 , H_2 , H_3 represent hash vectors used to define three tabu lists of length L, and h_1 , h_2 , h_3 represent the hash functions used to determine the tabu status of neighbor solutions referenced by these vectors. Finally, s and s^* respectively denote the current solution and the best solution found so far.

The IDTS algorithm starts by initializing the hash vectors that serve as tabu 110 lists (lines 1-3), and then generates a feasible initial solution (line 4). Next, 111 the algorithm enters a loop to execute the intensified search step (line 7), 112 incorporating an inner 'while' loop (lines 8–20), to improve the incumbent 113 solution, and these loops are repeatedly performed until the timeout limit 114 t_{max} is reached. Specifically, the inner 'while' loop iterates until the current 115 solution cannot be improved during the last α consecutive iterations, where α 116 is a parameter called the tabu search depth. At each execution of the 'while' 117 loop, a best eligible neighbor solution s' satisfying $H_1(h_1(s')) \wedge H_2(h_2(s')) \wedge$ 118 $H_3(h_3(s')) = 0$ (i.e., a best neighbor solution not forbidden by the tabu lists, 119 as discussed in Section 2.5) is selected from the current neighborhood $N_{swap}^{\theta}(s)$ 120 defined in the following Section 2.4 to replace the incumbent solution s, and 121 then the hash vectors H_k (k = 1, 2, 3) are accordingly updated by the new 122 incumbent solution s (line 19). After each tabu search run (i.e., when the 123 'while' loop terminates), the process switches to the intensified search step 124 (line 7) and starts the next tabu search run with the best solution recorded in 125 s^* as its initial solution. Finally, the algorithm returns the best solution found 126 during the search and stops when the given time limit t_{max} is reached. 127

The intensified search step is one of key operations of the algorithm. As shown in previous studies [18,24], for a number of combinatorial optimization problems, high-quality solutions are not uniformly distributed in the search space. Instead, they are grouped in clusters, in accordance with the proximate optimality principle [15], where high-quality solutions at one level are hypothesized **Algorithm 1:** General procedure of the intensification-driven tabu search (IDTS) algorithm for the Min-Diff DP problem

Input: Instance I, hash vectors H_1 , H_2 , H_3 with a length of L, hash functions h_1 , h_2 , h_3 , parameter θ , cutoff time t_{max} , and tabu search depth α **Output**: The best solution s^* found so far /* Initialization of hash vectors (tabu lists), Sect. 2.5 */ 1 for $i \leftarrow 0$ to L - 1 do $H_1[i] \leftarrow 0; H_2[i] \leftarrow 0; H_3[i] \leftarrow 0$ $\mathbf{2}$ 3 end 4 $s \leftarrow InitialSolution(I)$ /* Initial solution, Sect. 2.3 */ $s s^* \leftarrow s$ /* Main search process */ 6 repeat /* Switch to the best solution found so far */ $s \leftarrow s^*$ $\mathbf{7}$ $counter \leftarrow 0$ /* Counter for consecut. non-improv. s^* iter. */ 8 while counter $\leq \alpha$ do 9 Find a best neighbor solution s' in terms of f that satisfies 10 $H_1(h_1(s')) \wedge H_2(h_2(s')) \wedge H_3(h_3(s')) = 0$ in the neighborhood $N_{swap}^{\theta}(s)$ /* A solution $s^{'}$ with $H_1(h_1(s^{'})) \wedge H_2(h_2(s^{'})) \wedge H_3(h_3(s^{'})) = 0$ is identified as an eligible solution, Sections 2.4 and 2.5 */ /* Update the incumbent solution */ $s \leftarrow s'$ 11 if $f(s) < f(s^*)$ then 12 $s^* \leftarrow s$ /* Update the best solution found so far */ $\mathbf{13}$ countor $\leftarrow 0$ $\mathbf{14}$ end 15else 16 $countor \leftarrow countor + 1$ 17end $\mathbf{18}$ /* Update tabu lists, Sect. 2.5 */ $H_1[h_1(s)] \leftarrow 1; H_2[h_2(s)] \leftarrow 1; H_3[h_3(s)] \leftarrow 1$ 19end $\mathbf{20}$ 21 until $Time() \leq t_{max}$

to lie close to high-quality solutions at an adjacent level (defined relative to the 133 moves employed or to a distance measure, depending on the case). These stud-134 ies have demonstrated that high-quality solutions are typically found in the 135 vicinity of other high-quality solutions by reference to the standard Euclidean 136 distance measure. As we show in Section 4.5, this is also true for Min-Diff DP 137 studied in this work. In such a circumstance, performing an intensified search 138 around each newly discovered high-quality solution is clearly an advantageous 139 strategy to find other high-quality solutions. The IDTS algorithm implements 140 this strategy by using the intensified search step to enable the next tabu search 141

run to systematically start its search from the best solution s^* found so far. 142 Meanwhile, the tabu lists are not re-initialized after each intensified step and 143 thus inherited by all tabu search runs. This ensures that each intensified search 144 operation will lead to a different search trajectory even when the next tabu 145 search run starts from the same starting point s^* . As a result, the nearby 146 areas of s^* will be thoroughly examined and the intensification search of the 147 algorithm is thus reinforced (Although different trajectories can also result 148 by clearing or reducing the tabu search memory, in the present case we can 149 continue to reap the benefits of the solution-based tabu strategy by retaining 150 all previous memory). 151

152 2.2 Solution Representation, Search Space, and Evaluation Function

By reference to the set $N = \{1, 2, ..., n\}$, the distance matrix $[d_{ij}]_{n \times n}$, and the integer m, we can represent a subset $M \subset N$ by a n-dimensional binary vector $s = (x_1, x_2, ..., x_n)$, where $x_i = 1$ if the element i is selected to lie in M, and $x_i = 0$ otherwise. Equivalently, $s = (x_1, x_2, ..., x_n)$ can be indicated by a 2-tuple of sets (I^0, I^1) (i.e., $s = (I^0, I^1)$), where $I^0 = \{k : x_k = 0 \text{ in } s\}$ and $I^1 = \{k : x_k = 1 \text{ in } s\}$. An illustrative example for the solution representation is given in Fig. 1.

Fig. 1. An illustrative example for the solution representation, where the size of set N is 10 (n = 10) and the size of set M is 5 (m = 5).

The search space Ω_m explored by our IDTS algorithm is composed of all feasible solutions, i.e., $\Omega_m = \{(x_1, x_2, \dots, x_n) : \sum_{i=1}^{i=n} x_i = m\}$, or equivalently, $\Omega_m = \{(I^0, I^1) : I^0, I^1 \subset N, |I^1| = m\}$. Obviously, the size of Ω_m is equal to $\frac{n!}{m!(n-m)!}$, which increases very quickly as the size of problem increases.

Given a solution $s = (I^0, I^1)$ in Ω_m , the objective function value f(s) used to measure the quality of s is given by:

$$f(s) = Max_{i \in I^1} \{ \sum_{j \in I^1} d_{ij} \} - Min_{i \in I^1} \{ \sum_{j \in I^1} d_{ij} \}$$
(3)

Finally, for two solutions s_1 and s_2 in the search space, s_1 is better than s_2 if $f(s_1) < f(s_2)$ since f is to be minimized.

Algorithm 2: Initial Solution Method

1 Function InitialSolution() **Input**: $N = \{1, 2, ..., n\}, m$ **Output:** A feasible initial solution $s_0 = (x_1, x_2, \ldots, x_n)$ 2 for $i \leftarrow 1$ to n do $x_i \leftarrow 0$ 3 4 end 5 $c \leftarrow 0$ while c < m do 6 while *True* do 7 /* Randomly select a variable $x_i * /$ $i \leftarrow rand() \mod n$ 8 if $x_i = 0$ then 9 break 10end 11 12 end $x_i \leftarrow 1$ 13 $c \leftarrow c + 1$ 1415 end 16 return (x_1, x_2, \ldots, x_n)

The IDTS algorithm starts with an initial feasible solution s_0 generated by a randomized initialization procedure whose pseudo-code is given in Algorithm 2. The initialization procedure randomly selects m distinct variables x_i from $\{x_1, x_2, \ldots, x_n\}$ to be assigned the value of 1, while assigning the remaining n-mwariables the value of 0 to create the initial solution of the IDTS algorithm.

174 2.4 Neighborhood Structure and Its Evaluation Technique

The neighborhood explored by our IDTS algorithm is defined by the swap 175 operator $Swap(\cdot, \cdot)$ that is commonly used in previous studies for Min-Diff 176 DP [3,13,22,27,33]. Given a solution $s = (I^0, I^1)$ and two elements $u \in I^0$ and 177 $v \in I^1$, the Swap(u, v) operation exchanges the positions of the elements u 178 and v to generate a neighbor solution of s that we denote by $s \oplus Swap(u, v)$. 179 For a solution $s = (I^0, I^1)$, the largest possible neighborhood $N_{swap}^{full}(s)$ (i.e., 180 the full swap neighborhood) induced by the swap operator is composed of all 181 possible solutions that can be obtained by applying the swap operator to s, 182 i.e., $N_{swap}^{full}(s) = \{s \oplus Swap(u, v) : u \in I^0, v \in I^1\}$. The size $m \times (n - m)$ of 183 neighborhood $N_{swap}^{full}(s)$ becomes relatively large when m approaches to n/2184 even for the medium-sized instances, making an algorithm that examines the 185

full neighborhood very time-consuming. Furthermore, unlike other local search 186 methods (e.g., the first improvement descent method or the simulated anneal-187 ing method), a tabu search algorithm typically seeks a highest evaluation move 188 at each iteration. When faced with a large neighborhood, tabu search therefore 189 employs a candidate list strategy designed to create a set of high-quality moves 190 that is much smaller than the full neighborhood. A variety of candidate list 191 strategies are presented in [15] and variations incorporating their underlying 192 principles are introduced in [28,29,32]. 193

To focus on the most promising neighbor solutions and thus reduce the compu-194 tational effort of the IDTS algorithm, we adopt a candidate list strategy based 195 on a constrained swap neighborhood N_{swap}^{θ} for Min-Diff DP, using a parameter 196 θ to control the neighborhood size. Specifically, given a solution $s = (I^0, I^1)$, 197 the elements to be swapped in I^0 are limited to a high-quality subset $X \subset I^0$ 198 in N^{θ}_{swap} , which constitutes an instance of a successive filter candidate list 199 strategy in [15]. Given such a subset X of I^0 , the neighborhood $N^{\theta}_{swap}(s)$ can 200 be formally written as $N_{swap}^{\theta}(s) = \{s \oplus Swap(u, v) : u \in X \subset I^0, v \in I^1\}$. Hence, N_{swap}^{θ} has a size of $m \times |X|$. Another form of a successive filter candi-201 202 date list strategy similarly extracts a subset of I^1 to further reduce the size of 203 the neighborhood examined, with an increased risk of reducing the quality of 204 the best move in the resulting neighborhood. 205

To identify the subset X and evaluate the neighborhood N_{swap}^{θ} efficiently, 206 the IDTS algorithm maintains a *n*-dimensional vector $\Delta = (\Delta_1, \Delta_2, \dots, \Delta_n)$, 207 where $\Delta_i = \sum_{j \in I^1} d_{ij}$. Specifically, the subset X is constructed as follows. 208 First, the value $\delta = |\Delta_i - \frac{(\Delta_{min} + \Delta_{max})}{2}|$ is calculated for each element $i \in I^0$, 209 where $\Delta_{min} = Min_{i \in I^1} \{\Delta_i\}$ and $\Delta_{max} = Max_{i \in I^1} \{\Delta_i\}$. Then, the elements in 210 I^0 are sorted in an ascending order by a quick-sort method according to their 211 δ values, since those elements having a small $\delta(i)$ value are the most promising 212 to minimize the objective function if they are selected in the solution. Finally, 213 the first $Min\{n-m, \theta \times n\}$ elements are selected to form the subset X. An 214 illustrative example for the neighborhood generation strategy is given in Fig. 215 2.216

Fig. 2. An illustrative example for the neighborhood generation strategy, where the size of set N and the value of m are respectively 7 and 2, and the size of subset X is 2.

Given a solution $s = (I^0, I^1)$ and its Δ vector $(\Delta_1, \Delta_2, \ldots, \Delta_n)$, the objective

tive value $f(s) (= Max_{i \in I^1} \{\Delta_i\} - Min_{i \in I^1} \{\Delta_i\})$ can be calculated in O(m)218 time as described in the previous studies [3,13]. Moreover, when a swap move 219 Swap(u, v) is performed from the current solution s, the vector $(\Delta_1, \Delta_2, \ldots, \Delta_n)$ 220 can be updated in O(n) time as follows: 221

$$\int \Delta_i - d_{ui}, \qquad \text{for } i = v; \qquad (4)$$

$$\Delta_i = \begin{cases} \Delta_i & d_{ui}, & \text{if } i = 0, \\ \Delta_i + d_{vi}, & \text{for } i = u; \end{cases}$$
(1)

$$\int \Delta_i - d_{ui} + d_{vi}, \quad \text{otherwise;} \tag{6}$$

As such, the computational complexity of one iteration of our IDTS algorithm 222 is bounded by $O(|X| \times m^2 + mlogm + (n-m)log(n-m) + n)$, where mlogm + mlogm + n223 (n-m)loq(n-m) is required by the quick-sort algorithm and represents a 224 very small proportion of the total complexity. 225

Finally, the IDTS algorithm examines the neighborhood N_{swap}^{θ} in a lexico-226 graphical order and switches immediately to the next iteration as long as an 227 improving solution is encountered. In this way, the algorithm can significantly 228 be speeded up at the early stage of the algorithm. 229

2.5Tabu List Management Strategy and Determination of Tabu Status 230

In the IDTS algorithm, we adopt the solution-based tabu strategy to determine 231 the tabu status of neighbor solutions during the neighborhood evaluation. In 232 principle, all solutions that have not been visited are considered as eligible 233 solutions, while all the visited solutions are considered tabu and thus excluded 234 from further consideration. 235

In our IDTS implementation, we adopt the technique of [19] and employ three 236 hash vectors H_1 , H_2 , and H_3 (taking the role of the tabu lists) to determine 237 the tabu status of neighbor solutions, where each hash vector H_k (k = 1, 2, 3)238 is associated with a hash function h_k . Each hash vector H_k (k = 1, 2, 3) is a 239 L-dimensional binary vector (L is the length of the hash vectors), where $H_k[i]$ 240 $(0 \le i \le L-1)$ takes the value of 0 or 1. The hash functions h_k (k = 1, 2, 3)241 are used to map the solutions of the search space Ω_m to the indices of the 242 hash vectors H_k , i.e., $h_k : \Omega \to \{0, 1, 2, \dots, L-1\}$ (k = 1, 2, 3). 243

To be able to rapidly calculate the hash values of the neighbor solutions, we 244 employ three simple hash functions inspired by the studies [9,27,30]. We define 245 these three hash functions h_k (k = 1, 2, 3) relative to a candidate solution 246 $s = (x_1, x_2, \ldots, x_n)$ as follows: 247

$$h_k(s) = \left(\sum_{i=1}^n \lfloor i^{\xi_k} \rfloor \times x_i\right) \mod L \tag{7}$$

where ξ_k (k = 1, 2, 3) are parameters of the hash functions (see Section 3.2), while L is empirically set to 10^8 .

In the IDTS algorithm, the hash vectors are maintained as follows. At the 250 beginning, all hash vectors are initialized to 0 (lines 1–3 of Algorithm 1). 251 Then, they are dynamically updated by the incumbent solution s as the search 252 progresses, as shown in line 19 of Algorithm 1. Accompanying this, we calculate 253 the hash values of neighbor solutions as follows. First, given the incumbent 254 solution s and its hash value $h_k(s)$, the hash value of any neighbor solution s'(=255 $s \oplus Swap(u, v)$ can be obtained in O(1) by setting $h_k(s')$ to $h_k(s) + (|v^{\xi_k}| - v^{\xi_k}|)$ 256 $|u^{\xi_k}|$). Second, for the initial solution s_{inital} , the hash value $h_k(s_{inital})$ must 257 be calculated from scratch, and the associated time complexity is bounded by 258 O(n) for each hash function h_k (k = 1, 2, 3) according to Eq.(7). 259

Using the three hash vectors defined above and the associated hash functions, 260 the tabu status of neighbor solutions can be easily determined. A candidate 261 neighbor solution s' is determined to be non-tabu if at least one of the three 262 hash values $H_1[h_1(s')]$, $H_2[h_2(s')]$, and $H_3[h_3(s')]$ is 0, since such a solution 263 cannot have been visited. If instead all the hash values $H_1[h_1(s')], H_2[h_2(s')], H_2[h_2(s')]$ 264 and $H_3[h_3(s')]$ equal 1, then with high probability the neighbor solution s' has 265 been visited previously and thus is considered as a tabu solution. In short, a 266 neighbor solution s' is excluded from consideration if and only if $H_1(h_1(s')) \wedge$ 267 $H_2(h_2(s')) \wedge H_3(h_3(s')) = 1.$ 268

269 2.6 Relation with an Existing Tabu Search Algorithm

Our IDTS algorithm shares similarities with the tabu search algorithm of [27] 270 in the sense that both algorithms are based on the general solution-based 271 tabu approach. On the other hand, our IDTS algorithm has several features 272 that distinguish it from the algorithm of [27]. The first is the parametric con-273 strained swap neighborhood whose size is controlled by the parameter θ and 274 which appreciably reduces the computational burden of our method. By con-275 trast, the algorithm of [27] employs a randomized constrained neighborhood 276 composed of solutions sampled according to a probability from the full swap 277 neighborhood $N_{swap}^{full}(s)$, leading to a neighborhood of different size at each 278 iteration of the algorithm. Second, to determine the tabu status of neighbor 279 solutions, IDTS uses three hash vectors and the associated hash functions, 280 instead of using two hash vectors as in [27], which considerably decreases the 281 error rate of identifying the tabu status of a candidate solution. Third, our 282

²⁸³ IDTS algorithm employs an intensified search mechanism, which is motivated ²⁸⁴ by studying the distribution of high-quality solutions in the search space (see ²⁸⁵ Section 4.5). Finally, as the experimental results in Section 4.3 demonstrate, ²⁸⁶ our IDTS algorithm equipped with these features outperforms all existing ²⁸⁷ methods including the latest tabu search algorithm and the memetic algo-²⁸⁸ rithm of [27].

289 **3** Experimental Results and Comparisons

We assess the performance of the proposed IDTS algorithm by carrying out extensive computational experiments on a large number of commonly used benchmark instances. The computational results of the IDTS algorithm are provided and compared with those of the current leading algorithms in the literature.

295 3.1 Benchmark Instances

In the experiments, we employed eight sets of 250 benchmark instances¹ as our test bed. These instances have been widely used to assess algorithms for several dispersion problems, including the maximum diversity problem [32], Max-Minsum DP [1], and Min-Diff DP studied in this work [3,13,22,27,33]. The main characteristics of these benchmark instances are summarized as follows:

- APOM Set : 40 small instances with $n \in [50, 250]$ and $m \in \{0.2n, 0.4n\}$.
- Distances between elements are Euclidean or random integers in [0, 10000].
- GKD-b set : 50 instances, where n varies from 25 to 150, m varies from 2 to 45, and distances are Euclidean.
- GKD-c Set : 20 instances with n = 500 and m = 50, and distances are Euclidean.
- SOM-b Set : 20 instances with $n \in [100, 500]$ and $m \in \{0.1n, 0.2n, 0.3n, 0.4n\}$, and distances are integers generated randomly in [0, 9].
- DM1A Set : 20 instances with n = 500 and m = 200, and distances are a real number randomly generated in [0, 10]. These instances are renamed in [27] as MDG-a 41 to MDG-a 60.
- MDG-a Set : 20 instances with n = 500 and m = 50 and 20 instances with
- n = 2000 and m = 200. Like for DM1A, the distances are real numbers
- generated randomly in [0, 10].

¹ Available at http://www.di.unito.it/~aringhie/benchmarks.html and http: //www.optsicom.es/mindiff/

• MDG-b Set : 20 instances with n = 500 and m = 50 and 20 larger instances with n = 2000 and m = 200. The distances are real numbers generated randomly in [0, 1000].

- MDG-c set : 20 large instances with n = 3000 and $m \in \{300, 400, 500, 600\}$,
- and distances are integers generated randomly in [0, 1000].

321 3.2 Parameter Settings and Experimental Protocol

Table 1	
Settings of pa	rameters

Parameters	Section	Description	Values
α	2.4	depth of tabu search	$\{35,100\}$
θ	2.4	parameter used to construct the constrained neighborhood	$\{0.3, 1.0\}$
ξ_1	2.5	parameter for the first hash function	1.8
ξ_2	2.5	parameter for the second hash function	1.9
ξ3	2.5	parameter for the third hash function	2.0

The IDTS algorithm employs five parameters, whose values and descriptions are provided in Table 1. According to the parameter analysis in Section 4.1, the parameter θ used to control the neighborhood size was set to 0.3 except for the APOM and GKD-b instances for which θ was set to 1.0. The tabu search depth α was set to 35 except for the GKD-c instances for which it was set to 100. The parameters ξ_1 , ξ_2 , ξ_3 used to define the hash functions were respectively set to 1.8, 1.9, and 2.0.

To assess and compare the performance of the IDTS algorithm, we use the 329 five most recent state-of-the-art Min-Diff DP algorithms in the literature as 330 our main reference algorithms: the construction and improvement heuristic 331 (CIH) [3], the evolutionary path relinking (EPR) algorithm [13], the variable 332 neighborhood search (VNS) algorithm [22], the iterated local search (ILS) 333 algorithm [33], and the solution-based tabu search (TS) algorithm [27]. Our 334 IDTS algorithm and all the reference algorithms were implemented in the 335 C++ programming language. and compiled using the g++ compiler with the 336 -O3 flag as in [27,33]. For the CIH, EPR, VNS algorithms, the new versions 337 implemented by the authors of [27] were used in our comparisons, since the 338 new implementations of these algorithms have a much better performance 339 than the original ones according to experimental results in [27]. Moreover, all 340 the computational experiments and comparisons in this work are based on the 341 same computing platform with an Xeon E5440 processor (2.83 GHz and 2G 342 RAM), running the Linux operating system, which makes it possible to make 343 a direct and fair comparison between the proposed IDTS algorithm and these 344 reference algorithms. 345

Following the studies [13,22,33], our IDTS algorithm was run 20 times for each tested instance, with a time limit t_{max} equaling n seconds for each run, where n represents the number of elements in the tested instance.

Our experimental results² are divided into two parts according to the recent 350 studies [27,33], where the first part is based on 80 benchmark instances of four 351 sets (DM1A, MDG-a with n = 2000, MDG-b with n = 2000, and MDG-c), 352 and the second part includes the remaining 170 instances. In [27,33], all the 353 tested algorithms were run on the same computing platform as our machine 354 for the first part of experiments, which allows us to make a fair comparison 355 between our IDTS algorithm and other algorithms by directly comparing our 356 computational results with the results reported in [27,33]. However, for the 357 remaining instances, the time limits were set according to special instances 358 in reference [27], which makes a direct comparison between the algorithms 359 difficult. For this reason, we focus in this section on the first part of experi-360 mental results, and provide our experimental results in the Appendix for the 361 remaining instances, where we also report the previous best known results in 362 the literature. 363

The computational results are summarized in Tables 2–9 respectively for 364 benchmark sets DM1A, MDG-a with n = 2000, MDG-b with n = 2000, and 365 MDG-c. The best results (f_{best}) over 20 independent runs are shown in Tables 366 2, 4, 6 and 8, and the average results (f_{avg}) are given in Tables 3, 5, 7, and 9. In 367 Tables 2, 4, 6 and 8, the first three columns give the instance name, the time 368 limit in seconds, and the previous best known objective value (f_{bkv}) in the 369 literature (Best Known), and the last two columns indicate the best objective 370 values obtained by our IDTS algorithm and the difference $\Delta_{fest} (= f_{best} - f_{bkv})$ 371 between our best objective value and the previous best known objective value 372 in the literature (A negative value indicates an improved best known result). 373 For a few of instances the current best known results were only obtained by 374 the combined memetic/tabu search algorithm of [27], although using a much 375 longer time limit than that employed by our algorithm $(t_{max} = 20 \times n \text{ seconds})$ 376 instead of $t_{max} = n$ seconds). Also, in a few instances no reference algorithm 377 (i.e., no algorithm other than ours) was able to reach the previous best known 378 result with the present time limit. Other columns give the best result ob-379 tained by the reference algorithms, including the CIH algorithm [3], the EPR 380 algorithm [13], the VNS algorithm [22], the ILS algorithm [33], and the tabu 381 search (TS) algorithm [27]. Similarly, in Tables 3, 5, 7, and 9, the first two 382 columns show the instance name and the time limit. The last two columns 383 report the average objective values of our IDTS algorithm over 20 runs and 384 the standard deviation (std.) of objective values, and other columns give the 385 average objective values (f_{avg}) of the reference algorithms, respectively. 386

² Our solution certificates are available at: http://www.info.univ-angers.fr/ pub/hao/mindiffdp_IDTS.html.

In addition, the row "Avg" in these tables shows the average value of each 387 column, and the row "#Best" gives the number of instances for which an 388 algorithm obtained the best results among the compared algorithms, where 389 the previous best known results from the literature are also compared with 390 f_{best} of the IDTS algorithm. To verify whether there exists a significant dif-391 ference between the results of our IDTS algorithm and those of the reference 392 algorithms, the *p*-values from the non-parametric Friedman tests are given in 393 the last row of the tables, where a p-value less than 0.05 implies a significant 394 difference between two groups of compared results. Finally, the best results 395 among the compared results are indicated in bold in these tables, and the 396 improved results (i.e., the new best known results) are marked by "*". 397

Table 2

Computational results and comparison in the best objective value obtained (f_{best}) on the DM1A instances.

			CIH [3]	EPR [13]	VNS [22]	TS [27]	IDTS (th	nis work)
Instance	Time (s)	Best known	f_{best}	f_{best}	f_{best}	f_{best}	f_{best}	Δf_{best}
01Type1_52.1_n500m200	500	33.37	41.29	55.26	49.15	36.49	34.77	1.40
02Type1_52.2_n500m200	500	34.35	42.80	56.03	50.69	38.72	34.60	0.25
03Type1_52.3_n500m200	500	33.23	41.88	53.44	47.64	38.34	34.71	1.48
04Type1_52.4_n500m200	500	34.28	41.22	53.23	46.85	38.60	34.94	0.66
05Type1_52.5_n500m200	500	35.02	42.28	54.84	47.19	38.18	34.75*	-0.27
06Type1_52.6_n500m200	500	35.55	41.94	54.66	48.38	38.00	33.97*	-1.58
07Type1_52.7_n500m200	500	35.41	41.42	54.87	47.15	37.34	34.07*	-1.34
08Type1_52.8_n500m200	500	37.91	40.43	55.09	46.93	37.91	34.00*	-3.91
09Type1_52.9_n500m200	500	33.23	41.08	53.82	47.59	38.68	34.01	0.78
10Type1_52.10_n500m200	500	34.32	41.66	54.18	46.29	38.03	34.84	0.52
11Type1_52.11_n500m200	500	36.48	42.93	56.78	48.74	38.07	33.91*	-2.57
12Type1_52.12_n500m200	500	33.98	42.76	56.35	49.09	38.58	33.73*	-0.25
13Type1_52.13_n500m200	500	35.84	42.58	57.07	47.88	38.77	34.18*	-1.66
14Type1_52.14_n500m200	500	33.20	41.66	54.19	49.10	38.85	33.79	0.59
15Type1_52.15_n500m200	500	35.89	41.98	57.38	49.28	38.31	35.58*	-0.31
16Type1_52.16_n500m200	500	34.40	41.72	54.45	48.10	39.19	35.16	0.76
17Type1_52.17_n500m200	500	38.28	40.67	52.11	48.75	38.50	34.20*	-4.08
18Type1_52.18_n500m200	500	35.37	42.58	53.58	44.16	37.15	34.18*	-1.19
19Type1_52.19_n500m200	500	36.46	41.18	54.06	45.83	38.91	35.50*	-0.96
20Type1_52.20_n500m200	500	36.28	41.21	55.27	48.21	38.37	35.22*	-1.06
Avg	500	35.14	41.76	54.83	47.85	38.25	34.51	-0.64
#Best		8	0	0	0	0	12	
p-value		3.71e-1	7.74e-6	7.74e-6	7.74e-6	7.74e-6		

Tables 2 and 3 for the set DM1A show that the IDTS algorithm performs 398 much better in terms of f_{best} than the reference algorithms CIH, EPR, VNS, 399 and TS. In particular, the IDTS algorithm yielded improved solutions for 12 400 out of 20 instances and obtained the best result in terms of "Avg" for all the 401 cases. By contrast, none of the reference algorithms can attain the current 402 best known results for these instances. Table 3 also shows that the IDTS 403 algorithm dominates the reference algorithms in terms of f_{avg} , where the IDTS 404 algorithm obtained a better result for all 20 instances. The associated standard 405 deviations (std) are very small for all instances (≤ 2.0). The superiority of the 406 IDTS algorithm over the reference algorithms is also confirmed by the small 407 $p-values \ (\leq 0.05)$ both in terms of f_{best} and f_{avg} . 408

Table 3
Computational results and comparison in the average objective value obtained (f_{avg})
on the DM1A instances.

		CIH [3]	EPR [13]	VNS [22]	TS [27]	IDTS (this work)
Instance	Time (s)	f_{avg}	f_{avg}	f_{avg}	f_{avg}	f_{avg}	std.
$01 Typ e1 _52.1 _{n500 m200}$	500	44.82	58.33	52.40	40.31	37.98	1.57
$02 Type1_{52.2_{n500m200}}$	500	44.51	60.19	52.86	40.18	37.99	1.64
03Type1_52.3_n500m200	500	44.56	57.72	50.03	39.94	37.46	1.38
04Type1_52.4_n500m200	500	43.95	58.33	50.96	40.65	38.14	1.61
05Type1_52.5_n500m200	500	44.00	57.58	49.98	39.62	37.29	1.38
06Type1_52.6_n500m200	500	44.10	58.01	50.90	39.64	38.57	1.37
07Type1_52.7_n500m200	500	43.99	57.64	51.31	39.79	38.02	1.31
08Type1_52.8_n500m200	500	43.49	57.95	49.71	39.30	37.21	1.45
09Type1_52.9_n500m200	500	44.47	57.55	51.54	40.06	37.60	1.41
10Type1_52.10_n500m200	500	44.22	57.22	51.44	40.00	37.47	1.34
11Type1_52.11_n500m200	500	44.14	58.66	52.84	40.07	37.83	1.44
12Type1_52.12_n500m200	500	44.22	58.64	52.00	40.26	37.95	1.75
13Type1_52.13_n500m200	500	44.06	59.48	52.58	40.21	37.87	1.78
14Type1_52.14_n500m200	500	43.96	58.04	51.87	40.38	36.96	1.24
15Type1_52.15_n500m200	500	44.47	59.27	52.39	40.22	38.03	1.28
16Type1_52.16_n500m200	500	44.35	58.78	50.82	40.53	37.90	1.68
17Type1_52.17_n500m200	500	43.82	57.29	51.96	40.32	37.90	1.71
18Type1_52.18_n500m200	500	43.65	56.36	50.33	39.70	37.42	1.59
19Type1_52.19_n500m200	500	44.93	58.32	50.59	40.82	38.50	1.67
20Type1_52.20_n500m200	500	44.78	57.85	51.73	39.89	37.98	1.53
Avg.	500	44.22	58.16	51.41	40.09	37.80	1.51
#Best		0	0	0	0	20	
p-value		7.74e-06	7.74e-06	7.74e-06	7.74e-06		

Table 4 $\,$

Computational results and comparison in the best objective value obtained (f_{best}) on the MDG-a instances with n = 2000.

on the MDG-a insta	<u>nces wi</u>	th n =	2000.						
			CIH [3]	EPR [13]	VNS [22]	[33]	TS [27]	IDTS	(this work)
Instance	$_{(s)}^{Time}$	Best known	f_{best}	f_{best}	f_{best}	f_{best}	f_{best}	f_{best}	Δf_{best}
MDG-a_21_n2000_m200	2000	38	41	49	48	50	38	34*	- 4
MDG-a_22_n2000_m200	2000	37	40	51	49	50	37	34*	- 3
MDG-a_23_n2000_m200	2000	38	41	50	50	49	38	34*	- 4
MDG-a_24_n2000_m200	2000	38	42	49	50	50	39	36*	-2
MDG-a_25_n2000_m200	2000	38	41	50	49	50	38	34*	- 4
MDG-a_26_n2000_m200	2000	38	40	48	47	50	38	35*	-3
MDG-a_27_n2000_m200	2000	38	40	51	45	49	38	34*	-4
MDG-a_28_n2000_m200	2000	38	41	47	47	50	38	35*	- 3
MDG-a_29_n2000_m200	2000	37	41	49	47	47	37	34*	- 3
MDG-a_30_n2000_m200	2000	38	38	51	45	49	38	34*	- 4
MDG-a_31_n2000_m200	2000	38	41	51	44	49	38	35*	- 3
MDG-a_32_n2000_m200	2000	38	40	50	46	48	38	36*	-2
MDG-a_33_n2000_m200	2000	38	42	51	45	48	39	35*	- 3
MDG-a_34_n2000_m200	2000	38	41	49	50	49	38	34*	- 4
MDG-a_35_n2000_m200	2000	39	41	50	47	48	39	36*	- 3
MDG-a_36_n2000_m200	2000	37	41	50	51	48	38	34*	- 3
MDG-a_37_n2000_m200	2000	38	41	50	47	48	38	34*	- 4
MDG-a_38_n2000_m200	2000	38	41	52	47	49	38	35*	-3
MDG-a_39_n2000_m200	2000	38	41	50	48	48	38	34*	- 4
MDG-a_40_n2000_m200	2000	37	41	50	48	49	37	35*	-2
Avg.		37.85	40.75	49.9	47.5	48.9	38	34.6	-3.25
#Best		0	0	0	0	0	0	20	
p-value		7.74e- 06	7.74e- 06	7.74e- 06	7.74e- 06	7.74e- 06	7.74e- 06		

Table 5
Computational results and comparison in the average objective value obtained (f_{avg})
on the MDG-a instances with $n = 2000$.

		CIH [3]	EPR [13]	VN S [22]	ILS [33]	TS [27]	IDTS (t	his work)
Instance	Time (s)	f_{avg}	f_{avg}	f_{avg}	f_{avg}	f_{avg}	f_{avg}	std.
MDG-a_21_n2000_m200	2000	43.30	53.80	50.40	53.43	39.45	36.60	1.24
$MDG-a_{22}n2000 m200$	2000	42.20	54.15	50.85	53.55	39.25	36.85	1.19
MDG-a_23_n2000_m200	2000	43.45	53.70	52.70	53.60	40.05	36.75	1.58
MDG-a_24_n2000_m200	2000	43.15	54.05	53.10	53.63	39.65	37.30	0.78
$MDG-a_{25}n2000m200$	2000	42.55	54.80	52.85	53.60	39.45	37.20	1.25
$MDG-a_{26}n2000m200$	2000	42.15	54.00	50.10	53.58	39.95	37.30	1.35
$MDG-a_27_n2000_m200$	2000	42.20	55.15	49.40	53.73	40.30	37.15	1.96
MDG-a_28_n2000_m200	2000	42.50	56.05	50.40	52.98	39.50	37.40	1.36
MDG-a_29_n2000_m200	2000	42.40	53.05	50.30	53.48	39.15	37.20	1.21
MDG-a_30_n2000_m200	2000	42.30	54.85	50.85	54.28	39.50	36.65	1.06
MDG-a_31_n2000_m200	2000	42.65	54.25	49.40	53.88	39.50	37.30	1.05
MDG-a_32_n2000_m200	2000	42.45	54.15	49.10	53.25	39.60	38.00	1.22
MDG-a_33_n2000_m200	2000	43.10	53.90	49.35	53.80	40.35	36.80	1.25
MDG-a_34_n2000_m200	2000	42.50	55.20	52.60	53.48	39.50	37.35	1.46
MDG-a_35_n2000_m200	2000	42.10	55.75	50.35	54.08	40.35	37.90	1.09
MDG-a_36_n2000_m200	2000	42.60	53.70	52.60	53.73	39.40	37.30	1.31
MDG-a_37_n2000_m200	2000	42.65	54.90	49.35	53.85	39.45	37.20	1.47
MDG-a_38_n2000_m200	2000	42.50	55.70	50.90	53.83	39.50	36.60	1.11
MDG-a_39_n2000_m200	2000	42.35	53.70	50.55	53.48	39.45	36.85	1.31
MDG-a_40_n2000_m200	2000	42.15	55.25	50.45	54.03	39.45	37.45	1.20
Avg	2000	42.56	54.51	50.78	53.66	39.64	37.16	1.27
#Better		0	0	0	0	0	20	
p-value		7.74e- 06	7.74e- 06	7.74e- 06	7.74e- 06	7.74e- 06		

Table 6

Computational results and comparison in the best objective value obtained (f_{best}) on the MDG-b instances with n = 2000.

			CIH [3]	EPR [13]	VNS [22]	ILS [33]	TS [27]	IDTS (this work)
Instance	$_{(s)}^{Time}$	Best known	f_{best}	f_{best}	f_{best}	f_{best}	f_{best}	f_{best} Δf_{best}
MDG-b_21_n2000_m200	2000	3421.21	3592.78	4600.85	4232.27	3978.52	3421.21	2980.75* -440.46
MDG-b_22_n2000_m200	2000	3389.63	3610.15	4333.36	4280.79	3911.34	3420.91	2961.21* -428.42
MDG-b_23_n2000_m200	2000	3445.18	3608.12	4566.91	4196.89	4127.34	3448.59	3074.56* -370.62
MDG-b_24_n2000_m200	2000	3305.12	3599.84	4483.36	4188.47	4088.26	3305.12	3007.62* -297.50
MDG-b_25_n2000_m200	2000	3360.30	3527.50	4429.91	4362.02	3892.67	3360.30	3062.53* -297.77
MDG-b_26_n2000_m200	2000	3342.92	3644.37	4523.01	4145.28	4116.90	3534.09	3068.00* -274.92
MDG-b_27_n2000_m200	2000	3361.44	3693.03	4533.26	4068.17	4126.90	3361.44	3103.56* -257.88
MDG-b_28_n2000_m200	2000	3454.52	3643.33	4389.26	4195.74	4112.43	3454.52	3091.04* -363.48
MDG-b_29_n2000_m200	2000	3351.36	3707.34	4400.64	4039.83	4057.62	3457.26	3046.27* -305.09
MDG-b_30_n2000_m200	2000	3373.50	3678.40	4349.86	4270.79	4110.61	3373.50	3041.00* -332.50
MDG-b_31_n2000_m200	2000	3519.23	3752.73	4313.65	4083.42	4074.80	3519.23	3040.03* -479.20
MDG-b_32_n2000_m200	2000	3442.42	3673.65	4315.46	4240.51	3929.49	3442.42	3060.99* -381.43
MDG-b_33_n2000_m200	2000	3444.89	3706.50	4385.88	4387.52	3985.32	3444.89	3061.50* - 383.39
MDG-b_34_n2000_m200	2000	3454.03	3773.05	4632.31	4113.29	4084.46	3454.03	3071.88* -382.15
MDG-b_35_n2000_m200	2000	3372.26	3699.91	4429.15	4119.50	4000.31	3457.00	3055.21* -317.05
MDG-b_36_n2000_m200	2000	3442.17	3715.52	4321.26	4131.32	4095.13	3442.17	3050.39* -391.78
MDG-b_37_n2000_m200	2000	3352.08	3664.97	4549.56	4232.38	4035.74	3458.43	3015.38* -336.70
MDG-b_38_n2000_m200	2000	3390.50	3661.20	4476.97	4295.61	4126.69	3390.50	3104.92* -285.58
MDG-b_39_n2000_m200	2000	3476.10	3672.97	4470.91	4114.55	4131.87	3476.10	2900.08* -576.02
MDG-b_40_n2000_m200	2000	3351.17	3719.84	4426.71	4136.50	4306.02	3375.62	3016.38* -334.79
Av g.		3402.50	3667.26	4446.61	4191.74	4064.62	3429.87	3040.67 - 361.84
#Best		0	0	0	0	0	0	20
p-value		7.74e-6	7.74e-6	7.74 e - 6	7.74e-6	7.74e-6	7.74e-6	

Table 7	
Computational results and comparison in the average objective value obtained (f_{avg})	
on the MDG-b instances with $n = 2000$.	

		CIH [3]	EPR [13]	VNS [22]	ILS [33]	TS [27]	IDTS (t	his work)
Instance	Time (s)	f_{avg}	f_{avg}	f_{avg}	f_{avg}	f_{avg}	f_{avg}	std.
$\mathrm{MDG}\text{-}\mathrm{b}_21_\mathrm{n}2000_\mathrm{m}200$	2000	3883.27	4778.31	4435.83	4299.38	3544.32	3280.31	114.60
MDG-b_22_n2000_m200	2000	3879.67	4661.84	4520.33	4377.97	3564.41	3274.61	91.25
$\mathrm{MDG}\text{-}\mathrm{b}_23_\mathrm{n}2000_\mathrm{m}200$	2000	3808.08	4722.15	4390.30	4422.12	3550.02	3295.18	102.89
$\mathrm{MDG}\text{-}\mathrm{b}_24_\mathrm{n}2000_\mathrm{m}200$	2000	3839.34	4707.11	4472.02	4421.77	3532.08	3282.48	112.17
$\mathrm{MDG}\text{-}\mathrm{b}_25_\mathrm{n}2000_\mathrm{m}200$	2000	3825.67	4794.93	4557.13	4340.78	3603.87	3268.85	85.49
$\mathrm{MDG}\text{-}\mathrm{b}_26_\mathrm{n}2000_\mathrm{m}200$	2000	3880.27	4730.99	4391.32	4423.07	3630.28	3292.18	104.27
$\mathrm{MDG}\text{-}\mathrm{b}_27_\mathrm{n}2000_\mathrm{m}200$	2000	3868.30	4701.02	4385.32	4424.59	3530.74	3305.33	91.60
MDG-b_28_n2000_m200	2000	3810.18	4698.69	4477.90	4446.16	3545.25	3275.35	104.37
MDG-b_29_n2000_m200	2000	3870.87	4681.13	4301.16	4377.08	3553.72	3289.42	108.10
MDG-b_30_n2000_m200	2000	3797.06	4764.17	4420.86	4470.64	3547.15	3288.46	92.69
MDG-b_31_n2000_m200	2000	3861.12	4801.32	4415.22	4323.11	3609.88	3272.11	102.03
MDG-b_32_n2000_m200	2000	3797.78	4778.58	4366.35	4301.35	3566.98	3276.19	101.40
MDG-b_33_n2000_m200	2000	3815.30	4697.26	4574.32	4351.01	3584.87	3271.92	109.81
MDG-b_34_n2000_m200	2000	3894.40	4791.64	4529.20	4402.11	3578.48	3292.90	110.45
MDG-b_35_n2000_m200	2000	3883.25	4728.08	4342.11	4396.43	3580.56	3290.86	115.81
MDG-b_36_n2000_m200	2000	3897.08	4653.35	4356.16	4435.33	3574.16	3247.02	103.31
MDG-b_37_n2000_m200	2000	3857.85	4836.76	4381.58	4409.06	3593.93	3331.37	108.89
MDG-b_38_n2000_m200	2000	3803.77	4685.33	4405.56	4418.53	3572.96	3278.91	112.47
MDG-b_39_n2000_m200	2000	3863.94	4698.42	4291.46	4403.46	3590.59	3274.59	123.41
MDG-b_40_n2000_m200	2000	3816.35	4670.78	4391.52	4306.02	3523.60	3281.05	124.97
Av g.		3847.68	4729.09	4420.28	4387.50	3568.89	3283.46	106.00
#Best		0	0	0	0	0	20	
p-value		7.74e-6	7.74e-6	7.74e-6	7.74e-6	7.74e-6		

Table 8

Computational results and comparison in the best objective value obtained (f_{best}) on the MDG-c instances with n = 3000.

			CIH [3]	EPR [13]	VNS [22]	ILS [33]	TS [27]	IDTS (t	his work)
Instance	Time (s)	Best known	f_{best}	f_{best}	f_{best}	f_{best}	f_{best}	f_{best}	Δf_{best}
MDG-c_1_n3000_m300	3000	4796	5215	6661	6145	5772	4796	4583*	-213
MDG-c_2_n3000_m300	3000	4827	5203	6482	5975	5936	4830	4542*	-285
MDG-c_3_n3000_m300	3000	4913	5174	6518	6105	5585	4913	4317*	-596
MDG-c_4_n3000_m300	3000	4830	5164	6245	6465	5969	4830	4385*	-445
MDG-c_5_n3000_m300	3000	4809	5175	6500	6152	5750	4881	4641*	-168
MDG-c_6_n3000_m400	3000	6349	6883	8646	8313	7648	6466	6028*	-321
MDG-c_7_n3000_m400	3000	6334	6916	8016	7890	7829	6480	5725*	-609
MDG-c_8_n3000_m400	3000	6255	7417	8198	8248	7984	6255	5993*	-262
MDG-c_9_n3000_m400	3000	6346	6652	8321	8298	7657	6607	5863*	-483
MDG-c_10_n3000_m400	3000	6297	6797	9206	8514	7672	6297	5959*	-338
MDG-c_11_n3000_m500	3000	7793	8477	10130	10236	11031	7793	7539*	-254
MDG-c_12_n3000_m500	3000	7719	8293	10081	10428	10604	7719	7538*	-181
MDG-c_13_n3000_m500	3000	7711	8078	10847	10318	10743	7767	7480*	-231
MDG-c_14_n3000_m500	3000	7645	8470	10472	10327	9941	7678	7739	94
MDG-c_15_n3000_m500	3000	7659	8536	10489	10320	10870	7659	7511*	-148
MDG-c_16_n3000_m600	3000	9337	10066	12104	12007	13910	9337	8680*	-657
MDG-c_17_n3000_m600	3000	8618	10091	13924	12083	13676	8618	8997	379
MDG-c_18_n3000_m600	3000	9118	10451	13322	12538	14011	9118	8978*	-140
MDG-c_19_n3000_m600	3000	9387	12313	12329	12216	13538	9387	8686*	-701
MDG-c_20_n3000_m600	3000	9013	10284	12219	12231	12415	9013	9079	66
Avg	3000	6987.80	7782.75	9535.50	9240.45	9427.05	7022.20	6713.15	-274.65
#Best		3	0	0	0	0	3	17	
p-value		1.75e- 03	7.74e- 06	7.74e- 06	7.74e- 06	7.74e- 06	1.75e- 03		

Table 9
Computational results and comparison in the average objective value obtained (f_{avg})
on the MDG-c instances with $n = 3000$.

		CIH [3]	EPR [13]	VNS [22]	ILS $[33]$	TS [27]	IDTS (t	his work)
Instance	Time (s)	f_{avg}	f_{avg}	f_{avg}	f_{avg}	f_{avg}	f_{avg}	std.
MDG-c_1_n3000_m300	3000	5537.60	7139.85	6393.85	6265.60	5018.60	4772.90	103.49
MDG-c_2_n3000_m300	3000	5393.10	7197.70	6378.40	6539.33	5020.70	4772.60	128.96
MDG-c_3_n3000_m300	3000	5604.60	7294.30	6545.25	6243.03	5107.45	4740.50	215.89
MDG-c_4_n3000_m300	3000	5493.75	7152.85	6723.30	6636.75	4988.05	4689.20	199.65
MDG-c_5_n3000_m300	3000	5431.60	6845.75	6290.95	6663.25	5118.75	4832.70	142.36
MDG-c_6_n3000_m400	3000	7599.85	9513.10	8714.50	8412.98	6680.65	6351.20	171.66
MDG-c_7_n3000_m400	3000	7763.75	9273.25	8690.90	8457.15	6855.30	6382.45	259.46
MDG-c_8_n3000_m400	3000	7894.35	9258.80	8566.05	8497.28	6518.55	6294.00	167.27
MDG-c_9_n3000_m400	3000	7027.35	9116.20	8651.60	8259.35	6913.70	6341.30	226.54
MDG-c_10_n3000_m400	3000	7188.35	10022.30	8912.15	8646.00	6469.70	6266.40	225.11
MDG-c_11_n3000_m500	3000	9086.55	11486.05	10896.90	12223.38	8064.00	7877.45	201.53
MDG-c_12_n3000_m500	3000	8927.50	11965.35	10735.35	12103.03	8101.60	7905.85	242.39
MDG-c_13_n3000_m500	3000	9207.35	12232.10	10692.20	12228.58	8206.10	7993.10	299.98
MDG-c_14_n3000_m500	3000	8859.75	12394.55	10885.55	11643.90	8114.90	7946.15	154.03
MDG-c_15_n3000_m500	3000	9174.90	11945.55	11032.65	12365.85	7991.05	7895.05	212.32
MDG-c_16_n3000_m600	3000	11516.70	13846.90	12406.05	15801.65	9878.05	9505.65	352.73
MDG-c_17_n3000_m600	3000	11226.35	14663.65	12978.90	15284.10	9529.30	9601.40	285.28
MDG-c_18_n3000_m600	3000	11098.75	14411.05	13077.40	15547.08	9540.30	9502.25	305.41
MDG-c_19_n3000_m600	3000	13038.15	14364.90	12870.45	15526.85	9696.40	9360.80	367.25
MDG-c_20_n3000_m600	3000	11390.65	13966.90	12707.40	13545.33	9618.75	9550.30	265.14
Avg.		8423.05	10704.56	9707.49	10544.52	7371.60	7129.06	226.32
#Best		0	0	0	0	1	19	
p-value		7.74e-06	7.74e-06	7.74e-06	7.74e-06	5.70e-05		

Tables 4 and 5 show that for the MDG-a instances with n = 2000 our IDTS 409 algorithm significantly outperforms the five state-of-the-art algorithms both 410 in terms of f_{best} and f_{avg} . Specifically, the IDTS algorithm improved the best 411 known results in the literature for all 20 instances and also obtained better f_{avg} 412 values on all instances. The significance of the differences between the results 413 of the IDTS algorithm and those of the reference algorithms is again confirmed 414 by the small p-values (< 0.05). Furthermore, the standard deviations (std) 415 are less than 2.0, implying a good robustness of the IDTS algorithm. 416

Tables 6 and 7 show that for the large-scale MDG-b instances with n = 2000our IDTS algorithm improved the previous best known results for all 20 instances, and obtained better results both in terms of f_{best} and f_{avg} for all 20 instances compared to any of the five reference algorithms.

Tables 8 and 9 show the computational results of our IDTS algorithm and 421 the five reference algorithms on the MDG-c instances. Table 8 shows that the 422 IDTS algorithm improved the previous best known result in the literature for 423 17 out of 20 instances, and missed the previous best known results for only 3 424 instances. Compared to the latest TS algorithm of [27], the IDTS algorithm 425 yielded a better and worse result in terms of f_{avg} for 17 and 3 instances, 426 respectively. Compared to the other 4 reference algorithms, IDTS yielded a 427 better result for all 20 instances. Table 9 indicates that IDTS outperforms the 428 TS algorithm of [27] for 19 out of 20 instances in terms of f_{avg} , and outper-429 forms the other four reference algorithms for all 20 instances. Once again, the 430

significance of the differences between the results of the IDTS algorithm and those of the reference algorithms is confirmed by p-values less than 0.05.

In summary, the above comparative studies disclose that our IDTS algorithm compares very favorably with the state-of-the-art Min-Diff DP algorithms in the literature.

436 4 Analysis and Discussions

We analyse and discuss several essential features of the IDTS algorithm to understand their impacts on the performance, including the sensitivity of the key parameters, the effectiveness of the intensified search mechanism and the constrained neighborhood. In addition, based on some representative instances, we analyse the moving trajectory of the IDTS algorithm and the spacial distribution of high-quality solutions to shed light on the landscape of Min-Diff DP.

444 4.1 Analysis of the Key Parameters

	P1	P2	P3	P4	
α	f_{avg}	f_{avg}	f_{avg}	f_{avg}	Avg
5	1253.80	3490.00	3533.54	5085.20	3340.63
10	1150.48	3372.28	3309.15	4686.80	3129.68
15	1127.10	3248.64	3317.53	4669.95	3090.80
20	1127.75	3250.34	3254.51	4680.85	3078.36
25	1109.77	3296.11	3295.88	4653.65	3088.85
30	1112.58	3290.97	3252.77	4821.05	3119.34
35	1131.17	3270.20	3288.31	4620.25	3077.48
40	1110.93	3366.32	3315.90	4769.90	3140.76
45	1106.34	3258.68	3297.83	4740.45	3100.82
50	1094.36	3284.21	3307.38	4808.65	3123.65
60	1110.30	3324.87	3347.71	4819.50	3150.60
100	1093.88	3359.40	3351.72	4695.05	3125.01

Table 10 Influence of the parameter α on the performance of the IDTS algorithm. The best Avq result is indicated in bold.

As previously indicated, the IDTS algorithm employs two key parameters, the 445 value α that fixes the maximum number of non-improving tabu search itera-446 tions with respect to the recorded best solution s^* and the value θ that controls 447 the size of neighborhood N_{swap}^{θ} . To investigate the influence of α , we carried out 448 an experiment on 4 representative instances MDG-b 1 n500 m50, MDG-449 b 21 n2000 m200, MDG-b 40 n2000 m200, and MDG-c 1 n3000 m300 450 that are renamed as 'P1', 'P2', 'P3', and 'P4' for simplicity. For each α value 451 in $\{5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 100\}$, we solved each instance 20 times, 452

	P1	P2	P3	P4	
θ	f_{avg}	f_{avg}	f_{avg}	f_{avg}	Avg
0.05	1259.94	3488.03	3490.39	4892.30	3282.67
0.10	1189.86	3417.34	3403.95	4815.10	3206.56
0.15	1162.95	3374.28	3350.06	4725.45	3153.19
0.20	1116.08	3289.13	3357.32	4740.90	3125.86
0.25	1119.22	3323.78	3334.07	4743.35	3130.11
0.30	1110.81	3320.30	3332.74	4703.85	3116.93
0.35	1110.53	3332.74	3331.70	4765.85	3135.21
0.40	1110.93	3366.32	3315.90	4769.90	3140.76
0.45	1116.06	3382.50	3319.98	4781.30	3149.96
0.50	1100.71	3391.71	3342.26	4877.05	3177.93
0.55	1134.28	3341.03	3390.44	4901.95	3191.92
0.60	1104.73	3331.52	3340.25	4870.10	3161.65

Table 11 Influence of the parameter θ on the performance of the IDTS algorithm. The best Avg result is indicated in bold.

using the experimental protocol in Section 3.2. The computational results are 453 summarized in Table 10, where the first column shows the setting of α , the last 454 column shows the average results over all instances (Avg), and other columns 455 give the average objective values over 20 runs for each instance. Table 10 shows 456 that no α value performs the best on all instances and that a medium α value 457 leads generally to a globally acceptable performance, while large and small α 458 values lead to a large performance difference on different instances. Hence, as 459 a comprise, we adopt $\alpha = 35$ as the default value for our IDTS algorithm. 460

To check whether the performance of the algorithm is sensitive to the set-461 ting of θ , we carried out another experiment based on the 4 representative 462 instances mentioned above. For each instance and each θ value in {0.05, 0.1, 463 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, the IDTS algorithm was 464 run 20 times, and the computational results are summarized in Table 11. We 465 observe from Table 11 that similar to the parameter α , a medium θ value 466 leads to an acceptable performance of the algorithm on all instances tested. 467 The last column of the table shows that the setting $\theta = 0.3$ produced the best 468 outcome in terms of Avq among all tested settings. As a result, the default 469 value of θ is set to 0.3 for our IDTS algorithm. 470

471 4.2 Effectiveness of the Constrained Neighborhood

The constrained swap neighborhood N_{swap}^{θ} used as a candidate list strategy is an essential component of the IDTS algorithm. To study the effectiveness of this strategy, we created a variant of the IDTS algorithm called IDTS^{*} by replacing the constrained swap neighborhood N_{swap}^{θ} by the full swap neighborhood N_{swap}^{full} , while keeping other components of the IDTS algorithm unchanged. Then, we carried out an experiment based on the 20 large MDGinstances with n = 2000 and m = 200, executing the IDTS^{*} and IDTS algo-

Table 12 Comparative results of the constrained swap neighborhood N_{swap}^{θ} with the full swap neighborhood N_{swap}^{full} on the 20 large instances of set MDG-b.

			est		av g	f_w	orst
Instance	Time (s)	IDTS*	IDTS	IDTS*	IDTS	IDTS*	IDTS
MDG-b_21_n2000_m200	2000	3227.73	2980.75	3554.41	3280.31	3774.53	3497.11
MDG-b_22_n2000_m200	2000	3203.54	2961.21	3424.94	3274.61	3632.66	3455.44
MDG-b 23 n2000 m200	2000	3281.86	3074.56	3495.20	3295.18	3779.58	3588.02
MDG-b 24 n2000 m200	2000	3181.18	3007.62	3517.09	3282.48	3707.87	3557.54
MDG-b_25_n2000_m200	2000	3326.85	3062.53	3525.38	3268.85	3764.58	3453.27
MDG-b 26 n2000 m200	2000	3298.21	3068.00	3532.70	3292.18	3746.72	3506.27
MDG-b 27 n2000 m200	2000	3267.52	3103.56	3524.25	3305.33	3843.87	3479.93
MDG-b 28 n2000 m200	2000	3331.40	3091.04	3520.57	3275.35	3827.14	3541.91
MDG-b 29 n2000 m200	2000	3137.31	3046.27	3498.12	3289.42	3766.85	3656.07
MDG-b 30 n2000 m200	2000	3248.86	3041.00	3535.45	3288.46	3793.35	3469.45
MDG-b 31 n2000 m200	2000	3301.59	3040.03	3522.19	3272.11	3822.31	3506.72
MDG-b_32_n2000_m200	2000	3179.60	3060.99	3515.59	3276.19	3756.51	3495.65
MDG-b 33 n2000 m200	2000	3205.76	3061.50	3491.72	3271.92	3734.97	3525.80
MDG-b 34 n2000 m200	2000	3100.92	3071.88	3496.86	3292.90	3788.15	3487.91
MDG-b 35 n2000 m200	2000	3385.95	3055.21	3555.96	3290.86	3763.23	3601.60
MDG-b_36_n2000_m200	2000	3314.21	3050.39	3545.67	3247.02	3807.67	3450.08
MDG-b_37_n2000_m200	2000	3227.34	3015.38	3478.66	3331.37	3691.13	3512.72
MDG-b_38_n2000_m200	2000	3272.18	3104.92	3535.02	3278.91	3781.62	3528.55
MDG-b 39 n2000 m200	2000	3275.65	2900.08	3529.54	3274.59	3820.13	3510.92
MDG-b_40_n2000_m200	2000	3206.93	3016.38	3452.30	3281.05	3652.17	3597.83
#Better		0	20	0	20	0	20
#Equal		0	0	0	0	0	0
#Worse		20	0	20	0	20	0
p-value			7.74e-06		7.74e-06		7.74e-06

rithms 20 times on each instance according to the experimental protocol of Section 3.2.

The computational results of this experiment are summarized in Table 12, 481 including the time limits used, the best (f_{best}) , average (f_{avg}) and worst (f_{worst}) 482 objective values. The rows #Better, #Equal and #Worse show the numbers 483 of instances for which each algorithm yielded a better result than the other 484 algorithm in terms of f_{best} , f_{avg} , and f_{worst} . To verify whether there exists a 485 significant difference between the results obtained by the compared algorithms, 486 the *p*-values from the non-parametric Friedman tests are provided in the last 487 row. 488

Table 12 shows that IDTS (with the constrained neighborhood N_{swap}^{θ}) consistently outperforms IDTS^{*} (with the full neighborhood N_{swap}^{full}) on all 20 instances in terms of f_{best} , f_{avg} , and f_{worst} , confirming that the constrained swap neighborhood N_{swap}^{θ} plays a positive role in enhancing algorithmic performance on the tested instances given the time limits employed. On the other hand, the effectiveness of N_{swap}^{θ} also depends on the setting of the parameter θ , as demonstrated in Section 4.1.

496 4.3 Effectiveness of the Intensified Search Mechanism

The intensified search mechanism is another essential component of the proposed IDTS algorithm for the purpose of intensifying the search around the

Table 13 Comparative results of the IDTS algorithm with and without the intensified search mechanism on the 20 large instances of set MDG-b.

		f_{ℓ}	est	f_{c}	av g	f_w	orst
Instance	Time (s)	IDTS-	IDTS	IDTS-	IDTS	IDTS-	IDTS
MDG-b_21_n2000_m200	2000	3531.82	2980.75	3607.87	3280.31	3689.28	3497.11
MDG-b 22 n2000 m200	2000	3425.31	2961.21	3581.12	3274.61	3702.27	3455.44
MDG-b 23 n2000 m200	2000	3435.43	3074.56	3589.84	3295.18	3692.52	3588.02
MDG-b_24_n2000_m200	2000	3296.40	3007.62	3593.57	3282.48	3709.41	3557.54
MDG-b 25 n2000 m200	2000	3474.71	3062.53	3645.80	3268.85	3725.34	3453.27
MDG-b 26 n2000 m200	2000	3476.76	3068.00	3597.27	3292.18	3718.05	3506.27
MDG-b_27_n2000_m200	2000	3430.97	3103.56	3592.84	3305.33	3706.95	3479.93
MDG-b_28_n2000_m200	2000	3513.96	3091.04	3622.38	3275.35	3727.75	3541.91
MDG-b 29 n2000 m200	2000	3536.59	3046.27	3607.95	3289.42	3701.91	3656.07
MDG-b 30 n2000 m200	2000	3461.98	3041.00	3602.71	3288.46	3740.34	3469.45
MDG-b 31 n2000 m200	2000	3493.03	3040.03	3578.02	3272.11	3665.83	3506.72
MDG-b 32 n2000 m200	2000	3401.52	3060.99	3593.41	3276.19	3715.99	3495.65
MDG-b 33 n2000 m200	2000	3455.67	3061.50	3622.39	3271.92	3758.12	3525.80
MDG-b 34 n2000 m200	2000	3378.85	3071.88	3560.27	3292.90	3732.65	3487.91
MDG-b 35 n2000 m200	2000	3516.59	3055.21	3636.91	3290.86	3735.21	3601.60
MDG-b 36 n2000 m200	2000	3504.46	3050.39	3626.13	3247.02	3762.41	3450.08
MDG-b 37 n2000 m200	2000	3403.84	3015.38	3587.46	3331.37	3708.17	3512.72
MDG-b 38 n2000 m200	2000	3336.39	3104.92	3586.67	3278.91	3745.11	3528.55
MDG-b 39 n2000 m200	2000	3458.21	2900.08	3617.42	3274.59	3747.81	3510.92
MDG-b 40 n2000 m200	2000	3449.57	3016.38	3620.62	3281.05	3714.19	3597.83
#Better		0	20	0	20	0	20
#Equal		0	0	0	0	0	0
#Worse		20	0	20	0	20	0
p-value			7.74e-06		7.74e-06		7.74e-06

last best solution found. To study its impacts on the performance of IDTS, we created a variant of the IDTS algorithm called IDTS⁻, where we disabled the intensified search mechanism (line 7 of Algorithm 1), while keeping other components unchanged. As in Section 4.2, we compare IDTS and IDTS⁻ based on the 20 large instances with n = 2000 and m = 200 of the set MDG-b. We ran both IDTS⁻ and IDTS 20 times to solve each instance, using the experimental protocol of Section 3.2.

The experimental results are summarized in Table 13, where we include the same statistics as in Table 12. Table 13 clearly shows that the IDTS algorithm (with the intensified search mechanism) performs consistently much better than IDTS⁻ (without the intensified search mechanism) over all performance indicators considered and on all the tested instances, as confirmed by the small *p-values*. This outcome demonstrates that the intensified search mechanism plays a highly positive role in the high performance of the IDTS algorithm.

513 4.4 Influence of Hash Vectors and Hash Functions

The proposed IDTS algorithm uses three hash vectors of length $L = 10^8$ to manage the tabu list (see Section 2.5). To investigate the influence of these elements, we first created three variants IDTS₁, IDTS₂ and IDTS₃ by disabling the hash vectors H_3 , H_2 , and H_1 of IDTS, respectively, while keeping other components of algorithm unchanged. We also created two other variants IDTS₄ and IDTS₅ of the IDTS algorithm where we replace the default length of hash Table 14

Experimental results of the proposed algorithm with different numbers of hash vectors and different lengths (L) of hash vectors, where the average objective value (f_{avg}) over 20 runs is reported for each instance and each setting.

	Two H	ash Vectors ($L = 10^8$)	Th	ree Hash Vec	tors
Instance	$\begin{array}{c} \text{IDTS}_1\\ (H_1, H_2) \end{array}$	$\begin{array}{c} \text{IDTS}_2\\ (H_1, H_3) \end{array}$	$\begin{array}{c} \text{IDTS}_3\\ (H_2, H_3) \end{array}$	$\begin{array}{c} \text{IDTS}_4\\ (L=10^6) \end{array}$	$\begin{array}{c} \text{IDTS}_5\\ (L=10^7) \end{array}$	$\begin{array}{c} \text{IDTS} \\ (L = 10^8) \end{array}$
MDG-b_1_n500_m50	1095.38	1090.80	1113.68	1128.85	1092.90	1109.54
$MDG-b_2_n500_m50$	1111.31	1101.85	1105.09	1094.83	1109.63	1101.90
MDG-b 3 n500 m50	1135.32	1104.65	1124.82	1099.51	1105.00	1113.33
MDG-b 4 n500 m50	1117.34	1115.78	1107.98	1132.73	1101.97	1106.83
MDG-b_5_n500_m50	1112.37	1102.89	1112.15	1114.05	1102.48	1110.93
MDG-b 6 n500 m50	1126.47	1113.69	1122.27	1123.82	1118.33	1108.56
MDG-b_7_n500_m50	1109.36	1120.34	1114.56	1100.51	1106.37	1121.52
MDG-b_8_n500_m50	1115.28	1104.25	1120.91	1120.48	1118.54	1122.64
MDG-b 9 n500 m50	1122.09	1110.42	1122.27	1113.20	1113.18	1116.71
MDG-b_10_n500_m50	1106.08	1109.63	1123.60	1115.00	1116.72	1116.91
MDG-b_11_n500_m50	1129.84	1118.48	1116.27	1100.90	1106.86	1124.39
MDG-b_12_n500_m50	1113.66	1120.70	1108.58	1116.99	1115.64	1095.78
MDG-b_13_n500_m50	1135.50	1118.32	1115.74	1094.78	1120.83	1092.17
MDG-b_14_n500_m50	1118.15	1122.20	1117.64	1113.11	1123.09	1108.42
MDG-b_15_n500_m50	1109.67	1124.51	1104.98	1103.18	1106.04	1104.19
MDG-b_16_n500_m50	1111.01	1107.44	1094.62	1136.58	1123.35	1092.32
MDG-b_17_n500_m50	1102.21	1113.53	1120.63	1124.57	1101.54	1137.81
MDG-b_18_n500_m50	1105.21	1103.19	1126.20	1116.62	1108.77	1105.58
MDG-b_19_n500_m50	1121.57	1116.59	1104.55	1108.09	1110.67	1114.25
$MDG-b_20_n500_m50$	1123.84	1111.71	1101.14	1104.99	1106.75	1116.59
Avg.	1116.08	1111.55	1113.88	1113.14	1110.43	1111.02

vectors $(L = 10^8)$ by $L = 10^6$ and $L = 10^7$ respectively. Then, we carried out an experiment on the 20 MDG-b instances with n = 500 by running each of these variants 20 times to solve each instance according to the experimental protocol in Section 3.2.

Columns 2–4 of Table 14 show that under the current experimental conditions, 524 IDTS performs similarly with two or three hash vectors in terms of the average 525 results for the tested instances. Nevertheless, given that 1) using more hash 526 vectors theoretically helps to reduce the number of possible collisions in the 527 general case, and 2) determining the tabu status of a neighbor solution has a 528 very low time complexity (bounded by O(1)) when using either two or three 529 hash vectors, we adopt three hash vectors in our IDTS algorithm. A similar 530 observation can be made for $IDTS_4$ and $IDTS_5$, which indicates that IDTS is 531 not sensitive to the length (L) of hash vectors. 532

As shown in Section 2.5, the hash functions involve a parameter (ξ_k , k = 1, 2, 3), each parameter ξ_k leading to a hash function h_k . To show the influence of hash functions on the performance of the IDTS algorithm, we carried out an additional experiment to study the ξ_k parameter. For this purpose, we selected 9 representative parameter combinations (ξ_1, ξ_2, ξ_3) and ran the IDTS algorithm 20 times with each parameter combination to solve each of the 20 MDG-b instances. The average objective results (f_{avg}) are reported in Table

					Javg				
Instance/ (ξ_1, ξ_2, ξ_3)	(1.1, 1.2, 1.3)	(1.1, 1.2, 1.5)	(1.1, 1.3, 1.5)	(1.1, 1.3, 1.9)	(1.1, 1.4, 2.0)	(1.1, 1.5, 2.0)	(1.5, 1.8, 1.9)	(1.8, 1.9, 2.0)	(2.0, 2.1, 2.2)
MDG-b_1_n500_m50	1197.51	1175.63	1168.79	1123.11	1132.04	1143.28	1096.23	1109.54	1106.88
$MDG-b_2n500_m50$	1204.43	1169.34	1157.87	1129.67	1131.82	1129.48	1117.85	1101.90	1107.47
$MDG-b_3n500_m50$	1204.65	1170.33	1161.84	1117.45	1127.47	1127.48	1122.84	1113.33	1124.10
$MDG-b_4n500_m50$	1203.04	1154.75	1168.29	1102.95	1113.68	1123.58	1106.84	1106.83	1115.82
$MDG-b_5n500m50$	1216.52	1155.96	1154.67	1130.46	1117.23	1103.90	1100.49	1110.93	1107.77
$MDG-b_6n500m50$	1205.84	1176.52	1155.93	1122.89	1125.39	1110.60	1116.93	1108.56	1117.50
$MDG-b_7n500_m50$	1201.84	1163.48	1159.13	1123.49	1122.18	1108.56	1113.28	1121.52	1107.91
$MDG-b_8_n500_m50$	1202.44	1180.83	1160.94	1109.50	1121.61	1130.28	1124.86	1122.64	1115.86
$MDG-b_9n500m50$	1182.80	1171.06	1185.53	1126.07	1120.59	1114.03	1123.41	1116.71	1113.71
$MDG-b_10_n500_m50$	1196.40	1166.65	1162.30	1124.79	1118.92	1109.98	1126.91	1116.91	1135.17
$MDG-b_11_n500_m50$	1212.28	1187.99	1147.17	1126.70	1118.42	1104.80	1111.05	1124.39	1103.96
$MDG-b_12_{n500}m50$	1199.01	1153.81	1172.42	1123.18	1110.24	1122.80	1101.50	1095.78	1121.16
$MDG-b_13_n500_m50$	1184.25	1175.17	1146.24	1115.59	1116.61	1120.68	1094.41	1092.17	1085.32
$MDG-b_14_{n500}m50$	1208.96	1159.32	1170.90	1096.59	1137.25	1136.10	1099.84	1108.42	1133.12
$MDG-b_15_n500_m50$	1178.70	1172.74	1150.44	1126.27	1111.18	1129.91	1121.54	1104.19	1102.03
$MDG-b_16_{n500}m50$	1199.96	1168.81	1168.87	1123.22	1103.65	1138.99	1108.76	1092.32	1102.56
$MDG-b_17_n500_m50$	1186.48	1161.27	1173.35	1137.26	1116.24	1124.42	1098.84	1137.81	1116.57
$MDG-b_18_n500_m50$	1192.59	1188.32	1142.87	1131.88	1113.69	1120.07	1102.32	1105.58	1131.50
$MDG-b_19_n500_m50$	1189.19	1180.93	1156.06	1109.78	1121.52	1124.68	1120.75	1114.25	1119.38
$MDG-b_20_{n500}m50$	1186.61	1179.53	1171.94	1120.93	1124.43	1111.96	1112.28	1116.59	1107.60
Avg.	1197.68	1170.62	1161.78	1121.09	1120.21	1121.78	1111.05	1111.02	1113.77
#Best	0	0	0	4	0	1	4	ю	9

⁵⁴⁰ 15, where the row Avg. shows the average result for each column and "#Best" ⁵⁴¹ shows the number of instances for which the corresponding parameter combi-⁵⁴² nation leads to the best result in terms of f_{avg} .

The results of Table 15 show that the performance of the IDTS algorithm is 543 sensitive to the setting of parameters ξ_1 , ξ_2 and ξ_3 . For the parameter com-544 binations containing a small value for all parameters, such as $(\xi_1, \xi_2, \xi_3) =$ 545 (1.1, 1.2, 1.3), (1.1, 1.2, 1.5), (1.1, 1.3, 1.5), IDTS performs badly, yielding a worse 546 result in terms of both "Avg." and "#Best" in comparison with other com-547 binations. On the contrary, for those parameter combinations containing a 548 large value for at least two parameters, such as (1.5, 1.8, 1.9), (1.8, 1.9, 2.0)549 and (2.0, 2.1, 2.2), IDTS performs very well. As a result, for the present IDTS 550 algorithm, the default combination of (ξ_1, ξ_2, ξ_3) is set to (1.8, 1.9, 2.0), since 551 such a setting led to the best result in terms of Avq, among the tested com-552 binations. 553

554 4.5 Spatial Distribution of High-Quality Solutions

In an attempt to further understand why the intensified search mechanism is 555 helpful, we have conducted a study on the spatial distribution of high-quality 556 solutions as in [18,23]. Our experiment was based on 8 representative instances 557 with n = 2000 or 3000, performing 10 runs of our IDTS algorithm for each 558 instance tested, and then collecting all the high-quality local optimal solu-559 tions visited by the IDTS algorithm to characterize the spatial distribution of 560 high-quality solutions. Here, a solution s is considered be of high-quality if its 561 objective value f(s) is better than $1.03 \times f_{bkv}$, i.e., $f(s) < 1.03 \times f_{bkv}$, where f_{bkv} 562 represents the previous best known result in the literature. Following [18,23], 563 to obtain a visual image of the spatial distribution of high-quality solutions 564 obtained, we adopted the multidimensional scaling (MDS) method to generate 565 approximately the distribution of solutions in the Euclidean space R^3 as fol-566 lows. First, we generate a distance matrix $D_{l \times l}$, where l is the number of local 567 optimum solutions sampled, and $d'_{ij} \in D_{l \times l}$ is the distance between solutions 568 s_i and s_j . Specifically, given two solutions $s_i = (I_i^0, I_i^1)$ and $s_j = (I_j^0, I_j^1)$ of 569 Min-Diff DP, the distance between s_i and s_j is calculated as $d'_{ij} = \frac{m - |I_i^1 \cap I_j^1|}{m}$. 570 Then, according to the distance matrix obtained, we generate l coordinate 571 points in the R^3 space by the *cmdscale* method, where the distance distor-572 tion between the obtained coordinate points is minimized. Finally, the scatter 573 graph of the resulting points in \mathbb{R}^3 is plotted. Interested readers are referred 574 to [18,23] for more details of plotting the spatial distribution in the Euclidean 575 space R^3 for a set of solutions. 576

The spatial distributions of the collected high-quality solutions visited by the IDTS algorithm are given in Fig. 3 and Fig. 4 for the selected instances. First, MDG-a_21_n2000_m200

MDG-a_23_n2000_m200

Fig. 3. Distribution of the high-quality local optima for four large MDG-a and MDG-n instances with n = 2000 and m = 200.

these plots show that for all tested instances, the collected high-quality solu-579 tions are typically grouped in clusters, delimited by a sphere of small diameter 580 and characterized by small distances between the solutions of the same clus-581 ter [23]. This observation implies that the solutions within a cluster can be 582 reached more easily from a nearby solution than from a distant solution. The 583 intensified search mechanism of the IDTS algorithm exploits this property 584 by systematically launching a search from the best solution found so far in 585 order to discover other nearby high-quality solutions. Second, to discover a 586 new cluster (that can contain new high-quality solutions), it is useful to apply 587 some strong diversification strategies. In the case of the IDTS algorithm, this 588 is achieved by the simple mechanism of multiple re-starts, each re-start being 589 performed with a different initial solution in the search space. Other mech-590 anisms are of course possible (see, e.g., [15]) and may be preferable in other 591 settings. 592

MDG-c_2_n3000_m300

Fig. 4. Distribution of the high-quality local optima for four large MDG-c instances with n = 3000 and m = 300.

593 4.6 Analysis of the Search Trajectory

To shed additional light on the behavior of the IDTS algorithm, we investigate the nature of its search trajectory. For this purpose, we carried out the following experiment on four representative instances. The algorithm was run once to solve each instance, starting from a local optimum solution obtained by the first improvement descent method. To avoid the bias of the constrained neighborhood candidate list strategy, we adopted the full swap neighborhood N_{swap}^{full} and set the maximum number of iterations to be 500.

⁶⁰¹ During the run of the algorithm, we recorded the objective value (f) at each ⁶⁰² iteration. The evolution of f as a function of the iterations for the tested ⁶⁰³ instances is plotted in Fig. 5, where the X-axis represents the number of iter-⁶⁰⁴ ations, and the Y-axis indicates the objective value f. Fig. 5 shows that the

Fig. 5. Evolution of the objective values during the tabu search process.

objective values f undergo multiple fluctuations during the search process, indicating that the algorithm is able to escape various local optimality traps and
discover diverse local optima by visiting intermediate solutions whose quality
can vary largely.

5 Conclusions and Future work

Our intensification-driven tabu search (IDTS) algorithm for the strongly NPhard Min-Diff DP derives its competitive performance from three major components: a candidate list strategy utilizing a parametric reduced neighborhood to focus on promising neighbor solutions, a solution-based tabu strategy that enables a highly effective search over diverse terrain, and an intensified search mechanism that creates a refined exploration around high-quality solutions discovered during the search.

⁶¹⁷ The performance of the IDTS algorithm was evaluated through extensive ex-⁶¹⁸ periments on 250 benchmark instances commonly used to assess algorithmic performance. The computational results showed that our IDTS algorithm significantly outperforms the state-of-the-art Min-Diff DP algorithms in the literature, by finding improved best known solutions (new upper bounds) for 127 out of the 250 instances tested. Additional experiments were performed to shed light on the behavior of the proposed algorithms.

There are several possibilities to further improve our algorithm. First, self-624 adaptive techniques can be designed to tune the two key parameters α and θ 625 automatically. Second, advanced diversification strategies can be investigated 626 to better exploit the phenomenon exhibited by differential dispersion problems 627 whereby high-quality solutions are grouped in clusters (as shown in Section 628 4.5). Finally, the strategies of the IDTS algorithm embody rather general 629 principles, and it would be interesting to investigate their application more 630 thoroughly in other binary optimization settings. 631

632 Acknowledgments

We are grateful to the reviewers for their valuable comments which helped us to improve the paper. This work was partially supported by the National Natural Science Foundation of China (Grant No. 61703213), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20170904), six talent peaks project in Jiangsu Province (Grant No. RJFW-011), and NUPTSF (Grant No. NY217154).

639 References

- [1] Amirgaliyeva Z., Mladenovićb N., Todosijević R., Urošević D., 2017, Solving
 the maximum min-sum dispersion by alternating formulations of two different
 problems. European Journal of Operational Research, 260, 444-459.
- [2] Aringhieri R., Cordone R., 2011, Comparing local search metaheuristics for the
 maximum diversity problem. Journal of the Operational Research Society, 62, 266–
 280.
- ⁶⁴⁶ [3] Aringhieri R., Cordone R., Grosso A., 2015, Construction and improvement
 ⁶⁴⁷ algorithms for dispersion problems. *European Journal of Operational Research*,
 ⁶⁴⁸ 242(1), 21–33.
- [4] Barbati M., Piccolo C., 2016, Equality measures properties for location problems.
 Optimization Letters, 10(5), 903–920.
- ⁶⁵¹ [5] Brimberg J., Mladenovićb N., Urošević D., Ngai E., 2009, Variable neighborhood
 ⁶⁵² search for the heaviest k-subgraph. Computers & Operations Research, 36(11),
 ⁶⁵³ 2885–2891.

- ⁶⁵⁴ [6] Brimberg J., Mladenovićb N., Todosijević R., Urošević D., 2017, Less is more:
 ⁶⁵⁵ Solving the max-mean diversity problem with variable neighborhood search.
- 656 Information Sciences, 382,179–200.
- [7] Brown J.R., 1979, The sharing problem. Operations Research, 27(2), 324-340.
- [8] Brown J.R., 1979, The knapsack sharing problem. Operations Research, 27(2),
 341–355.
- [9] Carlton W.B., Barnes J.W., 1996, A note on hashing functions and tabu search
 algorithms. European Journal of Operational Research, 95(1), 237-239.
- [10] Carlton W.B., Barnes J.W., 1996, Solving the traveling salesman problem with
 time windows using tabu search. *IIE Transactions*, 28, 617–629.
- [11] Della Croce F., Grosso A., Locatelli M., 2009, A heuristic approach for the max min diversity problem based on max-clique. Computers & Operations Research,
 36(8), 2429–2433.
- [12] Della Croce F., Garraffa M., Salassa F., 2016, A hybrid three-phase approach for
 the max-mean dispersion problem. Computers & Operations Research, 71, 16–22.
- [13] Duarte A., Sánchez-Oro J., Resende M.G.C., Glover F., Martí R., 2015, Greedy
 randomized adaptive search procedure with exterior path relinking for differential
 dispersion minimization. *Information Sciences*, 296, 46–60.
- [14] Erkut E., Neuman S., 1989, Analytical models for locating undesirable facilities.
 European Journal of Operational Research, 40(3), 275–291.
- [15] Glover F., Laguna. M., 1997, Tabu search. Kluwer Academic Publishers, Boston.
- 675 [16] Glover F., Kuo C.C., Dhir K.S., 1998, Heuristic algorithms for the maximum
- diversity problem. Journal of Information and Optimization Sciences, 19(1), 109– 132.
- [17] Lai X.J., Hao J.K., 2016, A tabu search based memetic search algorithm for the
 max-mean dispersion problem. Computers & Operations Research, 72, 118–127.
- [18] Lai X.J., Hao J.K., 2016, Iterated maxima search for the maximally diverse
 grouping problem. European Journal of Operational Research, 254(3),780-800.
- [19] Lai X.J., Yue D., Hao J.K., Glover F., 2018, Solution-based tabu search for the
 maximum min-sum dispersion problem. *Information Sciences*, 441, 79–94.
- [20] Kerchove C., Dooren P.V., 2008, The page trust algorithm: how to rank
 web pages when negative links are allowed? *Proceedings SIAM International Conference on Data Mining*, 346–352.
- [21] Martínez-Gavara A., Campos V., Laguna M., Martí R., 2017, Heuristic solution
 approaches for the maximum minsum dispersion problem. *Journal of Global Optimization*, 67(3), 671–686.
- [22] Mladenović N., Todosijević R., Urošević D., 2016, Less is more: Basic variable
 neighborhood search for minimum differential dispersion problem. *Information Sciences*, 326, 160–171.

- [23] Porumbel D.C., Hao J.K., Kuntz P, 2010, A search space cartography for guiding
 graph coloring heuristics. *Computers & Operations Research* 37(4): 769-778.
- ⁶⁹⁵ [24] Porumbel D.C., Hao J.K., Glover F., 2011, A simple and effective algorithm for ⁶⁹⁶ the MaxMin diversity problem. Annals of Operations Research, 186(1), 275–293.

[25] Prokopyev O.A., Kong N., Martinez-Torres D.L., 2009, The equitable dispersion
 problem. European Journal of Operational Research, 197(1), 59–67.

- [26] Resende M.G.C., Martí R., Gallego M., Duarte A., 2010, GRASP and path
 relinking for the max-min diversity problem. *Computers & Operations Research*,
 37(3), 498-508.
- ⁷⁰² [27] Wang Y., Wu Q., Glover F., 2017, Effective metaheuristic algorithms for
 ⁷⁰³ the minimum differential dispersion problem. *European Journal of Operational*⁷⁰⁴ *Research*, 258, 829–843.
- [28] Wu Q., Hao J.K., 2013, An adaptive multistart tabu search approach to solve the
 maximum clique problem. *Journal of Combinatorial Optimization*, 26(1), 86–108.
- [29] Wu Q., Hao J.K., 2013, A hybrid metaheuristic method for the maximum diversity problem. European Journal of Operational Research, 231(2), 452–464.
- [30] Woodruff D.L., Zemel E., 1993, Hashing vectors for tabu search. Annals of
 Operations Research, 41(2), 123-137.
- [31] Yang B., W. Cheung, Liu J., 2007, Community mining from signed social
 networks. *IEEE Transactions on Knowledge & Data Engineering* 19(10), 1333–1348.
- [32] Zhou Y., Hao J.K., Duval B., 2017, Opposition-based memetic search for the
 maximum diversity problem. *IEEE Transactions on Evolutionary Computation*21(5), 731-745.
- [33] Zhou Y., Hao J.K., 2017, An iterated local search algorithm for the minimum differential dispersion problem. *Knowledge-Based Systems* 125, 26–38.

719 A Appendix

We report here the results of the IDTS algorithm on the six sets of bench-720 marks of 170 instances that are not listed in Section 3.3. The outcomes of the 721 computational tests are given in Tables A.1- A.6, including the previous best 722 known results in the literature (Best Known), and for our IDTS algorithm, 723 the best objective value (f_{best}) , the average objective value (f_{avg}) , the stan-724 dard deviation (sdt) of objective values, and the difference between f_{best} and 725 the Best Known results. The row 'Avg' of each table shows the average of the 726 values in each column. The row '#Best' indicates the number of instances for 727 which the associated result matches the current best known one, and the best 728

results between the results of IDTS and the Best Known values are indicated
in bold. In addition, the symbol '*' means that the IDTS algorithm obtained
an improved solution compared to the Best Known result.

We used the same timeout limit for the IDTS algorithm as in Section 3.3, i.e., 732 $t_{max} = n$, where n is the number of elements in the instance. The two previous 733 studies [22,33] used the same time limit as ours. It should be noted, however, 734 that the study in [27] set the timeout limit t_{max} according to specific instances, 735 making it difficult to perform a direct comparison between our results and 736 theirs on these instances. Thus, the main goal of this section is to show the 737 detailed experimental results of our IDTS algorithm, instead of making a direct 738 comparison between our IDTS algorithm and the algorithm in [27]. 739

Tables A.1, A.2, and A.4 show our IDTS algorithm performed very well by 740 comparison to the Best Known results on the MDG-a, MDG-b and GKD-741 c instances (which constitute all the larger instances with n = 500). Tables 742 A.3 and A.5 show our IDTS algorithm matched or improved the Best Known 743 results in most of GKD-b and SOM-b instances, and Table A.6 shows our 744 algorithm yielded slightly worse outcomes compared to the Best Known results 745 on the APOM instances. In sum, these computational results further show a 746 good search ability of the proposed IDTS algorithm. 747

Table A.1

Computational results on MDG-a instances with n = 500.

Instance	Time (s)	Best known	f_{best}	f_{avg}	std	Δf_{best}
MDG-a_1_n500_m50	500	10.46	9.73*	10.97	0.37	-0.73
MDG-a_2_n500_m50	500	10.58	10.21*	11.00	0.40	-0.37
MDG-a_3_n500_m50	500	10.74	10.04*	11.03	0.32	-0.70
MDG-a_4_n500_m50	500	10.90	10.10*	10.99	0.36	-0.80
MDG-a_5_n500_m50	500	10.58	10.02*	10.97	0.35	-0.56
MDG-a_6_n500_m50	500	10.08	9.91*	10.99	0.41	-0.17
MDG-a_7_n500_m50	500	10.35	9.55*	11.07	0.44	-0.80
MDG-a_8_n500_m50	500	10.16	10.35	10.92	0.35	0.19
MDG-a 9 n500 m50	500	9.97	10.47	11.06	0.28	0.50
MDG-a 10 n500 m50	500	10.58	10.52*	11.10	0.31	-0.06
MDG-a_11_n500_m50	500	10.57	9.37*	10.95	0.43	-1.20
MDG-a_12_n500_m50	500	10.62	10.17*	11.11	0.30	-0.45
MDG-a_13_n500_m50	500	10.31	10.32	11.16	0.30	0.01
MDG-a_14_n500_m50	500	9.95	9.96	10.99	0.34	0.01
MDG-a_15_n500_m50	500	10.40	9.66*	11.01	0.38	-0.74
MDG-a_16_n500_m50	500	10.40	10.28*	10.92	0.29	-0.12
MDG-a 17 n500 m50	500	10.33	10.34	11.02	0.33	0.01
MDG-a 18 n500 m50	500	10.56	10.16*	10.95	0.29	-0.40
MDG-a_19_n500_m50	500	10.46	9.55*	10.88	0.41	-0.91
MDG-a_20_n500_m50	500	10.54	9.96*	11.03	0.39	-0.58
Avg		10.43	10.03	11.01	0.35	-0.39
#Best		5	15			

Table A.2 Computational results on MDG-b instances with n = 500.

Instance	Time (s)	Best known	f_{best}	f_{avg}	std	Δf_{best}
MDG-b_1_n500_m50	500	1055.33	1031.91*	1120.95	33.23	-23.42
MDG-b_2_n500_m50	500	1038.08	993.71*	1112.43	37.34	-44.37
MDG-b_3_n500_m50	500	1086.91	1045.74^*	1118.47	32.95	-41.17
MDG-b_4_n500_m50	500	1052.27	944.13*	1097.53	38.75	-108.14
MDG-b_5_n500_m50	500	1005.45	1013.51	1104.18	38.26	8.06
MDG-b_6_n500_m50	500	1061.50	1002.18*	1107.08	39.33	-59.32
MDG-b_7_n500_m50	500	1063.67	937.19*	1099.44	41.89	-126.48
MDG-b 8 n500 m50	500	1088.63	1026.35*	1120.24	30.60	-62.28
MDG-b_9_n500_m50	500	1069.26	1047.74^*	1115.17	35.46	-21.52
MDG-b_10_n500_m50	500	1069.54	1006.26*	1114.27	39.39	-63.28
MDG-b_11_n500_m50	500	1031.02	1047.57	1121.52	33.07	16.55
MDG-b_12_n500_m50	500	1063.76	1011.66*	1107.38	38.17	-52.10
MDG-b_13_n500_m50	500	1026.86	990.38*	1106.17	43.44	-36.48
MDG-b_14_n500_m50	500	1018.69	1062.11	1120.50	29.36	43.42
MDG-b_15_n500_m50	500	1022.19	1044.68	1115.20	28.77	22.49
MDG-b_16_n500_m50	500	1057.20	1035.26*	1112.72	28.83	-21.94
MDG-b_17_n500_m50	500	1045.20	1041.10*	1120.33	31.46	-4.10
MDG-b_18_n500_m50	500	1032.54	998.27*	1095.49	39.46	-34.27
MDG-b_19_n500_m50	500	1066.78	982.59*	1089.50	38.66	-84.19
MDG-b_20_n500_m50	500	1022.66	1013.54*	1102.86	37.12	-9.12
Avg	500	1048.88	1013.79	1110.07	35.78	-35.08
#Best		4	16			

Table A.3 Computational results on GKD-b instances.

putational results of				£	-+-1	A. £
Instance	Time (s)	Best known	f_{best}	f_{avg}	std	Δf_{best}
$GKD-b_1_n25_m2$	25	0.00	0.00	0.00	0.00	0.00
$GKD-b_2_n25_m2$	25	0.00	0.00	0.00	0.00	0.00
$GKD-b_3_n25_m2$	25	0.00	0.00	0.00	0.00	0.00
$GKD-b_4_n25_m2$	25	0.00	0.00	0.00	0.00	0.00
$GKD-b_5_n25_m2$	25	0.00	0.00	0.00	0.00	0.00
GKD-b_6_n25_m7	25	12.72	12.72	12.72	0.00	0.00
GKD-b_7_n25_m7	25	14.10	14.10	14.10	0.00	0.00
GKD-b_8_n25_m7	25	16.76	16.76	16.76	0.00	0.00
GKD-b 9 n25 m7	25	17.07	17.07	17.07	0.00	0.00
GKD-b 10 n25 m7	25	23.27	23.27	23.86	1.19	0.00
GKD-b 11 n50 m5	50	1.93	1.93	1.93	0.00	0.00
GKD-b 12 n50 m5	50	2.05	2.05	2.05	0.01	0.00
GKD-b 13 n50 m5	50	2.36	2.36	2.43	0.22	0.00
GKD-b 14 n50 m5	50	1.66	1.66	1.66	0.00	0.00
GKD-b 15 n50 m5	50	2.85	2.85	2.85	0.00	0.00
GKD-b 16 n50 m15	50	42.75	42.75	42.93	0.66	0.00
GKD-b 17 n50 m15	50	48.11	48.11	50.54	7.29	0.00
GKD-b 18 n50 m15	50	43.20	43.20	43.20	0.00	0.00
GKD-b 19 n50 m15	50	46.41	46.41	46.41	0.00	0.00
GKD-b 20 n50 m15	50	47.72	47.72	48.25	1.92	0.00
GKD-b 21 n100 m10	100	9.33	9.33	11.47	1.26	0.00
GKD-b 22 n100 m10	100	8.60	8.60	12.16	1.34	0.00
GKD-b 23 n100 m10	100	6.91	7.59	10.52	1.54	0.68
GKD-b_23_n100_m10 GKD-b_24_n100_m10	100	7.59	7.59	11.85	1.69	0.00
GKD-b 25 n100 m10	100	6.91	9.64	11.85	1.09	2.73
GKD-b 26 n100 m30	100	159.19		12.04	6.99	0.00
	100		159.19			
GKD-b_27_n100_m30	100	124.17	124.17	141.46	24.47	0.00
GKD-b_28_n100_m30	100	$106.38 \\ 135.85$	106.38	119.41 138.53	16.86 7.47	0.00 0.00
GKD-b_29_n100_m30			135.85			
GKD-b_30_n100_m30	100	127.27	127.27	136.05	13.51	0.00
GKD-b_31_n125_m12	125	11.05	11.05	12.80	2.05	0.00
GKD-b_32_n125_m12	125	11.43	10.43*	14.85	1.47	-1.00
GKD-b_33_n125_m12	125	9.18	10.79	13.93	1.40	1.61
GKD-b_34_n125_m12	125	11.83	11.83	16.22	1.63	0.00
GKD-b_35_n125_m12	125	9.20	7.53*	11.88	1.60	-1.67
GKD-b_36_n125_m37	125	125.55	125.55	146.88	17.19	0.00
GKD-b_37_n125_m37	125	194.22	194.22	194.65	1.53	0.00
GKD-b_38_n125_m37	125	184.27	184.27	190.89	17.66	0.00
GKD-b_39_n125_m37	125	155.39	155.39	161.74	6.29	0.00
GKD-b_40_n125_m37	125	161.68	172.80	199.71	11.79	11.12
GKD-b_41_n150_m15	150	16.48	17.85	22.22	1.85	1.37
GKD-b_42_n150_m15	150	12.38	12.38	20.03	2.67	0.00
GKD-b_43_n150_m15	150	11.83	13.99	18.42	1.84	2.16
GKD-b_44_n150_m15	150	16.58	11.74*	18.20	2.33	-4.84
GKD-b_45_n150_m15	150	16.43	12.84*	19.95	2.24	-3.59
GKD-b_46_n150_m45	150	207.81	207.81	219.40	7.26	0.00
GKD-b_47_n150_m45	150	211.77	211.77	214.20	5.74	0.00
GKD-b_48_n150_m45	150	177.29	177.29	203.37	17.70	0.00
GKD-b 49 n150 m45	150	197.88	197.88	204.88	10.73	0.00
GKD-b 50 n150 m45	150	220.76	230.49	246.24	23.38	9.73
Avg		59.56	59.93	64.67	4.52	0.37
#Best		46	43			

Table A.4 Computational results on GKD-c instances.

Instance	Time (s)	Best known	f_{best}	f_{avg}	std	Δf_{best}
GKD-c_1_n500_m50	500	6.39	6.51	7.93	0.93	0.12
GKD-c_2_n500_m50	500	6.13	6.75	8.34	0.84	0.62
GKD-c_3_n500_m50	500	6.65	6.10*	8.29	0.93	-0.55
GKD-c_4_n500_m50	500	6.64	5.59*	7.97	1.06	-1.05
GKD-c_5_n500_m50	500	7.38	6.88*	8.70	1.11	-0.50
GKD-c_6_n500_m50	500	6.79	6.29*	7.87	0.93	-0.50
GKD-c_7_n500_m50	500	6.84	7.11	8.88	1.02	0.27
GKD-c_8_n500_m50	500	7.01	7.27	9.16	1.31	0.26
GKD-c_9_n500_m50	500	8.09	6.18*	8.31	0.97	-1.91
GKD-c_10_n500_m50	500	7.37	6.85*	9.27	1.04	-0.52
GKD-c_11_n500_m50	500	6.42	5.27*	7.73	1.04	-1.15
GKD-c_12_n500_m50	500	6.50	6.12*	8.14	1.02	-0.38
GKD-c_13_n500_m50	500	6.52	7.27	8.82	1.24	0.75
GKD-c_14_n500_m50	500	6.38	5.98*	8.43	1.11	-0.40
GKD-c_15_n500_m50	500	6.99	6.32*	8.47	1.04	-0.67
GKD-c_16_n500_m50	500	6.51	5.88*	7.91	1.18	-0.63
GKD-c_17_n500_m50	500	6.31	5.62*	7.50	1.06	-0.69
GKD-c_18_n500_m50	500	6.88	6.51*	8.61	0.97	-0.37
GKD-c_19_n500_m50	500	6.84	6.20*	8.26	1.11	-0.64
GKD-c_20_n500_m50	500	6.32	5.53*	8.10	1.17	-0.79
Avg		6.75	6.31	8.33	1.05	-0.44
#Best		5	15			

Table A.5 Computational results on SOM-b instances.

Instance	Time (s)	Best known	f_{best}	f_{avg}	std	Δf_{best}
SOM-b_1_n100_m10	100	0	0	1.4	0.49	0
SOM-b_2_n100_m20	100	4	4	5.15	0.36	0
SOM-b_3_n100_m30	100	6	7	8.25	0.54	1
SOM-b_4_n100_m40	100	10	10	11.2	0.68	0
SOM-b_5_n200_m20	200	3	3	4.55	0.5	0
SOM-b_6_n200_m40	200	9	9	9.85	0.36	0
SOM-b_7_n200_m60	200	13	13	14.55	0.67	0
SOM-b_8_n200_m80	200	18	18	19.65	0.91	0
SOM-b_9_n300_m30	300	6	6	6.85	0.36	0
SOM-b_10_n300_m60	300	12	12	13.4	0.49	0
SOM-b_11_n300_m90	300	18	18	19.5	0.74	0
SOM-b_12_n300_m120	300	24	23*	25.85	1.19	-1
SOM-b_13_n400_m40	400	9	8*	8.95	0.22	-1
SOM-b_14_n400_m80	400	16	16	17.15	0.61	0
SOM-b_15_n400_m120	400	23	23	24.4	0.86	0
SOM-b_16_n400_m160	400	27	30	32.55	1.28	3
SOM-b_17_n500_m50	500	10	10	10.7	0.64	0
SOM-b_18_n500_m100	500	19	19	20.2	0.51	0
SOM-b_19_n500_m150	500	26	26	28.75	1.3	0
SOM-b_20_n500_m200	500	34	36	39.45	2.48	2
Avg	300	14.35	14.55	16.12	0.76	0.2
#Best		18	17			

Table A.6
Computational results on APOM instances.

Instance	Time (s)	Best known	f_{best}	f_{avg}	std	Δf_{best}
01a050m10	50	1.41	1.41	1.87	0.16	0.00
02a050m20	50	14.72	14.72	14.73	0.06	0.00
03a100m20	100	3.65	4.01	4.38	0.32	0.36
04a100m40	100	25.50	25.50	26.42	2.11	0.00
05a150m30	150	6.56	7.09	7.91	0.72	0.53
06a150m60	150	46.99	46.99	47.31	0.79	0.00
07a200m40	200	11.39	11.49	12.46	0.83	0.10
08a200m80	200	63.48	63.46*	64.47	1.94	-0.02
09a250m50	250	14.56	14.68	16.61	1.18	0.12
10a250m100	250	82.09	82.51	86.04	4.78	0.43
11b050m10	50	1091.00	1355.00	2043.30	326.29	264.00
12b050m20	50	5552.00	5552.00	6044.15	370.60	0.00
13b100m20	100	3996.00	4160.00	4945.20	406.45	164.00
14b100m40	100	9540.00	10552.00	11360.45	357.56	1012.00
15b150m30	150	6769.00	6607.00*	7386.60	437.72	-162.00
16b150m60	150	13449.00	14007.00	15101.85	533.94	558.00
17 b 200 m 40	200	8197.00	9042.00	9809.65	361.10	845.00
18b200m80	200	17502.00	18026.00	19085.30	479.00	524.00
19b250m50	250	11427.00	10635.00*	11730.05	447.96	-792.00
20b250m100	250	21832.00	20963.00*	22197.45	754.33	-869.00
21 c050 m10	50	1149.00	1124.00	1225.70	100.52	-25.00
22c050m20	50	6205.00	6205.00	6210.80	25.28	0.00
23c100m20	100	2239.00	2149.00*	2850.05	299.25	-90.00
24c100m40	100	11098.00	11098.00	13278.50	5263.04	0.00
25c150m30	150	3550.00	3414.00*	4757.40	1705.96	-136.00
26c150m60	150	13087.00	13087.00	21426.80	14445.11	0.00
$27 c_{200} m_{40}$	200	4865.00	5226.00	8445.60	3238.32	361.00
28c200m80	200	19393.00	19537.00	26525.50	20460.89	144.00
29c250m50	250	5650.00	5955.00	10390.00	3572.99	305.00
30c250m100	250	22050.00	22280.00	34583.35	16810.51	230.00
31d050m10	50	1049.00	1049.00	1138.85	102.52	0.00
32d050m20	50	4564.00	4564.00	4587.15	100.91	0.00
33d100m20	100	2374.00	2561.00	2847.45	176.55	187.00
34d100m40	100	8979.00	8979.00	13011.00	7666.21	0.00
35d150m30	150	3234.00	3923.00	6545.45	2148.50	689.00
36d150m60	150	12444.00	12444.00	15813.80	6053.84	0.00
37 d200 m40	200	4752.00	5113.00	8731.80	2839.81	361.00
38d200m80	200	18683.00	18835.00	23145.80	8027.08	152.00
39d250m50	250	5856.00	6142.00	11381.45	3598.45	286.00
40d250m100	250	21001.00	21492.00	46862.40	41716.38	491.00
Avg.	150	6796.18	6908.70	9343.63	3571.00	112.51
#Best		33	19			