Xiangjing Lai
email: laixiangjing@gmail.com

Jin-Kao Hao
email: jin-kao.hao@univ-angers.fr

Fred Glover
email: glover@opttek.com

Dong Yue

Intensication-driven tabu search for the minimum dierential dispersion problem

Keywords: Combinatorial optimization, Dispersion problem, Tabu search, Candi-13 date list strategy, Intensication mechanism, Heuristics. 14

The minimum dierential dispersion problem is a NP-hard combinatorial optimiza-2 tion problem with numerous relevant applications. In this paper, we propose an 3 intensication-driven tabu search algorithm for solving this computationally chal-4 lenging problem by integrating a constrained neighborhood, a solution-based tabu 5 strategy, and an intensied search mechanism to create a search that eectively ex-6 ploits the elements of intensication and diversication. We demonstrate the com-7 petitiveness of the proposed algorithm by presenting improved new best solutions 8 for 127 out of 250 benchmark instances (> 50%). We study the search trajectory of 9 the algorithm to shed light on its behavior and investigate the spatial distribution 10 of high-quality solutions in the search space to motivate the design choice of the 11 intensied search mechanism.

By varying the optimization objective, a variety of dispersion problems have been introduced and investigated in the literature, including notably the maximum diversity problem (MDP) [START_REF] Aringhieri | Comparing local search metaheuristics for the maximum diversity problem[END_REF][START_REF] Glover | Heuristic algorithms for the maximum diversity problem[END_REF][START_REF] Wu | A hybrid metaheuristic method for the maximum diversity problem[END_REF][START_REF] Zhou | Opposition-based memetic search for the maximum diversity problem[END_REF], the maxmin diversity problem (Max-Min DP) [START_REF] Croce | A heuristic approach for the maxmin diversity problem based on max-clique[END_REF][START_REF] Porumbel | A simple and eective algorithm for the MaxMin diversity problem[END_REF][START_REF] Resende | GRASP and path relinking for the maxmin diversity problem[END_REF], the minimum dierential dispersion problem (Min-Di DP) [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF][START_REF] Duarte | Greedy randomized adaptive search procedure with exterior path relinking for dierential dispersion minimization[END_REF][START_REF] Mladenovi¢ | Less is more: Basic variable neighborhood search for minimum dierential dispersion problem[END_REF][START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF], the maximum min-sum dispersion problem (Max-Minsum DP) [START_REF] Amirgaliyeva | Solving the maximum min-sum dispersion by alternating formulations of two dierent problems[END_REF][START_REF] Lai | Solution-based tabu search for the maximum min-sum dispersion problem[END_REF][START_REF] Martínez-Gavara | Heuristic solution approaches for the maximum minsum dispersion problem[END_REF][START_REF] Prokopyev | The equitable dispersion problem[END_REF], and the maximum mean dispersion problem (MaxMean DP) [START_REF] Brimberg | Less is more: Solving the max-mean diversity problem with variable neighborhood search[END_REF][START_REF] Croce | A hybrid three-phase approach for the max-mean dispersion problem[END_REF][START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF]. While MDP and Max-Min DP focus only on the dispersion criterion of the selected elements, Min-Di DP, Max-Minsum DP, and MaxMean DP additionally consider the dispersion equity of solutions.

Practical application of dispersion problems covers a wide range, as represented by the problems of maximally diverse or similar group selection [START_REF] Amirgaliyeva | Solving the maximum min-sum dispersion by alternating formulations of two dierent problems[END_REF], urban public facility location [START_REF] Barbati | Equality measures properties for location problems[END_REF], densest k-subgraph identication [START_REF] Brimberg | Variable neighborhood search for the heaviest k-subgraph[END_REF], equitybased measures in network ows [START_REF] Brown | The sharing problem[END_REF], selection of homogeneous groups [START_REF] Brown | The knapsack sharing problem[END_REF], facility location [START_REF] Erkut | Analytical models for locating undesirable facilities[END_REF], web page ranking [START_REF] Kerchove | The page trust algorithm: how to rank web pages when negative links are allowed[END_REF], and community mining [START_REF] Yang | Community mining from signed social networks[END_REF]. These dispersion problems are NP-hard in the general case [START_REF] Prokopyev | The equitable dispersion problem[END_REF], and thus it is unlikely that a polynomial time algorithm exists to solve them unless P = NP.

In this study, we focus on Min-Di DP that is known to be particularly dicult from a computational point of view [START_REF] Prokopyev | The equitable dispersion problem[END_REF]. Specically, Min-Di DP can be described as follows. Given a set N = {1, 2, . . . , n}, an associated distance matrix [d ij] n×n (d ij ≥ 0 for i = j; d ii = 0 for ∀i), and a xed positive integer m, Min-Di DP involves selecting a subset M of exactly m elements from N , such that the dierence between the maximum sum and minimum sum of distances between a selected element and other selected elements in M is minimized. Formally, the Min-Di DP problem can be written as:

Minimize M ax i∈M { j∈M d ij } -M in i∈M { j∈M d ij } (1)
Subject to M ⊂ N, |M | = m (2)
Due to its strongly NP-hard character and its potential applications, Min-Di DP has received particular attention within the general class of dispersion problems and has been the subject of a variety of solution approaches. In 2009, Prokopyev et al. [START_REF] Prokopyev | The equitable dispersion problem[END_REF] proposed a linear 01 mixed integer programming (MIP) formulation for Min-Di DP and solved a number of small instances with n ≤ 100 by means of the CPLEX 9.0 solver. Their computational results

showed that the CPLEX solver used in these tests is very time-consuming even 2 for small instances with n = 50. For example, for the instances with n = 50 and m = 15, the CPLEX 9.0 solver failed to obtain the optimal solution under a time limit of one hour. More modern versions of CPLEX run faster based on exploiting multiple cores, but without this boost the run times are very similar. Thus, for larger instances, heuristic algorithms are more appropriate to obtain near-optimal solutions and noteworthy advances have been made in just the past few years.

In 2015, Aringhieri et al. introduced a construction and improvement heuristic (CIH) algorithm for solving Min-Di DP, which is composed of an initial solution construction stage and an improvement stage [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF]. In the same year, Duarte et al. proposed a sophisticated evolutionary path relinking (EPR) algorithm by integrating a GRASP procedure, a variable neighborhood search (VNS) procedure, and an exterior path relinking operator [START_REF] Duarte | Greedy randomized adaptive search procedure with exterior path relinking for dierential dispersion minimization[END_REF]. Their computational results show that the EPR algorithm outperforms the basic GRASP algorithm in [START_REF] Prokopyev | The equitable dispersion problem[END_REF]. In 2016, based on the popular swap neighborhood, Mladenovi¢ et al.

presented a basic VNS algorithm [START_REF] Mladenovi¢ | Less is more: Basic variable neighborhood search for minimum dierential dispersion problem[END_REF], and performed the experimental tests

showing that this algorithm signicantly outperformed the previous EPR algorithm. Recently (2017), Zhou et al. proposed an iterated local search (ILS) algorithm [START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF], which improved the best known results for a number of instances commonly used in the literature. Very recently (2017), Wang et al.

devised a solution-based tabu search algorithm and a memetic algorithm [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF],

showing that their tabu search algorithm improved 71% of the previous best results and the memetic algorithm (which contained an embedded tabu search algorithm) improved 62% of the previous best results. This naturally raises the question of whether some combination of metaheuristics strategies may make it possible to do still better.

Recent studies show that solution-based tabu search [START_REF] Carlton | A note on hashing functions and tabu search algorithms[END_REF][START_REF] Carlton | Solving the traveling salesman problem with time windows using tabu search[END_REF][START_REF] Woodru | Hashing vectors for tabu search[END_REF] is more eective than the traditional attribute-based tabu search [START_REF] Glover | Tabu search[END_REF] for solving certain classes of binary optimization problems [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF]. As reported in [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF], the solution-based tabu search has been especially eective for Min-Di DP. In this work, we go a step further by introducing an intensication-driven tabu search (IDTS) algorithm that extends the solution-based tabu search framework by integrating three special features: a new constrained swap neighborhood relying on a candidate list strategy, an enhanced tabu list management using three hash functions, and an intensied search mechanism to reinforce the search around high-quality solutions discovered. Computational results on 250 instances show that our IDTS algorithm is very competitive compared to the state-of-the-art algorithms in the literature, improving more than half of the currently best known solutions (127 out of 250 instances) while consuming a short computational time.

The remainder of the paper is organized as follows. Section 2 describes our IDTS algorithm in greater detail. In Section 3, we assess its performance in a computational study of 250 benchmark instances commonly used in the literature and provide a direct comparison with state-of-the-art algorithms for this problem. In Section 4, we discuss essential components of the IDTS algorithm and study their inuence on its behavior. Section 5, which concludes the paper, summarizes the present work and provides research perspectives for future work.

2 Intensication-driven tabu search for Min-Di DP Finally, s and s * respectively denote the current solution and the best solution found so far.

The IDTS algorithm starts by initializing the hash vectors that serve as tabu lists (lines 13), and then generates a feasible initial solution (line 4). Next, the algorithm enters a loop to execute the intensied search step (line 7), incorporating an inner 'while' loop (lines 820), to improve the incumbent solution, and these loops are repeatedly performed until the timeout limit t max is reached. Specically, the inner 'while' loop iterates until the current solution cannot be improved during the last α consecutive iterations, where α is a parameter called the tabu search depth. At each execution of the 'while' loop, a best eligible neighbor solution s satisfying

H 1 (h 1 (s)) ∧ H 2 (h 2 (s)) ∧ H 3 (h 3 (s)) = 0 (i.e.
, a best neighbor solution not forbidden by the tabu lists, as discussed in Section 2.5) is selected from the current neighborhood N θ swap (s) dened in the following Section 2.4 to replace the incumbent solution s, and then the hash vectors H k (k = 1, 2, 3) are accordingly updated by the new incumbent solution s (line 19). After each tabu search run (i.e., when the 'while' loop terminates), the process switches to the intensied search step (line 7) and starts the next tabu search run with the best solution recorded in s * as its initial solution. Finally, the algorithm returns the best solution found during the search and stops when the given time limit t max is reached.

The intensied search step is one of key operations of the algorithm. As shown in previous studies [START_REF] Lai | Iterated maxima search for the maximally diverse grouping problem[END_REF][START_REF] Porumbel | A simple and eective algorithm for the MaxMin diversity problem[END_REF], for a number of combinatorial optimization problems, high-quality solutions are not uniformly distributed in the search space.

Instead, they are grouped in clusters, in accordance with the proximate optimality principle [START_REF] Glover | Tabu search[END_REF], where high-quality solutions at one level are hypothesized for i ← 0 to L -1 do Given a solution s = (I 0 , I 1) in Ω m , the objective function value f (s) used to measure the quality of s is given by:

H 1 [i] ← 0; H 2 [i] ← 0; H 3 [i] ← 0 end s ← InitialSolution(I) /* Initial
H 1 (h 1 (s)) ∧ H 2 (h 2 (s)) ∧ H 3 (h 3 (s)) = 0 in the neighborhood N θ swap (s) /* A solution s with H 1 (h 1 (s)) ∧ H 2 (h 2 (s)) ∧ H 3 (h 3 (s)) = 0 is identified
f (s) = M ax i∈I 1 { j∈I 1 d ij } -M in i∈I 1 { j∈I 1 d ij } (3)
Finally, for two solutions s 1 and s 2 in the search space, s 1 is better than s 2 if f (s 1) < f (s 2) since f is to be minimized. The IDTS algorithm starts with an initial feasible solution s 0 generated by a randomized initialization procedure whose pseudo-code is given in Algorithm 2. The initialization procedure randomly selects m distinct variables x i from {x 1 , x 2 , . . . , x n } to be assigned the value of 1, while assigning the remaining nm variables the value of 0 to create the initial solution of the IDTS algorithm.

Initial

Neighborhood Structure and Its Evaluation Technique

The neighborhood explored by our IDTS algorithm is dened by the swap operator Swap(•, •) that is commonly used in previous studies for Min-Di DP [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF][START_REF] Duarte | Greedy randomized adaptive search procedure with exterior path relinking for dierential dispersion minimization[END_REF][START_REF] Mladenovi¢ | Less is more: Basic variable neighborhood search for minimum dierential dispersion problem[END_REF][START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF]. Given a solution s = (I 0 , I 1) and two elements u ∈ I 0 and v ∈ I 1 , the Swap(u, v) operation exchanges the positions of the elements u and v to generate a neighbor solution of s that we denote by s ⊕ Swap(u, v).

For a solution s = (I 0 , I 1), the largest possible neighborhood N f ull swap (s) (i.e., the full swap neighborhood) induced by the swap operator is composed of all possible solutions that can be obtained by applying the swap operator to s, i.e., N f ull swap (s) = {s ⊕ Swap(u, v) : u ∈ I 0 , v ∈ I 1 }. The size m × (nm) of neighborhood N f ull swap (s) becomes relatively large when m approaches to n/2 even for the medium-sized instances, making an algorithm that examines the full neighborhood very time-consuming. Furthermore, unlike other local search methods (e.g., the rst improvement descent method or the simulated annealing method), a tabu search algorithm typically seeks a highest evaluation move at each iteration. When faced with a large neighborhood, tabu search therefore employs a candidate list strategy designed to create a set of high-quality moves that is much smaller than the full neighborhood. A variety of candidate list strategies are presented in [START_REF] Glover | Tabu search[END_REF] and variations incorporating their underlying principles are introduced in [START_REF] Wu | An adaptive multistart tabu search approach to solve the maximum clique problem[END_REF][START_REF] Wu | A hybrid metaheuristic method for the maximum diversity problem[END_REF][START_REF] Zhou | Opposition-based memetic search for the maximum diversity problem[END_REF].

To focus on the most promising neighbor solutions and thus reduce the computational eort of the IDTS algorithm, we adopt a candidate list strategy based on a constrained swap neighborhood N θ swap for Min-Di DP, using a parameter θ to control the neighborhood size. Specically, given a solution s = (I 0 , I 1), the elements to be swapped in I 0 are limited to a high-quality subset X ⊂ I 0 in N θ swap , which constitutes an instance of a successive lter candidate list strategy in [START_REF] Glover | Tabu search[END_REF]. Given such a subset X of I 0 , the neighborhood N θ swap (s) can be formally written as

N θ swap (s) = {s ⊕ Swap(u, v) : u ∈ X ⊂ I 0 , v ∈ I 1 }.
Hence, N θ swap has a size of m × |X|. Another form of a successive lter candidate list strategy similarly extracts a subset of I 1 to further reduce the size of the neighborhood examined, with an increased risk of reducing the quality of the best move in the resulting neighborhood.

To identify the subset X and evaluate the neighborhood N θ swap eciently, the IDTS algorithm maintains a n-dimensional

vector ∆ = (∆ 1 , ∆ 2 , . . . , ∆ n),
where ∆ i = j∈I 1 d ij . Specically, the subset X is constructed as follows.

First, the value δ = |∆ i -(∆ min +∆max)

2

| is calculated for each element i ∈ I 0 , where ∆ min = M in i∈I 1 {∆ i } and ∆ max = M ax i∈I 1 {∆ i }. Then, the elements in I 0 are sorted in an ascending order by a quick-sort method according to their δ values, since those elements having a small δ(i) value are the most promising to minimize the objective function if they are selected in the solution. Finally, the rst M in{n -m, θ × n} elements are selected to form the subset X. An illustrative example for the neighborhood generation strategy is given in Fig. 2. Given a solution s = (I 0 , I 1) and its ∆ vector (∆ 1 , ∆ 2 , . . . , ∆ n), the objec-

: 1 I : 0 I 1 i 2 i 5 j 4 j 3 j 2 j 1 j)) () ((2 1 i i d d ³)) () () () () ((
tive value f (s) (= M ax i∈I 1 {∆ i } -M in i∈I 1 {∆ i }) can be calculated in O(m)
time as described in the previous studies [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF][START_REF] Duarte | Greedy randomized adaptive search procedure with exterior path relinking for dierential dispersion minimization[END_REF]. Moreover, when a swap move Swap(u, v) is performed from the current solution s, the vector (∆ 1 , ∆ 2 , . . . , ∆ n) can be updated in O(n) time as follows:

∆ i =      ∆ i -d ui , for i = v; (4) ∆ i + d vi , for i = u; (5) ∆ i -d ui + d vi , otherwise; (6)
As such, the computational complexity of one iteration of our IDTS algorithm

is bounded by O(|X| × m 2 + mlogm + (n -m)log(n -m) + n), where mlogm + (n -m)log(n -m)
) is required by the quick-sort algorithm and represents a very small proportion of the total complexity.

Finally, the IDTS algorithm examines the neighborhood N θ swap in a lexicographical order and switches immediately to the next iteration as long as an improving solution is encountered. In this way, the algorithm can signicantly be speeded up at the early stage of the algorithm.

Tabu List Management Strategy and Determination of Tabu Status

In the IDTS algorithm, we adopt the solution-based tabu strategy to determine the tabu status of neighbor solutions during the neighborhood evaluation. In principle, all solutions that have not been visited are considered as eligible solutions, while all the visited solutions are considered tabu and thus excluded from further consideration.

In our IDTS implementation, we adopt the technique of [START_REF] Lai | Solution-based tabu search for the maximum min-sum dispersion problem[END_REF] and employ three hash vectors H 1 , H 2 , and H 3 (taking the role of the tabu lists) to determine the tabu status of neighbor solutions, where each hash vector

H k (k = 1, 2, 3)
is associated with a hash function h k . Each hash vector

H k (k = 1, 2, 3) is a L-dimensional binary vector (L is the length of the hash vectors), where H k [i] (0 ≤ i ≤ L -1) takes the value of 0 or 1. The hash functions h k (k = 1, 2, 3)
are used to map the solutions of the search space Ω m to the indices of the

hash vectors H k , i.e., h k : Ω → {0, 1, 2, . . . , L -1} (k = 1, 2, 3).
To be able to rapidly calculate the hash values of the neighbor solutions, we employ three simple hash functions inspired by the studies [START_REF] Carlton | A note on hashing functions and tabu search algorithms[END_REF][START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF][START_REF] Woodru | Hashing vectors for tabu search[END_REF]. We dene these three hash functions h k (k = 1, 2, 3) relative to a candidate solution s = (x 1 , x 2 , . . . , x n) as follows:

h k (s) = (n i=1 i ξ k × x i) mod L (7)
where ξ k (k = 1, 2, 3) are parameters of the hash functions (see Section 3.2), while L is empirically set to 10 8 .

In the IDTS algorithm, the hash vectors are maintained as follows. At the beginning, all hash vectors are initialized to 0 (lines 13 of Algorithm 1).

Then, they are dynamically updated by the incumbent solution s as the search progresses, as shown in line 19 of Algorithm 1. Accompanying this, we calculate the hash values of neighbor solutions as follows. First, given the incumbent solution s and its hash value h k (s), the hash value of any neighbor solution s (=

s ⊕ Swap(u, v)) can be obtained in O(1) by setting h k (s) to h k (s) + (v ξ k - u ξ k).
Second, for the initial solution s inital , the hash value h k (s inital) must be calculated from scratch, and the associated time complexity is bounded by

O(n) for each hash function h k (k = 1, 2, 3
) according to Eq.(7).

Using the three hash vectors dened above and the associated hash functions, the tabu status of neighbor solutions can be easily determined. A candidate neighbor solution s is determined to be non-tabu if at least one of the three

hash values H 1 [h 1 (s)], H 2 [h 2 (s)],
and

H 3 [h 3 (s)] is 0, since such a solution cannot have been visited. If instead all the hash values H 1 [h 1 (s)], H 2 [h 2 (s)],
and H 3 [h 3 (s)] equal 1, then with high probability the neighbor solution s has been visited previously and thus is considered as a tabu solution. In short, a neighbor solution s is excluded from consideration if and only if

H 1 (h 1 (s)) ∧ H 2 (h 2 (s)) ∧ H 3 (h 3 (s)) = 1.

Relation with an Existing Tabu Search Algorithm

Our IDTS algorithm shares similarities with the tabu search algorithm of [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF] in the sense that both algorithms are based on the general solution-based tabu approach. On the other hand, our IDTS algorithm has several features that distinguish it from the algorithm of [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF]. The rst is the parametric constrained swap neighborhood whose size is controlled by the parameter θ and which appreciably reduces the computational burden of our method. By contrast, the algorithm of [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF] employs a randomized constrained neighborhood composed of solutions sampled according to a probability from the full swap neighborhood N f ull swap (s), leading to a neighborhood of dierent size at each iteration of the algorithm. Second, to determine the tabu status of neighbor solutions, IDTS uses three hash vectors and the associated hash functions, instead of using two hash vectors as in [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF], which considerably decreases the error rate of identifying the tabu status of a candidate solution. Third, our IDTS algorithm employs an intensied search mechanism, which is motivated by studying the distribution of high-quality solutions in the search space (see Section 4.5). Finally, as the experimental results in Section 4.3 demonstrate, our IDTS algorithm equipped with these features outperforms all existing methods including the latest tabu search algorithm and the memetic algorithm of [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF].

Experimental Results and Comparisons

We assess the performance of the proposed IDTS algorithm by carrying out extensive computational experiments on a large number of commonly used benchmark instances. The computational results of the IDTS algorithm are provided and compared with those of the current leading algorithms in the literature.

Benchmark Instances

In the experiments, we employed eight sets of 250 benchmark instances1 as our test bed. These instances have been widely used to assess algorithms for several dispersion problems, including the maximum diversity problem [START_REF] Zhou | Opposition-based memetic search for the maximum diversity problem[END_REF],

Max-Minsum DP [START_REF] Amirgaliyeva | Solving the maximum min-sum dispersion by alternating formulations of two dierent problems[END_REF], and Min-Di DP studied in this work [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF][START_REF] Duarte | Greedy randomized adaptive search procedure with exterior path relinking for dierential dispersion minimization[END_REF][START_REF] Mladenovi¢ | Less is more: Basic variable neighborhood search for minimum dierential dispersion problem[END_REF][START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF].

The main characteristics of these benchmark instances are summarized as follows:

• The IDTS algorithm employs ve parameters, whose values and descriptions are provided in Table 1. According to the parameter analysis in Section 4.1, the parameter θ used to control the neighborhood size was set to 0.3 except for the APOM and GKD-b instances for which θ was set to 1.0. The tabu search depth α was set to 35 except for the GKD-c instances for which it was set to 100. The parameters ξ 1 , ξ 2 , ξ 3 used to dene the hash functions were respectively set to 1.8, 1.9, and 2.0.

Parameter Settings and Experimental Protocol

To assess and compare the performance of the IDTS algorithm, we use the ve most recent state-of-the-art Min-Di DP algorithms in the literature as our main reference algorithms: the construction and improvement heuristic (CIH) [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF], the evolutionary path relinking (EPR) algorithm [START_REF] Duarte | Greedy randomized adaptive search procedure with exterior path relinking for dierential dispersion minimization[END_REF], the variable neighborhood search (VNS) algorithm [START_REF] Mladenovi¢ | Less is more: Basic variable neighborhood search for minimum dierential dispersion problem[END_REF], the iterated local search (ILS) algorithm [START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF], and the solution-based tabu search (TS) algorithm [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF]. Our IDTS algorithm and all the reference algorithms were implemented in the C++ programming language. and compiled using the g++ compiler with the -O3 ag as in [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF]. For the CIH, EPR, VNS algorithms, the new versions implemented by the authors of [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF] were used in our comparisons, since the new implementations of these algorithms have a much better performance than the original ones according to experimental results in [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF]. Moreover, all the computational experiments and comparisons in this work are based on the same computing platform with an Xeon E5440 processor (2.83 GHz and 2G RAM), running the Linux operating system, which makes it possible to make a direct and fair comparison between the proposed IDTS algorithm and these reference algorithms.

Following the studies [START_REF] Duarte | Greedy randomized adaptive search procedure with exterior path relinking for dierential dispersion minimization[END_REF][START_REF] Mladenovi¢ | Less is more: Basic variable neighborhood search for minimum dierential dispersion problem[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF], our IDTS algorithm was run 20 times for each tested instance, with a time limit t max equaling n seconds for each run, where n represents the number of elements in the tested instance.

Computational Results and Comparison

Our experimental results2 are divided into two parts according to the recent studies [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF], where the rst part is based on 80 benchmark instances of four sets (DM1A, MDG-a with n = 2000, MDG-b with n = 2000, and MDG-c), and the second part includes the remaining 170 instances. In [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF], all the tested algorithms were run on the same computing platform as our machine for the rst part of experiments, which allows us to make a fair comparison between our IDTS algorithm and other algorithms by directly comparing our computational results with the results reported in [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF]. However, for the remaining instances, the time limits were set according to special instances in reference [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF], which makes a direct comparison between the algorithms dicult. For this reason, we focus in this section on the rst part of experimental results, and provide our experimental results in the Appendix for the remaining instances, where we also report the previous best known results in the literature.

The computational results are summarized in Tables 29 For a few of instances the current best known results were only obtained by the combined memetic/tabu search algorithm of [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF], although using a much longer time limit than that employed by our algorithm (t max = 20×n seconds, instead of t max = n seconds). Also, in a few instances no reference algorithm (i.e., no algorithm other than ours) was able to reach the previous best known result with the present time limit. Other columns give the best result obtained by the reference algorithms, including the CIH algorithm [START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF], the EPR algorithm [START_REF] Duarte | Greedy randomized adaptive search procedure with exterior path relinking for dierential dispersion minimization[END_REF], the VNS algorithm [START_REF] Mladenovi¢ | Less is more: Basic variable neighborhood search for minimum dierential dispersion problem[END_REF], the ILS algorithm [START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF], and the tabu search (TS) algorithm [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF]. Similarly, in Tables 3, 5, 7, and 9, the rst two columns show the instance name and the time limit. The last two columns report the average objective values of our IDTS algorithm over 20 runs and the standard deviation (std.) of objective values, and other columns give the average objective values (f avg) of the reference algorithms, respectively.

In addition, the row "Avg" in these tables shows the average value of each column, and the row "#Best" gives the number of instances for which an algorithm obtained the best results among the compared algorithms, where the previous best known results from the literature are also compared with f best of the IDTS algorithm. To verify whether there exists a signicant difference between the results of our IDTS algorithm and those of the reference algorithms, the p-values from the non-parametric Friedman tests are given in the last row of the tables, where a p-value less than 0.05 implies a signicant dierence between two groups of compared results. Finally, the best results among the compared results are indicated in bold in these tables, and the improved results (i.e., the new best known results) are marked by "*". Tables 2 and3 for the set DM1A show that the IDTS algorithm performs much better in terms of f best than the reference algorithms CIH, EPR, VNS, and TS. In particular, the IDTS algorithm yielded improved solutions for 12 out of 20 instances and obtained the best result in terms of "Avg" for all the cases. By contrast, none of the reference algorithms can attain the current best known results for these instances. Table 3 also shows that the IDTS algorithm dominates the reference algorithms in terms of f avg , where the IDTS algorithm obtained a better result for all 20 instances. The associated standard deviations (std) are very small for all instances (≤ 2.0). The superiority of the IDTS algorithm over the reference algorithms is also conrmed by the small pvalues (≤ 0.05) both in terms of f best and f avg . 4 and5 show that for the MDG-a instances with n = 2000 our IDTS algorithm signicantly outperforms the ve state-of-the-art algorithms both in terms of f best and f avg . Specically, the IDTS algorithm improved the best known results in the literature for all 20 instances and also obtained better f avg values on all instances. The signicance of the dierences between the results of the IDTS algorithm and those of the reference algorithms is again conrmed by the small pvalues (< 0.05). Furthermore, the standard deviations (std) are less than 2.0, implying a good robustness of the IDTS algorithm.

Tables 6 and7 show that for the large-scale MDG-b instances with n = 2000 our IDTS algorithm improved the previous best known results for all 20 instances, and obtained better results both in terms of f best and f avg for all 20 instances compared to any of the ve reference algorithms.

Tables 8 and9 show the computational results of our IDTS algorithm and the ve reference algorithms on the MDG-c instances. Table 8 shows that the IDTS algorithm improved the previous best known result in the literature for 17 out of 20 instances, and missed the previous best known results for only 3 instances. Compared to the latest TS algorithm of [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF], the IDTS algorithm yielded a better and worse result in terms of f avg for 17 and 3 instances, respectively. Compared to the other 4 reference algorithms, IDTS yielded a better result for all 20 instances. Table 9 indicates that IDTS outperforms the TS algorithm of [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF] for 19 out of 20 instances in terms of f avg , and outperforms the other four reference algorithms for all 20 instances. Once again, the signicance of the dierences between the results of the IDTS algorithm and those of the reference algorithms is conrmed by p-values less than 0.05.

In summary, the above comparative studies disclose that our IDTS algorithm compares very favorably with the state-of-the-art Min-Di DP algorithms in the literature.

Analysis and Discussions

We analyse and discuss several essential features of the IDTS algorithm to understand their impacts on the performance, including the sensitivity of the key parameters, the eectiveness of the intensied search mechanism and the constrained neighborhood. In addition, based on some representative instances, we analyse the moving trajectory of the IDTS algorithm and the spacial distribution of high-quality solutions to shed light on the landscape of Min-Di DP. using the experimental protocol in Section 3.2. The computational results are summarized in Table 10, where the rst column shows the setting of α, the last column shows the average results over all instances (Avg), and other columns give the average objective values over 20 runs for each instance. Table 10 shows that no α value performs the best on all instances and that a medium α value leads generally to a globally acceptable performance, while large and small α values lead to a large performance dierence on dierent instances. Hence, as a comprise, we adopt α = 35 as the default value for our IDTS algorithm.

Analysis of the Key Parameters

To check whether the performance of the algorithm is sensitive to the setting of θ, we carried out another experiment based on the 4 representative instances mentioned above. For each instance and each θ value in {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6}, the IDTS algorithm was run 20 times, and the computational results are summarized in Table 11. We observe from Table 11 that similar to the parameter α, a medium θ value leads to an acceptable performance of the algorithm on all instances tested.

The last column of the table shows that the setting θ = 0.3 produced the best outcome in terms of Avg among all tested settings. As a result, the default value of θ is set to 0.3 for our IDTS algorithm.

Eectiveness of the Constrained Neighborhood

The constrained swap neighborhood N θ swap used as a candidate list strategy The computational results of this experiment are summarized in Table 12, including the time limits used, the best (f best), average (f avg) and worst (f worst) objective values. The rows #Better, #Equal and #W orse show the numbers of instances for which each algorithm yielded a better result than the other algorithm in terms of f best , f avg , and f worst . To verify whether there exists a signicant dierence between the results obtained by the compared algorithms, the p-values from the non-parametric Friedman tests are provided in the last row.

Table 12 shows that IDTS (with the constrained neighborhood N θ swap) consistently outperforms IDTS * (with the full neighborhood N f ull swap) on all 20 instances in terms of f best , f avg , and f worst , conrming that the constrained swap neighborhood N θ swap plays a positive role in enhancing algorithmic performance on the tested instances given the time limits employed. On the other hand, the eectiveness of N θ swap also depends on the setting of the parameter θ, as demonstrated in Section 4.1.

Eectiveness of the Intensied Search Mechanism

The intensied search mechanism is another essential component of the proposed IDTS algorithm for the purpose of intensifying the search around the The experimental results are summarized in Table 13, where we include the same statistics as in Table 12. Table 13 clearly shows that the IDTS algorithm (with the intensied search mechanism) performs consistently much better than IDTS -(without the intensied search mechanism) over all performance indicators considered and on all the tested instances, as conrmed by the small p-values. This outcome demonstrates that the intensied search mechanism plays a highly positive role in the high performance of the IDTS algorithm.

Inuence of Hash Vectors and Hash Functions

The proposed IDTS algorithm uses three hash vectors of length L = 10 8 to manage the tabu list (see Section 2.5). To investigate the inuence of these elements, we rst created three variants IDTS 1 , IDTS 2 and IDTS 3 by disabling the hash vectors H 3 , H 2 , and H 1 of IDTS, respectively, while keeping other components of algorithm unchanged. We also created two other variants IDTS 4

and IDTS 5 of the IDTS algorithm where we replace the default length of hash vectors (L = 10 8) by L = 10 6 and L = 10 7 respectively. Then, we carried out an experiment on the 20 MDG-b instances with n = 500 by running each of these variants 20 times to solve each instance according to the experimental protocol in Section 3.2.

Columns 24 of Table 14 show that under the current experimental conditions, IDTS performs similarly with two or three hash vectors in terms of the average results for the tested instances. Nevertheless, given that 1) using more hash vectors theoretically helps to reduce the number of possible collisions in the general case, and 2) determining the tabu status of a neighbor solution has a very low time complexity (bounded by O(1)) when using either two or three hash vectors, we adopt three hash vectors in our IDTS algorithm. A similar observation can be made for IDTS 4 and IDTS 5 , which indicates that IDTS is not sensitive to the length (L) of hash vectors.

As shown in Section 2.5, the hash functions involve a parameter (ξ k , k = 1, 2, 3), each parameter ξ k leading to a hash function h k . To show the inuence of hash functions on the performance of the IDTS algorithm, we carried out an additional experiment to study the ξ k parameter. For this purpose, we 15, where the row Avg. shows the average result for each column and "#Best"

shows the number of instances for which the corresponding parameter combination leads to the best result in terms of f avg .

The results of Table 15 show that the performance of the IDTS algorithm is sensitive to the setting of parameters ξ 1 , ξ 2 and ξ 3 . For the parameter combinations containing a small value for all parameters, such as (ξ 1 , ξ

Spatial Distribution of High-Quality Solutions

In an attempt to further understand why the intensied search mechanism is helpful, we have conducted a study on the spatial distribution of high-quality solutions as in [START_REF] Lai | Iterated maxima search for the maximally diverse grouping problem[END_REF][START_REF] Porumbel | A search space cartography for guiding graph coloring heuristics[END_REF]. Our experiment was based on 8 representative instances with n = 2000 or 3000, performing 10 runs of our IDTS algorithm for each instance tested, and then collecting all the high-quality local optimal solutions visited by the IDTS algorithm to characterize the spatial distribution of high-quality solutions. Here, a solution s is considered be of high-quality if its objective value f (s) is better than 1.03×f bkv , i.e., f (s) < 1.03×f bkv , where f bkv represents the previous best known result in the literature. Following [START_REF] Lai | Iterated maxima search for the maximally diverse grouping problem[END_REF][START_REF] Porumbel | A search space cartography for guiding graph coloring heuristics[END_REF],

to obtain a visual image of the spatial distribution of high-quality solutions obtained, we adopted the multidimensional scaling (MDS) method to generate approximately the distribution of solutions in the Euclidean space R 3 as follows. First, we generate a distance matrix D l×l , where l is the number of local optimum solutions sampled, and d ij ∈ D l×l is the distance between solutions s i and s j . Specically, given two solutions s i = (I 0 i , I 1 i) and s j = (I 0 j , I 1 j) of Min-Di DP, the distance between s i and s j is calculated as

d ij = m-|I 1 i ∩I 1 j | m .
Then, according to the distance matrix obtained, we generate l coordinate points in the R 3 space by the cmdscale method, where the distance distortion between the obtained coordinate points is minimized. Finally, the scatter graph of the resulting points in R 3 is plotted. Interested readers are referred to [START_REF] Lai | Iterated maxima search for the maximally diverse grouping problem[END_REF][START_REF] Porumbel | A search space cartography for guiding graph coloring heuristics[END_REF] for more details of plotting the spatial distribution in the Euclidean space R 3 for a set of solutions.

The spatial distributions of the collected high-quality solutions visited by the IDTS algorithm are given in Fig. 3 and Fig. 4 for the selected instances. First,

MDG-a_21_n2000_m200

Distribution of 350 high-quality local optima these plots show that for all tested instances, the collected high-quality solutions are typically grouped in clusters, delimited by a sphere of small diameter and characterized by small distances between the solutions of the same cluster [START_REF] Porumbel | A search space cartography for guiding graph coloring heuristics[END_REF]. This observation implies that the solutions within a cluster can be reached more easily from a nearby solution than from a distant solution. The intensied search mechanism of the IDTS algorithm exploits this property by systematically launching a search from the best solution found so far in order to discover other nearby high-quality solutions. Second, to discover a new cluster (that can contain new high-quality solutions), it is useful to apply some strong diversication strategies. In the case of the IDTS algorithm, this is achieved by the simple mechanism of multiple re-starts, each re-start being performed with a dierent initial solution in the search space. Other mechanisms are of course possible (see, e.g., [START_REF] Glover | Tabu search[END_REF]) and may be preferable in other settings. We used the same timeout limit for the IDTS algorithm as in Section 3.3, i.e., t max = n, where n is the number of elements in the instance. The two previous studies [START_REF] Mladenovi¢ | Less is more: Basic variable neighborhood search for minimum dierential dispersion problem[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum dierential dispersion problem[END_REF] used the same time limit as ours. It should be noted, however, that the study in [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF] set the timeout limit t max according to specic instances, making it dicult to perform a direct comparison between our results and theirs on these instances. Thus, the main goal of this section is to show the detailed experimental results of our IDTS algorithm, instead of making a direct comparison between our IDTS algorithm and the algorithm in [START_REF] Wang | Eective metaheuristic algorithms for the minimum dierential dispersion problem[END_REF].

 an important class of subset selection problems in 16 binary optimization that have recently received substantial attention from the 17 combinatorial optimization community for their extensive practical applications. Dispersion problems can be roughly described as follows. Given a set N = {1, 2, . . . , n} of n elements and a distance matrix [d ij] n×n (d ij ≥ 0) dened on these elements, a dispersion problem is to select a subset M from N to optimize an objective f over the elements of M .

2. 2 Fig. 1 .

 21 Fig. 1. An illustrative example for the solution representation, where the size of set N is 10 (n = 10) and the size of set M is 5 (m = 5). The search space Ω m explored by our IDTS algorithm is composed of all feasible solutions, i.e., Ω m = {(x 1 , x 2 , . . . , x n) : i=n i=1 x i = m}, or equivalently, Ω m = {(I 0 , I 1) : I 0 , I 1 ⊂ N, |I 1 | = m}. Obviously, the size of Ω m is equal to n! m!(n-m)! , which increases very quickly as the size of problem increases.

2 iFig. 2 .

 22 Fig. 2. An illustrative example for the neighborhood generation strategy, where the size of set N and the value of m are respectively 7 and 2, and the size of subset X is 2.

 APOM Set : 40 small instances with n ∈ [50, 250] and m ∈ {0.2n, 0.4n}. Distances between elements are Euclidean or random integers in [0, 10000]. • GKD-b set : 50 instances, where n varies from 25 to 150, m varies from 2 to 45, and distances are Euclidean. • GKD-c Set : 20 instances with n = 500 and m = 50, and distances are Euclidean. • SOM-b Set : 20 instances with n ∈ [100, 500] and m ∈ {0.1n, 0.2n, 0.3n, 0.4n}, and distances are integers generated randomly in [0, 9]. • DM1A Set : 20 instances with n = 500 and m = 200, and distances are a real number randomly generated in [0, 10]. These instances are renamed in [27] as MDG-a_41 to MDG-a_60 . • MDG-a Set : 20 instances with n = 500 and m = 50 and 20 instances with n = 2000 and m = 200. Like for DM1A, the distances are real numbers generated randomly in [0, 10]. • MDG-b Set : 20 instances with n = 500 and m = 50 and 20 larger instances with n = 2000 and m = 200. The distances are real numbers generated randomly in [0, 1000]. • MDG-c set : 20 large instances with n = 3000 and m ∈ {300, 400, 500, 600}, and distances are integers generated randomly in [0, 1000].

 respectively for benchmark sets DM1A, MDG-a with n = 2000, MDG-b with n = 2000, and MDG-c. The best results (f best) over 20 independent runs are shown in Tables 2, 4, 6 and 8, and the average results (f avg) are given in Tables 3, 5, 7, and 9. In Tables 2, 4, 6 and 8, the rst three columns give the instance name, the time limit in seconds, and the previous best known objective value (f bkv) in the literature (Best Known), and the last two columns indicate the best objective values obtained by our IDTS algorithm and the dierence ∆ f est (= f best -f bkv) between our best objective value and the previous best known objective value in the literature (A negative value indicates an improved best known result).

 is an essential component of the IDTS algorithm. To study the eectiveness of this strategy, we created a variant of the IDTS algorithm called IDTS * by replacing the constrained swap neighborhood N θ swap by the full swap neighborhood N f ull swap , while keeping other components of the IDTS algorithm unchanged. Then, we carried out an experiment based on the 20 large MDG-b instances with n = 2000 and m = 200, executing the IDTS * and IDTS algo-

 found. To study its impacts on the performance of IDTS, we created a variant of the IDTS algorithm called IDTS -, where we disabled the intensied search mechanism (line 7 of Algorithm 1), while keeping other components unchanged. As in Section 4.2, we compare IDTS and IDTS -based on the 20 large instances with n = 2000 and m = 200 of the set MDG-b. We ran both IDTS -and IDTS 20 times to solve each instance, using the experimental protocol of Section 3.2.

selected 9 representative parameter combinations (ξ 1 , ξ 2 , ξ 3)

 123 and ran the IDTS algorithm 20 times with each parameter combination to solve each of the 20 MDG-b instances. The average objective results (f avg) are reported in Table

Fig. 3 .

 3 Fig. 3. Distribution of the high-quality local optima for four large MDG-a and MDG-n instances with n = 2000 and m = 200.

Fig. 5 .5

 5 Fig. 5. Evolution of the objective values during the tabu search process. objective values f undergo multiple uctuations during the search process, in-605

Tables A. 1 ,

 1 A.2, and A.4 show our IDTS algorithm performed very well by comparison to the Best Known results on the MDG-a, MDG-b and GKDc instances (which constitute all the larger instances with n = 500). Tables A.3 and A.5 show our IDTS algorithm matched or improved the Best Known results in most of GKD-b and SOM-b instances, and Table A.6 shows our algorithm yielded slightly worse outcomes compared to the Best Known results on the APOM instances. In sum, these computational results further show a good search ability of the proposed IDTS algorithm.

Algorithm 1 :

 1 General procedure of the intensication-driven tabu search (IDTS) algorithm for the Min-Di DP problem Input: Instance I, hash vectors H 1 , H 2 , H 3 with a length of L, hash functions h 1 , h 2 , h 3 , parameter θ, cuto time t max , and tabu search depth α

	Output: The best solution s * found so far	
	/* Initialization of hash vectors (tabu lists), Sect. 2.5	*/

 to systematically start its search from the best solution s * found so far.Meanwhile, the tabu lists are not re-initialized after each intensied step and thus inherited by all tabu search runs. This ensures that each intensied search operation will lead to a dierent search trajectory even when the next tabu search run starts from the same starting point s * . As a result, the nearby areas of s * will be thoroughly examined and the intensication search of the

	algorithm is thus reinforced (Although dierent trajectories can also result
	by clearing or reducing the tabu search memory, in the present case we can
	continue to reap the benets of the solution-based tabu strategy by retaining
	all previous memory).	
	as an eligible solution, Sections 2.4 and	
	2.5	*/
	countor ← 0	
	end else	
	countor ← countor + 1 end	
	/* Update tabu lists, Sect. 2.5	*/

s ← s /* Update the incumbent solution */ if f (s) < f (s *) then s * ← s /* Update the best solution found so far */ run

Table 1

 1

	Settings of parameters
	Parameters Section	Description

Table 2

 2 Computational results and comparison in the best objective value obtained (f best) on the DM1A instances.

	Instance 01Type1_52.1_n500m200 500 Time (s) 02Type1_52.2_n500m200 500 03Type1_52.3_n500m200 500 04Type1_52.4_n500m200 500 05Type1_52.5_n500m200 500 06Type1_52.6_n500m200 500 07Type1_52.7_n500m200 500 08Type1_52.8_n500m200 500 09Type1_52.9_n500m200 500 10Type1_52.10_n500m200 500 11Type1_52.11_n500m200 500 12Type1_52.12_n500m200 500 13Type1_52.13_n500m200 500 14Type1_52.14_n500m200 500 15Type1_52.15_n500m200 500 16Type1_52.16_n500m200 500 17Type1_52.17_n500m200 500 18Type1_52.18_n500m200 500 19Type1_52.19_n500m200 500 20Type1_52.20_n500m200 500 Avg 500 #Best p-value	CIH [3] f best 41.29 55.26 49.15 36.49 EPR [13] VNS TS [27] [22] f best f best f best 42.80 56.03 50.69 38.72 41.88 53.44 47.64 38.34 41.22 53.23 46.85 38.60 35.02 42.28 54.84 47.19 38.18 Best known 33.37 34.35 33.23 34.28 35.55 41.94 54.66 48.38 38.00 35.41 41.42 54.87 47.15 37.34 37.91 40.43 55.09 46.93 37.91 33.23 41.08 53.82 47.59 38.68 34.32 41.66 54.18 46.29 38.03 36.48 42.93 56.78 48.74 38.07 33.98 42.76 56.35 49.09 38.58 35.84 42.58 57.07 47.88 38.77 33.20 41.66 54.19 49.10 38.85 35.89 41.98 57.38 49.28 38.31 34.40 41.72 54.45 48.10 39.19 38.28 40.67 52.11 48.75 38.50 35.37 42.58 53.58 44.16 37.15 36.46 41.18 54.06 45.83 38.91 36.28 41.21 55.27 48.21 38.37 35.14 41.76 54.83 47.85 38.25 8 0 0 0 0 3.71e-1 7.74e-6 7.74e-6 7.74e-6 7.74e-6	IDTS (this work) f best ∆f best 34.77 1.40 34.60 0.25 34.71 1.48 34.94 0.66 34.75* -0.27 33.97* -1.58 34.07* -1.34 34.00* -3.91 34.01 0.78 34.84 0.52 33.91* -2.57 33.73* -0.25 34.18* -1.66 33.79 0.59 35.58* -0.31 35.16 0.76 34.20* -4.08 34.18* -1.19 35.50* -0.96 35.22* -1.06 34.51 -0.64 12

Table 3

 3 Computational results and comparison in the average objective value obtained (f avg) on the DM1A instances.

	CIH [3] EPR [13] VNS [22] TS [27] favg favg favg Time (s) favg 01Type1_52.1_n500m200 500 Instance 44.82 58.33 52.40 40.31 02Type1_52.2_n500m200 500 44.51 60.19 52.86 40.18 03Type1_52.3_n500m200 500 44.56 57.72 50.03 39.94 04Type1_52.4_n500m200 500 43.95 58.33 50.96 40.65 05Type1_52.5_n500m200 500 44.00 57.58 49.98 39.62 06Type1_52.6_n500m200 500 44.10 58.01 50.90 39.64 07Type1_52.7_n500m200 500 43.99 57.64 51.31 39.79 08Type1_52.8_n500m200 500 43.49 57.95 49.71 39.30 09Type1_52.9_n500m200 500 44.47 57.55 51.54 40.06 10Type1_52.10_n500m200 500 44.22 57.22 51.44 40.00 11Type1_52.11_n500m200 500 44.14 58.66 52.84 40.07 12Type1_52.12_n500m200 500 44.22 58.64 52.00 40.26 13Type1_52.13_n500m200 500 44.06 59.48 52.58 40.21 14Type1_52.14_n500m200 500 43.96 58.04 51.87 40.38 15Type1_52.15_n500m200 500 44.47 59.27 52.39 40.22 16Type1_52.16_n500m200 500 44.35 58.78 50.82 40.53 17Type1_52.17_n500m200 500 43.82 57.29 51.96 40.32 18Type1_52.18_n500m200 500 43.65 56.36 50.33 39.70 19Type1_52.19_n500m200 500 44.93 58.32 50.59 40.82 20Type1_52.20_n500m200 500 44.78 57.85 51.73 39.89 Avg. 500 44.22 58.16 51.41 40.09 #Best 0 0 0 0 p-value 7.74e-06 7.74e-06 7.74e-06 7.74e-06	IDTS (this work) favg std. 37.98 1.57 37.99 1.64 37.46 1.38 38.14 1.61 37.29 1.38 38.57 1.37 38.02 1.31 37.21 1.45 37.60 1.41 37.47 1.34 37.83 1.44 37.95 1.75 37.87 1.78 36.96 1.24 38.03 1.28 37.90 1.68 37.90 1.71 37.42 1.59 38.50 1.67 37.98 1.53 37.80 1.51 20

Table 4

 4 Computational results and comparison in the best objective value obtained (f best) on the MDG-a instances with n = 2000.

	Instance MDG-a_21_n2000_m200 2000 Time (s) MDG-a_22_n2000_m200 2000 MDG-a_23_n2000_m200 2000 MDG-a_24_n2000_m200 2000 MDG-a_25_n2000_m200 2000 MDG-a_26_n2000_m200 2000 MDG-a_27_n2000_m200 2000 MDG-a_28_n2000_m200 2000 MDG-a_29_n2000_m200 2000 MDG-a_30_n2000_m200 2000 MDG-a_31_n2000_m200 2000 MDG-a_32_n2000_m200 2000 MDG-a_33_n2000_m200 2000 MDG-a_34_n2000_m200 2000 MDG-a_35_n2000_m200 2000 MDG-a_36_n2000_m200 2000 MDG-a_37_n2000_m200 2000 MDG-a_38_n2000_m200 2000 MDG-a_39_n2000_m200 2000 MDG-a_40_n2000_m200 2000 Avg. #Best p-value	CIH [3] f best 41 40 41 42 41 40 40 41 41 38 41 40 42 41 41 41 41 41 41 41 37.85 40.75 49.9 EPR [13] Best f best known 38 49 37 51 38 50 38 49 38 50 38 48 38 51 38 47 37 49 38 51 38 51 38 50 38 51 38 49 39 50 37 50 38 50 38 52 38 50 37 50 0 0 0 7.74e-06 7.74e-06 7.74e-06	VNS [22] f best 48 49 50 50 49 47 45 47 47 45 44 46 45 50 47 51 47 47 48 48 47.5 0 7.74e-06	ILS [33] f best 50 50 49 50 50 50 49 50 47 49 49 48 48 49 48 48 48 49 48 49 48.9 0 7.74e-06	TS [27] f best 38 37 38 39 38 38 38 38 37 38 38 38 39 38 39 38 38 38 38 37 38 0 7.74e-06	IDTS (this work) f best ∆f best 34* -4 34* -3 34* -4 36* -2 34* -4 35* -3 34* -4 35* -3 34* -3 34* -4 35* -3 36* -2 35* -3 34* -4 36* -3 34* -3 34* -4 35* -3 34* -4 35* -2 34.6 -3.25 20

Table 5

 5 Computational results and comparison in the average objective value obtained (f avg) on the MDG-a instances with n = 2000.

	CIH [3] Time (s) favg MDG-a_21_n2000_m200 2000 Instance 43.30 53.80 50.40 53.43 39.45 EPR [13] VNS [22] ILS TS [27] [33] favg favg favg favg MDG-a_22_n2000_m200 2000 42.20 54.15 50.85 53.55 39.25 MDG-a_23_n2000_m200 2000 43.45 53.70 52.70 53.60 40.05 MDG-a_24_n2000_m200 2000 43.15 54.05 53.10 53.63 39.65 MDG-a_25_n2000_m200 2000 42.55 54.80 52.85 53.60 39.45 MDG-a_26_n2000_m200 2000 42.15 54.00 50.10 53.58 39.95 MDG-a_27_n2000_m200 2000 42.20 55.15 49.40 53.73 40.30 MDG-a_28_n2000_m200 2000 42.50 56.05 50.40 52.98 39.50 MDG-a_29_n2000_m200 2000 42.40 53.05 50.30 53.48 39.15 MDG-a_30_n2000_m200 2000 42.30 54.85 50.85 54.28 39.50 MDG-a_31_n2000_m200 2000 42.65 54.25 49.40 53.88 39.50 MDG-a_32_n2000_m200 2000 42.45 54.15 49.10 53.25 39.60 MDG-a_33_n2000_m200 2000 43.10 53.90 49.35 53.80 40.35 MDG-a_34_n2000_m200 2000 42.50 55.20 52.60 53.48 39.50 MDG-a_35_n2000_m200 2000 42.10 55.75 50.35 54.08 40.35 MDG-a_36_n2000_m200 2000 42.60 53.70 52.60 53.73 39.40 MDG-a_37_n2000_m200 2000 42.65 54.90 49.35 53.85 39.45 MDG-a_38_n2000_m200 2000 42.50 55.70 50.90 53.83 39.50 MDG-a_39_n2000_m200 2000 42.35 53.70 50.55 53.48 39.45 MDG-a_40_n2000_m200 2000 42.15 55.25 50.45 54.03 39.45 Avg 2000 42.56 54.51 50.78 53.66 39.64 #Better 0 0 0 0 0 p-value 7.74e-06 7.74e-06 7.74e-06 7.74e-06 7.74e-06	IDTS (this work) favg std. 36.60 1.24 36.85 1.19 36.75 1.58 37.30 0.78 37.20 1.25 37.30 1.35 37.15 1.96 37.40 1.36 37.20 1.21 36.65 1.06 37.30 1.05 38.00 1.22 36.80 1.25 37.35 1.46 37.90 1.09 37.30 1.31 37.20 1.47 36.60 1.11 36.85 1.31 37.45 1.20 37.16 1.27 20

Table 6 Computational

 6

	Instance	Time (s)	Best known	CIH [3] EPR [13] VNS [22] ILS [33] TS [27] f best f best f best f best f best	IDTS (this work) f best ∆f best

results and comparison in the best objective value obtained (f best) on the MDG-b instances with n = 2000.

Table 7

 7 Computational results and comparison in the average objective value obtained (f avg) on the MDG-b instances with n = 2000.

	CIH [3] Time (s) favg MDG-b_21_n2000_m200 2000 Instance 3883.27 MDG-b_22_n2000_m200 2000 3879.67 MDG-b_23_n2000_m200 2000 3808.08 MDG-b_24_n2000_m200 2000 3839.34 MDG-b_25_n2000_m200 2000 3825.67 MDG-b_26_n2000_m200 2000 3880.27 MDG-b_27_n2000_m200 2000 3868.30 MDG-b_28_n2000_m200 2000 3810.18 MDG-b_29_n2000_m200 2000 3870.87 MDG-b_30_n2000_m200 2000 3797.06 MDG-b_31_n2000_m200 2000 3861.12 MDG-b_32_n2000_m200 2000 3797.78 MDG-b_33_n2000_m200 2000 3815.30 MDG-b_34_n2000_m200 2000 3894.40 MDG-b_35_n2000_m200 2000 3883.25 MDG-b_36_n2000_m200 2000 3897.08 MDG-b_37_n2000_m200 2000 3857.85 MDG-b_38_n2000_m200 2000 3803.77 MDG-b_39_n2000_m200 2000 3863.94 MDG-b_40_n2000_m200 2000 3816.35 Avg. 3847.68 #Best 0 p-value 7.74e-6	EPR [13] VNS [22] ILS [33] favg favg favg 4778.31 4435.83 4299.38 4661.84 4520.33 4377.97 4722.15 4390.30 4422.12 4707.11 4472.02 4421.77 4794.93 4557.13 4340.78 4730.99 4391.32 4423.07 4701.02 4385.32 4424.59 4698.69 4477.90 4446.16 4681.13 4301.16 4377.08 4764.17 4420.86 4470.64 4801.32 4415.22 4323.11 4778.58 4366.35 4301.35 4697.26 4574.32 4351.01 4791.64 4529.20 4402.11 4728.08 4342.11 4396.43 4653.35 4356.16 4435.33 4836.76 4381.58 4409.06 4685.33 4405.56 4418.53 4698.42 4291.46 4403.46 4670.78 4391.52 4306.02 4729.09 4420.28 4387.50 0 0 0 7.74e-6 7.74e-6 7.74e-6	TS [27] favg 3544.32 3564.41 3550.02 3532.08 3603.87 3630.28 3530.74 3545.25 3553.72 3547.15 3609.88 3566.98 3584.87 3578.48 3580.56 3574.16 3593.93 3572.96 3590.59 3523.60 3568.89 0 7.74e-6	IDTS (this work) favg std. 3280.31 114.60 3274.61 91.25 3295.18 102.89 3282.48 112.17 3268.85 85.49 3292.18 104.27 3305.33 91.60 3275.35 104.37 3289.42 108.10 3288.46 92.69 3272.11 102.03 3276.19 101.40 3271.92 109.81 3292.90 110.45 3290.86 115.81 3247.02 103.31 3331.37 108.89 3278.91 112.47 3274.59 123.41 3281.05 124.97 3283.46 106.00 20

Table 8 Computational

 8

	Instance MDG-c_1_n3000_m300 3000 Time (s) MDG-c_2_n3000_m300 3000 MDG-c_3_n3000_m300 3000 MDG-c_4_n3000_m300 3000 MDG-c_5_n3000_m300 3000 MDG-c_6_n3000_m400 3000 MDG-c_7_n3000_m400 3000 MDG-c_8_n3000_m400 3000 MDG-c_9_n3000_m400 3000 MDG-c_10_n3000_m400 3000 MDG-c_11_n3000_m500 3000 MDG-c_12_n3000_m500 3000 MDG-c_13_n3000_m500 3000 MDG-c_14_n3000_m500 3000 MDG-c_15_n3000_m500 3000 MDG-c_16_n3000_m600 3000 MDG-c_17_n3000_m600 3000 MDG-c_18_n3000_m600 3000 MDG-c_19_n3000_m600 3000 MDG-c_20_n3000_m600 3000 Avg 3000 #Best p-value	CIH [3] f best 5215 5203 5174 5164 5175 6883 6916 7417 6652 6797 8477 8293 8078 8470 8536 10066 12104 12007 13910 9337 EPR [13] VNS [22] ILS TS [27] [33] f best f best f best f best 6661 6145 5772 4796 6482 5975 5936 4830 6518 6105 5585 4913 6245 6465 5969 4830 6500 6152 5750 4881 8646 8313 7648 6466 8016 7890 7829 6480 8198 8248 7984 6255 8321 8298 7657 6607 9206 8514 7672 6297 10130 10236 11031 7793 10081 10428 10604 7719 10847 10318 10743 7767 10472 10327 9941 7678 10489 10320 10870 7659 10091 13924 12083 13676 8618 10451 13322 12538 14011 9118 12313 12329 12216 13538 9387 10284 12219 12231 12415 9013 6987.80 7782.75 9535.50 9240.45 9427.05 7022.20 Best known 4796 4827 4913 4830 4809 6349 6334 6255 6346 6297 7793 7719 7711 7645 7659 9337 8618 9118 9387 9013 3 0 0 0 0 3 1.75e-03 7.74e-06 7.74e-06 7.74e-06 7.74e-06 1.75e-03	IDTS (this work) f best ∆f best 4583* -213 4542* -285 4317* -596 4385* -445 4641* -168 6028* -321 5725* -609 5993* -262 5863* -483 5959* -338 7539* -254 7538* -181 7480* -231 7739 94 7511* -148 8680* -657 8997 379 8978* -140 8686* -701 9079 66 6713.15 -274.65 17

results and comparison in the best objective value obtained (f best) on the MDG-c instances with n = 3000.

Table 9

 9 Computational results and comparison in the average objective value obtained (f avg) on the MDG-c instances with n = 3000.

	Instance	CIH [3] EPR [13] VNS [22] ILS [33] TS [27] Time (s) favg favg favg favg favg	IDTS (this work) favg std.

Table 10

 10 Inuence of the parameter α on the performance of the IDTS algorithm. The best Avg result is indicated in bold.

		P1	P2	P3	P4	
	α	favg	favg	favg	favg	Avg
	5	1253.80	3490.00	3533.54	5085.20	3340.63
	10	1150.48	3372.28	3309.15	4686.80	3129.68
	15	1127.10	3248.64	3317.53	4669.95	3090.80
	20	1127.75	3250.34	3254.51	4680.85	3078.36
	25	1109.77	3296.11	3295.88	4653.65	3088.85
	30	1112.58	3290.97	3252.77	4821.05	3119.34
	35	1131.17	3270.20	3288.31	4620.25	3077.48
	40	1110.93	3366.32	3315.90	4769.90	3140.76
	45	1106.34	3258.68	3297.83	4740.45	3100.82
	50	1094.36	3284.21	3307.38	4808.65	3123.65
	60	1110.30	3324.87	3347.71	4819.50	3150.60
	100	1093.88	3359.40	3351.72	4695.05	3125.01
	As previously indicated, the IDTS algorithm employs two key parameters, the
	value α that xes the maximum number of non-improving tabu search itera-
	tions with respect to the recorded best solution s * and the value θ that controls
	the size of neighborhood N θ swap . To investigate the inuence of α, we carried out
	an experiment on 4 representative instances MDG-b_1_n500_m50, MDG-
	b_21_n2000_m200, MDG-b_40_n2000_m200, and MDG-c_1_n3000_m300
	that are renamed as 'P1', 'P2', 'P3', and 'P4' for simplicity. For each α value

in {5,

[START_REF] Carlton | Solving the traveling salesman problem with time windows using tabu search[END_REF][START_REF] Glover | Tabu search[END_REF][START_REF] Kerchove | The page trust algorithm: how to rank web pages when negative links are allowed[END_REF][START_REF] Prokopyev | The equitable dispersion problem[END_REF][START_REF] Woodru | Hashing vectors for tabu search[END_REF] 35, 40, 45

, 50, 60, 100}, we solved each instance 20 times,

Table 11

 11 Inuence of the parameter θ on the performance of the IDTS algorithm. The best Avg result is indicated in bold.

		P1	P2	P3	P4	
	θ	favg	favg	favg	favg	Avg
	0.05	1259.94	3488.03	3490.39	4892.30	3282.67
	0.10	1189.86	3417.34	3403.95	4815.10	3206.56
	0.15	1162.95	3374.28	3350.06	4725.45	3153.19
	0.20	1116.08	3289.13	3357.32	4740.90	3125.86
	0.25	1119.22	3323.78	3334.07	4743.35	3130.11
	0.30	1110.81	3320.30	3332.74	4703.85	3116.93
	0.35	1110.53	3332.74	3331.70	4765.85	3135.21
	0.40	1110.93	3366.32	3315.90	4769.90	3140.76
	0.45	1116.06	3382.50	3319.98	4781.30	3149.96
	0.50	1100.71	3391.71	3342.26	4877.05	3177.93
	0.55	1134.28	3341.03	3390.44	4901.95	3191.92
	0.60	1104.73	3331.52	3340.25	4870.10	3161.65

Table 12

 12 Comparative results of the constrained swap neighborhood N θ swap with the full swap neighborhood N f ull swap on the 20 large instances of set MDG-b.

	f best Time (s) IDTS * IDTS IDTS * IDTS #Better favg f worst Instance IDTS * IDTS 0 20 0 20 0 20 #Equal 0 0 0 0 0 0 #Worse 20 0 20 0 20 0 p-value 7.74e-06 7.74e-06 7.74e-06
	rithms 20 times on each instance according to the experimental protocol of
	Section 3.2.

Table 13

 13 Comparative results of the IDTS algorithm with and without the intensied search mechanism on the 20 large instances of set MDG-b.

Table 14

 14 Experimental results of the proposed algorithm with dierent numbers of hash vectors and dierent lengths (L) of hash vectors, where the average objective value (f avg) over 20 runs is reported for each instance and each setting.

		Two Hash Vectors (L = 10 8)	Three Hash Vectors
	Instance	IDTS 1 (H 1 , H 2)

Table 15 .

 15 Experimental results of IDTS with 9 parameter combinations of (ξ

	(hash functions), in terms of the average objective
	1 , ξ 2 , ξ 3)

3)

 IDTS performs very well. As a result, for the present IDTS algorithm, the default combination of (ξ 1 , ξ 2 , ξ 3) is set to (1.8, 1.9, 2.0), since such a setting led to the best result in terms of Avg. among the tested combinations.

	2 , ξ 3) =
	(1.1, 1.2, 1.3), (1.1, 1.2, 1.5), (1.1, 1.3, 1.5), IDTS performs badly, yielding a worse
	result in terms of both "Avg." and "#Best" in comparison with other com-
	binations. On the contrary, for those parameter combinations containing a
	large value for at least two parameters, such as (1.5, 1.8, 1.9), (1.8, 1.9, 2.0)
	and (2.0, 2.1, 2.2),

Table A .

 A [START_REF] Amirgaliyeva | Solving the maximum min-sum dispersion by alternating formulations of two dierent problems[END_REF] Computational results on MDG-a instances with n = 500.

	Instance MDG-a_1_n500_m50 MDG-a_2_n500_m50 MDG-a_3_n500_m50 MDG-a_4_n500_m50 MDG-a_5_n500_m50 MDG-a_6_n500_m50 MDG-a_7_n500_m50 MDG-a_8_n500_m50 MDG-a_9_n500_m50 MDG-a_10_n500_m50 MDG-a_11_n500_m50 MDG-a_12_n500_m50 MDG-a_13_n500_m50 MDG-a_14_n500_m50 MDG-a_15_n500_m50 MDG-a_16_n500_m50 MDG-a_17_n500_m50 MDG-a_18_n500_m50 MDG-a_19_n500_m50 MDG-a_20_n500_m50 Avg #Best	Time (s) Best known 500 10.46 500 10.58 500 10.74 500 10.90 500 10.58 500 10.08 500 10.35 500 10.16 500 9.97 500 10.58 500 10.57 500 10.62 500 10.31 500 9.95 500 10.40 500 10.40 500 10.33 500 10.56 500 10.46 500 10.54 10.43 5	f best 9.73* 10.21* 10.04* 10.10* 10.02* 9.91* 9.55* 10.35 10.47 10.52* 9.37* 10.17* 10.32 9.96 9.66* 10.28* 10.34 10.16* 9.55* 9.96* 10.03 15	favg 10.97 11.00 11.03 10.99 10.97 10.99 11.07 10.92 11.06 11.10 10.95 11.11 11.16 10.99 11.01 10.92 11.02 10.95 10.88 11.03 11.01	std 0.37 0.40 0.32 0.36 0.35 0.41 0.44 0.35 0.28 0.31 0.43 0.30 0.30 0.34 0.38 0.29 0.33 0.29 0.41 0.39 0.35	∆f best -0.73 -0.37 -0.70 -0.80 -0.56 -0.17 -0.80 0.19 0.50 -0.06 -1.20 -0.45 0.01 0.01 -0.74 -0.12 0.01 -0.40 -0.91 -0.58 -0.39

Table A .

 A 2 Computational results on MDG-b instances with n = 500.

	Table A.4			
	Instance Computational results on GKD-c instances. Time (s) Best known f best Instance Time (s) Best f best known GKD-c_1_n500_m50 500 6.39 6.51 GKD-c_2_n500_m50 500 6.13 6.75 GKD-c_3_n500_m50 500 6.65 6.10* GKD-c_4_n500_m50 500 6.64 5.59* GKD-c_5_n500_m50 500 7.38 6.88* GKD-c_6_n500_m50 500 6.79 6.29* GKD-c_7_n500_m50 500 6.84 7.11 GKD-c_8_n500_m50 500 7.01 7.27 GKD-c_9_n500_m50 500 8.09 6.18* GKD-c_10_n500_m50 500 7.37 6.85* GKD-c_11_n500_m50 500 6.42 5.27* GKD-c_12_n500_m50 500 6.50 6.12* GKD-c_13_n500_m50 500 6.52 7.27 GKD-c_14_n500_m50 500 6.38 5.98* GKD-c_15_n500_m50 500 6.99 6.32* GKD-c_16_n500_m50 500 6.51 5.88* GKD-c_17_n500_m50 500 6.31 5.62* GKD-c_18_n500_m50 500 6.88 6.51* GKD-c_19_n500_m50 500 6.84 6.20* GKD-c_20_n500_m50 500 6.32 5.53* Avg 6.75 6.31 #Best 5 15	favg favg 7.93 8.34 8.29 7.97 8.70 7.87 8.88 9.16 8.31 9.27 7.73 8.14 8.82 8.43 8.47 7.91 7.50 8.61 8.26 8.10 8.33	std std 0.93 0.84 0.93 1.06 1.11 0.93 1.02 1.31 0.97 1.04 1.04 1.02 1.24 1.11 1.04 1.18 1.06 0.97 1.11 1.17 1.05	∆f best ∆f best 0.12 0.62 -0.55 -1.05 -0.50 -0.50 0.27 0.26 -1.91 -0.52 -1.15 -0.38 0.75 -0.40 -0.67 -0.63 -0.69 -0.37 -0.64 -0.79 -0.44
	GKD-b_23_n100_m10 GKD-b_24_n100_m10 GKD-b_25_n100_m10 GKD-b_26_n100_m30 GKD-b_27_n100_m30 GKD-b_28_n100_m30 GKD-b_29_n100_m30 GKD-b_30_n100_m30 Table A.5 GKD-b_31_n125_m12 GKD-b_32_n125_m12 GKD-b_33_n125_m12 GKD-b_34_n125_m12 GKD-b_35_n125_m12 GKD-b_36_n125_m37 GKD-b_37_n125_m37 GKD-b_38_n125_m37 GKD-b_39_n125_m37 GKD-b_40_n125_m37 GKD-b_41_n150_m15 GKD-b_42_n150_m15 GKD-b_43_n150_m15 GKD-b_44_n150_m15 GKD-b_45_n150_m15 GKD-b_46_n150_m45 GKD-b_47_n150_m45 GKD-b_48_n150_m45 GKD-b_49_n150_m45 GKD-b_50_n150_m45 Avg #Best Computational results on SOM-b instances. 100 6.91 7.59 100 7.59 7.59 100 6.91 9.64 100 159.19 159.19 100 124.17 124.17 100 106.38 106.38 100 135.85 135.85 100 127.27 127.27 125 11.05 11.05 125 11.43 10.43* 125 9.18 10.79 125 11.83 11.83 125 9.20 7.53* 125 125.55 125.55 125 194.22 194.22 125 184.27 184.27 125 155.39 155.39 125 161.68 172.80 150 16.48 17.85 150 12.38 12.38 150 11.83 13.99 150 16.58 11.74* 150 16.43 12.84* 150 207.81 207.81 150 211.77 211.77 150 177.29 177.29 150 197.88 197.88 150 220.76 230.49 59.56 59.93 46 43 Instance Time (s) Best f best known SOM-b_1_n100_m10 100 0 0 SOM-b_2_n100_m20 100 4 4 SOM-b_3_n100_m30 100 6 7 SOM-b_4_n100_m40 100 10 10 SOM-b_5_n200_m20 200 3 3 SOM-b_6_n200_m40 200 9 9 SOM-b_7_n200_m60 200 13 13 SOM-b_8_n200_m80 200 18 18 SOM-b_9_n300_m30 300 6 6 SOM-b_10_n300_m60 300 12 12 SOM-b_11_n300_m90 300 18 18 SOM-b_12_n300_m120 300 24 23* SOM-b_13_n400_m40 400 9 8* SOM-b_14_n400_m80 400 16 16 SOM-b_15_n400_m120 400 23 23 SOM-b_16_n400_m160 400 27 30 SOM-b_17_n500_m50 500 10 10 SOM-b_18_n500_m100 500 19 19 SOM-b_19_n500_m150 500 26 26 SOM-b_20_n500_m200 500 34 36 Avg 300 14.35 14.55 #Best 18 17	12.16 10.52 11.85 12.04 162.64 141.46 119.41 138.53 136.05 12.80 14.85 13.93 16.22 11.88 146.88 194.65 190.89 161.74 199.71 22.22 20.03 18.42 18.20 19.95 219.40 214.20 203.37 204.88 246.24 64.67 favg 1.4 5.15 8.25 11.2 4.55 9.85 14.55 19.65 6.85 13.4 19.5 25.85 8.95 17.15 24.4 32.55 10.7 20.2 28.75 39.45 16.12	1.34 1.53 1.69 1.19 6.99 24.47 16.86 7.47 13.51 2.05 1.47 1.40 1.63 1.60 17.19 1.53 17.66 6.29 11.79 1.85 2.67 1.84 2.33 2.24 7.26 5.74 17.70 10.73 23.38 4.52 std 0.49 0.36 0.54 0.68 0.5 0.36 0.67 0.91 0.36 0.49 0.74 1.19 0.22 0.61 0.86 1.28 0.64 0.51 1.3 2.48 0.76	0.00 0.68 0.00 2.73 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 1.61 0.00 -1.67 0.00 0.00 0.00 0.00 11.12 1.37 0.00 2.16 -4.84 -3.59 0.00 0.00 0.00 0.00 9.73 0.37 ∆f best 0 0 1 0 0 0 0 0 0 0 0 -1 -1 0 0 3 0 0 0 2 0.2

Available at http://www.di.unito.it/~aringhie/benchmarks.html and http: //www.optsicom.es/mindiff/

Our solution certicates are available at: http://www.info.univ-angers.fr/ pub/hao/mindiffdp_IDTS.html.

p-value 7.74e-6 7.74e-6 7.74e-6 7.74e-6 7.74e-6 7.74e-6

Acknowledgments

We are grateful to the reviewers for their valuable comments which helped us to improve the paper. This work was partially supported by the National Natural Science Foundation of China (Grant No. 61703213), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20170904), six talent peaks project in Jiangsu Province (Grant No. RJFW-011), and NUPTSF (Grant No. NY217154).

MDG-c_1_n3000_m300

Distribution of 3297 high-quality local optima

Analysis of the Search Trajectory

To shed additional light on the behavior of the IDTS algorithm, we investigate the nature of its search trajectory. For this purpose, we carried out the following experiment on four representative instances. The algorithm was run once to solve each instance, starting from a local optimum solution obtained by the rst improvement descent method. To avoid the bias of the constrained neighborhood candidate list strategy, we adopted the full swap neighborhood N f ull swap and set the maximum number of iterations to be 500.

During the run of the algorithm, we recorded the objective value (f) at each iteration. The evolution of f as a function of the iterations for the tested instances is plotted in Fig. 5, where the X-axis represents the number of iterations, and the Y-axis indicates the objective value f . Fig. 5 shows that the

A Appendix

We report here the results of the IDTS algorithm on the six sets of benchmarks of 170 instances that are not listed in Section 3.