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A number of important applications related to complex network analysis require finding small vertex covers in massive graphs. This paper proposes an effective stochastic local search algorithm called DTS MVC to fulfill this task. Relying on a fast vertex-based search strategy, DTS MVC effectively explores the search space by alternating between a thresholding search phase during which the algorithm accepts both improving and non-improving solutions that satisfy a dynamically changing quality threshold, and a conditional improving phase where only improving solutions are accepted. A novel non-parametric operationprohibiting mechanism is introduced to avoid search cycling. Computational experiments on 86 massive real-world benchmark graphs indicate that DTS MVC performs remarkably well by discovering 7 improved best known results (new upper bounds). Additional experiments are conducted to shed light on the key ingredients of DTS MVC.

Introduction

Given a connected, undirected graph G = (V, E) with vertex set V and edge set E, a vertex cover S of G is a subset of V (S ⊂ V ) such that each edge of the graph is incident to at least one vertex of S. The Minimum Vertex Cover (MVC) problem is to determine a vertex cover of minimum cardinality. MVC is equivalent to the Maximum Independent Set (MIS) problem and the Maximum Clique (MC) problem since given a minimum vertex cover S of G, V \ S is a maximum independent set in G and a maximum clique of G (the complement of G) [START_REF] Wu | A review on algorithms for maximum clique problems[END_REF]. In addition to many conventional applications, MVC as well as its equivalent models become more and more popular in important areas like social network analysis [START_REF] Fortunato | Community detection in graphs[END_REF], bioinformatics [START_REF] Matsunaga | Clique-based data mining for related genes in a biomedical database[END_REF] and economics [START_REF] Boginski | Statistical analysis of financial networks[END_REF][START_REF] Wu | Solving the winner determination problem via a weighted maximum clique heuristic[END_REF].

Solving MVC in the general case is computationally challenging given that its decision version is NP-complete [START_REF] Garey | Computers and intractability, a guide to the theory of np-completness[END_REF]. Due to its NP-hardness, most previous MVC algorithms adopted stochastic local search (SLS) heuristics (e.g., [5-7, 29, 31, 36]) to seek high-quality sub-optimal solutions in reasonable time. Several exact algorithms based on the general Branch and Bound method were also proposed for the equivalent MC problem (e.g., [START_REF] Li | Combining graph structure exploitation and propositional reasoning for the maximum clique problem[END_REF][START_REF] Östergård | A fast algorithm for the maximum clique problem[END_REF][START_REF] San Segundo | An exact bit-parallel algorithm for the maximum clique problem[END_REF][START_REF] Tomita | An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments[END_REF]). These previous algorithms were demonstrated to be effective in solving traditional graphs from the DIMACS and BHOSLIB benchmark sets which are of small or medium size.

Meanwhile, the fast growth of the Internet and the recent advances in information technology have generated a large amount of data whose underlying graphs are much larger than the traditional benchmarks. These real-world graphs (like social networks) are typically massive, with tens of millions of vertices, and sparse with low edge densities where the degrees of vertices often follow a power-law distribution [START_REF] Newman | The structure and function of complex networks[END_REF]. These massive graphs pose serious challenges to existing solution approaches [START_REF] Pardalos | Computational challenges with cliques, quasi-cliques and clique partitions in graphs[END_REF]. First, many existing algorithm implementations cannot be applied due to their matrix representation of the graph [START_REF] Verma | Solving the maximum clique and vertex coloring problems on very large sparse networks[END_REF]. With the matrix representation, graphs with millions of vertices simply cannot be loaded into a computer's working memory. Second, many best performing SLS algorithms adopt the bestimprovement (or operator-based) search strategy for solution transformations on a scale-correlated candidate set (e.g., [START_REF] Cai | Numvc: An efficient local search algorithm for minimum vertex cover[END_REF][START_REF] Jin | General swap-based multiple neighborhood tabu search for the maximum independent set problem[END_REF][START_REF] Pullan | Dynamic local search for the maximum clique problem[END_REF][START_REF] Wu | An adaptive multistart tabu search approach to solve the maximum clique problem[END_REF]) (see Sect. 3.3). Such a strategy incurs a high time complexity of the algorithm per iteration and becomes inefficient and impracticable on massive graphs. Indeed, each application of this strategy in the setting of massive graphs requires millions of evaluation operations, which, even if quite simple, will necessarily lead to a very low computational efficiency and slow down the algorithm.

Developing suitable algorithms for MVC and its equivalent problems on massive graphs is receiving increasing research attention in recent years. In [START_REF] Pattabiraman | Fast algorithms for the maximum clique problem on massive sparse graphs[END_REF][START_REF] Pattabiraman | Fast algorithms for the maximum clique problem on massive graphs with applications to overlapping community detection[END_REF][START_REF] San Segundo | A new exact maximum clique algorithm for large and massive sparse graphs[END_REF][START_REF] Verma | Solving the maximum clique and vertex coloring problems on very large sparse networks[END_REF], exact algorithms were presented to solve the equivalent MC optimally. On the other hand, due to the size of the massive sparse graphs and the intractability of the considered problems, SLS represents a natural solution approach to find high-quality approximate solutions, which nevertheless, needs to incorporate dedicated designs to be effective. In [START_REF] Abello | On maximum clique problems in very large graphs[END_REF], a GRASP heuristic was introduced for MC which integrates graph decomposition schemes and an external-memory procedure. One notices that applying a MC algorithm to MVC requires operating on a highly dense and massive complement graph, which makes the algorithm inappropriate for solving MVC. Very recently, a dedicated SLS algorithm called FastVC was introduced to find small vertex colors in massive graphs [START_REF] Cai | Balance between complexity and quality: local search for minimum vertex cover in massive graphs[END_REF], which was built upon the NuMVC algo-rithm [START_REF] Cai | Numvc: An efficient local search algorithm for minimum vertex cover[END_REF] and includes specific heuristics for initial solution generations and solution transformations. Another new SLS algorithm called LinCom [START_REF] Fan | Exploiting reduction rules and data structures: Local search for minimum vertex cover in massive graphs[END_REF] adopts the same algorithm scheme as FastVC. LinCom distinguishes itself from FastVC by integrating reduction rules for solution initialization and employing an efficient data structure to implement the best improvement heuristic. LinCom was shown to be able to compete favorably with FastVC on a number of massive real-world graphs. To our knowledge, FastVC and LinCom are the current best performing heuristic algorithms for the MVC problem considered in this work and will serve as the main references for the assessment of our proposed algorithm.

In addition to the above studies on MVC, we notice some very recent efforts devoted to extensions of the basic MVC and clique models such as the robust clique problem with uncertain edge failures [START_REF] Yezerska | Detecting robust cliques in graphs subject to uncertain edge failures[END_REF], the clique relaxation problems (k-blocks and k-robust 2-clubs, [START_REF] Balasubramaniam | On robust clusters of minimum cardinality in networks[END_REF]), the degree-based-quasi-clique problem [START_REF] Pastukhov | On maximum degreebasedquasiclique problem: Complexity and exact approaches[END_REF], the maximum quasi-clique problem [START_REF] Pinto | A biased randomkey genetic algorithm for the maximum quasi-clique problem[END_REF], the maximum s-plex problem [START_REF] Gao | An exact algorithm for Maximum k-Plexes in massive graphs[END_REF][START_REF] Zhou | Frequency-driven tabu search for the maximum s-plex problem[END_REF], the maximum balanced biclique problem [START_REF] Wang | New heuristic approaches for maximum balanced biclique problem[END_REF][START_REF] Zhou | Tabu search with graph reduction for finding maximum balanced bicliques in bipartite graphs[END_REF], and the maximum induced biclique problem [START_REF] Shahinpour | Scale reduction techniques for computing Maximum Induced Bicliques[END_REF]. These extended models together with the classic MVC and clique models provide a useful and relevant means for modeling and analyzing massive graphs and complex networks. Designing new methods able to effectively handle these problems for massive graphs represents a real interest and a formidable challenge as well.

In this work, we focus on solving MVC on massive sparse graphs and introduce a fast and effective SLS heuristic algorithm called DTS MVC (Dynamic Thresholding Search for MVC). DTS MVC basically alternates between a thresholding search phase where the algorithm accepts new (either improving or non-improving) solutions subject to a dynamically evolving quality threshold and a conditional improving phase where only improving solutions are sought. The original features of DTS MVC and the contributions of this work are identified as follows.

• First, DTS MVC uses a randomized greedy procedure based on vertex degree information to build its initial solution (vertex cover). With the same complexity (O(|E|)) as the conventional random construction procedure, the greedy procedure is able to generate initial solutions of better quality and helps to speed up the search process of DTS MVC. • Second, the thresholding search phase employs a vertex-based strategy and a parameter-free operation-prohibiting mechanism for solution transformations. The vertex-based strategy applies the best operator taken from a small operator candidate set to a given vertex (randomly chosen) to transform the incumbent solution. From the computational point of view, this approach is significantly more efficient than the traditional operator-based strategy which needs, for solution transformations, to identify among a large vertex candidate set the best vertex to which the given transformation operator is applied. • Third, DTS MVC uses a random 'switch' to control the input of each thresholding search phase which is either the local optimum from the hill-climbing im-proving phase or the solution returned by the last round of thresholding search. This design naturally reinforces the balance between intensification and diversification of the search process. • Fourth, computational assessments on 86 massive real-world graphs indicate that DTS MVC competes favorably with two state-of-the-art MVC solvers dedicated to massive graphs (FastVC and LinCom) by improving 7 and matching 64 best known results. • Finally, the proposed vertex-based strategy and the operation-prohibiting mechanism are essentially problem-independent and are advantageously used to design search algorithms for other graph problems. Given that these techniques help to accelerate the search process and to simply the algorithmic procedure, they will be particularly useful and promising when the problem scale is large and the computing time allowed is limited.

The rest of the paper is organized as follows. After introducing preliminary definitions and notations (Sect. 2), we describe in Section 3 the proposed algorithm and its ingredients. In Section 4, we present computational results and comparisons with state-of-the-art methods and analyze the key algorithmic components. In the last section, we draw concluding remarks and indicate some ideas for future studies. Let S be a solution (i.e., a vertex cover of G), then we defined the following vertex sets which are useful to describe the proposed algorithm.

• The expanding neighborhood of a vertex v ∈ S relative to V \S, denoted as

N E (v), is the set of neighbors of v that belong to V \S, i.e., N E (v) = {u ∈ V \S : (u, v) ∈ E}. • The mapping neighborhood of a vertex v ∈ V \S, denoted as N M (v), is the set of neighbors of v in S whose expanding neighborhood has a single vertex, i.e., N M (v) = {u ∈ S : (u, v) ∈ E, |N E (u)| = 1}. • The improving neighbor set of S (N I (S)
) is a set of vertices in S that are not connected to any vertex in V \S, i.e., N I (S) = {v ∈ S : |N E (v)| = 0}. By definition, any vertex in N I (S) can be directly removed from S to obtain a better solution (i.e., a smaller vertex cover).

Figure 1 shows an illustrative example of the last three notations, where the considered graph has 6 vertices with a given vertex cover 
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General Outline

The DTS MVC algorithm (Alg. 1) proposed in this work starts by constructing an initial vertex cover using the GreedyConstruct procedure (Sect. 3.2), and then alternates between a thresholding search phase (Sect. 3.3) and a conditional improving phase (Sect. 3.4) to find increasingly better solutions (smaller vertex covers).

In the thresholding search phase (lines 8-27 of Alg. 1), the algorithm uses a socalled vertex-based strategy to prospect for good solutions by scanning the vertices one by one in random order and for each considered vertex, applying accordingly one of three basic transformation or move operators: DROP, ADD and SWAP (see Sect. 3.3 for their definitions). Precisely, after picking a vertex, the algorithm examines two associated operators ({DROP, SWAP} or {SWAP, ADD} depending on whether the vertex is in or out of the current vertex cover) in a specific order (ensuring that the most suitable operator is always applied first), and any resulting neighboring solution that satisfies a quality threshold is accepted immediately. With a responsive mechanism [START_REF] Chen | Iterated responsive threshold search for the quadratic multiple knapsack problem[END_REF], the quality threshold dynamically evolves with the best solution found along the search process. This fast vertex-based strategy helps the algorithm to efficiently visit a large number of solutions for a given search effort. In this phase, the algorithm also uses an operation-prohibiting mechanism (a parameter-free tabu list [START_REF] Glover | Tabu search[END_REF]) to avoid reversing recently performed moves. A round of the thresholding search phase terminates when all vertices in V have been examined once and only once. Thanks to the vertex-based strategy and the operationprohibiting mechanism, the search process is expected to explore various zones of the search space without being easily trapped in local optima.

As a complement to the thresholding search phase, DTS MVC performs a strict hill-climbing in the conditional improving phase to intensify the search (lines 28-39 of Alg. 1). The hill-climbing procedure shrinks the current vertex cover S by dropping all vertices that are not connected to any vertex in V \S. This phase is named 'conditional' since the local optimum of the hill-climbing procedure is ac-cepted to become the starting solution of the next round of thresholding search only when the random switch ('on' or 'off') is 'on'. DTS MVC iterates the above two phases to seek increasingly better solutions until a prefixed cutoff time is reached. In what follows, we present the three main components of the DTS MVC algorithm: GreedyConstruct procedure, the thresholding search phase and the conditional improving phase. Randomly shuffle all vertices in V ; 

for each v ∈ V do if v ∈ S then if |N E (v)| = 0 then S := S\{v} ; if |S| < |S * | then S * := S else if |N E (v)| = 1 ∧ age[v] < round then u := the only vertex in N E (v); S := S\{v}; S := S ∪ {u}; age[u] := round else if |N M (v)| > 0 ∧ age[v] <

The GreedyConstruct Procedure

DTS MVC requires an initial vertex cover as its starting solution. Since random solutions are generally of mediocre quality, using such a solution to start the search will significantly slow down the algorithm for massive graphs. For this reason, we devise a fast greedy procedure (GreedyConstruct) which offers a suitable balance between the time complexity and the solution quality. GreedyConstruct constructs an initial vertex cover using the vertex degree as heuristic information which favors exclusion of vertices with a small degree from the current solution. The intuition behind this heuristic is that the vertices with a small degree are less likely to connect to each other and thus potentially allow more such vertices to be excluded from the solution. Starting from a cover S with all vertices of V , GreedyConstruct (Alg. 2) iteratively shrinks S by dropping one vertex of the improving neighbor set N I (S) (Sect. 2) out of S at one time until N I (S) becomes empty. To decide a vertex u to be excluded from S, the procedure distinguishes two situations depending on the relationship between avgDeg and the size of N I (S). If avgDeg is smaller than the cardinality of N I (S), u is the vertex with the smallest degree among the avgDeg vertices randomly selected from N I (S); otherwise u is the vertex with the smallest degree in N I (S).

Proposition 1 Given G = (V, E) with |V | = n and |E| = m, the time complexity of the GreedyConstruct procedure to construct a minimal vertex cover is O(m). Proof Let S = {v i 1 , v i 2 , .
.., v it } denote the vertex cover produced by the Greedy-Construct procedure. Since G is a connected graph and S is a vertex cover, it is clear that t ≤ n/2 . To decide v i j , the algorithm needs to perform at most avgDeg comparisons among vertices selected from N I (S). After the exclusion of v i j from S, the algorithm needs to update the improving neighbor set N I (S) by traversing deg(v i j ) neighbors of v i j . Therefore, the complexity of the GreedyConstruct procedure is O((t -avgDeg) * avgDeg + avgDeg(1

+ avgDeg)/2 + t j=1 deg(v i j )) < O(t * avgDeg + t j=1 deg(v i j )) ≈ O(m + m) ≈ O(m).
Since an efficient implementation of the random construction procedure also requires to maintain an improving neighbor set N I (S) from which a vertex is randomly selected to shrink the vertex cover at each iteration, the complexity of the random construction is O( t j=1 deg(v i j )) ≈ O(m), i.e., the same order of magnitude as that of our greedy construction. However, with initial solutions of better quality, our greedy construction generally helps DTS MVC to achieve better results with negligible additional costs (see computational results and discussions in Sect.4.3).

The Thresholding Search Phase

In the Thresholding Search Phase (lines 8-27 of Alg. 1), both improving and nonimproving solutions can be accepted by a combined use of three different basic operators (DROP, ADD and SWAP). DROP kicks a vertex out of the current vertex cover; ADD expands the current vertex cover by including a new vertex; SWAP exchanges a vertex v of the vertex cover with a vertex u out of the vertex cover. We note that the idea of systematically allowing non-improving solutions to be accepted by reference to a solution quality threshold is featured by the threshold accepting heuristic [START_REF] Dueck | Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing[END_REF] which has been successfully applied to solve a number of other combinatorial optimization problems (e.g., [START_REF] Castelino | Tabu thresholding for the frequency assignment problem[END_REF][START_REF] Chen | Iterated responsive threshold search for the quadratic multiple knapsack problem[END_REF][START_REF] Chen | An evolutionary path relinking approach for the quadratic multiple knapsack problem[END_REF][START_REF] Chen | A hybrid metaheuristic approach for the capacitated arc routing problem[END_REF][START_REF] Tarantilis | A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem[END_REF]). The main innovations in this phase include the vertex-based exploration strategy and the non-parametric operation-prohibiting mechanism whose working principles and their contribution to the solution of the problem are detailed below.

Previous SLS algorithms for MVC and its equivalent problems usually employ an operator-based strategy coupled with a best-improvement heuristic [START_REF] Cai | Numvc: An efficient local search algorithm for minimum vertex cover[END_REF][START_REF] Jin | General swap-based multiple neighborhood tabu search for the maximum independent set problem[END_REF][START_REF] Pullan | Dynamic local search for the maximum clique problem[END_REF] which operates as follows. Given the current solution, such an algorithm applies a transformation operator to a best element (vertex) selected from a vertex candidate set whose size is correlated to the number of vertices of G and grows as the problem scale increases. To identify the best vertex from such a vertex candidate set requires numerous comparison operations which is time-consuming. Though the operatorbased strategy works well for small and medium graphs (up to several thousands of vertices), it becomes unacceptable for massive data sets.

Unlike these previous approaches, we introduce a low-complexity search mechanism in the thresholding search phase. Instead of seeking a best vertex for an operator, DTS MVC employs a vertex-based strategy to determine, for a given vertex, the best operator to be applied from a set of applicable candidate operators. This strategy is efficient since the candidate operator set is small (only two possible operators for a vertex in our case) and is not related to the problem size. The idea of the vertex-based strategy is in line with the common intuition that, in the context of SLS algorithms for massive problems, it is preferable to perform many relatively simple, but efficiently computable search steps rather than few complex search steps [START_REF] Hoos | Stochastic local search: Foundations & applications[END_REF]. Thanks to the vertex-based strategy, DTS MVC is able to visit many different solutions and explore various areas of the search space to locate high quality solutions.

An important issue for SLS algorithms is to prevent the search from revisiting previously visited solutions. To address this issue, we devise a novel non-parameter operation-prohibiting (OP) mechanism in the thresholding search phase. The key idea of this mechanism is to ensure that an operation applicable to a vertex is applied at most once in a round of thresholding search. It is clear that for DROP and ADD, this condition is always satisfied. Therefore, the OP mechanism is used to ensure that the SWAP operation for a pair of vertices (v, u) is applied at most once as well. For this, we introduce an 'AGE' counter for each vertex u such that each time a vertex u is swapped into the solution, its AGE counter is set to be the current round number. Then only vertices with an AGE value smaller than the current round number are considered for SWAP operations during this round of thresholding search. The OP mechanism, combined with the random permutation of all vertices before each round of thresholding search (line 7 of Alg. 1), can be viewed as a parameterfree tabu mechanism with a random tabu tenure for each performed operation [START_REF] Glover | Tabu search[END_REF]. Our empirical experience indicates that the random permutation of all vertices is an important operation that greatly boosts the performance of DTS MVC.

Based on the three basic move operators, the thresholding search phase of DTS MVC combines the vertex-based strategy and the operation-prohibiting mechanism to make a balanced examination of the search space. For each round of this phase, the algorithm first randomly shuffles all vertices in V and then visits the vertices one by one. For each vertex v under consideration, we define its operator candidate set according to whether the vertex is inside or outside the vertex cover S.

Case 1: If v belongs to S, the operator candidate set is composed of DROP and SWAP. DROP is tested before SWAP since DROP increases the solution quality while SWAP keeps it unchanged. If both tests fail, the algorithm simply skips v. DROP is applicable if the expanding neighborhood of v is empty (i.e., v belongs to the improving neighbor set N I (S), Sect. 2). The SWAP operation is applicable if v simultaneously satisfies two conditions: 1) v is not involved in any applied SWAP operation at the current round; 2) v is connected to exactly one vertex in V \S (i.e., |N E (v)| = 1 defined in Sect. 2, this vertex is the unique vertex that can be swapped with v).

Case 2: If v is out of the vertex cover (v ∈ V \S), the operator candidate set is composed of SWAP and ADD. The applicability of SWAP is tested before ADD since SWAP does not deteriorate the solution quality while DROP does. If both tests fail, the algorithm simply skips v. SWAP is applicable if v simultaneously satisfies two conditions: 1) v was not involved in any applied SWAP operation at the current round; 2) the mapping neighborhood of v (N M (v), Sect. 2) is not empty. The vertex u ∈ S to be swapped with v is a random vertex in N M (v). ADD is applicable if the number of vertices of S after the operation is still below a threshold determined by Record + δ where Record is the cardinality of the recorded smallest vertex cover and δ (a small positive integer) is a parameter.

The Conditional Improving Phase

The balance between intensification and diversification is another important issue for SLS algorithms. The thresholding search procedure provides a form of diversification since it accepts both non-improving and deteriorating solutions. To complement this, an intensification procedure is needed to ensure a more focused and directed search. For this purpose, a hill-climbing procedure is employed in the conditional improving phase (lines 28-39 of Alg. 1). The aim of the hill-climbing procedure is to attain a local optimum using the DROP operator starting from the solution S returned by the thresholding search phase. This is achieved by iteratively selecting a random vertex from N I (S) and kicking it out of the solution until N I (S) becomes empty. The local optimum of the hill-climbing procedure is interesting since it can update the recorded best solution S * (lines 33-34, Alg. 1).

However, from a long-term perspective of the search process, a local optimum identified such a technique is not necessarily a good starting point for the next round of the thresholding search phase. For this reason, the conditional improving phase uses a random switch ('on' or 'off') to decide its output solution which will serve as the starting solution of the next round of thresholding search. This mechanism proposed in this work aims to balance the search intensification and diversification. When the switch is 'on', the output solution is the local optimum; otherwise it is the solution returned by the last round of thresholding search. This design is based on the following considerations. Though the thresholding search procedure provides a form of controlled diversification which allows the search to escape some local optima, it may be insufficient to escape deep local optima traps due to the quality limit fixed by the δ value. Instead of trying to escape such traps, the algorithm simply skips them occasionally. On the other hand, since some local optima are easy to escape and other optima are hard to get out of, it could be beneficial to start the next round of thresholding search from the local optimum of the hill-climbing procedure as well.

In our implementation, the conditional improving phase first sets the Record value to the size of the current smallest vertex cover and memorizes in S the solution returned by the thresholding search phase. It then performs the hill-climbing procedure to attain the local optimum S and uses it to update the recorded best solution S * if needed. The algorithm accepts the local optimum S and sets Record to the cardinality of the new best vertex cover S * if the random switch is 'on', or continues with S otherwise.

Computational Experiments

We evaluate the performance of DTS MVC based on a wide range of 86 massive real-world graphs with respect to two most recent MVC solvers dedicated to massive graphs: FastVC [START_REF] Cai | Balance between complexity and quality: local search for minimum vertex cover in massive graphs[END_REF] and LinCom [START_REF] Fan | Exploiting reduction rules and data structures: Local search for minimum vertex cover in massive graphs[END_REF].

Benchmark Instances

The 86 tested benchmark instances from the Network Data Repository online [START_REF] Rossi | The network data repository with interactive graph analytics and visualization[END_REF] are massive real-world graphs (with up to millions of vertices and tens of millions of edges) from 10 general collections, including biological networks, collaboration networks, facebook networks, interaction networks, infrastructure networks, amazon recommend networks, scientific computation networks, social networks, technological networks, and web link networks.

Experimental Settings and Computational Results

The proposed DTS MVC algorithm was coded in C++ and compiled by GNU g++ 4.1.2 with the '-O3' flag. The experiments were conducted on a computer with an AMD Opteron 4184 processor (2.8GHz and 2GB RAM) running Ubuntu 12.04. Solving the DIMACS machine benchmark graphs r300.5, r400.5 and r500.51 on our computer (without any compilation optimization flag) requires 0.40, 2.50 and 9.55 seconds respectively.

The proposed algorithm DTS MVC as well as the two reference algorithms were run 100 times for each instance with the time limit of 1000 seconds per run (a commonly used stopping condition in the literature [START_REF] Cai | Balance between complexity and quality: local search for minimum vertex cover in massive graphs[END_REF][START_REF] Fan | Exploiting reduction rules and data structures: Local search for minimum vertex cover in massive graphs[END_REF]). We ran the C++ source codes of FastVC2 on our machine for the sake of fair comparison. The results of LinCom were extracted directly from the original paper since its source code is not available to us. Notice in this comparison, the stopping condition of 1000 seconds is advantageous for LinCom since according to the Standard Performance Evaluation Corporation (www.spec.org), the machine used to run LinCom [START_REF] Fan | Exploiting reduction rules and data structures: Local search for minimum vertex cover in massive graphs[END_REF] is 1.17 times faster than our computer.

To assess the peak performance of DTS MVC, we conducted the above experiment for multiple values of δ (the unique parameter of DTS MVC) and reported the best δ value and its corresponding results. Specifically, δ is tuned in an iterated manner. Initialized with a value of 0, δ is incremented by 1 each time and iterated until the performance of DTS MVC is not improved for consecutive 2 iterations. As we will see later from the reported results, for most instances (76 out of 86 cases), the best δ takes the value of 1 which means in practice only a limited tuning effort is needed for these instances.

For each algorithm and for each instance, we report the smallest size (f best ) and the averaged size (f avg ) over the 100 best vertex covers (one for each run) discovered by the algorithm, as well as the averaged running time in seconds (CPU(s)) over 100 runs when the best solution is first encountered by the algorithm in each run (the averaged running times of LinCom are not included in this comparison since they were not reported in the original paper). Due to the difference of the computational environments, the results obtained by running the source codes of FastVC on our machine are not exactly the same as those reported in [START_REF] Cai | Balance between complexity and quality: local search for minimum vertex cover in massive graphs[END_REF]. For the purpose of a more comprehensive comparison, we also included the best results reported in [START_REF] Cai | Balance between complexity and quality: local search for minimum vertex cover in massive graphs[END_REF] as the current best known results (BKRs).

The detailed comparative results of DTS MVC together with the two reference algorithms on the 86 benchmarks are listed in the Appendix (Table A.1 and A.2), while Table 1 shows a summary of these detailed results and provides a general picture of the performance of the compared algorithms. Note that only the results of 59 instances (out of 86) were reported for LinCom in the original paper. From these results, we can make the following observations.

• First, DTS MVC performs remarkably well on these real-world graphs. Indeed, it matches or improves on the best known results (BKRs) for most instances (71 out of 86 cases). In particular, it is able to find 7 new BKRs (indicated with the '*' symbol in Table A.1 and Table A.2) that were never identified before. • Second, DTS MVC competes very favorably with FastVC. Indeed, DTS MVC finds substantially more BKRs than FastVC (71 vs. 57). In terms of the best solution found, DTS MVC attains a better outcome for 27 graphs, an equal result for 57 graphs and a worse result for only two cases. As to the average performance (f avg ), DTS MVC performs more stably than FastVC. Indeed, DTS MVC achieves a better value for 41 graphs, an equal value for 33 instances, and a worse value in 12 cases. These results also show that within the same time limit (1000 seconds), DTS MVC is able to find improving solutions while FastVC gets stuck early before the time limit. • Third, compared to LinCom which is one of the most recent and the best performing MVC algorithms dedicated to massive graphs, DTS MVC remains very competitive even if the improvement of our algorithm over LinCom is relatively small. Table 1 indicates that in terms of the best result (f best ), the number of instances where DTS MVC is better than LinCom is more than where DTS MVC is worse (i.e., #Better vs. #W orse = 15:14). DTS MVC is more robust than LinCom since DTS MVC shows a better average performance in 37 instances. This number is larger than the 22 cases where DTS MVC attains a worse result. Notice that, the results of LinCom were obtained on a computer which is 1.17 time fascter than our computer. • Fourth, there are two collections of graphs (prefix 'ca-' and 'ia-') where all three compared algorithms perform similarly. Among the other networks, DTS MVC dominates the other two algorithms on the collection prefixed by 'socfb-' while LinCom outperforms the other algorithms on the collections prefixed by 'inf-' and 'soc-'. This observation shows that DTS MVC is a good complement to the state-of-the-art MVC solution approaches.

Table 1 Statistical data on comparative results of DTS MVC with two state-of-the-art algorithms (FastVC [START_REF] Cai | Balance between complexity and quality: local search for minimum vertex cover in massive graphs[END_REF] and LinCom [START_REF] Fan | Exploiting reduction rules and data structures: Local search for minimum vertex cover in massive graphs[END_REF]). For a given algorithm pair, #Instance represents the number of instances in comparison. For each algorithm pair and each indicator, #Better, #Equal and #Worse count the number of instances on which the first algorithm achieves a value that is better, equal to or worse than the second algorithm respectively. 

Discussion

A second experiment was carried out to investigate the effectiveness of four key ingredients of DTS MVC: the initialization procedure, the switch condition of the improving phase, the random shuffling strategy of vertices before each thresholding search phase, and the operation-prohibiting mechanism. To this end, we studied four algorithm variants, each with one or two ingredients removed from the original DTS MVC algorithm:

• DTS MVC 1 : with the greedy initialization procedure replaced by a pure random initialization procedure; • DTS MVC 2 : with the switch condition removed;

• DTS MVC 3 : with the random shuffling strategy disabled;

• DTS MVC 4 : with both random shuffling strategy and the operation-prohibiting mechanism disabled.

We tested these algorithm variants on the 86 benchmark networks under the same experimental protocol as DTS MVC. The pairwise comparative results of DTS MVC with each of its variants (or between two algorithm variants) were summarized in Table 2. To give a general picture of the performances of the four algorithm variants with respect to DTS MVC, we also provided two plots of their best and average results in Figure 2 and3. The horizontal axis of these plots shows the instance serial number that indicates the order in which the instance appears in Table A.1 and A.2. The vertical axis shows the performance gap (either best or average) in percentage, calculated as (f -f dts )×100/f dts where f is the (best or average) solution value of the algorithm variant and f dts is the (best or average) solution value of DTS MVC. From Table 2 and Figures A.1-A.2, we can make the following observations:

• DTS MVC performs better than DTS MVC 1 in terms of both best results (more #Better than #Worse: 25 vs. 3) and average results (more #Better than #Worse: 42 vs. 5). For 39 instances where both DTS MVC and DTS MVC 1 consistently attain the BKR, DTS MVC is faster than DTS MVC 1 on average (42.60s vs. 56.39s). This observation shows that compared to the random construction procedure, our greedy construction procedure provides better initial solutions to promote the overall performance of DTS MVC, and thanks to these high quality starting points, DTS MVC arrives at a still better solution with generally less computing time than DTS MVC 1 . • DTS MVC also outperforms DTS MVC 2 in terms of both best results (more #Better than #Worse: 28 vs. 3) and average results (more #Better than #Worse: 36 vs. 9). This confirms the effectiveness of the random 'switch' condition which contributes to the balance of intensification and diversification of DTS MVC. • When comparing DTS MVC with DTS MVC 3 , we observe a more significant dominance of DTS MVC (see Figure A.1 and A.2, the black line of DTS MVC is mostly below the the red line of DTS MVC 3 ). Indeed, DTS MVC is always better than or equal to DTS MVC 3 in terms of both best result and average results. In particular, DTS MVC achieves a better f best result for 64 out of 86 instances (74.4%) and a better f avg result for 75 out of 86 instances (87.2%). This observation demonstrates the critical role of the random shuffling strategy in boosting the performance of DTS MVC. • Although much worse than DTS MVC, DTS MVC 3 clearly dominates DTS MVC 4 thanks to the inclusion of the operation-prohibiting mechanism (see Figure A.1 and A.2, the red line of DTS MVC 3 is generally below the the green line of DTS MVC 4 ). Indeed, DTS MVC 3 is consistently better than (for more than 80% of all tested instances) or equal to DTS MVC 4 in terms of both best and average results. This observation confirms the effectiveness of our operation-prohibiting mechanism in avoiding the search cycling issue. 

Conclusions and Future Work

We presented a fast and effective stochastic local search algorithm called DTS MVC for finding small vertex covers in massive sparse graphs. Starting from an initial solution generated by a low-complexity greedy construction procedure, DTS MVC alternates between a thresholding search phase and a conditional improving phase. Two innovative ingredients of DTS MVC are the vertex-based strategy and the operation-prohibiting mechanism used in the thresholding search phase. The vertexbased strategy ensures fast solution transformations and enables DTS MVC to explore various areas of the search space while the operation-prohibiting mechanism combined with a random-vertex-shuffling strategy provides an effective way for DTS MVC to avoid search cycling. Experimental evaluations on 86 massive realworld graphs showed that DTS MVC performs very well by competing favorably with two most recent MVC algorithms specially designed for massive graphs. In particular, it is able to discover 7 new best known results (improved upper bounds) never reported in the literature and match the best known results for 64 other cases. The computational results also indicate that DTS MVC and the existing MVC algorithms complement each other and could be used jointly to handle a large spectrum of graphs. We also conducted additional experiments to understand how each of the main algorithmic components (namely the low-complexity greedy construction procedure, the random-vertex-shuffling strategy, the operation-prohibiting mechanism and the random 'switch' condition) contributes to the performance of DTS MVC. DTS MVC involves a tunable parameter δ which controls the search behavior and the performance of the algorithm. Since fine-tuning this parameter for a given problem instance could lead to improved solutions, it would be interesting to investigate self-adaptive mechanisms to tune this parameter automatically during the search process.

Finally, we note that the proposed vertex-based strategy and the operation-prohibiting mechanism are general enough to be applicable to other graph problems such as those mentioned in the introduction. Since these techniques aim to accelerate the search process and simply the algorithmic procedure, they would particularly be useful to handle large scale problems. It's thus interesting to practically investigate these ideas in the context of solving other search problems in massive sparse graphs. 
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  Basic Definitions and Notations Given a graph G = (V, E) with |V | = n and |E| = m, let N (v) = {u ∈ V : (u, v) ∈ E} denote the neighborhood of vertex v ∈ V . Let deg(v) = |N (v)| and avgDeg = v∈V deg(v)/n denote respectively the degree of a vertex v and the average degree of G.

Fig. 1 .

 1 Fig. 1. Illustrative example of the basic notations 3 The DTS MVC Algorithm

Algorithm 1 :

 1 DTS MVC AlgorithmData: graph G=(V,E); integer δ; the cutoff time; Result: the smallest vertex cover S * found initialize age as an all-0 array ; round := 0; S := GreedyConstruct(); S * := S; Record := |S * | ; while elapsed time < cutoff do round := round + 1 ; // Thresholding Search Phase

  round then u := a random vertex in N M (v); S := S\{u}; S := S ∪ {v}; age[v] := round else if |S| + 1 ≤ Record + δ then S := S ∪ {v} ; // Conditional Improving Phase Record := |S * |; S := S ; while N I (S) = ∅ do u := a random vertex in N I (S); S := S\{u} ; if |S| < |S * | then S * := S switch := a random value in {0, 1} ; if switch = 1 then Record := |S * | ; else S := S ; return S *

Algorithm 2 :

 2 GreedyConstruct Procedure Data: graph G=(V,E); Result: a vertex cover S S := ∅ ; while N I (S) = ∅ do if avgDeg < |N I (S)| then u := the vertex with the smallest degree among the avgDeg vertices which are randomly selected from N I (S) ; else u := the vertex with the smallest degree in N I (S) ; S := S\{u} ; return S

Fig. 2 .

 2 Fig.2. Gap between DTS MVC and its algorithm variants in terms of best results.

Fig. 3 .

 3 Fig.3. Gap between DTS MVC and its algorithm variants in terms of average results.

Table 2

 2 Statistical comparative results of DTS MVC with its four algorithm variants over 86 benchmark instances. For each algorithm pair and each indicator, #Better, #Equal and #Worse count the number of instances on which the first algorithm achieves a value that is better, equal or worse than the second algorithm respectively.

	Algorithm Pair	Indicator #Better #Equal #Worse
	DTS MVC vs. DTS MVC 1	f best	25	58	3
		favg	42	39	5
	DTS MVC vs. DTS MVC 2	f best	28	55	3
		favg	36	41	9
	DTS MVC vs. DTS MVC 3	f best	64	22	0
		favg	75	11	0
	DTS MVC 3 vs. DTS MVC 4	f best	69	17	0
		favg	77	9	0

Table A .

 A [START_REF] Abello | On maximum clique problems in very large graphs[END_REF] Comparative results of DTS MVC with FastVC[START_REF] Cai | Balance between complexity and quality: local search for minimum vertex cover in massive graphs[END_REF] and LinCom[START_REF] Fan | Exploiting reduction rules and data structures: Local search for minimum vertex cover in massive graphs[END_REF] on biological networks, collaboration networks, facebook networks, interaction networks, infrastructure networks, recommend networks and scientific networks (totally 49 instances). The best of the f best values are in boldface and the best of the f avg values are in italic. The best result of DTS MVC is starred if it improves on the current best known result BKR. n/a denotes "not available".

	Instance		BKR		DTS MVC			FastVC		LinCom
	Graph	|V |	|E|		δ	f best	favg	CPU(s) f best	favg	CPU(s) f best	favg
	bio-dmela	7393	25569	2630	1	2630	2630.02	1.47	2632	2632.00	0.03	n/a	n/a
	bio-yeast	1458	1948	456	1	456	456.00	0.00	456	456.00	0.00	n/a	n/a
	ca-AstroPh	17903	196972 11483	1	11483	11483.00 0.00	11483	11483.00 0.06	11483	11483.01
	ca-citeseer	227320 814134 129193 1	129193 129193.00 5.15	129193 129193.00 2.59	129193 129193.36
	ca-coauthors-dblp	540486 15245729 472179 1	472179 472179.00 369.50 472179 472179.13 54.42 472179 472179.02
	ca-CondMat	21363	91286	12480	1	12480	12480.00 0.00	12480	12480.00 0.10	12480	12480.06
	ca-CSphd	1882	1740	550	1	550	550.00	0.00	550	550.00	0.00	n/a	n/a
	ca-dblp-2010	226413 716460 121969 1	121969 121969.00 7.09	121969 121969.00 13.18 121969 121969.64
	ca-dblp-2012	317080 1049866 164949 1	164949 164949.00 7.24	164949 164949.00 6.63	164949 164950.35
	ca-Erdos992	6100	7515	461	1	461	461.00	0.00	461	461.00	0.00	n/a	n/a
	ca-GrQc	4158	13422	2208	1	2208	2208.00	0.00	2208	2208.00	0.01	n/a	n/a
	ca-HepPh	11204	117619 6555	1	6555	6555.00	0.00	6555	6555.00	0.03	n/a	n/a
	ca-hollywood-2009	1069126 56306653 864052 1	864052 864052.00 328.40 864052 864052.00 75.76 864052 864052.01
	ca-MathSciNet	332689 820644 139951 1	139951 139951.00 12.96 139951 139951.00 9.09	139951 139952.23
	socfb-A-anon	3097165 23667394 375230 1	375230 375233.00 63.46 375231 375233.46 259.74 375230 375230.82
	socfb-B-anon	2937612 20959854 303048 1	303048 303049.38 34.36 303048 303049.00 220.20 303048 303048.00
	socfb-Berkeley13	22900	852419 17210	1	17210	17213.20 366.53 17210	17214.13 315.58 17210	17215.93
	socfb-CMU	6621	249959 4986	1	4986	4986.76	12.82 4986	4986.86	10.57 4986	4987.24
	socfb-Duke14	9885	506437 7683	1	7683	7683.39	164.56 7683	7683.89	243.35 7683	7684.98
	socfb-Indiana	29732	1305757 23315	1	23315	23317.60 430.06 23315	23319.69 462.64 23319	23323.79
	socfb-MIT	6402	251230 4657	1	4657	4657.00	162.38 4657	4657.01	153.90 4657	4657.56
	socfb-OR	63392	816886 36548	1	36548	36550.00 464.07 36548	36550.25 276.70 36548	36549.50
	socfb-Penn94	41536	1362220 31162	1	31160 * 31166.00 545.29 31162	31167.56 592.00 31165	31170.78
	socfb-Stanford3	11586	568309 8517	1	8517	8517.97	23.08 8518	8518.00	27.78 8518	8518.35
	socfb-Texas84	36364	1590651 28167	1	28167	28172.30 497.12 28167	28174.53 587.62 28169	28178.98
	socfb-UCLA	20453	747604 15223	1	15222 * 15224.90 340.07 15223	15225.61 366.27 15224	15228.85
	socfb-UConn	17206	604867 13230	2	13230	13232.10 333.28 13230	13232.41 317.04 13232	13235.99
	socfb-UCSB37	14917	482215 11261	1	11261	11263.20 258.23 11261	11264.14 305.43 11262	11265.54
	socfb-UF	35111	1465654 27306	1	27305 * 27309.80 477.22 27306	27311.76 543.21 27310	27316.25
	socfb-UIllinois	30795	1264421 24091	3	24091	24095.80 507.17 24091	24096.31 533.38 24095	24101.18
	socfb-Wisconsin87	23831	835946 18383	1	18383	18386.30 370.48 18383	18387.59 471.40 18384	18390.13
	ia-email-EU	32430	54397	820	1	820	820.00	0.00	820	820.00	0.00	n/a	n/a
	ia-email-univ	1133	5451	594	1	594	594.00	0.00	594	594.00	0.00	n/a	n/a
	ia-enron-large	33696	180811 12781	1	12781	12781.00 0.00	12781	12781.00 0.11	12781	12781.20
	ia-fb-messages	1266	6451	578	1	578	578.00	0.00	578	578.00	0.01	n/a	n/a
	ia-reality	6809	7680	81	1	81	81.00	0.00	81	81.00	0.00	n/a	n/a
	ia-wiki-Talk	92117	360767 17288	1	17288	17288.00 0.04	17288	17288.00 0.22	n/a	n/a
	inf-power	4941	6594	2203	1	2203	2203.00	0.00	2203	2203.00	0.03	2203	2203.01
	inf-roadNet-CA	1957027 2760388 1001058 1	1001158 1001253.63 969.00 1001273 1001320.00 974.57 1001058 1001139.61
	inf-roadNet-PA	1087562 1541514 555035 1	555160 555231.23 921.42 555220 555242.00 850.93 555035 555107.22
	rec-amazon	91813	125704 47605	1	47605	47605.55 225.65 47607	47607.40 1.79	47605	47605.62
	sc-ldoor	952203 20770807 856755 8	856759 856762.87 788.41 856755 856757.00 313.25 856755 856757.18
	sc-msdoor	415863 9378650 381558 1	381558 381559.72 594.24 381558 381559.00 54.00 381559 381559.86
	sc-nasasrb	54870	1311227 51243	0	51242 * 51246.96 691.44 51244	51247.20 506.26 51243	51249.23
	sc-pkustk11	87804	2565054 83911	0	83911	83913.93 125.97 83911	83913.70 37.73 83911	83913.52
	sc-pkustk13	94893	3260967 89217	0	89220	89224.61 773.88 89218	89221.20 577.88 89219	89222.95
	sc-pwtk	217891 5653221 207698 1	207695 * 207707.18 896.61 207716 207709.00 443.51 207698 207711.11
	sc-shipsec1	140385 1707759 117278 1	117231 * 117295.35 936.47 117348 117381.00 842.21 117278 117319.88
	sc-shipsec5	179104 2200076 146991 1	147081 147128.31 898.25 147137 147170.00 574.72 146991 147022.95
							20						

Table A .

 A [START_REF] Balasubramaniam | On robust clusters of minimum cardinality in networks[END_REF] Comparative results of DTS MVC with FastVC[START_REF] Cai | Balance between complexity and quality: local search for minimum vertex cover in massive graphs[END_REF] and LinCom[START_REF] Fan | Exploiting reduction rules and data structures: Local search for minimum vertex cover in massive graphs[END_REF] on the social networks, technological networks and web link networks (totally 37 instances). The best of the f best values are in boldface and the best of the f avg values are in italic. The best result of DTS MVC is starred if it improves on the current best known result BKR. n/a denotes "not available".

	Instance		BKR		DTS MVC			FastVC		LinCom
	Graph	|V |	|E|		δ	f best	favg	CPU(s) f best	favg	CPU(s) f best	favg
	soc-BlogCatalog	88784	2093195 20752	1	20752	20752.00 16.59 20752	20752.01 0.61	20752	20752.01
	soc-brightkite	56739	212945 21190	1	21190	21190.01 51.37 21190	21190.10 0.40	21190	21190.09
	soc-buzznet	101163 2763066 30613	4	30617	30625.79 548.02 30625	30625.50 239.30 30613	30613.00
	soc-delicious	536108 1365961 85319	4	85824	85933.04 937.86 86184	86224.40 10.58 85319	85333.75
	soc-digg	770799 5907132 103234 1	103242 103244.69 91.34 103244 103245.00 4.73	103234 103234.01
	soc-douban	154908 327162 8685	1	8685	8685.00	0.00	8685	8685.00	0.01	n/a	n/a
	soc-epinions	26588	100120 9757	1	9757	9757.00	0.96	9757	9757.85	0.28	9757	9757.02
	soc-flickr	513969 3190452 153271 1	153271 153271.52 192.07 153272 153272.00 63.51 153271 153271.45
	soc-flixster	2523386 7918801 96317	1	96317	96317.00 23.25 96317	96317.00 2.88	96317	96317.02
	soc-FourSquare	639014 3214986 90108	1	90108	90108.99 88.71 90108	90109.30 71.72 90108	90108.13
	soc-gowalla	196591 950327 84222	1	84222	84222.54 445.45 84222	84222.40 46.37 84222	84222.07
	soc-lastfm	1191805 4519330 78688	1	78688	78688.01 5.35	78688	78688.00 2.27	n/a	n/a
	soc-livejournal	4033137 27933062 1868924 1	1869051 1869074.41 976.36 1869060 1869082.00 973.69 1868924 1868932.92
	soc-LiveMocha	104103 2193083 43427	1	43427	43427.53 377.29 43427	43427.00 176.74 n/a	n/a
	soc-pokec	1632803 22301964 843344 1	843415 843431.68 941.55 843422 843438.00 868.47 843344 843347.38
	soc-slashdot	70068	358647 22373	1	22373	22373.00 0.51	22373	22373.00 0.49	n/a	n/a
	soc-twitter-follows	404719 713319 2323	1	2323	2323.00	0.00	2323	2323.00	0.07	n/a	n/a
	soc-youtube	495957 1936748 146376 1	146376 146376.00 67.91 146376 146376.34 13.02 146376 146376.10
	soc-youtube-snap	1134890 2987624 276945 1	276945 276945.00 80.49 276945 276945.00 27.71 276945 276945.21
	tech-as-caida2007	26475	53381	3683	1	3683	3683.00	14.25 3684	3684.00	0.01	n/a	n/a
	tech-as-skitter	1694616 11094209 525086 1	527269 527402.17 945.33 527587 527636.00 696.36 525086 525099.14
	tech-internet-as	40164	85123	5700	1	5700	5700.00	0.00	5700	5700.00	0.05	n/a	n/a
	tech-p2p-gnutella	62561	147878 15682	1	15682	15682.00 4.95	15682	15682.00 0.05	n/a	n/a
	tech-RL-caida	190914 607610 74607	10 74719	74757.60 980.67 74930	74942.50 10.75 74607	74615.25
	tech-routers-rf	2113	6632	795	1	795	795.00	0.00	795	795.00	0.00	n/a	n/a
	tech-WHOIS	7476	56943	2284	1	2284	2284.00	0.00	2284	2284.00	0.01	n/a	n/a
	web-arabic-2005	163598 1747269 114420 4	114426 114433.78 564.57 114429 114432.00 473.07 114420 114420.67
	web-BerkStan	12305	19500	5384	1	5384	5384.00	129.30 5384	5384.72	6.82	5384	5384.13
	web-edu	3031	6474	1451	1	1451	1451.00	0.00	1451	1451.00	0.00	n/a	n/a
	web-google	1299	2773	498	1	498	498.00	0.00	498	498.00	0.00	n/a	n/a
	web-indochina-	11358	47606	7300	1	7300	7300.00	0.89	7300	7300.00	0.31	n/a	n/a
	2004												
	web-it-2004	509338 7178413 414646 1	414616 * 414651.86 422.10 414671 414675.00 22.78 414646 414649.00
	web-sk-2005	121422 334419 58173	1	58173	58178.39 180.16 58173	58173.00 22.26 n/a	n/a
	web-spam	4767	37375	2297	1	2297	2297.00	0.15	2298	2298.00	0.03	2297	2297.26
	web-uk-2005	129632 11744049 127774 1	127774 127774.00 0.00	127774 127774.00 0.08	n/a	n/a
	web-webbase-2001	16062	25593	2651	1	2652	2652.00	0.00	2652	2652.00	0.04	n/a	n/a
	web-	1864433 4507315 648300 1	648312 648324.46 816.33 648317 648320.00 808.05 648300 648312.39
	wikipedia2009												

ftp://dimacs.rutgers.edu/pub/dsj/clique/

http://lcs.ios.ac.cn/ caisw/MVC.html
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A Appendix

This appendix shows the detailed results of our DTS MVC algorithm in comparison with the state-of-the-art FastVC and LinCom algorithms on the 86 well-known massive graphs.