
HAL Id: hal-02309961
https://hal.science/hal-02309961v1

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Versatile Boxes: a Multi-Purpose Algebra of High-Level
Petri nets

Franck Pommereau

To cite this version:
Franck Pommereau. Versatile Boxes: a Multi-Purpose Algebra of High-Level Petri nets. Summer
Computer Simulation Conference, 2007, San Diego, United States. �hal-02309961�

https://hal.science/hal-02309961v1
https://hal.archives-ouvertes.fr

Versatile Boxes: a Multi-Purpose Algebra of High-Level Petri nets

Franck Pommereau
LACL, Université Paris 12

61 avenue du général de Gaulle, 94010 Créteil, France
pommereau@univ-paris12.fr

Keywords: algebra of Petri nets, threads, exceptions

Abstract
This paper introduces a model of composable Petri nets,
called Versatile Boxes, that has all the high-level fea-
tures already introduced in the family of the Petri Box
Calculus (mainly: data and time representation) as well
as a new interruption capability. This allows for defin-
ing processes that are able to interrupt their execution
at any point, just as a program can raise an exception.
By choosing a carefully tuned level of generality, we are
able to obtain a model that is much simpler than previ-
ous approaches, while still allowing to give the semantics
of the usual programming language constructs. We be-
lieve that our model has the required characteristics for
a very general use, hence its name. On the other hand,
its is not very complex and so it should be easy to un-
derstand or implement and efficient for verification or
simulation purpose.

1. INTRODUCTION
The Petri Box Calculus (PBC) and its successor

PNA [1, 2] are two classes of Petri nets that can be com-
posed like terms in process algebra. Various high-level
variants of them have been introduced. The most no-
ticeable one is the model of M-nets [6] that can be seen
as a high-level version of the Petri net part of PBC. It
allows to handle data values directly as tokens and to ap-
ply high-level operations on them. However, M-nets lack
a syntactic level that allows for building large compli-
cated nets without the need to draw them. (Actually, a
syntax exists but is at least as complex has the net model
itself [8].) This problem has been addressed through sev-
eral successive extensions of PBC by introducing classes
of high-level Petri nets provided with a user-friendly syn-
tax. In particular: the Asynchronous Box Calculus [3]
introduces buffered communication; the Box Calculus
with Data [4] allows for high-level data in the model;
the Causal Time Calculus [9] addresses timed systems.
The model presented in this paper, called Versatile Boxes
(v-boxes for short), will cover all those aspects in a uni-
fied presentation and will provide various improvements
while keeping the model simple to implement.

The main aim of the present paper is to push further

this evolution by introducing an exception-like feature.
The goal is to be able to define processes whose execu-
tion can be interrupted at any point. This question has
been already addressed for M-nets (but not at syntac-
tical level), leading to a very general preemption mech-
anism [7]. However, it has been necessary to introduce
priorities between Petri net transitions in order to be
able to preempt an M-net in presence of nested paral-
lelism. The resulting model is an exponential abbrevia-
tion of regular Petri nets; moreover, it is not usable with
most existing software tools. In this paper, we use a sim-
pler setting inspired from what exists in most program-
ming languages: parallelism is restricted to well identi-
fied threads of execution (or tasks), each one being a se-
quential process. Moreover, we do not consider a general
preemption mechanism, where any process can preempt
any other, but rather an interrupt mechanism by which
a process can terminate itself. This is also what happens
in most programming languages where a thread can be
stopped only by itself.

As a simple motivating example, let us just consider
the break or exit statement used in many programming
languages to stop a loop at any point (we could similarly
consider interruptions or the return instruction). This
commonly used statement cannot be modelled by any
of the previous models, except using that from [7] but
at the price explained above. We show in the conclusion
how this can be modelled in a simple way using v-boxes.

The sequel is organised as follows: we first introduce
basic definitions, in particular that of the class of labelled
Petri nets used throughout the paper; then, we define the
operators that allow to compose these nets; finally, we
introduce the syntactic level and its Petri net semantics.
As a conclusion, we will summarise the new or improved
features of v-boxes and present future directions of work.
In order to focus on the new aspects, some technical
aspects will be simplified.

2. BASIC DEFINITIONS
A multiset over a set X is a function µ : X →N. We shall

use the following operations on multisets: comparison
µ ≤ µ′, element inclusion x ∈ µ and sum µ + µ′. A subset
of X may be treated as a multiset over X , by identifying
it with its characteristic function. A finite multiset may

be written in extended set notation, e.g., {a,a,b}. We
denote by NX the set of all the finite multisets over X .

2.1. Distinguished sets
We consider several sets used in the following; except

when specified, they are assumed pairwise disjoint.
D is the set of data values, it includes in particular the

integers, the booleans > and ⊥, and the Petri net tokens
•, ◦ and ?. D also holds the integer-like value ω that is
greater than any integer, and such that ω+1 df= ω and ω−
1 df= ω. This set of values corresponds to the data stored
in a Petri net, • and ◦ being specifically used to model
the control flow while ? is involved in net compositions.
D is assumed closed under tuple aggregation, that is,
Di ⊂ D for all i ≥ 1, allowing to model structured data.

A distinguished subset of D is C df= N]{ω} that is the
set of clock counts, corresponding to the value associ-
ated to a counter of clock ticks. We shall use increasing
such counters to measure the passing of time as well as
decreasing ones to model timeouts.

V is the set of variables, that are denoted by x, y,
x1, . . . In order to allow for renaming variables at will,
V is assumed infinite. These variables will be used to
label Petri nets, for instance in order to represent values
carried by arcs.

I df= It] Is] Ip] {ε} is the set of identifiers that are
names given to nodes. ε is the anonymous identifier.
Transitions are named from It] {ε} and places from
Is]{ε}. Ip is involved in processes naming; for all name∈
Ip we assume that name enter and name exit also belong
to Ip. We also assume that for all name ∈ Is, there exists
a corresponding name∈V, with a mapping var such that
var(name) df= name.

S df= {e,x, i,b,w, t,v} is the set of place statuses. In a
Petri net, they are used to distinguish respectively the
entry, exit, internal, buffer, watch, timeout and variable
places. The entry, exit and internal places are used to
model the control flow of a Petri net and are so called
control flow places. The others are called data places as
they store all the data manipulated by the Petri net.
More precisely, buffer places will hold multisets of values
that can be added or retrieved from buffers. Watch places
will model counters of clock ticks used to measure the
passing of time. Timeout places will be downward ticks
counters used to model timeouts. Last, variable places
will hold a single value (but possibly structured) as vari-
ables in a program.

P ⊂ D is the set of process identifiers, that allows to
distinguish several concurrent threads of execution in a
Petri net. P can be assumed finite or infinite depending
on the execution policy that one wants to use.

2.2. Labelled Petri nets
A labelled Petri net is a tuple N df= (S,T, `) where S is

a finite set of places, T is a finite set of transitions such
that S∩T = /0, and ` is the labelling function on places,
transitions and arcs, i.e., elements from (S×T)](T ×S).
This labelling is defined as follows:
• for a place s ∈ S, `(s) df= σ(s)τ(s)η(s) where σ(s) ∈ S

is the status of s, τ(s)⊆D is the type of s and η(s)∈
Is] Ip]{ε} is the name of s;

• for a transition t ∈ T , `(t) df= γ(t)η(t) where η(t) ∈
It] {ε} is the name of t and γ(t) is an evaluable
boolean expression, called the guard of t (a condition
for its execution);

• for an input arc (s, t) ∈ S×T , `(s, t) is a finite multi-
set over D]V, representing the values consumed in
s when t is executed;

• for an output arc (t,s), `(t,s) is a finite multiset of
values, variables or evaluable expressions represent-
ing the values produced in s when t is executed.
The difference with input arcs is that computation
of new values is allowed by using expressions.

The usual graphical representation for Petri nets is to
have circles for the places, squares for the transitions and
directed links for the arcs. We shall omit arcs with empty
labels /0, brackets {}, true guards >, {•,◦} place types
and {•} arc labels. Finally, place statuses will be in-
scribed inside circular labels on the border of the places.

A marking of a Petri net N df= (S,T, `) is a mapping
M that associates to each place s ∈ S a finite multiset
M(s) over τ(s) that represents the tokens held by s. The
execution of a labelled Petri net is expected to start from
a marking with one token in each entry place and to
evolve until it reaches a marking with one token in each
exit place (if ever).

3. LABELLED NETS OPERATORS
This section introduces various operators on the la-

belled Petri nets defined above, allowing to build com-
plex systems from simpler blocks.

Let N1 and N2 be two nets, we will define four binary
control flow operators #, �, ~ and . with the following
intuitive semantics:
• the sequence N1 # N2 allows to execute N1, followed

by N2;
• the choice N1 �N2 allows to execute either N1 or N2;
• the iteration N1 ~ N2 allows any number of execu-

tions of N1, followed by one execution of N2;
• the trap N1 . N2 allows to execute N1 then, only if

N1 finishes abnormally, N2 is executed, i.e., N2 can
trap an error occurring in N1 (but not outside).

The notion of normal or abnormal termination of a net
will correspond to have respectively a token • or ◦ in its
exit places. Producing a token ◦ corresponds to raising
an exception in a program: the regular flow of operations
is interrupted and the exception may be caught by a
handler (a trap in our framework).

The name hiding N/name makes anonymous the name-
labelled nodes in N. This operator is used to disable the
name-based node merges that take place when two nets
are combined. For instance, in such a case, the variable
places of a given name that come from each net have
to be merged in order to ensure that each variable is
modelled by only one place. By using the name hiding
operator, one can disable further merges of such a place,
which results in making a variable local to a sub-net.

The task declaration operator Lname : NM turns a net N
into a task called name. This allows to start several con-
current executions of N; they are basically independent
but may interact through shared data places.

Finally, the parallel composition N1 ‖N2 allows N1 and
N2 to evolve concurrently. This operator will never be
nested inside another one.

In order to define correctly those operators, we assume
that the labelled Petri nets considered as arguments have
the following properties (but we may build nets that do
not respect these properties):
• R1: exactly one entry place and one exit place;
• R2: control flow places have the type {•,◦};
• R3: control flow places as well as the transitions con-

nected to them are anonymous.

3.1. Operators nets
The four control flow operators will be defined us-

ing operator nets. They are particular labelled Petri nets
used to guide the construction of the net resulting from
the application of each operator. Intuitively, an operator
net defines the structure of the result that is built by re-
placing dedicated transitions of the operator net by the
operand nets.

Figure 1 shows the four operator nets corresponding
to our four control flow operators. In order to perform
an operation, each transition]i has to be replaced by the
i-th operand net. The labels on the arcs indicate what
tokens are allowed: •, ◦, or any (with ?).

Consider for instance the top-left net, that specifies
the sequence operator, and take N1 # N2 the sequential
composition of N1 and N2. N# is started by putting one
token in its entry place, if it is •, transition]1 and thus
net N1 is executed. When it terminates, it produces a
token in the internal place. Again, if this is •,]2 and thus
N2 is executed until it puts a token in the exit place. But,
if N1 terminates with a token ◦, transition t#2 is executed

e

]1

i

]2

x

t#1

t#2

•

?

•

?

◦

◦
◦

◦

N#

e

]1 t�]2

x

• •◦

? ?◦

N�

N~ e]1

]2t~

x

◦

•
?•

◦ ?

e

]1

i

]2

x

t.1

t.2

•

?

◦

?

◦

◦
•

•

N.

Figure 1. The four operator nets. All the places are
anonymous and have the type {•,◦}; all the transitions
have true guards and are anonymous too.

instead of]2, which results in skipping N2 because we
have to propagate the error until it is trapped. Similarly,
if the net is started with a ◦ in the entry place, this
token is directly propagated to the exit place through
transition t#1. The situation is similar for the choice and
iteration operators. Consider now the trap operator net
N., it has the same structure as N# but the tokens on the
arcs differ: here, if N1 terminates with a •, this token is
directly propagated to the exit place; but if N1 produces
a ◦, this token allows to execute]2 and thus N2, which
is the expected behaviour of the trap. Notice that the
arcs going out of transitions]i allow any token to be
produced as the result of each Ni.

In order to know how the labelling of an arc in an
operator net influences the labellings of the arcs in the
resulting nets, we define a function θ that maps a pair
of arc labels (in operator and operand net) to the label
that will be used in the resulting net. This function is
defined by the array given in figure 2.

Consider for instance transition]1 in operator net N.

and assume an operand net N1 that has an entry places
e with outgoing arcs to two transitions:

e
{•}−−−→ t1 and e

{◦}−−−→ t2 .

When N1 replaces]1, its place e becomes the entry place
of the resulting net that will also include t1 and t2. But
the operator net allows only {•} to enter]1 and thus N1.

operator label

o
p
er

a
n
d

la
b
el

m
/0

{◦}
{•}

{?}
/0

{?}
{•}
{•}

{?}
/0

{?}
{◦}
{◦}

m
/0

{◦}
{•}
{?}

/0

/0

/0

/0

/0

Figure 2. The array that defines θ, where m is a mul-
tiset over D that is neither {•}, {◦} nor /0.

This is enforced by θ that defines the labels of the arcs
outgoing from e in the resulting net as:

e
θ({•},{•})−−−−−−−−−→ t1 ⇒ e

{•}−−−→ t1 ,

e
θ({•},{◦})−−−−−−−−−→ t2 ⇒ e

{?}−−−→ t2 .

So the arc to t1 is preserved while the arc to t2 is rela-
belled with {?}. As a result, t2 becomes a dead transi-
tion because ? is not in the type of control flow places
(by restriction R2). So, tokens ◦ introduced in e will go
through transition t.1 (coming from N.) in the resulting
net, which is the expected behaviour. Because any token
is allowed to go out of]1, the arcs to the exit place of
N1 will not be changed (see the {?} column of the array
that defines θ). Consider now transition]2, substituted
with the same net N1; we have:

e
θ({◦},{•})−−−−−−−−−→ t1 ⇒ e

{◦}−−−→ t1 ,

e
θ({◦},{◦})−−−−−−−−−→ t2 ⇒ e

{?}−−−→ t2 .

So, the precise meaning of the arc to]2 is actually “take
one token ◦ in the internal place and start the net that
replaces]2”. Token ◦ is thus directly consumed by t1
which corresponds to the regular start of N1.

3.2. Control flow operators
Let N1

df= (S1,T1, `1) and N2
df= (S2,T2, `2) marked respec-

tively by M1 and M2. Take � ∈ {#,�,~,.} and operator
net N�

df= (S�,T�, `�). We assume that S1, S2, T1, T2, S�
and T� are pairwise disjoint (nodes in N1 or N2 may be re-
named if needed). The composition N1 �N2 is N df= (S,T, `)
marked by M defined as follows.

First, the nodes from N1 and N2 are copied to N, to-
gether with the arcs connecting them. So, for 1 ≤ i ≤ 2,
for all s ∈ Si and all t ∈ Ti:
• s is also a place in S with `(s) df= `i(s) and M(s) df=

Mi(s);
• t is also a transition in T with `(t) df= `i(t);
• `(s, t) df= `i(s, t) and `(t,s) df= `i(t,s).

The transitions of the operator net that will not be
replaced by a Ni are also copied to the result: for all

t ∈ T� \{]1,]2}, we also have t ∈ T with `(t) df= `�(t).
Then, the non-anonymous transitions are merged. For

all tick ∈ It , all the transitions t1, . . . , tn in T such that
η(ti) = tick (for 1≤ i≤ n) are merged, yielding t ′ such that
γ(t ′) df= γ(t1)∧·· ·∧γ(tn) and η(t ′) df= tick. The ti’s (1≤ i≤ n)
are then removed from T .

Moreover, the non-anonymous data places are merged.
For all name ∈ Is and all a ∈ {b,w, t,v}, all the places
s1, . . . ,sm in S such that η(si) = name and σ(si) = a (for
1 ≤ i ≤ m) are merged, yielding s′ such that σ(s′) df= a,
η(s′) df= name and τ(s′) df= τ(s1)∪·· ·∪τ(sm). The marking of
s′ is dependent on the status of the merged places: if a =
b, then M(s′) df= M(s1)+ · · ·+M(sm) as a buffer place can
accumulate tokens; otherwise, the composition is only
allowed if all the places have the same marking. This
marking becomes that of s′. The si’s (1≤ i≤m) are then
removed from S.

Finally, entry and exit places are combined in order
to enforce the desired control flow. To do so, we rely on
operator net N�: we consider in turn each place s� of N�
and collect in a set P places originated from each Ni.
The places in P should be merged in order to become
the realisation of s� in N. So, for 1 ≤ i ≤ 2:
• if `�(s�,]i) 6= /0 then the entry place ei of Ni is added

to P;
• if `�(]i,s�) 6= /0 then the exit place xi of Ni is added

to P.
Notice that ei and xi exist because of restriction R1. The
places in P are merged, yielding a new place s′� whose
label is that of s�. The composition is allowed only if all
the places in P have the same marking. This marking
becomes that of s′�. The places in P are then removed
from S. The last operation related to s′� is to use θ in
order to adjust the labelling of the arcs between s′� and
the transitions originated from each Ni; moreover, s′� has
to be connected to the transitions originated from N�:
• for 1 ≤ i ≤ 2, for all t ∈ Ti that is connected to the

entry ei or exit place xi of Ni

– `(s′�, t)
df= θ(`�(s�,]i), `i(ei, t)),

– `(t,s′�)
df= θ(`�(]i,s�), `i(t,xi));

• for all t ∈ T� \{]1,]2}, `(s′�, t)
df= `�(s�, t) and `(t,s′�)

df=
`�(t,s�).

Optionally, the transitions in T having an attached arc
labelled by {?} being dead, they can be removed.

3.3. Task declaration
Let N df= (S,T, `) be a labelled net and task ∈ Ip be

a task identifier, the task declaration Ltask : NM is a net
that is able to concurrently execute instances of N. These
instances are identified by a value in P so that they can
run independently. This could not be obtained by just

putting several tokens in the entry place of N because
they would be all identical. Instead, (almost) every place
s ∈ S will be given the type P×τ(s) in order to associate
each token to a process identifier. The arcs connected to
these places will be changed accordingly. However, we
do not modify the non-anonymous places that may be
merged later on if the task is composed with other nets.
These places have to be considered as external shared
resources that are not involved in the construction of
the task.

When a net is turned into a task, its entry and exit
places are changed into buffer places with the type P×
{•,◦} (because of restriction R2, {•,◦} is the type of
these places). So, starting an instance of the task can be
achieved by putting in the entry-like place a pair (p,•)
where p is a process identifier. The process identifier is
carried along the net using a fresh variable π ∈ V, i.e.,
that is not used in any annotation of N. When the exit-
like place becomes marked, the process identifier can be
retrieved there, together with the termination status of
the corresponding thread (• or ◦). In order to find easily
the new entry-like and exit-like places, they are named
respectively task enter and task exit, where task is the
identifier used in the task declaration. Notice that it is
possible to start a thread with a token (p,◦) that may
be trapped inside N. Moreover, the user is let responsible
for consistently choosing process identifiers.

If N is marked by M, the net N′ df= Ltask : NM df= (S′,T ′, `′)
and its marking M′ are defined as follows:
• each transition t ∈ T is also a transition in T ′ with

`′(t) df= `(t);
• each place s ∈ S such that η(s) 6= ε is also a place in

S′ with `′(s) df= `(s) and M′(s) df= M(s); moreover, for
all t ∈ T , `′(s, t) df= `(s, t) and `′(t,s) df= `(t,s);

• for each place s ∈ S such that η(s) = ε, there is a
place s′ in S′ with M′(s′) df= {(p,v) | p ∈ P,v ∈ M(s)}
and

– `′(s′) df= (P× τ(s)) b task enter, if σ(s) = e,
– `′(s′) df= (P× τ(s)) b task exit, if σ(s) = x,
– `′(s′) df= (P× τ(s)) σ(s) ε, otherwise;

moreover, for all t ∈ T , `′(s′, t) df= {(π,α) | α ∈ `(s, t)}
and `′(t,s′) df= {(π,α) | α ∈ `(t,s)}.

It may be remarked that the task declaration produces
a net that does not respect restrictions R1 to R3.

3.4. Name hiding, parallel composition
Both operators can work on any labelled Petri net that

do not need to respect restrictions R1 to R3.
The net N/name is a copy of N in which the nodes

labelled by name are given the anonymous name ε. The
name hiding is commutative (and idempotent) and so
naturally extends to sets of names.

The parallel composition N1‖N2 is defined as a simpli-
fied control flow operation: first, the nodes and arcs from
both nets are copied, and second, non-anonymous nodes
with the same name are merged, exactly as for control
flow operators.

4. VERSATILE BOXES
This section introduces a syntax whose semantics is

given in terms of a function box that constructs a labelled
Petri net when given an expression. This syntax can be
considered as a kind of assembly language having just
the features required to express the constructs usually
found in programming languages.

4.1. Syntax
A box expression is a term on the syntax given

in figure 3. The most basic process is an atomic ac-
tion that corresponds to a test and set, for instance
〈x > 4 ⇒ x := 0〉 is an atomic action that tests the value
of x to be greater than 4 and resets it to 0. Such an atomic
action is blocked until its condition becomes true. An in-
terrupt action is a variant of an atomic action that can
be considered as the raising of an exception: when it is
executed, the sequel of the process is by-passed until the
exception is trapped. Conditions and assignments in ac-
tions are related to declarations, inside a scope or as a
global resource. Each declaration in a scope may intro-
duce a variable, a buffer, a watch or a timeout with the
expected meaning. Moreover, a clock may be declared
in order to provide the ticks counted by watches and
timeouts; each clock is independent from the others. Re-
sources can declare tasks, global data or clocks (scopes
declare local objects). Processes can then be combined
using operators that correspond to those defined at Petri
net level.

4.2. Lexical scoping
Declarations are lexically scoped: an identifier can be

used only if it is the name of a previously declared ob-
ject. Moreover, the reuse of an already declared iden-
tifier results in its hiding in favour of the newly de-
clared one. In order to cope with lexical scoping, we will
use environments allowing to remember the declared ob-
jects while computing the semantics of nested processes.
Formally, an environment E is a mapping from a sub-
set of I \ {ε} to ({v,b}× 2D×ND)] ({t,w}× It ×C)] It .
We denote by name ∈ E the fact that name is in the
domain of E, by /0 the environment with empty do-
main and by + the combination of environments de-
fined by: if name ∈ E2 then (E1 +E2)(name) df= E2(name),
else if name ∈ E1 then (E1 + E2)(name) df= E1(name), else
name 6∈ E1 +E2. Intuitively, E(name) corresponds to how

P ::= S sequential process

| R‖P process with a resource

R ::= Ltask : SM task resource

| D data resource

S ::= S #S sequence

| S ~S iteration

| S �S choice

| S .S trap

| JD | SK scope

| 〈B ⇒ A〉 atomic action

| 〈〈B ⇒ A〉〉 interrupt action

D ::= variable name : V := v variable declaration

| buffer name : V := Z buffer declaration

| watch name : tick := c watch declaration

| timeout name : tick := c timeout declaration

| clock tick clock declaration

| D,D multiple declarations

B ::= “boolean expression” condition

A ::= name :=“expression” assignment

| A,A multiple assignments

| /0 no assignment

Figure 3. The syntax of box expressions, where name∈
Is, task∈ Ip, tick∈ It , V ⊆D, v∈V , Z ∈NV , c∈C and un-
derlined words are keywords. Both “boolean expression”
and “expression” are evaluable expressions.

name was last declared: a variable or a buffer on a given
set with an initial value corresponds to a triple from
{v,b}× 2D ×ND; a watch or a timeout corresponds to
a triple from {w, t}× It ×C; a clock corresponds to its
name in It .

4.3. Denotational semantics
The denotational semantics of a box expression is de-

fined by the function box that takes as arguments an ex-
pression and its environment and yields a labelled Petri
net. This function is defined recursively on the syntax.
The semantics of a process P is the net obtained from
box(P, /0) in which one token • is added to each entry
place (there will be actually only one such place).

4.3.1. Control flow operators
The semantics of a syntactical control flow operator is

simply the application of the corresponding operator at
Petri net level. So, for � ∈ {#,~,�,.}, we have:

box(S1 �S2,E) df= box(S1,E)�box(S2,E)

4.3.2. Scope
The semantics of a scope consists essentially in en-

riching the environment with the new declarations and
hiding the corresponding names in the Petri net obtained
from the process part of the scope:

box(JD | SK,E) df=
(

init(D) #box(S,E + env(D)) # term(D)
)

/{name | name ∈ env(D)}

where function env(D) is defined as:

env(variable name : V := v) df= (name 7→ (v,V,{v}))
env(buffer name : V := Z) df= (name 7→ (b,V,Z))

env(watch name : tick := c) df= (name 7→ (w, tick,c))
env(timeout name : tick := c) df= (name 7→ (t, tick,c))

env(clock tick) df= (tick 7→ tick)
env(D1,D2)

df= env(D1)+ env(D2)

The Petri nets init(D) and term(D) are intended to
initialise and terminate the declared variables, watches
and timeouts. Buffers are initialised directly at the level
of the marking and they are not terminated as they are
allowed to keep their values between two executions of
the scope. The net init(D) is defined as:

• it has a single unmarked entry place eD such that
`(eD) df= e{•,◦}ε;

• it has a single unmarked exit place xD such that
`(xD) df= x{•,◦}ε;

• it has a single transition tD such that `(tD) df=>ε;

• there is one arc from eD to tD and one arc from tD
to xD both labelled by {•};

• for each name declared in D such that name ∈ Is
and env(D)(name) = (x,y,z), there is one place sname

defined as:

– if x ∈ {v,b} then `(sname)
df= x y name, otherwise

`(sname)
df= x C name,

– if x = b then sname is marked by z, else if x ∈
{w, t} then sname is marked by {ω}, else it is
unmarked,

– if x 6= b then there is an arc from tD to sname

labelled by z,
– if x ∈ {w, t} there is also an arc from sname to

tD labelled by {ω}.
The net term(D) is based on init(D) with the difference
that the arcs attached to the places sname are directed the
other way and labelled with variables in order to restore
the initial markings. More precisely: there is an arc from
each sname to tD labelled by {var(name)} if x 6= b and by
/0 otherwise; if x ∈ {w, t} there is also an arc from tD to
sname labelled by {ω}.

4.3.3. Resources
The semantics of a process with a data or task resource

is defined as:

box(Ltask : SM‖P,E) df= Ltask : box(S,E)M‖
box(P,E + env(Ltask : SM))

box(D‖P,E) df= box(D, /0)‖box(P,E + env(D))

where env(D) has been defined above and:

env(Ltask : SM) df=
(

task enter 7→ (b,P×{•,◦}, /0),
task exit 7→ (b,P×{•,◦}, /0)

)
Moreover, the nets for data resources are as follows:
• box(variable name : V := v, /0) is composed of a single

place labelled by v V name and marked by {v};
• box(buffer name : V := Z, /0) is composed of a single

place labelled by b V name and marked by Z;
• box(watch name : tick := c, /0), resp. box(timeout

name : tick := c, /0), is composed of a single place la-
belled by w C name, resp. by t C name, and marked
by {c};

• box(clock tick, /0) is an empty Petri net;
• box((D1,D2), /0) df= box(D1, /0)‖box(D2, /0).
As defined in the previous section, the net operation

Ltask : NM involves a cross-product of P with the existing
marking of N. This potential explosion can be avoided
at syntactic level by never nesting a watch, timeout or
non-empty buffer declaration inside a task resource (the
resulting net in this case has an empty marking).

4.3.4. Atomic action
The semantics of 〈B ⇒ A〉 is mainly one anonymous

transition guarded by B and surrounded by the data
places corresponding to the current declarations. These
places are connected to the transition in order to read
the values needed by both the guard and the assign-
ments and to write these values back or assign new ones
appropriately. A buffer is treated differently: consulting
its value consumes one of its tokens while assigning it
adds the result of the assigned expression to the buffer.
Finally, non-anonymous transitions are added to model
the needed clock ticks.

More precisely, box(〈B ⇒ A〉,E) is a labelled Petri net
N df= (S,T, `) marked by M such that:
• there is a single entry place e in S such that `(e) df=

e{•,◦}ε and M(e) df= /0;
• there is a single exit place x in S such that `(x) df=

x{•,◦}ε and M(x) df= /0;
• there is a transition t in T such that `(t) df= Bε;
• `(e, t) df= {•} and `(t,x) df= {•};

• for all name∈ Is such that name∈ E, there is a place
sname in S such that:

– if E(name) = (s,V,Z) ∈ {v,b} × 2D ×ND then
`(sname)

df= s V name and M(sname)
df= /0,

– if E(name) = (s,name,c) ∈ {w, t}× It ×C then
`(sname)

df= s C name and M(sname)
df= {ω};

• for all tick∈ It such that tick∈E, there is a transition
ttick in T such that `(ttick)

df=> tick and, for all place
stick added to S at the previous step (as sname with
name = tick):

– if E(tick) = (w, tick,v) then `(stick, ttick)
df=

{var(tick)} and `(ttick, stick)
df= {var(tick)+1},

– if E(tick) = (t, tick,v) then `(stick, ttick)
df=

{var(tick)} and `(ttick,stick)
df= {var(tick)−1};

• for all name∈ I\{ε} involved in A through an assign-
ment “var(name) := expr” and such that E(name) 6=
(b,V,Z):

– if name∈ It then box fails as a clock can be used
only through timeouts or watches,

– if name /∈ E then box fails as name is used with-
out being declared,

– otherwise, `(sname, t)
df= {var(name)} and

`(t,sname)
df= {expr};

• for all other name ∈ I\{ε} involved in A or in B and
such that E(name) 6= (b,V,Z):

– if E(name) ∈ It or name /∈ E then box fails,
– otherwise, `(sname, t)

df= {var(name)} and,
`(t,sname)

df= {var(name)};
• for all name involved in A or B such that if

E(name) = (b,V,Z):
– if name appears as “var(name) := expr” then

`(t,sname)
df= {expr},

– if E(name) appears in B or in the right side of
an assignment then `(sname, t)

df= {var(name)};
• arcs not defined above are labelled by /0.

One can easily check that restrictions R1 to R3 are re-
spected.

4.3.5. Interrupt action
box(〈〈B ⇒ A〉〉,E) is built like box(〈B ⇒ A〉,E) except

that the arc from transition t to the exit place is labelled
by {◦} instead of {•}.

5. CONCLUSION
We presented a new model of composable high-level

Petri nets provided with a syntax that we called Versa-
tile Boxes or v-boxes. This model unifies and improves
various existing evolutions of the Petri Box Calculus.

(1) It features buffers as introduced in [3, 4]. Moreover,
v-boxes distinguish multi-valued buffers from one-valued

variables, the latter being more traditional in program-
ming languages.

(2) As in [9], v-boxes are able to model timed sys-
tems. However, this new version separates watches from
timeouts. It allows to remove the requirement in [9] that
watches must be bounded in order to model timeouts.
Moreover, v-boxes can have multiple clock ticks defined
locally while [9] only allowed for one global clock.

(3) The parallel composition cannot be nested in v-
boxes while this is possible in the other models. This
allows a definition of a novel interrupt/trap mechanism
much more efficient than the approach proposed in [7].
Moreover, this actually does not restrict the expressive
power but only enforces a structured programming pol-
icy. Indeed the effect of N1 ‖N2 can be simulated by em-
bedding N1 into a task declaration and enclosing the ex-
ecution of N2 in between the spawning of one instance of
N1 and the waiting for the termination of this instance.

(4) Unlike the other models, v-boxes do not propose a
transition synchronisation operator. That would be ab-
solutely no problem to have it as it could be directly
borrowed from [4] or [9]. We simply felt no need for in-
troducing it. Indeed, it has been possible to define the
semantics of all the usual programming constructs with-
out the help of a transition synchronisation. The simpler
name-based transition merging scheme introduced in this
paper is actually sufficient to ensure the required merges
of tick transitions.

Theoretical properties and practical applications of
the model are currently being investigated.

(1) Our first studies show that v-boxes basically have
all the properties usually required, in particular: clean
and safe markings under any evolution (see [3]). By the
way, another advantage of removing nested parallelism is
that we obtain 1-boundedness of control flow places, in-
stead of 2-boundedness plus auto-concurrency free tran-
sitions as found in [3].

(2) Moreover, a prototype implementation is in
progress and turns out to be not more difficult to re-
alise than a previous prototype for CTC [10], despite
the generalisation and the new features.

(3) Finally, we have already successfully translated to
v-boxes significant constructs of the Ada programming
language: exceptions, loops with multiple exits, tasks and
sub-programs. For instance, an exit (i.e., break) state-
ment can be modelled using an interrupt action with a
trap after the loop. A simple example is given in figure 4.
In general, there might be other reasons for executing an
interrupt action, in particular the execution of a return
statement or the occurrence of an exception. These cases
can however be distinguished in the right part of each
trap operation by consulting a global variable that is set

1 while x < 100 loop
2 x := x+2;
3 exit when x = 3;
4 x := x+1;
5 end loop;

〈x < 100 ⇒ /0〉 #
〈>⇒ x := x+2〉 #
(〈〈x = 3 ⇒ /0〉〉

� 〈x 6= 3 ⇒ /0〉) #
〈>⇒ x := x+1〉

~ 〈x ≥ 100 ⇒ /0〉

. 〈>⇒ /0〉

Figure 4. An Ada loop with an exit statement and the
corresponding v-box expression.

when each interrupt action is executed.
Future works will address the mechanisms of object-

oriented languages by adapting the approach proposed
in [5]. Another direction will be to give a SOS semantics
to the syntactic level of v-boxes and to prove its consis-
tency with the Petri nets semantics.

REFERENCES
[1] E. Best, R. Devillers and J. Hall. The Petri Box Cal-

culus: a New Causal Algebra with Multilabel Com-
munication. APN’92, LNCS 609, Springer, 1992.

[2] E. Best, R. Devillers and M. Koutny. Petri Net Al-
gebra. EATCS Monographs on TCS, Springer, 2001.

[3] R. Devillers, H. Klaudel, M. Koutny and F. Pom-
mereau. Asynchonous Box Calculus. Fundamenta
Informaticae 54(1), IOS Press, 2003.

[4] C. Bui Thanh, H. Klaudel and F. Pommereau. Box
Calculus with Coloured Buffers. LACL TR, 2002.
〈http://www.univ-paris12.fr/lacl〉

[5] C. Bui Thanh. Modèles Orientés-Objet pour la Véri-
fication de Systèmes Concurrents. PhD. Thesis,
Univ. Paris 12, 2004.

[6] H. Klaudel. Compositional high-level Petri net se-
mantics of a parallel programming language with
procedures. SCP 41, Elsevier, 2001.

[7] H. Klaudel and F. Pommereau. A class of compos-
able and preemptible high-level Petri nets with an
application to multi-tasking systems. Fundamenta
Informaticae 50(1), IOS Press, 2002.

[8] H. Klaudel and R.-C. Riemann. High Level Ex-
pressions with their SOS Semantics. CONCUR’97,
LNCS 1243, Springer, 1997.

[9] F. Pommereau. Causal Time Calculus. FOR-
MATS’03, LNCS 2791, Springer, 2004.

[10] Franck Pommereau. SNAKES is the Net Algebra
Kit for Editors and Simulators. Comete Procope
Workshop, 2004. 〈http://www.univ-paris12.fr/
lacl/pommereau/comete/〉

