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Abstract. Spatial relations between objects represented in images are
of high importance in various application domains related to pattern
recognition and computer vision. By definition, most relations are vague,
ambiguous and difficult to formalize precisely by humans. The issue of
describing complex spatial configurations, where objects can be imbri-
cated in each other, is addressed in this article. A novel spatial relation,
called enlacement, is presented and designed using a directional fuzzy
landscape approach. We propose a generic fuzzy model that allows to
visualize and evaluate complex enlacement configurations between crisp
objects, with directional granularity. The interest and the behavior of
this approach is highlighted on several characteristic examples.

1 Introduction

The spatial organization of objects is fundamental to increase the understanding
of the perception of similarity between scenes or situations. Despite the fact that
humans seem capable of apprehending spatial configurations, in many cases it
is exceedingly difficult to quantitatively define these relations, mainly because
they are highly prone to subjectivity. Standard all-or-nothing mathematical re-
lations are clearly not suitable, and the interest of fuzzy relations was initially
suggested by Freeman in the 70s [9], since they allow to take imprecision into ac-
count. Over the last few decades, numerous works were proposed on the analysis
of spatial relationships in various domains, ranging from shape recognition to
computer vision, with the main purpose of describing the relative positioning of
objects in images [3]. These approaches provide a set of interesting features able
to describe efficiently most of spatial situations. However, some configurations
remain challenging to describe without ambiguities, especially when the objects
are imbricated, or composed of multiple connected components. In this context,
we propose to study new relations dedicated to the imbrication of objects.

This article is organized as follows. Sec. 2 presents related works to our ap-
proach. Sec. 3 recalls the model of directional enlacement, proposed in [6] for
the description of complex spatial configurations. From the latter, we propose
in Sec. 4 a generic model relying on fuzzy landscapes that allows to evaluate
relative enlacement configurations between crisp objects, with directional gran-
ularity. Sec. 5 presents experimental results on different illustrative examples
that allow to highlight the behavior and the interest of this model. Sec. 6 pro-
vides conclusions and perspectives.



2 Related Work

In the domain of spatial relations, two major research axes can be distinguished
in the literature, based on two dual concepts: the one of spatial relationship and
that of relative position. On the one hand, it is possible to formulate a fuzzy
evaluation of a spatial relation (for example “to the left of ”) for two objects, in
order to describe their relative position. The fuzzy landscape model is a widely
used method for providing this type of assessments [2]. This approach relies on
the fuzzy modeling of a given spatial relation, directly in the image space, us-
ing morphological operators. Applications of this model can be found in various
domains such as spatial reasoning in medical images [7] or the recognition of
handwriting [8]. On the other hand, the location of an object with regards to
another can be modeled by a quantitative representation, in the form of a relative
position descriptor. Different spatial relations can be assessed from this repre-
sentation and the associated descriptors can be integrated in pattern recognition
systems to match similar spatial configurations. Among the various relative posi-
tion descriptors, the histograms of forces [14] are widely used due to their ability
to process pairwise information following a set of directions. They are applied
in different works, such as the linguistic description of spatial relations [11] or
image retrieval [5]. To summarize, fuzzy landscapes consist in determining the
region of space matching a specific spatial relation, and relative position descrip-
tors consist in characterizing the position of an object with regards to another,
by combining different spatial features into a standalone descriptor.

Although these two types of approaches allow to interpret many spatial re-
lations between objects, they usually fail at properly describing more complex
spatial configurations, in particular when objects are concave, or composed of
multiple connected components [4]. A typical complex spatial relation is the “sur-
rounded by” relation, which was first studied by Rosenfeld [15] and deepened by
Vanegas [16] with a dedicated approach based on fuzzy landscapes. Another
specific spatial relation is “between”. This relation has been studied in details
in [4], involving definitions based on convex hulls and specific morphological op-
erators. Applications of this spatial configuration for the analysis of histological
images have been proposed by [10]. Work has also been done to characterize the
“alignment” and “parallelism” of objects in satellite images [17]. Recent works
introduced the φ-descriptor [13, 12], which is a powerful generic framework to
assess any spatial relation from a set of specific operators, inspired by Allen in-
tervals [1]. This descriptor can determine if two objects are imbricated or not,
but it is not able to measure the depth of imbrication (such as, for instance,
when two spirals are interlaced).

In this context, recent works [6] introduced both enlacement and interlace-
ment descriptors, from the relative position point of view, in order to obtain a
robust modeling of the imbricated parts of objects. Based on this model, in this
article we propose to tackle the dual point of view, by considering fuzzy enlace-
ment landscapes instead of enlacement descriptors. The goal of fuzzy enlacement
landscapes is to visualize and evaluate these spatial configurations directly in the
image space, by considering the concavities of the objects in a directional fashion.



3 Directional Enlacement Model

In this section, we present the model used to describe the relative enlacement of
objects. This model was initially introduced in [6], mostly from the point of view
of the relative position descriptors. Here, we recall the intuitive idea behind what
is intended with the term enlacement, and we provide some useful definitions and
notations for this model.

A two-dimensional object A of the Euclidean space is defined by its char-
acteristic function fA : R2 → R. This generic definition allows to handle both
crisp and fuzzy objects. Let θ ∈ R be an orientation angle, and ρ ∈ R a distance
from the origin. We define the oriented line of angle θ at the altitude ρ by the
non-finite set ∆(θ,ρ) = {eiθ(t + iρ), t ∈ R}. The subset A ∩ ∆(θ,ρ) represents a
one-dimensional slice of the object A, also called a longitudinal cut. In the case
of crisp objects, such a longitudinal cut of A is either empty (the oriented line
does not cross the object) or composed of a finite number of segments. In the
general case, a longitudinal cut of A along the line ∆(θ,ρ) can be defined as:

f
(θ,ρ)
A : R −→ R

t 7−→ fA(e
iθ(t+ iρ)).

(1)

Let (A,B) be a couple of objects. The goal is to describe how A is enlaced
by B. The intuitive idea is therefore to capture the occurrences of points of
A being between points of B. In order to determine such occurrences, objects
are handled in a one-dimensional case, using longitudinal cuts along oriented
lines. For a given oriented line ∆(θ,ρ), the idea is to combine the quantity of
object A (represented by f (θ,ρ)A ) located simultaneously before and after object
B (represented by f

(θ,ρ)
B ). Let f and g be two bounded measurable functions

with compact support from R to R. The enlacement of f with regards to g is
defined as:

E(f, g) =

∫ +∞

−∞
g(x)

∫ +∞

x

f(y)

∫ +∞

y

g(z) dz dy dx. (2)

The scalar value E(f
(θ,ρ)
A , f

(θ,ρ)
B ) represents the enlacement of A by B along

the oriented line ∆(θ,ρ). For crisp objects (i.e., each point is either 0 or 1), it
corresponds to the total number of ordered triplets of points on the oriented
line, which can be seen as arguments to put in favor of the proposition “A is
enlaced by B” in the direction θ. Algorithmically, this value can be derived by
an appropriate distribution of segments lengths along the longitudinal cuts of
both objects (see [6] for more details).

The set of all parallel lines {∆(θ,ρ), ρ ∈ R} in the direction θ slices the ob-
jects into sets of longitudinal cut functions. To measure the global enlacement
of an object with regards to another in this direction, we aggregate the one-
dimensional enlacement values obtained for each of these longitudinal cuts.

The enlacement of A by B in direction θ is defined by:

EAB(θ) =
1

‖A‖1‖B‖1

∫ +∞

−∞
E(f

(θ,ρ)
A , f

(θ,ρ)
B ) dρ, (3)



where ‖A‖1 and ‖B‖1 denote the areas of A and B. This normalization allows
to achieve scale invariance. In the binary case, this definition corresponds to
a number of triplets of points to put in favor of “A is enlaced by B” along
the longitudinal cuts in this direction. Intuitively, it can be interpreted as the
quantity of B traversed while sliding the object A in the direction θ, with regards
to the quantity of B located on the opposite direction.

In [6] the enlacement model EAB was considered from the point of view of
the relative position descriptors by building a directional enlacement histogram,
allowing to characterize how an object A is enlaced by another object B. In the
next section, we involve this model in a novel evaluation point of view based on
a fuzzy approach that allows to evaluate enlacement configurations directly in
the image space, with directional granularity.

4 Fuzzy Enlacement Landscapes

We present here how to extend the directional enlacement model to evaluate the
enlacement of objects in the image space from a local point of view, inspired by
the works of Bloch [2] on fuzzy landscapes for classical spatial relations.

4.1 Definition

A fuzzy enlacement landscape of an object A should be a representation of the
region of space that is enlaced by A. Since the initial enlacement model is essen-
tially directional, we also propose to define directional enlacement landscapes.
Let A be a crisp object (i.e., represented as fA : R2 → {0, 1}). In a given direc-
tion θ, for a point outside of A located at (ρ, t) coordinates in the rotated frame,
its local enlacement value can be defined as:

EA(θ)(ρ, t) =
1

‖A‖1

∫ +∞

t

f
(θ,ρ)
A (x) dx

∫ t

−∞
f
(θ,ρ)
A (x) dx. (4)

Therefore, EA(θ) can be seen as a landscape representing the local enlacement
values of the points outside of the object A. This image can be normalized into
the [0, 1] range of values in order to be interpreted as a fuzzy set, which we call
a Fuzzy Directional Enlacement Landscape (Fuzz-DEL) of the object:

µAE (θ)(ρ, t) =
EA(θ)(ρ, t)

max
ρ,t
EA(θ)(ρ, t)

. (5)

Such a landscape allows to assess and visualize to which degree each point
is enlaced by the object A in a fixed direction θ. It is interesting to note that
the non-zero values of this landscape are necessarily located inside the object’s
concavities. This is particularly interesting from an algorithmic point of view,
since it allows to restrict the computation to points located in the convex hull of
A (and outside of A). Another point to highlight is that enlacement landscapes
are symmetric, with period π (i.e., µAE (θ + π) = µAE (θ)).
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Fig. 1: Fuzzy directional enlacement landscapes of a crisp object A, with a fixed
direction θ and an increasing width ω. In (b, c and d), A is outlined in white.

Since µAE (θ) is focused on a single direction, we propose to aggregate such
fuzzy landscapes across multiple orientation angles. Let θ ∈ [0, π] be an orien-
tation angle and ω ∈ [0, π] a width parameter. The Fuzz-DEL on the interval
[θ − ω

2 , θ +
ω
2 ] is defined as follows:

µAE (θ, ω)(ρ, t) =
1

ω

∫ θ+ω
2

θ−ω
2

µAE (α)(ρ, t) dα, (6)

where θ represents the direction on which the fuzzy landscape is focused, while ω
controls the width of the interval, allowing to measure either a narrow direction
or a more global one. In particular, the landscape that aggregates all directions
is denoted by µ̃AE = µAE (

π
2 , π).

In order to illustrate such definitions, Fig. 1 and 2 show the Fuzz-DELs
obtained for two different objects. On the one hand, Fig. 1 illustrates the impact
of the width parameter ω for a given vertical direction (θ = π

2 ). Note that the
landscape would be identical for the opposite vertical direction (θ = 3π

2 ) because
of symmetry. We can observe the zero-valued points in the center of the object
for ω = 0, representing the fact that these points are not enlaced vertically by
A. This can be interpreted by the idea that if another object was located here, it
would be able to move in the vertical direction without crossing the other object
(i.e., the object could slide downwards). We also observe that when ω increases,
the fuzzy landscape progressively gets smoother, taking into account a wider
range of directions. On the other hand, Fig. 2 shows enlacement landscapes on
another object for different directions θ (with a fixed width ω = π

3 ). From these
examples, one can note how a Fuzz-DEL allows to capture the object directional
concavities. In the horizontal direction (θ = 0), the local enlacement values are
relatively high, and the values are higher the deeper we get inside the “snaked”
shape. In the vertical direction (θ = π

2 ), the Fuzz-DEL is mostly empty, except
on some small concavities.

4.2 Fuzzy Evaluation

In the previous definitions, a reference object A is considered, and different
Fuzz-DELs can be derived from it. These fuzzy landscapes allow to visualize the
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Fig. 2: Fuzzy directional enlacement landscapes of a crisp object A, with a fixed
width ω and for different directions θ. In (b, c and d), A is outlined in white.

interaction area of A. In the following, we show how to exploit these landscapes
to evaluate to which degree a target object B is enlaced by the reference object
A, using classical fuzzy operators.

Let µA and µB be two fuzzy sets over R2. A typical way to evaluate how
µB matches with µA is the necessity-possibility measure. The necessity N and
possibility Π can be respectively defined as follows:

Π(µA, µB) = sup
x,y

t(µA(x, y), µB(x, y)), (7)

N(µA, µB) = inf
x,y

T (µA(x, y), 1− µB(x, y)), (8)

where t is a fuzzy intersection (t-norm) and T is a fuzzy union (t-conorm). For
the rest of this article, the min and max operators are chosen for t-norm and
t-conorm respectively, but other fuzzy operators could be considered.

In our context, this fuzzy matching measure can be applied to evaluate how
a target object B (represented by its membership function µB) matches with
a Fuzz-DEL µAE (θ, ω) of a reference object A. The necessity-possibility inter-
val [N(µAE (θ, ω), µB), Π(µAE (θ, ω), µB)] constitutes a fuzzy evaluation of how B
is enlaced by A in direction θ, with the necessity being a pessimist point of
view, while the possibility represents an optimist point of view. The mean value
M(µAE (θ, ω), µB) can also be considered. This evaluation strategy will be further
studied in the upcoming experiments.

5 Experimental Results

We present different illustrative examples to highlight the interest of our ap-
proach. These experiments are organized around two main applications. The
first one is to evaluate the specific relation “surrounded by”. As mentioned pre-
viously, this relation can be considered as a particular case that can be derived
from the directional enlacement model. The second application is to evaluate
the spatial relation “enlaced by” in a more generic sense, in particular when
the reference object has multiple degrees of concavities. We also propose some
preliminary results on interlacement landscapes.



(a) (b) (c) (d)

Fig. 3: Examples of typical surrounding configurations (gray: reference object A;
white: target object B).

5.1 Surrounding

The “surrounded by” relation is easily apprehended by human perception, but
is particularly challenging to evaluate quantitatively. It is usually modeled by
the “all directions” point of view, i.e., an object surrounds another object if it
is located in all directions. In the following, we adopt the same insight, but we
adapt it to the enlacement model: an object is surrounded if it is enlaced by the
other object in all directions.

Fig. 3 presents characteristic examples of surrounding configurations that
we assessed using the proposed fuzzy evaluation strategy. In each image, the
reference object A is in gray and the target object B is the white circle.

For this application, we propose a specific way to apply our approach. The
target object B is projected into a Fuzz-DEL of A, and further normalized as a
fuzzy set. Such a projection is defined as:

µABE (θ, ω) =
min
ρ,t

(µAE (θ, ω)(ρ, t), µB(ρ, t))

max
ρ,t

µAE (θ, ω)(ρ, t)
. (9)

Then, the necessity N(µABE (θ, ω), µB) and possibility Π(µABE (θ, ω), µB) evalua-
tions are performed for different values of θ ∈ [0, π]. This results in informative
directional necessity and possibility profiles, which can be also then exploited
to derive a global evaluation of how B is surrounded by A. For the rest of this
study, we fixed ω to a low value of π

36 (5 degrees) to take into account different
directions individually, while smoothing out some discretization issues. Follow-
ing the “all directions” point of view, this global evaluation can be obtained with
the following:

NAB
S =

1

π

∫ π

0

N(µABE (θ, ω), µB) dθ, (10)

ΠAB
S =

1

π

∫ π

0

Π(µABE (θ, ω), µB) dθ. (11)

Fig. 4 shows the directional necessity and possibility profiles obtained for the
configurations of Fig. 3. In situation (a), the object is only partially surrounded.
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Fig. 4: Directional necessity, possibility and mean profiles measuring the sur-
rounding configurations of Fig. 3.

Both the pessimist and possibility evaluations agree that the reference object A
is surrounded in the vertical directions, but not in the horizontal directions. The
gradual transition of the situation is captured along the diagonal directions. The
object is also partially surrounded in situation (b), where half of the surrounding
circle has been cut out. In situation (c), small parts were added preventing
the object to leave without crossing the surrounding object, and therefore the
optimist point of view is 1 while the pessimist one oscillates but is never zero.
Finally, evaluations tend to agree that the object is surrounded in situation (d).
The optimist point of view is always 1, yet it takes into account that the object

Table 1: Fuzzy surrounding evaluations (necessity-possibility intervals and mean
values) obtained for the configurations of Fig. 3 and Fig. 5.

Vanegas et al. [16] Enlacement EAB [6] [NAB
S , ΠAB

S ]

(a) [0.70, 0.79], 0.76 [0.50, 0.63], 0.55 [0.36, 0.64], 0.48
(b) [0.50, 0.54], 0.52 [0.40, 0.49], 0.45 [0.25, 0.53], 0.39
(c) [0.93, 1.00], 0.97 [0.75, 1.00], 0.95 [0.54, 1.00], 0.79
(d) [0.94, 1.00], 0.99 [0.48, 1.00], 0.82 [0.77, 1.00], 0.85

(arcachon) [0.68, 0.85], 0.79 [0.35, 1.00], 0.62 [0.63, 1.00], 0.80



(a) Original image (b) Segmented image (c) µ̃AE

(d) µAE (0, π6 ) (e) µAE (π3 ,
π
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Fig. 5: Applicative example of a complex surrounding configuration. The satellite
image represents the Bassin d’Arcachon (France). (b) Object A is gray and
object B is white. (c–f) A is outlined in white and B is outlined in red.
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Fig. 6: Directional necessity, possibility and mean profiles measuring the sur-
rounding of the island by the bay in Fig. 5.

could escape by crossing a small portion of the surrounding object, resulting in
low pessimist evaluations for the vertical directions.

To complement these results, Table 1 presents the surrounding necessity-
possibility intervals [NAB

S , ΠAB
S ], to evaluate the global surrounding of the tar-

get objects of Fig. 3. For comparison purposes, we also present the results of
the approach of [16], which is also based on a fuzzy landscape framework, but
dedicated to surrounding relation. It is based on a specific fuzzy landscape, con-
sidering only the visible concavities of the reference object. We also present the
results obtained by [6] with the initial enlacement descriptors. Considering the
fact that surrounding evaluations are highly subjective, our goal here is not to ar-
gue that an approach is better than another, but to illustrate that the proposed



(a) (b) µ̃AE

• (red) [0.77, 0.89]
• (green) [0.58, 0.63]
• (blue) [0.53, 0.56]
• (yellow) [0.33, 0.34]
• (purple) [0.33, 0.35]
• (cyan) [0.00, 0.08]

(c) Necessity-possibility intervals

Fig. 7: Fuzzy enlacement landscape of a spiral (reference object A) and evaluation
for different target objects inside the spiral (represented in different colors).

Fuzz-DELs can provide interesting point of views regarding this surrounding
spatial relation.

To show the potential of our approach on real data, we evaluated the “sur-
rounded by” relation on geographical objects extracted from a satellite image
(Fig. 5 (a)). This image1 represents the Bassin d’Arcachon (France) and has
been acquired by the Formosat-2 satellite. The image was segmented to pro-
duce a 3-class image (Fig. 5 (b)) composed of an island enclosed into the bay
(reference object A) and the land coast (target object B). For illustrative pur-
poses, Fig. 5 (c–f) present the Fuzz-DELs of the bay object for different directions
θ and widths ω. In particular, (c) shows the overall landscape µ̃AE that aggre-
gates all directions, and (e) shows the direction where the target object is the
least enlaced (i.e., for θ = π

3 ). The related directional necessity and possibility
profiles are shown in Fig. 6, and the respective fuzzy surrounding evaluations
[NAB
S , ΠAB

S ] are reported in Table 1.

5.2 Global enlacement

To pursue our study and to go further the surrounding spatial relation, we con-
sider in a more generic sense the spatial relation “enlaced by”, in particular when
the reference object has multiple degrees of concavities. Fig. 7 (a) presents a
complex spatial configuration involving a spiral and different target objects en-
closed into it, from the center of the spiral to its “tail”. The spiral is the reference
object A, and we consider here its Fuzz-DEL µ̃AE that aggregates all directions.
From this landscape (Fig. 7 (b)), we can observe the decreasing pattern (from
white pixels to dark gray pixels) as we shift away from the center of the spiral.
To assess this behavior, Fig. 7 (c) presents the intervals [N(µ̃AE , µB), Π(µ̃AE , µB)]
measuring the global enlacement for the different target objects inside the spi-
ral. Note that other surrounding approaches cannot take into account the depth
within the spiral. For instance, the approach of [16] provides the same evalua-
tions for the green, blue, yellow and pink objects (i.e., around 0.50), because it

1 Thanks to the CNES agency and the Kalideos project (http://kalideos.cnes.fr/).



(a) Image (b) Segmentation (c) µ̃ABI

Fig. 8: Examples of fuzzy interlacement landscapes (mapped into a “heat” color
scale) obtained for different images (in (b), white: object A; gray: object B).

does not consider the reference object as a whole, but only looks at the visible
concavities from the target object.

5.3 Towards Fuzzy Interlacement Landscapes

We also propose some preliminary results on interlacement landscapes. The term
interlacement is intended as a mutual enlacement of two objects. If we aggregate
all directions, a fuzzy interlacement landscape between two objects A and B can
be obtained by: µ̃ABI = µ̃AE +µ̃

B
E . Fig. 8 shows the fuzzy interlacement landscapes

obtained for two illustrative images, which have been respectively segmented into
3 classes. The first landscape is obtained from an image of a zebra whose coat
features an alternating stripes pattern. We can observe the high interlacement
values concentrated in the center of the animal’s coat. The second landscape is
obtained from a ASTER satellite image2 covering a large delta river. Notice that
the interlacement is mainly located around the ramifications between the river
and the mangrove. Such interlacement visualization could be useful for instance
for ecological landscape monitoring.

6 Conclusion

We introduced a generic fuzzy model for the evaluation of complex spatial con-
figurations of binary objects represented in images. In particular, we focused on
the enlacement spatial relation, which can be considered as a generalization of
the notions of surrounding and imbrication of objects. Based on the directional
enlacement model [6], our proposed evaluation approach exploits the concept of
2 U.S./Japan ASTER Science Team, NASA/GSFC/METI/ERSDAC/JAROS.



fuzzy landscapes to assess the enlacement of objects in the image space from
a local point of view. An experimental study carried out on different illustra-
tive examples highlighted the interest of this model to evaluate complex spatial
relations. In future works, we plan to further study how to exploit fuzzy interlace-
ment landscapes, in particular with overlapping objects. We also plan to extend
the model by integrating a measure of spacing in interlacement configurations,
allowing to better take into account the distance between the objects.
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