Zhi Lu

Jin-Kao Hao
email: jin-kao.hao@univ-angers.fr

Yi Zhou

Stagnation-aware Breakout Tabu Search for the Minimum Conductance Graph Partitioning Problem

Keywords: Conductance minimization, graph partitioning, neighborhood search, metaheuristics, adaptive perturbation

The minimum conductance graph partitioning problem (MC-GPP) is to partition the vertex set of a graph into two disjoint subsets while minimizing the ratio between the number of the edges crossing the two subsets and the smallest volume of the two subsets, the volume of a vertex set being the sum of degrees of its vertices. MC-GPP has a variety of relevant applications, and however, is known to be NP-hard. In this work, we present a novel metaheuristic algorithm called "stagnation-aware breakout tabu search" for approximating MC-GPP. The algorithm combines a dedicated tabu search procedure to discover high-quality solutions and a self-adaptive perturbation procedure to overcome hard-to-escape local optimum traps. We perform extensive evaluations of the algorithm on five datasets of 110 benchmark instances in the literature. The key components of the proposed algorithm are analyzed to illustrate their influences on the performance of the algorithm.

Introduction

Graph partitioning problems are very general and useful models to formulate various applications. Given an undirected and connected graph G = (V, E) with vertex set V and edge set E ⊆ V × V , a partition of G is a separation of its vertex set V into two disjoint subsets A ⊂ V and Ā = V \ A. Graph partition problems generally involve finding a particular partition to optimize a given minimization or maximization objective while possibly satisfying some constraints. For instance, the highly popular graph 2-way partitioning problem requires to minimize the number of cut edges (whose endpoints belong to different subsets) of the partition while the two subsets have roughly equal size [START_REF] Boppana | Eigenvalues and graph bisection: An average-case analysis[END_REF].

The minimum conductance graph partitioning problem (MC-GPP) considered in this work can informally be stated as follows (its formal definition is provided in Section 2.1). Given a graph G, MC-GPP aims to find a partition of G with minimum conductance. The conductance of a partition is given by the ratio of the number of the cut edges to the smallest volume of the two subsets of the partition, the volume of a vertex set being the sum of degrees of its vertices. MC-GPP is a general and relevant model due to its widespread applications in the real world, such as clustering [START_REF] Cheng | A Divide-and-Merge Methodology for Clustering[END_REF][START_REF] Schaeffer | Graph clustering[END_REF][START_REF] Spielman | A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning[END_REF], community detection in complex networks [START_REF] Fortunato | Community detection in graphs[END_REF][START_REF] Leskovec | Statistical properties of community structure in large social and information networks[END_REF][START_REF] Van Laarhoven | Local network community detection with continuous optimization of conductance and weighted kernel k-means[END_REF], defining and evaluating network communities [START_REF] Yang | Defining and evaluating network communities based on ground-truth[END_REF], analysis of protein-protein interaction networks in biology [START_REF] Voevodski | Finding local communities in protein networks[END_REF], and image segmentation in computer vision [START_REF] Shi | Normalized cuts and image segmentation[END_REF]. However, from the perspective of computational complexity, MC-GPP is known to be NP-hard [START_REF] Šíma | On the NP-completeness of some graph cluster measures[END_REF]. As a result, solving MC-GPP represents a real computational challenge for any solution method.

As we observe in the literature review of Section 2, unlike the popular graph 2-way partitioning problem for which numerous solution methods are available (see recent reviews [START_REF] Benlic | Hybrid metaheuristics for the graph partitioning problem[END_REF][START_REF] Buluç | Recent Advances in Graph Partitioning[END_REF]), research on practical solution methods for MC-GPP remains quite limited. There is clearly an urgent need for effective algorithms able to solve large graphs for MC-GPP. Meanwhile, given the NP-hardness of the problem, unless P =N P , exact approaches will have an exponential time complexity and thus can only be applied to solve problem instances of limited sizes or instances with particular structures. In this work, we rather focus our research on effective heuristic algorithms for MC-GPP that can be used to find high-quality solutions for problem instances that cannot be solved exactly. Precisely, we develop a novel heuristic algorithm called Stagnationaware Breakout Tabu Search (SaBTS) to compute the conductance of a general graph. We summarize our main contributions as follows.

• The proposed SaBTS algorithm adapts for the first time the general breakout local search method [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF][START_REF] Benlic | Breakout local search for the quadratic assignment problem[END_REF][START_REF] Benlic | Breakout local search for the vertex separator problem[END_REF] to MC-GPP. SaBTS integrates a dedicated tabu search procedure with a constrained neighborhood to find high-quality solutions and a self-adaptive and multi-strategy perturbation mechanism to escape local optimum traps.

• We demonstrate the effectiveness of the proposed algorithm on 110 benchmark instances including 98 graphs from the 10th DIMACS Implementation Challenge and 12 anonymized social networks. Our computational studies indicate that SaBTS dominates a recent dedicated algorithm (StS-AMA) [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF][START_REF] Chalupa | Hybrid bridge-based memetic algorithms for finding bottlenecks in complex networks[END_REF]. Moreover, when SaBTS is run as a post-processing method, it consistently improves on the solutions provided by the popular graph partitioning tool Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF] and the state-of-the-art max-flow-based method MQI [25]. To shed light on the understanding of the algorithm, we study the impacts of its key algorithmic components.

The remainder of the paper is organized as follows. Section 2 provides the formal definition of the considered problem and reviews the related studies in the literature. In Section 3, we describe the general scheme of the proposed algorithm and its algorithmic components. Section 4 is dedicated to computational results and comparisons. In Section 5, several key elements of SaBTS are investigated to understand their impact on the performance of the algorithm. In the last section, we draw conclusions and suggest future research directions.

Problem Definition and Literature Review

This section formally introduces the minimum conductance graph partitioning problem and presents a review of solution methods available in the literature.

Minimum conductance graph partitioning

Let G = (V, E) be an undirected and connected graph with vertex set V and edge set E ⊆ V × V . For a vertex v ∈ V , its degree deg(v) is equal to the sum of edges incident to v in G. For a given vertex subset A ⊂ V , its volume vol(A) is the sum of degrees of the vertices in A, i.e.,

vol(A) = v∈A deg(v). (1)
Let Ā = V \ A be the complement set of A. Sets A and Ā define a partition (or also called a cut) of G, which is denoted by s = (A, Ā). The cut edges of partition s, cut(s), is defined as follows.

cut(s) = {(u, v) ∈ E : u ∈ A, v ∈ Ā}. (2)
The conductance Φ(s) of the partition s is the ratio between the number of cut edges and the smallest volume of the two partition subsets, i.

For two partitions s , s ∈ Ω, we evaluate their relative quality as follows: s is better than s if and only if Φ(s) < Φ(s). An optimal solution s * verifies thus Φ(s *) ≤ Φ(s) for any s ∈ Ω. Φ(s *) is the conductance of G, also called the Cheeger constant [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF] in statistical physics.

Literature review

Existing solution methods for MC-GPP fall into three classes: approximation, exact and heuristic algorithms.

Approximation methods provide provable performance guarantees on the quality of the obtained solutions. Cheeger studied the first (and weak) approximation algorithm for graph conductance [START_REF] Cheeger | A lower bound for the smallest eigenvalue of the Laplacian[END_REF]. Leighton & Rao implemented a O(logn)-approximation algorithm [START_REF] Leighton | Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms[END_REF], which was then improved by Arora et al. [START_REF] Arora | O(√ logn) approximation to sparsest cut in õ(n 2) time[END_REF][START_REF] Arora | Expander flows, geometric embeddings and graph partitioning[END_REF] to O(√ logn). Leskovec et al. [START_REF] Leskovec | Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters[END_REF] proposed approximation algorithms for the graph partitioning problem according to the conductance measure to define and identify clusters or communities in social and information networks. Zhu et al. [43] studied random-walk based local algorithms with improved theoretical guarantees in terms of the clustering accuracy and the conductance.

Exact methods guarantee the optimality of the found solutions by enumerating, often implicitly, all candidate solutions of the search space. Surprisingly, exact algorithms for the general MC-GPP were rarely proposed, even if studies exist on special cases. For instance, Hochbaum [START_REF] Hochbaum | Polynomial time algorithms for ratio regions and a variant of normalized cut[END_REF][START_REF] Hochbaum | A polynomial time algorithm for rayleigh ratio on discrete variables: Replacing spectral techniques for expander ratio, normalized cut, and cheeger constant[END_REF] devised time-efficient algorithms for the ratio region problem and a variant of normalized cut (or the conductance problem), as well as a few other ratio problems in the field of image segmentation.

Heuristic methods aim to find high-quality solutions in an acceptable computation time frame, but without provable performance guarantee of the solutions they found. Lang & Rao [25] proposed a Max-flow Quotient-cut Improvement algorithm (MQI) which was used to refine the results of the Metis graph partitioning heuristic [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF]. This approach was further improved by Andersen & Lang [START_REF] Andersen | An algorithm for improving graph partitions[END_REF], by solving a sequence of polynomially many s-t minimum cut problems to find a larger-than-expected intersection with lower conductance. Lim et al. [START_REF] Lim | Discovering large subsets with high quality partitions in real world graphs[END_REF][START_REF] Lim | MTP: discovering high quality partitions in real world graphs[END_REF] proposed a dedicated method called MTP for discovering a global balanced partition with low conductance. In the context of local network community detection, Laarhoven & Marchiori studied the continuous optimization of conductance [START_REF] Van Laarhoven | Local network community detection with continuous optimization of conductance and weighted kernel k-means[END_REF]. For this, they introduced a new objective function, called σ-conductance, which combines conductance and a regularization term controlled by a parameter σ. A projected gradient descent algorithm and an expectation-maximization algorithm were proposed to optimize σ-conductance. Very recently, Chalupa [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF] presented several dedicated heuristic algorithms based on the general local search and memetic search frameworks and reported experimental results on real-world social networks.

In a nutshell, efficient and practical algorithms dedicated to MC-GPP remain rare so far. To fill the gap, we introduce in this work a new algorithm and show extensive computational results on a variety of benchmark instances.

A stagnation-aware breakout tabu search

In this section, we present the proposed heuristic algorithm for solving MC-GPP. We first introduce the general procedure and then explain the composing ingredients.

Main scheme

The proposed stagnation-aware breakout tabu search algorithm (SaBTS) for MC-GPP adopts the general breakout local search method (BLS) introduced in [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF][START_REF] Benlic | Breakout local search for the quadratic assignment problem[END_REF][START_REF] Benlic | Breakout local search for the vertex separator problem[END_REF]. BLS relies on a dedicated local search procedure to find local optimal solutions and an adaptive perturbation procedure to jump out of local optimum traps. In addition to the local search procedure which ensures search intensification, BLS employs its adaptive perturbation mechanism to reach a suitable search diversification. This is achieved by dynamically determining the number of perturbation moves (i.e., the jump magnitude) and the type of perturbation (with different intensities). By iterating the local search phase and the adaptive perturbation phase, the method favors a balanced search in terms of intensification and diversification and helps to find high-quality solutions in the given search space.

From a perspective of algorithm design, the SaBTS algorithm is composed of two principal components: a constrained neighborhood tabu search procedure (CNTS, Section 3.3) and a self-adaptive perturbation procedure (SAP, Section 3.4). Starting with an initial solution that can be provided by any means (Section 3.2), SaBTS uses the CNTS procedure to perform an intensified examination of candidate solutions to find improved solutions. Upon the termination of the CNTS procedure, SaBTS triggers the SAP procedure to diversify the search and drive the process to new and unexplored zones. SaBTS iterates these two procedures to discover solutions of increasing quality.

SaBTS uses a number of variables (see Algorithm 1): s and s * indicate the current solution and the best solution ever discovered (which is also the output of the whole algorithm), s t records the solution returned by the last tabu search run, ω counts the consecutive 'while' loops during which s * is not updated (see below), f req records for each vertex the consecutive iterations during which the vertex is not relocated for the current tabu search run (this information is used by the perturbation procedure), L is the jump magnitude which is used by the perturbation procedure.

The general scheme of the SaBTS algorithm is summarized in Algorithm 1.

After initializing the above variables and obtaining a starting solution (lines 1-6 and Section 3.2), SaBTS performs a 'while' loop to iterate over the tabu search procedure, followed by the perturbation procedure (lines 7-24). For each iteration, the current solution s is submitted to the CNTS procedure for quality improvement (line 8 and Section 3.3). s * and w are updated when a new best solution is found (lines 9-14). If the search returns to the local optimum obtained from the preceding tabu search run, the jump magnitude L is increased by 1. Otherwise, L is reset to the initial jump magnitude L 0 (lines [START_REF] Cheng | A Divide-and-Merge Methodology for Clustering[END_REF][START_REF] Fleming | How not to lie with statistics: the correct way to summarize benchmark results[END_REF][START_REF] Fortunato | Community detection in graphs[END_REF][START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF][START_REF] Glover | Tabu search[END_REF][START_REF] Hagen | On implementation choices for iterative improvement partitioning algorithms[END_REF]. After recording the last solution from CNTS in s t (line 21), the perturbation procedure is triggered to modify the current solution s using information provided by ω, T and L (line 22). After resetting the frequency counter to 0 (line 23), the next 'while' loop starts with the perturbed solution as its new starting solution. The whole SaBTS algorithm terminates when a given stopping condition is met, which is typically a maximum allowed cut-off time limit.

We present below the components of the SaBTS algorithm.

Algorithm 1

The main framework of Stagnation-aware Breakout Tabu Search (SaBTS)

Require: Graph G = (V, E), depth of tabu search D, stagnation threshold T , initial jump magnitude L 0 . Ensure: The best partition s * found so far. f req(v) ← 0 for all v ∈ V / * reset move frequency of vertices * / 24: end while 25: return s *

Initial solution

To start its search, SaBTS requires an initial solution (partition), which can be provided by any means. In this work, we adopt two different methods by using a simple greedy procedure and a powerful graph partitioning tool (Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF]. To this end, other state-of-the-art graph partitioners like KaHIP [START_REF] Sanders | KaHIP v2.1.0-Karlsruhe High Qualtity Partitioning Homepage[END_REF] can be equally used).

• Greedy initialization. We first randomly select a vertex v 0 ∈ V to construct an initial partition s 0 = (A, Ā) with A = {v 0 } and Ā = V -{v 0 }. Then, the procedure iteratively relocates one vertex from Ā to A such that the conductance is improved (ties are broken randomly). This relocation process is repeated until the conductance cannot further be improved. Using the incremental technique introduced in [• Metis initialization. Metis is a powerful tool designed for the conventional k-way graph partitioning problem. Based on efficient implementation of various multilevel heuristics, Metis is extremely fast (e.g., it can produce a good partition in several seconds even for a graph with a half million vertices).

For a given instance, we use Metis to obtain an initial partition with a minimized number of cut edges. Then we run SaBTS to improve the input solution. In this manner, SaBTS can be considered as a post-processing method to boost the solution quality that is found by Metis.

With these two very different types of initialization, we can observe the impact of the initial solution on the quality of the final partition found by SaBTS.

Moreover, we can verify whether partitions from a popular graph partitioning package (designed for the minimization of cut edges) can be further improved by a dedicated MC-GPP algorithm in terms of the conductance criterion.

Constrained neighborhood tabu search

To improve the initial solution provided by any of the above initialization procedures, the proposed algorithm applies a dedicated constrained neighborhood tabu search (CNTS) procedure, which is based on the popular tabu search (TS) metaheuristic [START_REF] Glover | Tabu search[END_REF]. From a general point of view, TS visits candidate solutions of the given search space by iteratively replacing the current solution by a neighbor solution taken from a neighborhood (see Section 3.3.1). At each iteration, tabu search selects one of the best neighbors among the neighbor solutions. This selection rule has the following interesting properties. If the current solution is not a local optimum, i.e., there is at least one solution of better quality in the neighborhood, then tabu search visits one such improv-ing solutions. When no improving solutions exist in the neighborhood (i.e., when a local optimum is reached), tabu search visits the least worsening solution in the neighborhood. As a result, this strategy allows the search process to go beyond local optima encountered and continue its exploration toward possibly better solutions. To prevent the search from re-visiting previously seen solutions, tabu search uses a so-called tabu list to keep track of some recently visited solutions. For a detailed presentation of tabu search, the reader is referred to [START_REF] Glover | Tabu search[END_REF].

Our CNTS procedure adopts the general TS method to MC-GPP and integrates two key search components specially tailored to the considered problem: constrained neighborhood and dynamic tabu list management. As shown in Algorithm 2, CNTS improves the incumbent solution s by iteratively relocating a particular vertex (lines 6-7, see below), followed by some updates (s best , H, f req, lines 8-16). CNTS terminates if s best cannot be improved during D (a parameter) consecutive iterations, returning s best as the best solution found.

Algorithm 2 Constrained Neighborhood Tabu Search (CNTS)

Require: Graph G = (V, E), current solution s, depth of tabu search D, vertex move frequency vector f req. Ensure: The best solution found s best .

f req(v) ← 0, f req(u) ← f req(u) + 1 for all u ∈ V \ {v} 11: if Φ(s) < Φ(s best) then 12:
s best ← s 13:

β ← 0 14: else 15:

β ← β + 1 16:
end if 17: end while 18: return s best

Constrained neighborhood and its examination

Neighborhood is one of the most critical components of a tabu search procedure and identifies the candidate solutions that are considered at each iteration. For our MC-GPP problem, we adopt the 'Relocate' operator (also called 'Single Move' [START_REF] Benlic | An effective multilevel tabu search approach for balanced graph partitioning[END_REF]) to define the neighborhood. Basically, let s = (A, Ā) be the incumbent solution, the 'Relocate' operator displaces a vertex from its current set A or Ā to the complement set. Let v be the vertex to be displaced. We use s = s ⊕ Relocate(v) to denote the neighbor solution s obtained by relocating v. Then the classic neighborhood induced by the 'Relocate' operator, is given by:

N (s) = {s : s ⊕ Relocate(v), v ∈ A or v ∈ Ā}. (5
)
One notices that this neighborhood is unconstrained in the sense that every vertex of V is a possible candidate for the 'Relocate' operator. However, the size of this neighborhood is in order O(|V |), implying that its exploration would be time-consuming and expensive in particular for large graphs. Meanwhile, we observe that this unconstrained neighborhood includes many nonpromising neighbor solutions that are irrelevant for conductance improvement as discussed below.

For these reasons, we introduce a constrained neighborhood that focuses on promising neighbor solutions and is of smaller size. The rationale behind the constrained neighborhood is that in terms of conductance improvement, all vertices are not equally interesting for the 'Relocate' operator. The idea is then to identify the "critical" vertices that are relevant for the 'Relocate'

operator and exclude the "non-critical" vertices (or "ordinary" vertices) for consideration.

Given a solution s

= (A, Ā), let e(A) = |{(u, v) ⊂ E : u, v ∈ A}| and e(Ā) = |{(u, v) ⊂ E : u, v ∈ Ā}|

be the number of edges whose endpoints belong to

A and Ā respectively. Then, it is easy to check that the volume of sets A and Ā can be re-written as:

vol(A) = 2e(A) + |cut(s)|, vol(Ā) = 2e(Ā) + |cut(s)|.
Thus, the conductance Φ(s) can be re-expressed as follows,

Φ(s) = |cut(s)| min{vol(A), vol(Ā)} = |cut(s)| |cut(s)| + 2 • min{e(A), e(Ā)} = 1/ 1 + 2 • min{e(A), e(Ā)} |cut(s)| . (6)
By equation (6), it is clear that increasing min{e(A), e(Ā)} and decreasing

f g h i j s A s' A A s OV a A e A e A a b c d, k, l e f g h i j s A s' A s' s' s' A s OV g k l c A A s OV k s OV l s OV c
A Fig. 2. An example of moving "non-critical" or "ordinary" vertices in the constrained neighboring structure defined in the cut edges set.

set of ordinary vertices of s. We have the following theorem. Our experiments suggest that CV (s) is generally much smaller than V (except for very dense graphs). Therefore using N C (s) rather than N (s) is more time-efficient and favors conductance improvement as well.

To quantify the quality of a neighbor solution s obtained by relocating vertex v, we use δ(v) to denote the move gain as follows. A vertex qualifies as eligible if it is not forbidden by the tabu list (see Section 3.3.2). Note that if relocating a vertex leads to a solution better than the best solution s best found during the tabu search process, this vertex always qualifies as eligible even if it is forbidden by the tabu list (this is called the aspiration criterion in tabu search).

δ(v) = Φ(s) -Φ(s) (8)
To ensure the computation efficiency of the CNTS procedure, we adopt the incremental updating technique [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF] to perform the necessary calculations of

vol(A) = vol(A) -deg(v). (9) vol(Ā) = vol(Ā) + deg(v). (10
) |cut(s)| = |cut(s)| + deg A (v) -deg Ā(v). (11)
After relocating v, we update the auxiliary degrees of each vertex w adjacent to v in O(1) time,

deg A (w) = deg A (w) -1. (12
) deg Ā (w) = deg Ā(w) + 1. (13
)
So each iteration of CNTS can be achieved in O(|CV (s)|) time. As noticed in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF], even if the numerator of conductance is bounded by deg max , the denominator (the volumes of the two subsets) can be potentially modified in all |V | components after relocating a vertex. As a result, it remains open whether improving neighbor solutions can be identified in O(1) time for MC-GPP. This is in sharp contrast to the conventional graph partitioning problem for which the best neighbor solution (by the relocation operation) can be found in O(1) time thanks to the use of dedicated data structures and incremental techniques.

Finally, as mentioned in [START_REF] Benlic | Hybrid metaheuristics for the graph partitioning problem[END_REF][START_REF] Buluç | Recent Advances in Graph Partitioning[END_REF], the above constrained neighborhood based on border vertices of the incumbent partition has been advantageously used in several graph partitioning algorithms and tools (e.g., Metis, KaHIP, Scotch). This work demonstrates for the first time that this constrained neighborhood is equally valuable for implementing MC-GPP algorithms.

Dynamic tabu tenure management

As mentioned above, the CNTS procedure uses a tabu list H to record recently relocated vertices to prevent them from being reconsidered for a future relocation and thus avoid revisiting previously visited solutions. Specifically, each time a vertex v ∈ CV is relocated, v is added in the tabu list and is not considered for next tt(v) iterations (tt is called tabu tenure). To implement the tabu list efficiently, we use a vector H of size |V | (initialized to 0) to represent the tabu list. When a vertex v is relocated, H[v] is updated to iter + tt where iter represents the current number of iterations. Then during the next iterations, if iter < H[v], v is forbidden by the tabu list; Otherwise, v is not prohibited by the tabu list.

To determine the tabu tenure tt, we adopt a technique which dynamically adjusts the tabu tenure with a periodic step function F defined over the current iteration number iter [START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF][START_REF] Wu | Memetic search for the max-bisection problem[END_REF]. Typically, each period of the step function consists of 1500 iterations that are divided into 15 steps (also called

Self-adaptive perturbation strategy

Algorithm 3 The Self-adaptive Perturbation Procedure (SAP)

Require: Graph G = (V, E), current solution s, non-improving local optima counter ω, stagnation threshold T , jump magnitude L, minimum probability threshold P 0 . Ensure: A perturbed partition found s. calculate probability P according to Eq. (14)

6:
r ← random(0, 1) / * generate a random number in (0, 1) * / end if 13: end if 14: return s

The tabu search procedure presented in Section 3.3 can overcome some local optimum traps thanks to its tabu list. However, CNTS can still be trapped in deep local optima. To escape such traps, the proposed SaBTS algorithm employs a self-adaptive perturbation (SAP) procedure (see Algorithm 3) that relies on information related to ω (counter of non-improving local optima), T (stagnation threshold), f req (vertex move frequency) (see Algorithm 1 and Section 3.1) as well as three perturbation operators, which are given below.

(1) Frequency based perturbation uses information on vertex move frequency (f req) collected during the last tabu search run. This perturbation focuses on the L least frequently relocated vertices (i.e., the L vertices with the largest f req values) and forces them to move to their opposite sets.

In this way, the perturbation focuses on "hard to move" vertices and creates opportunities to overcome deep local optima that could be difficult to escape otherwise.

(2) Cut edge based swap perturbation exchanges two vertices u and v linked by a cut edge (see equation (2)). By focusing on cut edges, this perturbation does not significantly change the solution in general.

(3) Random perturbation relocates L vertices that are randomly selected. Since a random relocation can seriously affect the quality of the resulting solution, this perturbation has a significantly stronger diversification effect than the two other perturbations.

To apply these perturbations, we adopt the key idea of the breakout local search method [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF][START_REF] Benlic | Breakout local search for the quadratic assignment problem[END_REF][START_REF] Benlic | Breakout local search for the vertex separator problem[END_REF] that applies perturbations of different intensity adaptively and probabilistically. Specifically, if ω > T (i.e., at least T consecutive local optima have been visited without improving the best solution found s * , see Algorithm 1), the search is believed to be stagnating in a deep local optimum attractor (line 2, Algorithm 3). To escape the trap, we apply the random perturbation to change the incumbent solution significantly and displace the search to a distant search zone. Otherwise, we apply the three perturbations in a probabilistic way. For this purpose, we first calculate the probability P as follows ([START_REF] Benlic | Breakout local search for the max-cut problem[END_REF]).

P = max{e -ω/T , P 0 } (14)
where P 0 (typically larger than 0.5) is a prefixed (minimum) probability value.

Then with probability P , we apply either the frequency based perturbation or the cut edge based perturbation with equiprobability. With probability 1 -P , we trigger the random perturbation.

Finally, the perturbed solution serves then as the new starting solution of the next round of the tabu search procedure.

Computational Results

In this section, we assess the performance of our proposed SaBTS algorithm.

Benchmark instances

We adopt five sets of 110 benchmark graphs: four sets (98 graphs) from the 10th DIMACS Challenge and one set (12 graphs) from the SNAP network collection. These graphs are connected and have up to around 500, 000 vertices.

• The 10th DIMACS Implementation Challenge Benchmark • Social networks2 . We use a set of 12 anonymized social network graphs that are extracted from the popular SNAP collection [START_REF] Leskovec | A SNAP Datasets: Stanford large network dataset collection[END_REF] and tested in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF].

Parameter setting and experimental protocol

The proposed SaBTS algorithm requires five parameters (see Table 1 (1) StS-AMA [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF]: The population-based memetic algorithm StS-AMA is among the rare and recent heuristics dedicated to MC-GPP. As indicated in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF], StS-AMA is the best performing algorithm among several local search and evolutionary algorithms. Since the code of this algorithm is not available, we decided to reimplement StS-AMA to make a fair comparison. It is well known that implementation details can significantly impact the performance of partitioning heuristics [START_REF] Caldwell | Design and implementation of move-based heuristics for VLSI hypergraph partitioning[END_REF][START_REF] Hagen | On implementation choices for iterative improvement partitioning algorithms[END_REF]. To implement StS-AMA, we followed faithfully the description given in [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF] and checked that the results of our implementation are consistent with those reported in the reference paper.

(2) Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF]: As a popular graph partitioning package, Metis has been used to generate partitions in several studies on MC-GPP [START_REF] Andersen | An algorithm for improving graph partitions[END_REF]25,[START_REF] Leskovec | Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters[END_REF]. From these studies, one notices that even if Metis does not directly minimize the conductance criterion (it minimizes the number of cut edges), it can still compute reasonably good partitions in terms of conductance. We use Metis for two purposes: 1) to evaluate the results of our SaBTS algorithm when it is run with initial solutions generated by the simple greedy procedure of Section 3.2, and 2) like in [START_REF] Andersen | An algorithm for improving graph partitions[END_REF]25], to verify whether and to which extend SaBTS can improve the conductance of a partition produced by Metis.

For this study, we use the latest version Metis 5.1.03 and run Metis on the same computer as for the other algorithms.

(3) MQI [25]: This is a max-flow quotient-cut improvement algorithm for improving graph bipartitions when the cut quality is measured by quotientstyle metrics such as conductance. MQI refines an initial partition and has been shown to be able to improve the results of Metis in terms of conductance. To our knowledge, MQI is one of the best algorithms for MC-GPP. We adopt MQI as our main reference for two purposes: 1) to compare SaBTS and MQI when they are run from the same partition given by Metis, 2) to verify whether SaBTS can further improve the results of MQI. For this study, we use the latest implementation of MQI 4and run MQI on the same computer as for the other algorithms.

The computational studies reported in this section are based on two differ-ent experiments where all algorithms are run using their default parameter settings.

The first experiment aims to compare SaBTS against StS-AMA as well as Metis, when SaBTS is run from an initial solution given by the greedy procedure of Section 3.

Computational results

In this section, we assess the performance of the SaBTS algorithm according to the two experiments explained above. To this end, we show summarized results of the studied algorithms to highlight the main findings. In the appendix, we report the detailed results of SaBTS together with the main reference algorithms on the 110 benchmark instances (Table A.1 and A.2), the statistical results (p-values) from the Wilcoxon signed-rank test applied to different pairwise comparisons for all datasets (Table A.2) as well as a comparison using the geometric mean metric [START_REF] Fleming | How not to lie with statistics: the correct way to summarize benchmark results[END_REF][START_REF] Hauck | An evaluation of bipartitioning techniques[END_REF] (Table A.3).

Greedy+SaBTS compared to StS-AMA and Metis

The computational results of the first experiment are summarized in The results of this experiment indicate that 1) Greedy+SaBTS dominates the dedicated StS-AMA algorithm, and 2) Greedy+SaBTS and Metis perform well on different datasets and complement each other.

Using SaBTS to improve solutions given by Metis and Metis+MQI

Table 3 shows the summarized results of the second experiment concerning SaBTS and MQI, when both algorithms are used to refine a partition given by Metis (entries involving Metis+SaBTS and Metis+MQI) and when SaBTS is used to refine a partition produced by Metis+MQI (entry (Metis+MQI)+SaBTS).

As before, columns 1-3 indicate the studied algorithms, the information on the datasets and quality indicators respectively. Columns 4-6 count the number of instances on which each studied algorithm (Metis+SaBTS, Metis+MQI and (Metis+MQI)+SaBTS) achieves a better, equal or worse result compared to the input solution from Metis respectively (#Wins, #Ties and #Losses). Column 7 shows, for each dataset, the average improvement percentage (∆ 1 (%)) of a method over the results of Metis in terms of Φ best and Φ avg . Specifically, we calculate the average improvement percentage (∆(%)) as follows. First, we compute the improvement percentage for each instance, which is given by Table 2 Comparative results of Greedy+SaBTS (when it is run with greedy initial solutions) with the reference algorithms StS-AMA [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF] and Metis [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF]. (Φ -Φ M etis)/Φ × 100%, where Φ is the best (or average) conductance value of the compared algorithms and Φ M etis is the best (or average) conductance value of Metis. Then, the average improvement percentage for each dataset is given by n i=1 (Φ i -Φ M etis)/Φ i × 100%/n, where n is the number of instances of each dataset.

In Table 4, we show the improvements of SaBTS (i.e., (Metis+MQI)+SaBTS) over the results of Metis+MQI, which are obtained by running SaBTS from the output partitions of Metis+MQI. Columns 4-6 indicate the number of instances on which the result of (Metis+MQI)+SaBTS is better, equal or worse than the partitions provided by Metis+MQI (#Wins, #Ties and #Losses), while column 7 shows the average improvement percentage (∆ 2 (%)) of SaBTS over the results of Metis+MQI in terms of Φ best and Φ avg .

From the results of Table 3 (and the detailed results of Table A.1 in the appendix), we first observe that both SaBTS and MQI consistently improve on the results of Metis for all five datasets. Specifically, in terms of Φ best (Φ avg resp.), Metis+SaBTS can make an improvement for slightly more instances compared to MQI: 105 (107) out of 110 instances for Metis+SaBTS against 97 (106) for MQI. However, the last column of Table 3 shows that MQI achieves much more important average improvement percentages for the different datasets. Inspecting the detailed results in Table A.1 shows that while SaBTS performs better on more instances of the Clustering, Delaunay and Walshaw datasets, MQI performs remarkably better on the 42 Redistricting graphs and relatively better on some Social graphs.

Very interestingly, the results of Table 4 indicate that SaBTS can further improve the results of MQI for all five datasets. In terms of Φ best (Φ avg resp.), the number of improved results is 8 [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF] for the 17 Clustering graphs, 8 [START_REF] Boppana | Eigenvalues and graph bisection: An average-case analysis[END_REF] for the 9 Delaunay graphs, 16 [START_REF] Zhou | Improving probability learning based local search for graph coloring[END_REF] for the 42 Redistricting graphs, 16 [START_REF] Leskovec | Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters[END_REF] for the 30 Walshaw graphs, and 4 (8) for the 12 Social graphs. The average improvement percentage achieved by SaBTS over MQI varies according to the datasets. The improvements are more important for the Clustering, Delaunay, Walshaw and Social datasets than for the Redistricting dataset. Finally, the detailed results of Table A.1 in the appendix show that Metis+SaBTS and (Metis+MQI)+SaBTS together cover all the best results in terms of Φ best and Φ avg for the 110 instances tested.

This experiment confirms that 1) it is more advantageous to start SaBTS with a solution from Metis or MQI to obtain still better solutions, and 2) we can jointly apply Metis, MQI and SaBTS to find high quality partitions in terms of low conductance for divers graphs with different structures.

Finally, even if we do not report more computational results, we mention that we also tested much larger graphs from the 10th DIMACS Challenge with 8 × 10 5 to 1.4 × 10 7 vertices. We observed that SaBTS can improve the partitions given by Metis and MQI.

Analysis of SaBTS

In this section, we first analyze the effect of the parameters on the performance of SaBTS, and then investigate the impact of the constrained neighborhood in the tabu search, and lastly provide some insights into the adaptive perturbation strategy. These studies are based on 10 challenging instances selected from the 110 benchmark instances: PGPgiantcompo, preferentialAttachment, delaunay n16, delaunay n17, sd2010, ms2010, wing, brack2, gplus 2000, pokec 20000. As before, we independently solve 20 times each instance with a cutoff time of 60 minutes, each run being started with an initial solution generated with the greedy method of Section 3.2.

Effect of the parameters

The proposed algorithm has five parameters: the tabu tenure management factor α, depth of tabu search D, stagnation threshold T , initial jump magnitude L 0 and minimum probability P 0 . To investigate the effect of a parameter on the performance of the algorithm, we vary its value within a reasonable range, while maintaining other parameters to their default values as shown in Table 1. We use the following value ranges: α = {40, 60, 80, 100, 120}, D = {2000, 4000, 6000, 8000, 10000}, T = {1000, 3000, 5000, 7000, 9000}, L 0 = {0.3, 0.4, 0.5, 0.6, 0.7} × |V | and P 0 = {0.65, 0.7, 0.75, 0.8, 0.85}. Fig. 3 shows the behavior of SaBTS with respect to each of the parameters, where the Xaxis indicates the values of each parameter and the Y-axis shows the best/ average objective values over the 10 tested instances.

Fig. 3 indicates that the performance of SaBTS is significantly influenced by the setting of each parameter. For α, the best performance is attained when α = 100, and a too small α value leads to poor performance of SaBTS. This can be explained that a small α value makes the prohibited time too short and cannot effectively prevent the search from cycling. For D, the value of 6000 is the best choice, and a too large or too small D value deteriorates SaBTS performance. Also, SaBTS reaches its best performance with a T value of 1000. However, the performance of SaBTS is not sensitive to an increase of T .

Then for L 0 , the performance of SaBTS generally decreases as the coefficient of L 0 increases and the value of 0.4 shows the best performance, while a too large coefficient value will have an effect similar to a random restart. For P 0 , the best solution is not really sensitive to P 0 . Thus we set P 0 = 0.8, which leads to the best average solution.

This study justifies the default parameter setting of Table 1. We notice that among these parameters, D, T and L 0 are a little more sensitive than α and P 0 . Therefore, if the user needs to tune the parameters, effort should be put on D, T and L 0 .

Impact of the constrained neighborhood on tabu seach

As explained in Section 3.3.1, the constrained neighborhood based on critical vertices is a key component of the tabu search procedure. In this experiment, we highlight its interest by comparing the SaBTS procedure with a SaBTS variant (called SaBTS no cons) where we replace the constrained neighborhood (see Equation (7)) by the unconstrained neighborhood defined by equation [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF] and keep the other components unchanged. We run both algorithms 20 times to solve each of the 10 instances used in the last section and report the results in Table 5.

In Table 5, we indicate for each instance the gap of the best and average results of SaBTS no cons with respect to the best and average results of SaBTS. . This experiment demonstrates the usefulness and effectiveness of the constrained neighborhood for the SaBTS algorithm.

Impact of the perturbation strategy

As mentioned in Section 3.4, the perturbation procedure aims to diversify the search and help the search process to escape local optima traps. In order to highlight the contribution of the adopted perturbation strategy to the overall performance, we create three variants of SaBTS by varying the perturbation mechanism. The first variant (called SaBTS D3) only employs the random perturbation. The second variant (called SaBTS D1+D2) disables the random perturbation, but keeps the frequency based perturbation and the cut edge based swap perturbation. The last variant (called SaBTS D2+D3) disables the frequency based perturbation, but keeps the cut edge based swap perturbation and the random perturbation. For all the variants, we keep the other components of SaBTS unchanged. search procedure and the self-adaptive and multi-strategy perturbation procedure. We performed a large scale computational study to assess the performance of the proposed algorithm and investigated its key components (parameters, constrained neighborhood, perturbation strategy) to gain insights on the functioning of the algorithm.

The computational study on five datasets of 110 benchmark graphs with up to around 500 000 vertices allows us to draw the following conclusions.

• SaBTS with greedy initial solutions (Greedy+SaBTS) dominates the recent StS-AMA algorithm dedicated to MC-GPP [START_REF] Chalupa | A memetic algorithm for the minimum conductance graph partitioning problem[END_REF] both in terms of the best and average results.

• SaBTS with greedy initial solutions (Greedy+SaBTS) and the popular graph partitioning tool Metis (version 5.1.0) [START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF] perform well on different datasets.

Globally there is no clear dominance of one method over the other. When SaBTS is used to refine the results of Metis, it consistently improves the partitions provided by Metis for 108 out of the 110 benchmark graphs.

• When SaBTS is used as a post-processing procedure of Metis and is compared to the state-of-the-art max-flow based method MQI [25], SaBTS improves the result of Metis on slightly more graphs than MQI, but MQI achieves much more important quality improvement.

• When SaBTS is used as a post-processing procedure of MQI, it consistently improves the partitions provided by MQI, raising the partition quality for the tested datasets.

• SaBTS and existing methods like Metis and MQI can be advantageously used in a combined way, helping to find high quality partitions for graphs with very different structures and characteristics.

For future work, we advance the following directions. First, as the results of Metis suggest, optimizing the number of cut edges helps to find partitions of relatively low conductance. Therefore, one interesting study would be to investigate the use of cut-edge criterion as an approximate evaluation function of conductance in search algorithms. Indeed, one can take advantage of the well-known efficient data structures and fast incremental update techniques available for the cut-edge criterion, helping to significantly reduce the computational cost of search algorithms for MC-GPP. Second, we can investigate hybrid approaches by combining SaBTS (or its variant) and other partition algorithms or other search frameworks like population-based evolutionary methods. Third, it would be interesting to study learning-based search methods like [START_REF] Zhou | Opposition-based memetic search for the maximum diversity problem[END_REF][START_REF] Zhou | Improving probability learning based local search for graph coloring[END_REF]

 Ω = {(A, Ā) : A ⊂ V } be the search space including all possible partitions of G, the minimum conductance graph partitioning problem studied in this work involves determining the partition s * of G with minimum conductance, i.e., (MC-GPP) s * = arg min s∈Ω Φ(s)

Fig. 1

 1 Fig. 1 provides an illustrative example where the partition s = (A, Ā) is defined by sets A = {c, d, f, g} and Ā = {a, b, e}. In the example, vol(A) = 15, vol(Ā) = 7 and |cut(s)| = 5, the conductance of this partition is Φ(s) = 5/7 = 0.71.

Fig. 1 .

 1 Fig. 1. A partition of graph G = (V, E) is given by s = (A, Ā) where A = {c, d, f, g} and Ā = {a, b, e} with a conductance Φ(s) of 0.71.

1 : 4 : 6 : 8 : 9 :

 14689 s best ← s / * record the best solution found during the current TS run * / 2: H ← ∅ / * initialize tabu list, Section 3.3.2 * / 3: β ← 0 / * counter of consecutive non-improving iterations w.r.t. s best * / Create the set CV (s) of critical vertices / * Section 3.3.1 * / 5: while β < D do Select a best eligible vertex v in CV (s) / * Section 3.3.1 * / 7: s ← s ⊕ Relocate(v) Update the set of critical vertices CV (s) Update tabu list H[v] with tabu tenure tt / * Section 3.3.2 * / 10:

 |cut(s)| reduces the conductance Φ(s). Inversely, decreasing min{e(A), e(Ā)} and increasing |cut(s)| augment the conductance Φ(s).Let CV (s) = {v ∈ V : (v,) ∈ cut(s)} be the set of critical vertices of s, i.e., the border vertices of the current partition s. Let OV (s) = V \ CV (s) be the

 Theorem. Let s = (A, Ā) be a partition of V with conductance Φ(s), let OV (s) be the set of ordinary vertices with respect to s. Let s = (A , Ā) = (A \ {v}, Ā ∪ {v}) be the partition obtained from s by relocating a vertex v of OV , then Φ(s) > Φ(s) holds.Proof : There are two cases to consider. 1) e(A) = e(Ā), and 2) e(A) = e(Ā). For case 1, without loss of generality, suppose that vertex v ∈ OV belongs to A. Let deg(v) be the degree of v. Then we have min{e(A), e(Ā)} = e(A) = e(A) -deg(v), which is smaller than min{e(A), e(Ā)} = e(A) on the one hand, and |cut(s)| = |cut(s)| + deg(v), which is larger than |cut(s)| on the other hand. According to equation (6), we have Φ(s) > Φ(s).For case 2, we consider the two possible situations according to the origin of v. First, if vertex v belongs to the subset with smaller number of inner edges, then min{e(A), e(Ā)} = min{e(A), e(Ā)} and |cut(s)| = |cut(s)| + deg(v). According to equation (6), Φ(s) > Φ(s) holds. Second, if v belongs to the subset with larger number of inner edges. Suppose it is set A, i.e., min{e(A), e(Ā)} = e(Ā) and let e(A) = e(Ā) + δ with δ > 0. After relocating v from A to Ā, we obtain |cut(s)| = |cut(s)| + deg(v) and e(Ā) = e(Ā) (since adding v to Ā does not change e(Ā)). Then if δ ≤ deg(v), min{e(A), e(Ā)} equals e(Ā) = e(Ā). Since |cut(s)| = |cut(s)| + deg(v) > |cut(s)|, we have Φ(s) > Φ(s) according to equation (6). Otherwise, if δ > deg(v), min{e(A), e(Ā)} = e(A) = e(A)deg(v). Since e(A) < e(Ā) and |cut(s)| > |cut(s)|, we have again Φ(s) > Φ(s) according to equation (6). This finishes the proof of the theorem. 2 This theorem indicates that ordinary vertices are not interesting for the 'Relocate' operator since they always deteriorate the conductance of the current solution. Consequently, it is relevant to exclude these ordinary vertices and only consider the critical vertices of set CV (s). This consideration leads to our critical vertices constrained neighborhood N C , N C (s) = {s : s ⊕ Relocate(v), v ∈ CV (s)}. (7) Compared to the unconstrained neighborhood N (s) whose size is of O(|V |) (see Equation (5)), the constrained neighborhood N C (s) has a size of O(|CV (s)|).

 So a negative, zero and positive δ(v) value indicates an improving, stagnating and worsening neighbor solution respectively. To explore the constrained neighborhood N C (s), the CNTS procedure first identifies the set CV (s) of critical vertices (Algorithm 2, line 4). This can be achieved in O(|V | * deg max) time where deg max is the maximum degree of the given graph. Then CNTS performs each subsequent iteration in three steps: 1) selects, among the eligible critical vertices, one best vertex v (ties are broken randomly) with the smallest move gain, 2) relocate v to obtain a neighbor solution, and 3) make necessary updates.

 each CNTS iteration. Given the incumbent solution s = {A, Ā}, the number of cut edges |cut(s)|, the degrees of each vertex v in both partition subsets deg A (v) and deg Ā(v), let s = {A , Ā } with A = A \ {v}, Ā = Ā ∪ {v} be the new neighbor solution after relocating v from A to Ā. The conductance of s can be efficiently recalculated in O(1) time,

1: if ω > T then 2 :

 2 s ← random perturb(s, ω, L) / * search stagnating, apply rand. perturb. * / 3: L ← L 0 / * reset L * / 4: else 5:

8 : 9 :

 89 with prob. 0.5: s ← f requency based perturb(s, ω, L, f req) with prob. 0.5: s ← cut edge based perturb(s, ω, L)

2 (

 2 we use Greedy+SaBTS to denote this SaBTS running variant). For this experiment, we run all algorithms 20 times with different random seeds to solve each problem instance, each run being limited to 60 minutes.The second experiment performs a comparison between SaBTS and MQI when both algorithms start from a partition provided by Metis (we use Metis+SaBTS and Metis+MQI to denote these SaBTS and MQI running variants). For each problem instance, we first run Metis 20 times and record the 20 output partitions. We then run both SaBTS and MQI 20 times using these 20 partitions as their initial solutions. This experiment allows us to assess, with respect to the powerful MQI method, the ability of SaBTS to improve the conductance of a partition from Metis. The second experiment also includes a study on the ability SaBTS to further improve the results of MQI by running SaBTS on each instance from the 20 partitions provided by Metis+MQI (we use (Metis+MQI)+SaBTS to denote this SaBTS running variant).

Fig. 3 .

 3 Fig. 3. Analysis of the effects of the parameters (α, D, T , L 0 and P 0).

 intervals) [x i , x i+1 -1] i=1,2,...,15 with x 1 = 1, x i+1 = x i + 100. According to the current iteration number, the tabu tenure changes dynamically during the search with one of four possible values: (10 × α, 20 × α, 40 × α, 80 × α), where α is a parameter. Precisely, for an iteration iter ∈ [x i , x i+1 -1], the tabu tenure tt equals F (iter), which is given by (y i) i=1,2,...,15 = α × After reaching the largest value 80 × α for iterations [701, 800], the tabu tenure drops again to 10×α for the next 100 iterations and so on (see Section 2.2.3 of[START_REF] Wu | Memetic search for the max-bisection problem[END_REF] for an illustrative example). This dynamic tabu tenure technique has previously shown its usefulness for graph partitioning and max-bisection algorithms[START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF][START_REF] Wu | Memetic search for the max-bisection problem[END_REF]. Our experimental study also indicates that this technique is quite suitable for SaBTS as well and helps the algorithm to escape various local optima. Contrary to static tabu tenure techniques, varying the tabu tenure periodically and dynamically makes the algorithm quite robust across the tested instances and avoids the difficulties encountered with manually tuned static techniques.

	(10, 20, 10, 40, 10, 20, 10, 80, 10, 20, 10, 40, 10, 20, 10). The tabu tenure is thus
	equal to 10 × α for the first 100 iterations [1, 100]; then 20 × α for iterations
	from [101, 200]; followed by 10×α again for iterations [201, 300]; and 40×α for
	iterations [401, 500] etc.

Table 1

 1 Parameter setting.

). We

Table 2

 2

	,

Table 2 ,

 2 we observe that Greedy+SaBTS performs remarkably well on all five datasets compared to StS-AMA in terms of Φ best (Φ avg resp.) by reporting 87 (89) wins, 16[START_REF] Buluç | Recent Advances in Graph Partitioning[END_REF] ties and 7[START_REF] Caldwell | Design and implementation of move-based heuristics for VLSI hypergraph partitioning[END_REF] losses for the 110 graphs. First, Greedy+SaBTS performs marginally better on the Clustering and Social network datasets. For the 17 Clustering graphs, Greedy+SaBTS reports 5[START_REF] Benlic | Breakout local search for the vertex separator problem[END_REF] better, 9 (7) equal and 3 (3) worse results for Φ best (Φ avg resp.), while it wins 6 (6), ties 4 (3) and losses 2 (3) instances in terms of Φ best and Φ avg for the 12 Social graphs. Second, Greedy+SaBTS shows a clear dominance over StS-AMA for the Delaunay, Redistricting and Walshaw datasets. For the 9 Delaunay graphs, Greedy+SaBTS wins all 9 instances for both Φ best and Φ avg . Similarly, for the 42 Redistricting graphs, Greedy+SaBTS wins 41[START_REF] Wu | Memetic search for the max-bisection problem[END_REF], and looses 1 (3) instances for Φ best (Φ avg resp.). For the 30 Walshaw's graphs, Greedy+SaBTS reports 26 (28) better, 3 (0) equal and 1 (2) worse values for Φ best (Φ avg resp.).When we inspect the results of Greedy+SaBTS and Metis in Table2, we observe that Greedy+SaBTS performs significantly better for the Clustering dataset with 11 (11) wins, 3 (2) ties and 3 (4) losses, and the Social dataset with 10 (10) wins, 0 (0) ties and 2 (2) losses for Φ best (Φ avg resp.).

Greedy+SaBTS performs only marginally better than Metis for the Delaunay dataset (#Wins/#Ties/#Looses=5/0/4 for Φ best and Φ avg), and the Walshaw dataset (#Wins/#Ties/#Looses=15/1/14 for Φ best and 14/0/16 for Φ avg). On the other hand, Greedy+SaBTS performs much worse than Metis for the Redistricting graphs (#Wins/#Ties/#Looses=0/0/42 for Φ best and Φ avg).

Table 3

 3 Comparative results of how MQI[25], SaBTS, and a combination of MQI and SaBTS can improve the results of Metis[START_REF] Karypis | MeTiS 5.1.0: Unstructured graphs partitioning and sparse matrix ordering system[END_REF] (indicated by Metis+MQI, Metis+SaBTS and (Metis+MQI)+SaBTS respectively).

	Algorithm	Datasets (size)	Indicator #Wins #Ties #Losses	∆ 1 (%)
	Metis+MQI [25] vs.	Clustering (17)	Φ best	11	6	19.51%
	Metis [24]		Φavg	14	3	20.22%
		Delaunay (9)	Φ best	8	1	4.37%
			Φavg	9	0	5.19%
		Redistricting (42)	Φ best	42	0	22.06%
			Φavg	42	0	22.16%
		Walshaw (30)	Φ best	25	5	12.19%
			Φavg	29	1	12.21%
		Social (12)	Φ best	11	1	40.63%
			Φavg	12	0	39.20%
	Metis+SaBTS vs.	Clustering (17)	Φ best	14	3	8.58%
	Metis [24]		Φavg	15	2	12.20%
		Delaunay (9)	Φ best	9	0	2.81%
			Φavg	9	0	6.21%
		Redistricting (42)	Φ best	42	0	0.75%
			Φavg	42	0	0.98%
		Walshaw (30)	Φ best	28	2	6.49%
			Φavg	29	1	9.45%
		Social (12)	Φ best	12	0	23.26%
			Φavg	12	0	27.62%
	(Metis+MQI)+SaBTS vs.	Clustering (17)	Φ best	14	3	24.84%
	Metis [24]		Φavg	15	2	28.47%
		Delaunay (9)	Φ best	9	0	5.24%
			Φavg	9	0	9.11%
		Redistricting (42)	Φ best	42	0	22.09%
			Φavg	42	0	22.37%
		Walshaw (30)	Φ best	28	2	13.70%
			Φavg	29	1	15.36%
		Social (12)	Φ best	12	0	42.42%
			Φavg	12	0	45.44%

Table 4

 4 Comparative results of how SaBTS can further improve the results of Metis+MQI[25] (indicated by (Metis+MQI)+SaBTS).

	Algorithm	Datasets (size)	Indicator #Wins #Ties #Losses	∆ 2 (%)
	(Metis+MQI)+SaBTS vs.	Clustering (17)	Φ best	8	9	5.40%
	Metis+MQI [25]		Φavg	12	5	8.63%
		Delaunay (9)	Φ best	8	1	0.89%
			Φavg	9	0	4.06%
		Redistricting (42)	Φ best	16	26	0.03%
			Φavg	42	0	0.35%
		Walshaw (30)	Φ best	16	14	1.71%
			Φavg	28	2	4.54%
		Social (12)	Φ best	4	8	1.86%
			Φavg	8	4	10.06%

Table 5

 5 Comparison of SaBTS with a variant SaBTS no cons using the unconstrained neighborhood. Columns ∆Φ best and ∆Φ avg report the best and average result gap of SaBTS no cons compared to the results of SaBTS. A positive (negative) value indicates a worse (better) result. The last row gives the p-values from the Wilcoxon signed-rank test.

	Instance	SaBTSno cons ∆Φ best ∆Φavg
	PGPgiantcompo	+0.0093 +0.0113
	preferentialAttachment	+0.0006 +0.0018
	delaunay n16	+0.0008 +0.0001
	delaunay n17	+0.0392 +0.0337
	sd2010	+0.0039 +0.0052
	ms2010	+0.0070 +0.0139
	wing	+0.0065 +0.0088
	brack2	+0.0002 +0.0035
	gplus 2000	0	+0.0014
	pokec 20000	+0.0004 +0.0010
	p-value	2.00e-03 2.00e-03

Table 6

 6 Comparison of SaBTS with three variants SaBTS D3 , SaBTS D1+D2 and SaBTS D2+D3 applying different perturbation schemes. Columns ∆Φ best and ∆Φ avg report the best and average result gap of each variant with respect to the result of SaBTS. A positive (negative) value indicates a worse (better) result. The last row gives the p-values from the Wilcoxon signed-rank test.The p-values from the Wilcoxon signed-rank test are shown in the last row of the table. For example, for the instance PGPgiantcompo, SaBTS no cons has worse results in terms of Φ best and Φ avg with a best and average gap of 0.0093 and 0.0113 respectively compared to the best and average values of SaBTS. From the table, we observe that SaBTS dominates SaBTS no cons for each tested instance both in terms of best and average solutions. The p-values from the Wilcoxon signed-rank test also confirm the dominance of SaBTS over SaBTS no cons

	Instance	SaBTS D3 ∆Φ best ∆Φavg	SaBTS D1+D2 ∆Φ best ∆Φavg	SaBTS D2+D3 ∆Φ best ∆Φavg
	PGPgiantcompo	+0.0035 +0.0026 +0.0032 +0.0180	-0.0009	-0.0010
	preferentialAttachment +0.0095 +0.0117 +0.0143 +0.2373 +0.2882 +0.3152
	delaunay n16	+0.0083 +0.0077 +0.0012 +0.0035	-0.0003	0
	delaunay n17	+0.0011 +0.0088	-0.0062	+0.0037	-0.0070	+0.0089
	sd2010	+0.0064 +0.0130	-0.0002	+0.0058	-0.0005	+0.0041
	ms2010	+0.0150 +0.0176 +0.0009 +0.0097 +0.0006 +0.0202
	wing	+0.0070 +0.0061	-0.0009	+0.0082	-0.0018	+0.0060
	brack2	+0.0012 +0.0028 +0.0148 +0.0295 +0.0126 +0.0184
	gplus 2000	0	-0.0001	+0.0083 +0.0178	0	+0.0003
	pokec 20000	+0.0007 +0.0004 +0.0141 +0.0893 +0.0004 +0.0049
	p-value	2.00e-03 3.90e-03 6.45e-02 2.00e-03 1.00e-00 9.80e-03

Table 6

 6 shows the best and average result gap of each SaBTS variant with reference to the result of SaBTS. The p-values from the Wilcoxon signed-rank test are given in the last row. First, SaBTS significantly dominates SaBTS D3 by reaching the best and average results for 9 out of 10 instances (p = 0.002 for Φ best and p = 0.0039 for Φ avg). Second, compared to SaBTS D1+D2 , SaBTS performs marginally better in terms of Φ best (winning 7 instances with p = 0.0645) and significantly better than in terms of Φ avg (winning 10 instances with p = 0.002). Third, compared to SaBTS D2+D3 , even if SaBTS does not show any advantage in terms of Φ best , SaBTS has a clear dominance in terms of Φ avg (p = 0.0098). This experiment thus confirms the interest of the adopted perturbation strategy compared to alternative strategies.

	6 Conclusions and future work
	This paper introduced a stagnation-aware breakout tabu search algorithm
	(SaBTS) for solving the minimum conductance graph partitioning problem

(MC-GPP). As the first algorithm adapting the breakout local search framework to MC-GPP, SaBTS distinguishes itself from existing MC-GPP algorithms mainly by two noteworthy features: the constrained neighborhood tabu

 within the context of solving MC-GPP. Finally, the literature offers few exact approaches for MC-GPP. It is thus worth investigating general approaches such as integer linear programming and dedicated branch and bound algorithms. values of each compared algorithm (G best and G avg) on five datasets. The best 1 values of G best are highlighted in boldface while the best values of G avg are 2 indicated in italic. Table A.1 Detailed computational results of Metis, Metis+MQI, Metis+SaBTS and (Metis+MQI)+SaBTS on four datasets from the 10th DIMACS Challenge (including 17 Clustering, 9 Delaunay, 42 Redistricting, 30 Walshaw graphs) and 12 Social network graphs from the SNAP network dataset (a total of 110 graphs). As explained in Section 4.3, these results are based on 20 independent runs of each algorithm to solve each instance with a cutoff limit of 60 minutes per run and per instance. Φ best of an algorithm for an instance indicates the lowest conductance achieved for the instance among the conductance values of the 20 runs, while Φ avg is the average of the 20 Φ best values. The best of the Φ best values for each instance is highlighted in boldface, while the best of the Φ avg values for each instance is indicated in italic. t(s) is the average CPU time in seconds of 20 runs to attain the 20 best results, and a time less than one second is indicated as 0. Table A.2 The statistical results (p-values) from the Wilcoxon signed-rank test with a confidence level of 99% of different pairwise comparisons for the five datasets. Table A.3 The geometric mean of the best and average conductance values (G best and G avg) of Metis, Metis+MQI, Metis+SaBTS and (Metis+MQI)+SaBTS on five datasets. A small value indicates a better performance. The best of the G best values for each dataset is highlighted in boldface, while the best of the G avg values for each dataset is indicated in italic.

	Instance		Metis [24]		Metis+MQI [25]			Metis+SaBTS			(Metis+MQI)+SaBTS
	Graph	|V |	Φ best	Φavg	t(s)	Φ best	Φavg	t(s)	Φ best	Φavg	t(s)	Φ best	Φavg	t(s)
	karate	34	.12820512 .12820512 0	.12820512 .12820512 0		.12820512 .12820512	0		.12820512 .12820512
	chesapeake dolphins Algorithm pair 39 62	.33823529 .33823529 0 .11428571 .11428571 0 Clustering Delaunay Redistricting Walshaw .31666666 .31666666 0 .27810650 .27810650 .11428571 .11428571 0 .06382978 .06382978 Indicator p-value p-value p-value p-value	0 0		.27810650 .27810650 Social .06382978 .06382978 p-value
	lesmis no	77	.13829787 .13829787 0	.13043478 .13043478 0		.12252964 .12252964	0		.12252964 .12252964
	polbooks adjnoun football Greedy+SaBTS vs. 105 112 115 Dataset StS-AMA [12] G best .04347826 .04347826 0 .29047619 .36504418 0 .10116086 .10607000 0 Φ best 4.61e-01 .04347826 .04347826 0 .29047619 .36371867 0 .10116086 .10568471 0 3.90e-03 Metis [24] Metis+MQI [25] Φavg 4.32e-01 3.90e-03 Gavg G best Gavg	.04347826 .04347826 .27830188 .27830188 .10116086 .10116086 2.73e-08 1.10e-05 Metis+SaBTS 4.07e-06 2.88e-06 G best Gavg	0 2 0	.04347826 .04347826 .27830188 .27830188 .10116086 .10116086 2.50e-01 (Metis+MQI)+SaBTS 7.34e-01 G best Gavg
	jazz celegansneural no celegans metabolic Greedy+SaBTS vs. 198 297 453 Clustering .06627171 .07595360 .04158546 .04814845 .05982594 .06583945 .03902536 .20062942 .23112145 0 .12292358 .15637114 0 .12292358 .13773036 1180 .12292358 .13180765 464 .18136272 .18720455 0 .18136272 .18640142 0 .17575757 .17575757 0 .17575757 .17575757 .18118811 .20923099 0 .09375000 .09437500 0 .18083003 .18083003 3 .09375000 .09437500 Φ best 6.71e-03 8.20e-01 1.65e-08 1.98e-01 1.22e-02 . 04359008 Metis [24] Φavg 1.03e-02 4.96e-01 1.65e-08 4.95e-02 1.22e-02 Delaunay .00497424 .00529025 .00475492 .00501473 .00483327 .00495440 .00471231 .00480691
	email Metis+SaBTS vs. 1133 Redistricting .00062224 .00069732 .00046329 .00053508 .00061756 .00069047 .13599380 .14892463 0 .13511507 .14779292 0 .12697247 .12697247 18 Φ best 2.44e-04 3.91e-03 1.65e-08 3.79e-06 .00046315 .12697247 .12697247 16 4.88e-04 .00053315
	power Metis [24] Walshaw	4941 .00605934 .00650062 .00509474 .00559503 .00550456 .00569929 .00499503 .00172603 .00220262 0 .00165617 .00179099 0 .00172170 .00219958 0 .00165617 .00178847 Φavg 6.10e-05 3.91e-03 1.65e-08 1.73e-06 4.88e-04 .00528675
	Metis+SaBTS vs. Social .05979176 .06549718 .03028849 .03461953 .04316621 .04374305 .02968546 Φ best 4.14e-01 4.26e-01 1.65e-08 3.61e-01 2.50e-01	.03067951
	Metis+MQI [25]		Φavg	1.88e-01	3.01e-01		1.65e-08	5.72e-01		5.19e-01
	(Metis+MQI)+SaBTS	Φ best	1.22e-04	3.91e-03		1.65e-08	3.79e-06		4.88e-04
	vs. Metis [24]		Φavg	6.10e-05	3.91e-03		1.65e-08	1.73e-06		4.88e-04
	(Metis+MQI)+SaBTS	Φ best	7.81e-03	7.81e-03		3.61e-04	2.93e-04		1.25e-01
	vs. Metis+MQI [25]		Φavg	4.88e-04	3.91e-03		1.64e-08	2.56e-06		7.81e-03
	(Metis+MQI)+SaBTS	Φ best	1.09e-01	9.38e-02		1.65e-08	5.62e-03		3.13e-02
	vs. Metis+SaBTS		Φavg	7.81e-02	9.38e-02		1.65e-08	1.38e-03		2.34e-02

3

https://www.cc.gatech.edu/dimacs10/downloads.shtml

http://davidchalupa.github.io/research/data/social.html

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

https://github.com/kfoynt/LocalGraphClustering

Acknowledgment

We are grateful to the reviewers for their useful comments and suggestions which helped us to significantly improve the paper. Support from the China Scholarship Council (CSC) for the first author is also acknowledged.

A Appendix

This appendix presents detailed results of Metis, Metis+MQI, Metis+SaBTS and (Metis+MQI)+SaBTS for the five datasets including 110 graphs (Table A To complete the computational comparison presented in Section 4.3, we show in Table A.3 an additional comparison of the studied algorithms using the geometric mean metric [START_REF] Fleming | How not to lie with statistics: the correct way to summarize benchmark results[END_REF][START_REF] Hauck | An evaluation of bipartitioning techniques[END_REF] calculated with the best and average conductance