Xiangjing Lai
email: laixiangjing@gmail.com

Jin-Kao Hao
email: jin-kao.hao@univ-angers.fr

Fred Glover
email: glover@opttek.com

A study of two evolutionary/tabu search approaches for the generalized max-mean dispersion problem

Keywords: Combinatorial optimization, Dispersion problems, Tabu search, Evolutionary search, Heuristics

Evolutionary computing is a general and powerful framework for solving difficult optimization problems, including those arising in expert and intelligent systems. In this work, we investigate for the first time two hybrid evolutionary algorithms incorporating tabu search for solving the generalized max-mean dispersion problem (GMaxMeanDP) which has a variety of practical applications such as web page ranking, community mining, and trust networks. The proposed algorithms integrate innovative search strategies that help the search to explore the search space effectively. We report extensive computational results of the proposed algorithms on six types of 160 benchmark instances, demonstrating their effectiveness and usefulness. In addition to the GMaxMeanDP, the proposed algorithms can help to better solve other problems that can be formulated as the GMaxMeanDP.

Introduction 1

Many decision-making problems including those arising in expert and in-2 telligent systems require finding a best subset of elements in a way that the 3 selected objects optimize a dispersion or diversity criterion. Formally, given a 4 set V = {1, 2, . . . , n} of n elements and the distances d ij (i < j) between el-5 ements, a dispersion or diversity problem involves selecting a subset M of V 6 such that an objective function defined over the distances between the elements 7 in M is optimized. According to whether a cardinality constraint is imposed 8 on the subset M , the dispersion problems can be divided into two categories.

The first category where the cardinality of M is fixed to a given positive number m includes the maximum diversity problem [START_REF] Aringhieri | Comparing local search metaheuristics for the maximum diversity problem[END_REF][START_REF] Glover | Heuristic algorithms for the maximum diversity problem[END_REF][START_REF] Palubeckis | Iterated tabu search for the maximum diversity problem[END_REF][START_REF] Saboonchi | MaxMinMin p-dispersion problem: A variable neighborhood search approach[END_REF][START_REF] Wu | A hybrid metaheuristic method for the maximum diversity problem[END_REF], the max-min diversity problem [START_REF] Della Croce | A heuristic approach for the max-min diversity problem based on max-clique[END_REF][START_REF] Porumbel | A simple and effective algorithm for the MaxMin diversity problem[END_REF][START_REF] Resende | GRASP and path relinking for the max-min diversity problem[END_REF], the minimum differential dispersion problem [START_REF] Lai | Intensification-driven tabu search for the minimum differential dispersion problem[END_REF][START_REF] Mladenović | Less is more: Basic variable neighborhood search for minimum differential dispersion problem[END_REF][START_REF] Wang | Effective metaheuristic algorithms for the minimum differential dispersion problem[END_REF][START_REF] Zhou | An iterated local search algorithm for the minimum differential dispersion problem[END_REF], and the maximum min-sum dispersion problem [START_REF] Amirgaliyeva | Solving the maximum min-sum dispersion by alternating formulations of two different problems[END_REF][START_REF] Aringhieri | Construction and improvement algorithms for dispersion problems[END_REF][START_REF] Lai | Solution-based tabu search for the maximum min-sum dispersion problem[END_REF][START_REF] Prokopyev | The equitable dispersion problem[END_REF]. The second category where the cardinality of M is not fixed includes the Max-Mean dispersion problem (MaxMeanDP) [START_REF] Brimberg | Less is more: Solving the max-mean diversity problem with variable neighborhood search[END_REF][START_REF] Della Croce | A hybrid three-phase approach for the max-mean dispersion problem[END_REF][START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF][START_REF] Martí | GRASP and path relinking for the equitable dispersion problem[END_REF] and the generalized Max-Mean dispersion problem (GMaxMeanDP) [START_REF] Prokopyev | The equitable dispersion problem[END_REF]. This work addresses the GMaxMeanDP that is one of four dispersion problems introduced in [START_REF] Prokopyev | The equitable dispersion problem[END_REF] and can be described by means of a weighted graph. Given a weighted complete graph G = (V, E, D, W), where V is the set of n vertices, E is the set of n×(n-1) 2 edges, D represents the set of positive, negative or zero edge weights d ij (i = j), and W represents the set of positive vertex weights w i (i = 1, 2, . . . , n), the GMaxMeanDP is to select a subset M from V such that the weighted mean dispersion of the (complete) subgraph induced by M is maximized. In related literature, the vertices are also called the elements and the edge weights between vertices are called the distances between the elements.

Formally, the GMaxMeanDP can be formulated as an unconstrained fractional 0-1 combinatorial optimization problem with binary variables x i that equal 1 if the element i is selected, and 0 otherwise [START_REF] Prokopyev | The equitable dispersion problem[END_REF].

Maximize f (s) = n-1 i=1 n j=i+1 d ij x i x j n i=1 w i x i (1) Subject to n i=1 x i ≥ 2
(2)

x i ∈ {0, 1}, i = 1, 2, . . . , n (3)
The Max-Mean dispersion problem that has recently received substantial attention in the literature [START_REF] Brimberg | Less is more: Solving the max-mean diversity problem with variable neighborhood search[END_REF][START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF][START_REF] Della Croce | A hybrid three-phase approach for the max-mean dispersion problem[END_REF][START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF][START_REF] Martí | GRASP and path relinking for the equitable dispersion problem[END_REF]) is a special case of the GMaxMeanDP with w i = 1 for ∀i ∈ {1, 2, . . . , n}. As a result, any algorithm for the GMaxMeanDP can be directly applied to the Max-Mean dispersion problem, while the reverse is not true.

In addition to its theoretical significance as an NP-hard problem [START_REF] Prokopyev | The equitable dispersion problem[END_REF], the GMaxMeanDP has a variety of potential potential applications, such as web page ranking [START_REF] Kerchove | The page trust algorithm: how to rank web pages when negative links are allowed[END_REF], community mining in a signed social network [START_REF] Yang | Community mining from signed social networks[END_REF], and trust networks [START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF], among others. For example, the community mining problem in a signed and weighted social network can be addressed by solving a series of GMaxMeanDP problems with smaller and smaller sizes [START_REF] Yang | Community mining from signed social networks[END_REF].

Given a signed social network G = (V, E, D, W), where D represents the set of positive or negative edge weights d ij (i = j), and a positive (or negative)

d ij means that there exists an attractive (or repulsive) relationship between the vertices i and j, and W represents the set of vertex weights w i (1

≤ i ≤ n),
then a community corresponds to a high-quality solution of the corresponding GMaxMeanDP (i.e., a subset of V) in G.

In spite of its importance and close relationship to other dispersion problems, the GMaxMeanDP has surprisingly received little attention in the literature.

To the best of our knowledge, no heuristic or exact algorithm has ever been proposed for solving the GMaxMeanDP, even though existing heuristic or exact algorithms for the MaxMeanDP like those in [START_REF] Brimberg | Less is more: Solving the max-mean diversity problem with variable neighborhood search[END_REF][START_REF] Della Croce | A hybrid three-phase approach for the max-mean dispersion problem[END_REF][START_REF] Garraffa | An exact semidefinite programming approach for the max-mean dispersion problem[END_REF] could be adapted to the GMaxMeanDP. On the other hand, previous studies [START_REF] Benlic | Memetic search for the quadratic assignment problem[END_REF][START_REF] Ghosh | Recursive Memetic Algorithm for gene selection in microarray data[END_REF][START_REF] Morra | Optimization of computer aided detection systems: An evolutionary approach[END_REF][START_REF] Ismkhan | Effective three-phase evolutionary algorithm to handle the large-scale colorful traveling salesman problem[END_REF][START_REF] Silva | An evolutionary algorithm for clustering data streams with a variable number of clusters[END_REF][START_REF] Zhao | The Memetic algorithm for the optimization of urban transit network[END_REF] showed that evolutionary computing is a particularly relevant approach for solving a number of difficult combinatorial optimization problems. Given the NP-hard nature of the GMaxMeanDP, evolutionary computing can be considered as a natural approach to be investigated for solving the GMaxMeanDP. We enhance this approach by forming two hybrid algorithms with tabu search, drawing on the adaptive memory features of the latter to uncover superior solutions. Our work is thus motivated by these observations with the purpose of proposing effective solution methods for the considered problem. We summarize the contributions of this work as follows.

• First, in terms of solution methods, we investigate the first perturbationbased evolutionary algorithm dedicated to the GMaxMeanDP, which integrates a multi-neighborhood tabu search procedure and a perturbation operator into the population-based framework. Additionally, we adapt the state-of-the-art MaxMeanDP algorithm introduced in [START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF] to the GMaxMeanDP, where a crossover operator is used to generate offspring solutions and a tabu search procedure is employed for local optimization. Given that solution method for solving the GMaxMeanDP does not currently exist, this work fills an important gap in the literature.

• Second, we assess the computational performance of the proposed algorithms on a set of 80 MaxMeanDP benchmark instances as well as on a set of additional 80 GMaxMeanDP instances that we introduce in this work and make publicly available. Our results provide a reference for performance assessment of other solution methods for the GMaxMeanDP in the future.

• Third, we analyze the effectiveness and time complexity of several key components such as the neighborhood structures used by the tabu search procedure and provide insights concerning their the impact on the behavior of the algorithm.

• Fourth, given that the GMaxMeanDP is a general model able to formulate a variety of real-world applications, the proposed algorithms can be advantageously applied to solve such practical problems.

The remainder of the paper is organized as follows. In the next section, we describe the proposed algorithms. In Section 3, we assess and compare the performance of the proposed algorithms based on the 160 benchmark instances.

We analyse in Section 4 the influence of a key parameter on the performance of the perturbation-based evolutionary algorithm, and discuss the influence of the neighborhood size on the performance of the tabu search methods. Finally, Section 5 gives conclusions and provides some perspectives.

Two Hybrid Evolutionary Approaches for the GMaxMeanDP

In this section, we describe two hybrid evolutionary algorithms for solving the GMaxMeanDP. We first introduce the perturbation-based evolutionary algorithm (PBEA) that employs a perturbation operator to generate new solutions, and then describe briefly the memetic algorithm (denoted by MAMMDP *)

which is adapted from one of the state-of-the-art MaxMeanDP algorithms (called the MAMMDP algorithm [START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF]).

Perturbation Based Evolutionary Algorithm for the GMaxMeanDP

To reach a suitable tradeoff between the intensification and diversification of the search process, the perturbation-based evolutionary algorithm (PBEA) uses an effective tabu search procedure to intensify the search, a random perturbation operator to diversify the search, and a population updating strategy to manage the pool of elite solutions.

General Procedure

As indicated in Algorithm 1, the proposed PBEA algorithm starts with an initial population of p individuals (solutions) that are generated according to the procedure described in Section 2.1.3 (line 3), and then performs a number of iterations (lines 5-16) to improve the initial population. At each iteration, the algorithm first selects randomly a solution s from the population, then slightly changes the solution with the perturbation operator (Section 2.1.4), and finally improves the perturbed solution by the tabu search procedure (Section 2.1.5).

After that, the improved solution s o is used to update the population by using a simple updating rule -the worst individual s w in the population is replaced by s o if s o is distinct from any solution of the population and is better than s w ; otherwise s o is discarded. The algorithm stops and the solution s * is returned when the timeout limit (t max) is reached.

Algorithm 1 Perturbation based evolutionary algorithm (PBEA) for the GMaxMeanDP 1: Input: The set V = {v1, v2, . . . , vn} of n elements, the associated distance matrix D = [dij]n×n, the set W = {w1, w2, . . . , wn} of vertex weights, the population size p, the timeout limit tmax. end if 16: end while

Search Space and Evaluation Function

Since the GMaxMeanDP is an unconstrained binary optimization problem, any n-dimensional binary vector is a feasible solution. Thus, the search space to be explored by the proposed algorithm is given by

Ω = {(x 1 , x 2 , . . . , x n) : x i ∈ {0, 1}, 1 ≤ i ≤ n} (4)
Thus, the size of search space is equal to 2 n , where n is the number of elements in the problem. Additionally, the quality of a candidate solution s = (x 1 , x 2 , ..., x n) ∈ Ω is given by its objective value f (s) in Eq. (1).

Population Initialization

Algorithm 2 Initial solution procedure

1: Input: An input instance G 2: Output: A random initial solution s = (x1, x2, . . . , xn) 3: for i ← 1 to n do 4: s.xi ← Rand() mod 2 /* Assign to xi of s a random value in {0, 1} */ 5: end for 6: s ← T abuSearch(s)
/ * Section 2.1.5 * / 7: return s An initial solution s is generated by randomly assigning each of its components the value 0 or 1. Then, this random solution is improved by the tabu search procedure (Section 2.1.5). We repeat this generation procedure p times to obtain the initial population. The pseudo-code of this initialization procedure is given in Algorithm 2.

Perturbation Operator

Algorithm 3 Perturbation operator In order to diversify the search, the proposed algorithm uses a perturbation operator to modify a parent solution that is randomly selected from the population. Specifically, we perform η × n random changes to the parent solution and then return the resulting solution as the perturbed solution, where η is a parameter and η × n is called the perturbation strength. Each random change involves first selecting a variable x i randomly and then assigning a random value 0 or 1 to the variable. As such, a large (small) value of η leads to more (fewer) changes in the parent solution, thus inducing a strong (weak) diversification effect. In practice, our experiments show that η = 0.4 is a suitable perturbation strength for solving the instances studied in this work (see Section 4.1 for the details). Equivalently, this perturbation operator changes the values of about 0.2 × n randomly selected variables.

Tabu Search

Algorithm 4 T abuSearch(s 0 , N (s), f, Iter max) The tabu search (TS) method is a popular metaheuristic for combinatorial optimization [START_REF] Glover | Tabu search[END_REF]. Given a neighborhood structure (N) (see Section 2.1.6) and the evaluation function f , our tabu search procedure performs a number of iterations to improve the current solution. At each iteration, the algorithm replaces the current solution s by a best eligible neighbor solution (s ∈ N (s)), and meanwhile records the underlying move (see Section 2.1.6) in the tabu list to prevent the reverse move from being performed for the next tt iterations, where tt is called the tabu tenure and is adjusted according to the tabu list management strategy described in Section 2.1.8. In our TS method, a neighbor solution is eligible if it is not forbidden by the tabu list or if it is better than the best solution (s b) found so far in the current TS run. Finally, the tabu search method stops when a maximum number (Iter max) of iterations is reached. The general template of the TS method is provided in Algorithm 4, and its components are explained in the next sections.

Neighborhood Structures

In this work, we investigate the following four neighborhood structures.

1) 1-flip neighborhood. With this basic 1-flip neighborhood (denoted by N 1), a neighbor solution can be obtained by changing the value of a single variable x i to its complementary value 1 -x i . Clearly, this neighborhood N 1 has a size of n, where n is the number of variables.

2) 2-flip neighborhood. The 2-flip neighborhood (denoted by N 2) simultaneously changes the values of two variables x i and x j to their complementary values to generate a neighbor solution. The neighborhood size of N 2 is thus equal to n(n -1)/2.

3) Union neighborhood. The third neighborhood N 3 is a combined neighborhood that is the union of neighborhoods N 1 and N 2 , i.e., N 3 = N 1 ∪ N 2 .

Thus, the size of N 3 is equal to n + n(n -1)/2. 4) Reduced union neighborhood. The fourth neighborhood (denoted by N 4) is the union of the neighborhood N 1 and a high-quality subset N * 2 of N 2 , i.e., N 4 = N 1 ∪ N * 2 . Specifically, given a solution s, the neighborhood N * 2 (s) is defined by:

N * 2 (s) = {s ⊕ F lip < i, j > : i = j, {∆ i , ∆ j } > ∆ max -0.05(∆ max -∆ min)}
where ∆ max = max l≤n ∆ l , ∆ min = min l≤n ∆ l , ∆ l represents the move value (i.e., the change of the objective value) of flipping a single variable x l to its complementary value, and F lip < i, j > represents a 2-flip move that simultaneously changes the values of variables x i and x j to their complementary values.

Clearly, a neighbor solution s ∈ N * 2 can be obtained by consecutively performing two high-quality 1-flip moves from s . As a result, the size of N 4 is given by n + |N * 2 | and varies dynamically during the search process.

In the proposed PBEA algorithm, we select N 4 as the neighborhood structure of the tabu search procedure, since N 4 is able to reach a desirable tradeoff between computing efficiency and solution quality according to our computational experiments (see Section 4.2 for the details).

Fast Neighborhood Evaluation Method

To rapidly examine the neighborhood, we employ a fast incremental evaluation method that ensures a high computational efficiency of the tabu search procedure.

Following [START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF], our neighborhood evaluation method maintains an n-dimensional vector P = (p 1 , p 2 , . . . , p n) to rapidly calculate the move value of the possible moves applicable to the solution s by means of 1-flip or 2-flip operators, where the entry p i is defined as the sum of distances between the element i and the selected elements in the current solution, i.e.,

p i = j∈M ;j =i d ij ,
where M is the set of selected elements.

If a 1-flip move is performed, then the corresponding move value ∆ i can be easily calculated as follows:

∆ i =        -f (s)w i SM + w i + p i SM + w i , for x i = 0; (5) f (s)w i SM -w i - p i SM -w i , for x i = 1; (6)
where f (s) is the objective value of the solution s and SM is the sum of vertex weights of selected elements in s, i.e., SM = i∈M w i . Subsequently, the vector P can be updated as follows:

p j =      p j + d ij , for x i = 0, j = i; (7) p j -d ij , for x i = 1, j = i; (8) p j , for j = i; (9)
If a 2-flip move is performed by simultaneously flipping variables x i and x j , then the corresponding move value ∆ ij can be conveniently obtained by:

∆ ij =                            -f (s)(w i + w j) + p i + p j + d ij SM + w i + w j , for x i = 0, x j = 0; (10) f (s)(w i + w j) -p i -p j + d ij SM -w i -w j , for x i = 1, x j = 1; (11) f (s)(w i -w j) + p j -p i + 2d ij SM -w i + w j , for x i = 1, x j = 0; (12) f (s)(w j -w i) + p i -p j + 2d ij SM -w j + w i , for x i = 0, x j = 1; (13)
where f (s) is the objective value of the solution s, SM = i∈M w i , and d ij is the distance between elements i and j. Subsequently, the vector P is consecutively updated two times by formula (6-8), since one 2-flip move is composed of two consecutively performed 1-flip moves.

As in [START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF], the vector P can be initialized in O(n 2) time at the beginning of the tabu search procedure, and updated in O(n) time after each neighborhood transition.

Tabu List Management Strategy

The tabu list management strategy plays a key role in the performance of a tabu search algorithm. In our case, we adopt a popular strategy in the literature to periodically tune the tabu tenure tt.

In this strategy, the tabu tenure is given by a periodic step function defined on the number of iterations. We denote the current iteration by iter, and denote the tabu tenure of the current move by tt(iter). For each period, the tabu tenure function is defined by a sequence of values (a 1 , a 2 , • • • , a q) and a sequence of

interval margins (b 1 , b 2 , • • • , b q+1), such that for any iter in [b i , b i+1 -1] we define tt(iter) = a i + rand(C)
, where rand(C) denotes a random integer between 0 to C -1, and C is a constant that is set to 3 in this work. The value of q is set to 15, and (a

) i=1,••• ,15 = Tmax 8 × (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1)
, where T max is a parameter that is used to control the maximum tabu tenure. The interval margins are then defined by b

1 = 1, b i+1 = b i + 5a i (i ≤ 15).
For the 1-flip operator and the current number iter of iterations, if a variable

x i is flipped by setting x i ← (1 -x i), then the variable x i is forbidden to change in the following tt(iter) iterations. For a 2-flip move, if two variables x i and

x j are simultaneously flipped to their complementary values 1 -x i and 1 -x j , then both of these variables are forbidden to change in the following tt(iter)

iterations. On the other hand, a 2-flip move F lip < i, j > is considered to be forbidden if and only if at least one variable is forbidden among the variables

x i and x j .
This tabu list management strategy is adapted from a method proposed in [START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF], whose effectiveness has been demonstrated for several hard optimization problems, such as the graph partitioning problem [START_REF] Galinier | An efficient memetic algorithm for the graph partitioning problem[END_REF], the maximum diversity problem [START_REF] Wu | A hybrid metaheuristic method for the maximum diversity problem[END_REF], and the Max-Mean dispersion problem [START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF]. In principle, a small tabu tenure leads usually to a strong search intensification while a large tabu tenure favors search diversification. As such, the periodical change of the tabu tenure among several small and large values provides a strategy to reach a desirable balance between the intensification and diversification of the search.

Memetic Approach for the GMaxMeanDP

The memetic algorithm MAMMDP presented in [START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF]) is a state-of-the-art algorithm for solving the MaxMeanDP, which is a special case of the GMaxMeanDP studied in this work. In order to verify the potential merit of the MAMMDP approach for the GMaxMeanDP, we adapt MAMMDP to the GMaxMeanDP by basically replacing its local search component with the tabu search method in Section 2.1.5 in which the fast neighborhood N 1 is adopted while keeping its other ingredients (e.g., crossover and pool updating) unchanged. We use MAMMDP * to denote this adapted algorithm for the GMaxMeanDP. Thus, the main difference between the MAMMDP * and MAM-MDP algorithms lies at their local search methods. In the local search method of MAMMDP * , in order to consider the weights of vertices, we employ an extended incremental neighborhood evaluation technique that uses Eqs.(5) and (6) to calculate quickly the move values of neighborhood moves.

Algorithm 5 Memetic Algorithm for the GMaxMeanDP (MAMMDP *)

1: Input: The set V = {v1, v2, . . . , vn} of n elements and the associated distance matrix D = [dij]n×n, the set W = {w1, w2, . . . , wn} of vertex weights, the population size p, the timeout limit tmax. 2: Output: the best solution s * found 3: repeat 4:

P OP = {s 1 , . . . , s p } ← PopInitialization(V ,p) / * Section 2.1.3 * / 5:
if the repeat loop is not performing its first execution then 6:

s w ← arg min{f (s i) : i = 1, . . . , p} 7: P OP ← P OP ∪ {s * } \ {s w } 8: end if 9: s * ← arg max{f (s i) : i = 1, . . . ,
P airSet ← {(s i , s j) : 1 ≤ i < j ≤ p} 11:
while P airSet = ∅ and time() < tmax do 12:

Randomly pick a solution pair (s i , s j) ∈ P airSet 13:

s o ← CrossoverOperator(s i , s j) / * uniformly random crossover operator * / 14:

s o ← T abuSearch(s o) / * Section 2.1.5 * / 15: if f (s o) > f (s *) then 16: s * ← s o 17:
end if 18:

P airSet ← P airSet \ {(s i , s j)}

19:

s w ← arg min{f (s i) : i = 1, . . . ,
P airSet ← P airSet ∪ {(s o , s k) : s k ∈ P OP } 24:
end if

25:

end while 26: until time() ≥ tmax MAMMDP * is composed of four components: a population initialization procedure, a tabu search based optimization procedure, a crossover operator, and a population updating rule. For the sake of completeness, the pseudo-code of the MAMMDP * algorithm, which closely follows the MAMMDP algorithm in [START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF], is shown in Algorithm 5, where P OP = {s1 , . . . , s p } denotes the current population, s o denotes the new solution generated by the crossover operator or by the tabu search procedure, s * and s w denote respectively the best solution found so far and the worst solution in P OP , and P airSet represents the set of solution pairs that have not been used by the crossover operator in P OP .

MAMMDP * starts with the initial population generated by the initialization procedure in Section 2.1.3 and then performs a number of generations until the timeout limit t max is reached, i.e., time() ≥ t max . At each generation, a solution pair (s i , s j) is randomly chosen from P airSet (line 12), and then used to generate a new solution s o by the standard uniform crossover operator [START_REF] Syswerda | Uniform crossover in genetic algorithms[END_REF] (line 13). The quality of s o is improved by the tabu search procedure (line 14). Subsequently, s * , P OP and P airSet are accordingly updated (lines 15-24). Finally, to diversify the search, the population P OP and the associated P airSet are re-initialized each time P airSet becomes empty, while keeping s * in the new population (lines 4-10).

Computational Experiments

We perform computational experiments on six types of 160 benchmark instances to assess the proposed algorithms. The benchmark instances, the experimental protocol, and the computational results are presented in the following subsections.

Benchmark Instances

For the GMaxMeanDP, no vertex-weighted benchmark instance is available in the literature. To evaluate the performance of our algorithms, we generated four types of instances, each containing 20 vertex-weighted instances 1 . For each type, we generated 10 instances with n = 3000 and 10 instances with n = 5000, where the distances between elements and the vertex weights were randomly selected from a given set with the uniform probability distribution. Given that any MaxMeanDP instance can be viewed as a special GMaxMeanDP instance in which all vertex weights take the value of 1, we additionally used two types of 80 MaxMeanDP instances2 , which were used in [START_REF] Brimberg | Less is more: Solving the max-mean diversity problem with variable neighborhood search[END_REF] or [START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF] to assess the MaxMeanDP algorithms. The characteristics of these 160 instances are as follows:

• Type I (20 instances): The distances d ij between elements were randomly generated in the interval [-10, 10], and the vertex weights w i (i = 1, 2, . . . , n) were randomly generated in the interval [1,5].

• Type II (20 instances): The distances d ij between elements were randomly taken in the interval [-10, -5] ∪ [5, 10], and the vertex weights w i (i = 1, 2, . . . , n) were randomly generated in the interval [1,6].

• Type III (20 instances): The distances d ij between elements were randomly selected from the set {-1, 0, 1}, and the vertex weights w i (i = 1, 2, . . . , n) were randomly generated in the interval [0.9, 1.1].

• Type IV (20 instances): The distances d ij between elements were randomly taken from the set {-10, 0, 10}, and the vertex weights w i (i = 1, 2, . . . , n) were uniformly set to 1.

• Type MDPI (40 instances): This set of MaxMeanDP instances includes 10 instances for each n ∈ {1500, 2000, 3000, 5000}. The distances between elements were uniformly randomly generated in the interval [-10, 10], and the vertex weights w i (i = 1, 2, . . . , n) were uniformly set to 1.

• Type MDPII (40 instances): This set of MaxMeanDP instances includes 10 instances for each n ∈ {1500, 2000, 3000, 5000}. The distances between elements were randomly generated in the interval [-10, -5] ∪ [5, 10], and the vertex weights w i (i = 1, 2, . . . , n) were uniformly set to 1. The PBEA algorithm adopts four parameters, including the population size p, the maximum number Iter max of iterations and the maximum tabu tenure T max for the tabu search procedure, and the coefficient η used to control the perturbation strength, whose values are empirically set as in Table 1. The MAMMDP * algorithm has three parameters: the population size p which was set to 10 following the setting of original MAMMDP algorithm in [START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF], Iter max and T max whose values were set as in Table 1. In addition, both MAMMDP * and PBEA were implemented in C and compiled by the g++ compiler with the -O3 option, and the corresponding experiments were carried out on a computing platform with an Intel E5-2670 processor (2.5 GHz and 2G RAM), running the Linux operating system. The source codes of the proposed MAMMDP * and PBEA algorithms will be available at http://www.info.univ-angers.fr/pub/hao/gmaxmeandp.html.

Experimental Protocol

In addition, due to the stochastic feature of both algorithms, PBEA and MAMMDP * were independently run 20 times to solve each instance based on the same time limit t max for each run, where t max was set to 100, 500 and 1000 seconds for the instances with n ≤ 2000, n = 3000 and n = 5000, respectively. Finally, we employed a commercial software called LocalSolver (https://www.localsolver.com/) as our reference algorithm, since no direct reference algorithm is available in the literature for the GMaxMeanDP. In our experiment, we ran LocalSolver once for each instance with the same time limit t max as our proposed algorithms on a computer with a Intel i7-6700 processor (3.4 GHz CPU and 4G RAM), running Windows 10 operating system, since we only obtained an academic license of LocalSolver on this computer. The first experiment aims to assess and compare the proposed PBEA algorithm and the adapted MAMMDP * algorithm on the MaxMeanDP instances (i.e., the unweighted GMaxMeanDP instances), since the MaxMeanDP is a special case of the GMaxMeanDP in which all vertex weights take the value of 1 2 and3respectively.

Computational Results and Comparisons on the MaxMeanDP Instances

For this experiment, in addition to LocalSolver, we also adopted as another reference method the VNS algorithm designed, which is one of the state of the art MaxMeanDP algorithms [START_REF] Brimberg | Less is more: Solving the max-mean diversity problem with variable neighborhood search[END_REF]. Please note that when it is applied to the MaxMeanDP, the MAMMDP * algorithm becomes MAMMDP presented in [START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF].

In shows the average result for each associated column. The row #Best shows the number of instances for which an algorithm finds the best results in terms of f best among the compared algorithms. Finally, to verify the statistical difference between the dedicated PBEA algorithm and other algorithms in terms of f best and f avg , the p-values from the Wilcoxon signed-rank tests are given in the last row of the tables, where a p-value less than 0.05 means that there exists a significant difference between the compared results. Moreover, the results of LocalSolver are compared with the average results of PBEA algorithm, since

LocalSolver was run once for each instance.

Table 3 reports the results on the 40 large instances with n = 3000 and 5000 in the same way as in Table 2, where 'NA' indicates that LocalSolver failed to provide a result due to the memory limitation of the computer used. We ignore the VNS algorithm in Table 3 since the results on these large instances are not reported in [START_REF] Brimberg | Less is more: Solving the max-mean diversity problem with variable neighborhood search[END_REF] for this method.

From Table 2, we observe that both the proposed PBEA algorithm and the It is worth noting that for these instances the results of VNS algorithms were obtained in [START_REF] Brimberg | Less is more: Solving the max-mean diversity problem with variable neighborhood search[END_REF]) by using a time limit of t max = n that is much longer than the time used in this work (t max = 100). Compared with LocalSolver, the dominance of MAMMDP * and PBEA is even more evident for all tested instances. The small p-value confirms that there is a significant difference between the proposed PBEA algorithm and these two reference algorithms in terms of f best . On the other hand, MAMMDP * and PBEA perform similarly on these instances. First, both algorithms obtain the same f best values for all 40 instances. Second, both algorithms have a high success rate (SR = 100%) for most instances, while the computation time to obtain their final results is less than 1.0 minute for any instance. Moreover, the large p-values indicate that there does not exist a significant difference between the results of MAMMDP * and PBEA in terms of f best and f avg . These outcomes imply that MAMMDP * and PBEA are both highly efficient for solving the medium-sized MaxMeanDP instances, and the crossover operator of the MAMMDP * algorithm and the perturbation operator of the PBEA algorithm have a similar diversification ability. In summary, this experiment indicates that when they are applied to the MaxMeanDP which is a special case of GMaxMeanDP, both the PBEA algorithm and the adapted MAMMDP * algorithm perform very competitively compared to the general-purpose software LocalSolver and the dedicated VNS algorithm. In the next section, we assess the MAMMDP * and PBEA algorithm for solving the GMaxMeanDP for which they were designed.

Computational Results and Comparisons on the Weighted Instances

We now turn our attention to the assessment of MAMMDP * and PBEA on the set of 40 large GMaxMeanDP for which these algorithms are designed. We report in Tables 4 and5 the computational results of MAMMDP * and PBEA on the instances with n = 3000, 5000 respectively. Table 4 also includes the results of LocalSolver while the instances with n = 5000 are too large for LocalSolver on our computer. In these tables, the same information as in the last section is reported.

We observe from Table 4 we observe that the success rates of both algorithms are below 50% for more than 15 instances, which shows that these instances are much harder than the instances with n = 3000. Interestingly, we observe that MAMMDP * performs better than PBEA for the instances of Types I and II, while the reverse is true for the Type III and IV instances. This indicates that these two algorithms are complementary for solving these hard instances.

Analysis and Discussion

In this section, we perform additional experiments to analyze the influence of two key ingredients of the PBEA algorithm (i.e., the perturbation strength and the neighborhood structure of the tabu search procedure), while for MAMMDP * , an analysis of its underlying MAMMDP algorithm can be found in [START_REF] Lai | A tabu search based memetic search algorithm for the max-mean dispersion problem[END_REF]. The perturbation operator is an essential ingredient of the PBEA algorithm.

Sensitivity Analysis of an Important Parameter of the PBEA algorithm

To understand the influence of its perturbation strength (i.e., η × n) on the performance of the algorithm, we carried out an experiment based on the 40 large GMaxMeanDP instances with n = 5000, where the algorithm was run 20 times with each value of η ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} on each instance. Recall that given a solution composed of n components the perturbation operator assigns randomly a value from {0, 1} to η × n variables, thus there are about 0.5 × η × n variables whose values are changed by the perturbation operator. The results are reported in Table 6, where column 1 and row 2 give respectively the name of instances and the setting of parameter η, columns 2-11 report the average objective values (f avg) over 20 runs for each η value, and the row 'Avg' indicates the average results for each column.

Table 6 shows that the different settings of η yielded very similar results in terms of f avg for each instance tested, which means that the performance of PBEA algorithm is not sensitive to the setting of η due to the strong local search ability of its underlying tabu search procedure as well as the features of the GMaxMeanDP problem. Moreover, we observe that the settings η = 0.1, 0.3, and 0.4 lead to slightly better results in terms of Avg than other settings.

Hence, the default value of η is set to 0.4 for the PBEA algorithm.

Influence of the Neighborhoods on the Performance of Tabu Search

As described in Algorithm 4, at each iteration of the tabu search algorithms, a best eligible neighbor solution is selected to replace the current solution by examining the whole neighborhood. As such, for each iteration, a larger neighborhood usually offers a greater chance to encounter a neighbor solution of high quality, but requires a larger computational effort. Hence, we face the challenge of identifying an appropriate neighborhood structure to enable the resulting algorithm to reach a good tradeoff between solution quality and computing speed.

To check the influence of the neighborhoods on the tabu search algorithm and select a proper neighborhood for our tabu search algorithm, we carried out an experiment based on the 40 instances with n = 3000. Using the neighborhoods Table 7 shows that the four tabu search algorithms obtained similar results in terms of the average objective value, implying that the four neighborhoods have a similar search ability when the same number of iterations is used. Nevertheless, compared to the neighborhood N 1 , the three other neighborhoods N 2 , N 3 and N 4 yielded a slightly better result for 28, 23, and 33 instances, respectively. In addition, the multi-neighborhood tabu search methods (with N 3 or N 4) yielded a better result than those using a single basic neighborhood (i.e., N 1 or N 2) in terms of #Better, and hence the combined use of multiple complementary neighborhoods enhanced the search ability of our methods in the case that the tabu search procedures employ the same Iter max as the stopping condition.

N 1 , N 2 , N 3 (= N 1 ∪ N 2), N 4 (= N 1 ∪ N * 2)
On the other hand, Table 7 indicates a significant difference among the four neighborhoods in terms of the computing time. First, the times required to examine the neighborhoods N 1 and N 4 are much smaller than those required to examine other two neighborhoods, since N 1 and N 4 are much smaller than N 2

and N 3 and the move values (i.e., the change of objective value) of a flip or swap move can be calculated in O(1) (see Section 2.1.7). In addition, we observe that the examination of the neighborhoods N 2 and N 3 is very time-consuming due to their large sizes. Finally, the speed of examining the neighborhood N 4 is slightly slower to that of examining N 1 but is much faster than that of examining N 2 and N 3 .

To assess and compare the effectiveness of the above four neighborhoods based on the same time limit, we carried out another experiment on the 40 instances mentioned above, where each instance was solved 20 times by each tabu search algorithm, and the stopping criterion was a time limit t max = 2.5 seconds. The experimental results are reported in Table 8, where the first two columns give the names of instances and the time limit used (t max), columns 3-6 report the average objective value (f avg) over 20 runs for the four algorithms, respectively, and the row '#Best' shows the number of instances for which the associated algorithm yields the best result in f avg .

Table 8 shows that the algorithms with the neighborhood N 1 or N 4 performs much better than those with the neighborhood N 2 or N 3 . When comparing N 1

and N 4 , we observe that the two corresponding tabu search algorithms obtain similar results in '#Best', i.e., with the best results in f avg for 19 and 21 instances, respectively. This finding further shows the merit of small neighborhoods for the tabu search algorithms.

To further compare the effectiveness of the neighborhoods N 1 and N 4 within the proposed PBEA algorithm, we first created a variant of PBEA (called PBEA *) by replacing the neighborhood N 4 with the neighborhood N 1 and keeping other ingredients unchanged. Then, we carried out an experiment with PBEA and PBEA * on the 40 GMaxMeanDP instances with n = 3000, where both algorithms were performed 20 times on each instance according to the experimental protocol in Section 3.2. The results are summarized in Table 9, where the rows '#Better', '#Equal' and '#Worse' show the number of instances for which the associated algorithm obtains a better, equal, or worse result compared to the other algorithm.

Table 9 shows that the PBEA and PBEA * algorithms have a similar performance both in f best and the success rate. Specifically, both algorithms reached the best known result for all instances tested. However, regarding the average objective value (f avg) over 20 runs, PBEA slightly outperformed PBEA * . For 12 and 2 out of 40 instances, PBEA obtained a better and worse result in terms of f avg compared to PBEA * , respectively, while matching the results of PBEA * for the remaining instances. This outcome indicates that the neighborhood N 4 is superior to the neighborhood N 1 on the tested instances. On this basis we have selected the neighborhood N 4 as the neighborhood structure of the tabu search procedure for the proposed PBEA algorithm.

Conclusions

The generalized max-mean dispersion problem (GMaxMeanDP) is a generalization of the popular NP-hard max-mean dispersion problem (MaxMeanDP). We performed extensive experiments of our two algorithms on six types of 160 instances with n ∈ {1500, 2000, 3000, 5000}, leading to the following observations. First, an effective algorithm such as MAMMDP for the MaxMeanDP can be easily converted to an effective algorithm for the GMaxMeanDP. Second, for the GMaxMeanDP, the simple perturbation operator used in PBEA plays a similar role with respect to the crossover operator used in MAMMDP * . Third, the two proposed algorithms are complementary since there are instances that are better solved either by MAMMDP * or by PBEA. Fourth, these algorithms designed for the GMaxMeanDP also perform very well on the special MaxMe-anDP. Fifth, for the tabu search method designed for the GMaxMeanDP, a small and cost-effective neighborhood proves to be highly efficient.

Since the GMaxMeanDP can formulate various real-world applications (e.g., web page ranking [START_REF] Kerchove | The page trust algorithm: how to rank web pages when negative links are allowed[END_REF], community mining in a signed social network [START_REF] Yang | Community mining from signed social networks[END_REF] and trust networks [START_REF] Carrasco | Tabu search for the max-mean dispersion problem[END_REF]), the proposed algorithms can be used to handle such practical problems as well.

The availability of the source codes of our algorithms will certainly facilitate such applications. More generally, the approach of using an effective tabu search procedure combined with the evolutionary computing framework can be applied to solve other dispersion problems such as the max-mean dispersion problem that has recently received widespread attention. Our design for PBEA and MAMMDP * can be adapted to other binary optimization problems like max-cut/max-bisection [START_REF] Benlic | Breakout local search for the max-cut problem[END_REF][START_REF] Ma | An effective iterated tabu search for the maximum bisection problem[END_REF][START_REF] Wu | A tabu search based hybrid evolutionary algorithm for the max-cut problem[END_REF]. Finally, combining the present algorithms with other approaches like path relinking [START_REF] Glover | A template for scatter search and path relinking[END_REF] and learning strategies like opposition-based learning [START_REF] Mahdavi | Opposition based learning: A literature review[END_REF], and diversification-based learning [START_REF] Glover | Diversification-based learning in computing and optimization[END_REF] provides other interesting possibilities for future research.

 adapted MAMMDP * algorithm dominate the VNS algorithm and the generalpurpose LocalSolver software on the medium-sized MaxMeanDP instances. Compared with the dedicated VNS algorithm designed for MaxMeanDP in (Brimberg et al., 2017), MAMMDP * and PBEA obtain better results in terms of f best for 38 out of 40 instances and the same results for the two remaining instances.

 described in Section 2.1.6 as the neighborhood structure and setting the parameter T max to 100, we obtain four tabu search algorithms. Given the stochastic nature of these algorithms, we solved each instance 20 times by each of these algorithms, and recorded the average computing times and average objective values. The stopping condition was given by the maximum number Iter max of iterations, which was set to 5 × 10 4 in this experiment. The results of this experiment are summarized in Table7. The first column of the table gives the names of instances. Columns 2-5 report the average objective values over 20 runs for the four tabu search algorithms, and columns 6-9 report the average computing times consumed for each algorithm. The rows '#Better', '#Equal' and '#Worse' show the number of instances for which the associated neighborhood obtains a better, equal, or worse result compared to the neighborhood N 1 .

 Contrary to the MaxMeanDP which has been studied intensively in the past, the GMaxMeanDP has received little research effort until now and no practical solution method has been ever proposed for it. To fill the gap in the literature produced by the absence of a solution method for this important problem, we investigate for the first time two population-based heuristic algorithms for solving the GMaxMeanDP. The dedicated perturbation based evolutionary algorithm (PBEA) combines a tabu search procedure for solution improvement, a simple perturbation operator to diversify the search process and a population to record the elite solutions found during the search. The other algorithm (MAMMDP *) is a simple adaptation of the state-of-the-art memetic algorithm called MAM-MDP for the MaxMeanDP, which uses a crossover operator to generate new starting solutions for its tabu search improvement procedure.

 Output: the best solution s * found 3: P OP = {s 1 , . . . , s p } ← PopInitialization(G,p) / * Section 2.1.3 * / 4: s * ← arg max{f (s i) : i = 1, . . . , p} / * s * denotes the best solution found * / 5: while time() < tmax do

	6:	Randomly select a solution s from P OP	
	7:	s o ← P erturbation(s)	/ * Section 2.1.4 * /
	8:	s o ← T abuSearch(s o)	/ * Section 2.1.5 * /
	10:	s * ← s o	
	11:	end if	
	12:		

2: 9: if f (s o) > f (s *) then s w ← arg min{f (s i) : i = 1, . . . ,

p} 13: if s o does not exist in P OP and f (s o) > f (s w) then 14: P OP ← P OP ∪ {s o } \ {s w } 15:

 Input: Input solution s = (x1, x2, . . . , xn), the perturbation strength η × n 2: Output: a perturbed solution s 3: for l ← 1 to η × n do

	4:	i ← Rand() mod n	/* Randomly pick a variable xi */
	5:	s.xi ← Rand() mod 2	/* Assign to xi of s a random value from {0, 1} */
	6: end for	
	7: return s	

1:

 The best solution s b found in the current TS run 3: s ← s0 /* s denotes the current solution */ 4: s b ← s /* s b denotes the best solution found so far in the current TS run */

	5: iter ← 0	/* iter denotes the current number of iterations */
	6: repeat
	7:	Choose randomly a best eligible neighbor solution s ∈ N (s) /* Section 2.1.6 */
		/* s is identified to be eligible if it is not forbidden by the tabu list or better than
		s b */
	8:	s ← s
	9:	Update tabu list T abuT enure[n] with s
		/* T abuT enure[n] is a n-dimensional vector, Section 2.1.8 */
	10:	if f (s) > f (s b) then
	11:	s b ← s,
	12:	end if
	13:	iter ← iter + 1
	14: until iter = Itermax
	15: return s b

1: Input: Input solution s0, neighborhood structure N (s), evaluation function f (s), maximum number of iterations Itermax 2: Output:

Table 1 :

 1 Settings of parameters

	Parameters Section	Description	Values
	p	2.1.1	size of population	20
	Itermax	2.1.5	maximum number of iterations for the tabu search	5 × 10 4
	Tmax	2.1.8	the maximum tabu tenure	80 + Rand(100)
	η	2.1.4	strength of the perturbation operator	0.4

Table 2 :

 2 Computational results and comparisons on the 40 MaxMeanDP instances with n = 1500 or 2000 from the literature. The best f best values among all the results are indicated in boldface.

		VNS	LocalSolver	MAMMDP * (this work)			PBEA (this work)	
	Instance	f best	f	f best	favg	SR	t(s)	f best	favg	SR	t(s)
	MDPI1 1500	136.26	66.6568	136.535222	136.535222	20/20	14.21	136.535222	136.535222	20/20	18.75
	MDPI2 1500	138.00	70.7226	138.341482	138.341482	20/20	5.38	138.341482	138.341482	20/20	8.04
	MDPI3 1500	138.91	66.8269	139.200599	139.200599	20/20	3.17	139.200599	139.200599	20/20	3.28
	MDPI4 1500	139.81	68.0931	140.166920	140.166920	20/20	5.65	140.166920	140.166920	20/20	4.67
	MDPI5 1500	136.47	66.8041	137.129630	137.129630	20/20	7.73	137.129630	137.129630	20/20	12.65
	MDPI6 1500	136.22	65.6676	136.508768	136.508768	20/20	7.05	136.508768	136.508768	20/20	10.13
	MDPI7 1500	137.65	63.4105	137.971032	137.971032	20/20	2.49	137.971032	137.971032	20/20	3.20
	MDPI8 1500	138.02	67.9306	138.728444	138.728444	20/20	13.56	138.728444	138.728444	20/20	13.95
	MDPI9 1500	136.30	66.9695	136.495674	136.495674	20/20	21.39	136.495674	136.495674	20/20	28.95
	MDPI10 1500	140.33	66.0519	140.333159	140.333159	20/20	3.47	140.333159	140.333159	20/20	3.90
	MDPI1 2000	158.03	55.3813	158.588217	158.588217	20/20	10.40	158.588217	158.588217	20/20	11.79
	MDPI2 2000	162.91	54.2658	163.939616	163.939616	20/20	19.11	163.939616	163.939616	20/20	31.71
	MDPI3 2000	158.98	51.9819	159.570786	159.545090	13/20	39.86	159.570786	159.528479	6/20	38.94
	MDPI4 2000	159.14	52.6407	160.185217	160.185217	20/20	28.46	160.185217	160.184761	17/20	54.41
	MDPI5 2000	156.11	53.8956	156.805331	156.758147	10/20	41.25	156.805331	156.776147	13/20	55.30
	MDPI6 2000	161.61	52.1516	161.839100	161.839100	20/20	11.30	161.839100	161.839100	20/20	13.72
	MDPI7 2000	157.58	53.8223	158.336131	158.336131	20/20	9.79	158.336131	158.336131	20/20	7.93
	MDPI8 2000	161.43	53.6872	161.446931	161.446931	20/20	20.03	161.446931	161.446931	20/20	22.30
	MDPI9 2000	159.15	54.9125	160.190374	160.190374	20/20	29.21	160.190374	160.187769	17/20	44.28
	MDPI10 2000	160.90	53.6239	161.638099	161.638099	20/20	7.60	161.638099	161.638099	20/20	4.99
	MDPII1 1500	181.67	94.7889	182.089413	182.089413	20/20	6.33	182.089413	182.089413	20/20	8.23
	MDPII2 1500	185.48	98.7439	186.243869	186.243869	20/20	6.78	186.243869	186.243869	20/20	4.66
	MDPII3 1500	181.55	93.3692	182.142902	182.142902	20/20	3.13	182.142902	182.142902	20/20	4.76
	MDPII4 1500	184.91	92.6379	185.557302	185.500190	8/20	42.93	185.557302	185.514675	9/20	35.93
	MDPII5 1500	190.15	101.379	190.860529	190.860529	20/20	2.25	190.860529	190.860529	20/20	1.65
	MDPII6 1500	183.14	99.3436	183.575336	183.575336	20/20	3.05	183.575336	183.575336	20/20	1.90
	MDPII7 1500	179.34	93.6409	179.820242	179.820242	20/20	13.93	179.820242	179.820242	20/20	18.43
	MDPII8 1500	186.60	96.7090	186.602804	186.602804	20/20	2.74	186.602804	186.602804	20/20	3.30
	MDPII9 1500	181.43	97.7207	181.918814	181.918814	20/20	17.85	181.918814	181.918814	20/20	14.75
	MDPII10 1500 182.70	99.0640	183.384692	183.384692	20/20	32.37	183.384692	183.384692	20/20	26.01
	MDPII1 2000	208.85	75.3906	209.845273	209.845273	20/20	8.13	209.845273	209.845273	20/20	11.24
	MDPII2 2000	218.19	81.7475	218.404860	218.404860	20/20	16.03	218.404860	218.404860	20/20	22.40
	MDPII3 2000	209.57	69.9621	210.819147	210.807415	19/20	15.52	210.819147	210.819147	20/20	18.05
	MDPII4 2000	211.99	74.7847	212.424859	212.424859	20/20	16.15	212.424859	212.424859	20/20	25.81
	MDPII5 2000	215.33	75.5558	216.088722	216.088722	20/20	9.90	216.088722	216.088722	20/20	8.96
	MDPII6 2000	210.61	73.9974	211.769151	211.769151	20/20	10.88	211.769151	211.769151	20/20	6.88
	MDPII7 2000	209.65	77.1172	209.780651	209.780651	20/20	19.95	209.780651	209.780651	20/20	25.74
	MDPII8 2000	212.43	80.1608	212.575432	212.575432	20/20	17.03	212.575432	212.575432	20/20	27.75
	MDPII9 2000	214.61	72.2590	215.007759	215.007759	20/20	15.87	215.007759	215.007759	20/20	12.92
	MDPII10 2000 210.06	74.5694	210.735749	210.735436	15/20	28.22	210.735749	210.735561	17/20	28.19
	Avg.	173.30	73.2110	173.839956	173.836405		16.44	173.839956	173.837022		19.25
	#Best	2	0	40				40			
	p-value	3.569e-	3.569e-	1.0	0.6121						
		8	8								

Table 3 :

 3 Computational results and comparisons on the 40 large MaxMeanDP instances with n = 3000 or 5000 from the literature. The best f best and favg values among the compared results are indicated in boldface. and any algorithm for the GMaxMeanDP problem can be directly applied to the MaxMeanDP problem as well. The experimental results on the 40 medium-sized instances with n = 1500, 2000 and the 40 large instances with n = 3000, 5000 from the MDPI and MDPII sets are summarized in Tables

		LocalSolver	MAMMDP * (this work)		PBEA (this work)	
	Instance	f	f best	favg	SR	t(s)	f best	favg	SR	t(s)
	MDPI1 3000	72.8274	189.048965	189.048965	20/20	54.08	189.048965	189.048965	20/20 75.99
	MDPI2 3000	72.8196	187.387292	187.387292	20/20	50.59	187.387292	187.387292	20/20 81.62
	MDPI3 3000	71.1284	185.666806	185.642604 5/20	310.42	185.666806	185.640815	4/20	173.32
	MDPI4 3000	67.3049	186.163727	186.159939 19/20	165.94	186.163727	186.156150	18/20 121.87
	MDPI5 3000	68.5859	187.545515	187.545515	20/20	56.64	187.545515	187.545515	20/20 124.46
	MDPI6 3000	71.5833	189.431257	189.431257	20/20	36.28	189.431257	189.431257	20/20 71.08
	MDPI7 3000	65.0592	188.242583	188.242583	20/20	90.13	188.242583	188.242583	20/20 76.43
	MDPI8 3000	68.5892	186.796814	186.796814	20/20	36.91	186.796814	186.796814	20/20 75.72
	MDPI9 3000	70.9764	188.231264	188.228646	19/20	65.43	188.231264	188.231264 20/20 84.02
	MDPI10	69.1644	185.682511	185.572559	4/20	105.14	185.682511	185.632187 11/20 197.56
	MDPII1	97.6705	252.320433	252.320433	20/20	46.18	252.320433	252.320433	20/20 90.08
	MDPII2	101.229	250.062137	250.062137 20/20	127.57	250.062137	250.060127	16/20 248.03
	MDPII3	104.731	251.906270	251.906270	20/20	99.94	251.906270	251.906270	20/20 142.28
	MDPII4	99.7977	253.941007	253.936173	14/20	187.38	253.941007	253.939366 16/20 208.28
	MDPII5	103.008	253.260423	253.260302 15/20	190.57	253.260423	253.260278	14/20 256.84
	MDPII6	104.409	250.677750	250.677750	20/20	49.99	250.677750	250.677750	20/20 58.46
	MDPII7	100.621	251.134413	251.134413	20/20	55.07	251.134413	251.134413	20/20 99.94
	MDPII8	105.536	252.999648	252.999648	20/20	74.56	252.999648	252.999648	20/20 83.54
	MDPII9	100.811	252.425770	252.425770	20/20	45.77	252.425770	252.425770	20/20 114.67
	MDPII10 3000 99.4736	252.396590	252.396590	20/20	16.30	252.396590	252.396590	20/20 15.39
	MDPI1 5000	NA	240.141212	240.070982 9/20	464.66	240.162535 240.015046	1/20	644.69
	MDPI2 5000	NA	241.827401	241.744421 5/20	360.20	241.827401	241.735443	2/20	495.52
	MDPI3 5000	NA	240.890819	240.865427 15/20	410.53	240.890819	240.812439	11/20 466.86
	MDPI4 5000	NA	240.997186	240.951055	4/20	592.65	240.997186	240.955450 4/20	656.19
	MDPI5 5000	NA	242.480129	242.471643 18/20	269.86	242.480129	242.454732	14/20 612.06
	MDPI6 5000	NA	240.322850	240.304443 14/20	33.30	240.376038 240.281210	1/20	585.48
	MDPI7 5000	NA	242.820139	242.771514 4/20	490.60	242.820139	242.771003	1/20	604.73
	MDPI8 5000	NA	241.194990	241.154430 13/20	111.35	241.194990	241.138956	5/20	568.30
	MDPI9 5000	NA	239.760560 239.566397 7/20	139.82	239.681094	239.498462	3/20	536.47
	MDPI10	NA	243.385487	243.345183 8/20	548.48	243.473734 243.334446	1/20	521.23
	MDPII1	NA	322.235897	322.177715 4/20	298.40	322.235897	322.148548	2/20	581.82
	MDPII2	NA	327.301910	326.996573 5/20	729.93	327.301910	326.970214	4/20	551.71
	MDPII3	NA	324.813456	324.792109 9/20	290.15	324.813456	324.785177	3/20	482.32
	MDPII4	NA	322.227657	322.182679 6/20	422.89	322.237586 322.126451	2/20	705.12
	MDPII5	NA	322.491211	322.355484	3/20	506.35	322.491211	322.365463 4/20	556.09
	MDPII6	NA	322.728902	322.638339 3/20	101.37	322.950488	322.629351	2/20	678.45
	MDPII7	NA	322.850438	322.773052	8/20	606.48	322.850438	322.787011 9/20	415.61
	MDPII8	NA	323.112120	323.009085 6/20	285.51	323.112120	322.948455	2/20	555.26
	MDPII9	NA	323.543775	323.299190 5/20	774.36	323.543775	323.182444	1/20	574.49
	MDPII10 5000 NA	324.519908	324.456763 17/20	440.56	324.519908	324.335221	12/20 500.37
	Avg.	NA	251.124181	251.077554		243.56	251.132051	251.062725		342.31
	#Best	0	36				39			
	p-value	NA	0.173	3.649e-3						

Table 2

 2

	(for the 40 medium-sized instances with n = 1500 or 2000), the
	first column gives the names of instances, columns 2-3 report respectively the
	best results from the VNS algorithm and the results of LocalSolver. Columns
	4-7 report the results of the MAMMDP

* algorithm over 20 runs, including the best objective value (f best), the average objective value (f avg), the success rate (SR) to reach the associated f best value, and the average run time (t(s)) in seconds to obtain its final result. Columns 8-11 report the results of the PBEA algorithm with the same information as in the columns 4-7. The row Avg.

Table 3

 3 shows that the PBEA algorithm and the adapted MAMMDP * algorithm significantly outperform the LocalSolver software on these large-scale instances with n = 3000, 5000. Between MAMMDP * and PBEA, one observes that they obtain the same result in f best for 35 out of the 40 instances. Even if PBEA performs marginally better in terms of f best with four better f best results for PBEA against one better f best result for MAMMDP

* (p-value > 0.05), MAMMDP * is better in terms of f avg with 21 better f avg results against six better f avg results for PBEA with a p-value < 0.05. Finally, the success rates decrease significantly for both MAMMDP * and PBEA as the size of instance increases, indicating the high difficulty of these largest instances.

Table 4 :

 4 Computational results and comparisons on the 40 large GMaxMeanDP instances (weighted instances) with n = 3000. The best f best and favg values among the compared results are indicated in boldface.

		LocalSolver		MAMMDP * (this work)			PBEA (this work)	
	Instance	f	f best	favg	SR	t(s)	f best	favg	SR	t(s)
	I 3000 1	22.7528	80.743467	80.743467	20/20	44.45	80.743467	80.743467	20/20	92.53
	I 3000 2	25.1306	84.201027	84.201027	20/20	17.82	84.201027	84.201027	20/20	46.71
	I 3000 3	24.4089	81.630082	81.630082	20/20	6.62	81.630082	81.630082	20/20	9.34
	I 3000 4	25.8106	80.234334	80.234334	20/20	29.61	80.234334	80.234334	20/20	28.07
	I 3000 5	24.5990	81.218062	81.218043	19/20	108.59	81.218062	81.218062	20/20	138.28
	I 3000 6	23.5651	83.197618	83.197618	20/20	37.99	83.197618	83.197618	20/20	64.05
	I 3000 7	24.0235	81.732080	81.732080	20/20	2.73	81.732080	81.732080	20/20	4.50
	I 3000 8	22.5924	80.624273	80.624273	20/20	79.61	80.624273	80.624273	20/20	83.53
	I 3000 9	25.3955	80.574438	80.574438	20/20	7.59	80.574438	80.574438	20/20	10.76
	I 3000 10	25.0323	83.397670	83.397670	20/20	48.63	83.397670	83.397670	20/20	138.84
	II 3000 1	31.2938	99.055143	99.055143	20/20	15.04	99.055143	99.055143	20/20	12.66
	II 3000 2	32.1219	105.574146	105.574146	20/20	29.08	105.574146	105.574146	20/20	63.27
	II 3000 3	29.8576	101.299271	101.299271	20/20	3.31	101.299271	101.299271	20/20	6.71
	II 3000 4	28.9800	101.079824	101.079824	20/20	8.41	101.079824	101.079824	20/20	8.03
	II 3000 5	32.9165	100.029225	100.029225	20/20	84.01	100.029225	100.028322	18/20	241.64
	II 3000 6	29.1903	101.978783	101.978783	20/20	5.80	101.978783	101.978783	20/20	4.56
	II 3000 7	31.5154	100.189718	100.189718	20/20	6.43	100.189718	100.189718	20/20	17.36
	II 3000 8	32.0808	101.160428	101.160428	20/20	3.36	101.160428	101.160428	20/20	4.52
	II 3000 9	30.5477	98.665034	98.665034	20/20	39.15	98.665034	98.665034	20/20	59.96
	II 3000 10	31.4593	104.896612	104.896612	20/20	4.40	104.896612	104.896612	20/20	11.86
	III 3000	10.8747	27.847334	27.847334	20/20	102.65	27.847334	27.847334	20/20	108.70
	III 3000	10.9677	27.776796	27.774430	7/20	214.29	27.776796	27.774272	4/20	120.08
	III 3000	11.8823	27.946519	27.944592	17/20	147.23	27.946519	27.946519	20/20	157.85
	III 3000	10.6279	27.816272	27.816272	20/20	81.41	27.816272	27.816272	20/20	70.66
	III 3000	11.3929	27.727167	27.727167	20/20	115.40	27.727167	27.727167	20/20	160.51
	III 3000	10.9057	27.686986	27.677719	8/20	136.73	27.691682	27.686631	4/20	131.25
	III 3000	11.3789	27.642060	27.642060	20/20	74.29	27.642060	27.642060	20/20	158.84
	III 3000	11.0592	27.736643	27.733842	5/20	287.29	27.736643	27.734079	6/20	184.58
	III 3000	11.4658	27.745820	27.744637	19/20	139.88	27.745820	27.745820	20/20	77.88
	III 3000 10.7100	27.561083	27.560295	19/20	157.43	27.561083	27.561083	20/20	92.74
	IV 3000	136.7020	278.039443	278.037117	19/20	137.79	278.039443	278.027811	15/20	151.80
	IV 3000	131.0830	276.539877	276.530847	18/20	216.82	276.539877	276.539691	18/20	238.37
	IV 3000	127.1120	277.334878	277.334878	20/20	31.02	277.334878	277.334878	20/20	40.40
	IV 3000	131.6190	278.956422	278.956422	20/20	42.08	278.956422	278.956422	20/20	61.36
	IV 3000	130.2750	276.595238	276.595238	20/20	152.28	276.595238	276.595238	20/20	108.00
	IV 3000	127.5350	280.721533	280.721533	20/20	55.32	280.721533	280.721533	20/20	60.47
	IV 3000	132.0830	273.653396	273.653396	20/20	84.47	273.653396	273.653396	20/20	169.85
	IV 3000	128.6810	276.358447	276.358447	20/20	70.96	276.358447	276.358447	20/20	81.56
	IV 3000	133.6610	274.864865	274.821773	17/20	159.03	274.864865	274.838571	18/20	241.92
	IV 3000	132.8980	276.428571	276.411918	17/20	220.16	276.428571	276.407810	16/20	151.95
	Avg.	49.4047	121.961632	121.958056		92.85	121.961632	121.959884		90.40
	#Best	0	39				40			
	p-value	3.569e-8	0.3173	0.3078						

Table 5 :

 5 Computational results and comparisons on the 40 large GMaxMeanDP instances (weighted instances) with n = 5000. The best f best and favg values among the compared results are indicated in boldface. the average of the f best values and 157.825271 for MAMMDP * vs 157.831891 for PBEA in terms of the average of the f avg values (p-values > 0.05). Meanwhile,

		MAMMDP * (this work)			PBEA (this work)	
	Instance	f best	favg	SR	t(s)	f best	favg	SR	t(s)
	I 5000 1	104.827798	104.803953	7/20	480.14	104.818572	104.779182	1/20	603.16
	I 5000 2	104.053704	104.053704	20/20	154.85	104.053704	104.045180	10/20	433.77
	I 5000 3	104.803139	104.794625	12/20	469.36	104.796184	104.794027	14/20	577.26
	I 5000 4	107.326793	107.300838	10/20	500.22	107.326793	107.302907	1/20	550.42
	I 5000 5	105.195058	105.191547	16/20	494.22	105.195058	105.188447	3/20	617.42
	I 5000 6	103.651929	103.635670	11/20	397.00	103.651929	103.637288	2/20	572.61
	I 5000 7	105.452981	105.427086	12/20	258.28	105.452981	105.452647	17/20	614.86
	I 5000 8	104.686123	104.686123	20/20	212.67	104.686123	104.682843	4/20	610.63
	I 5000 9	102.894130	102.891559	19/20	336.93	102.894130	102.869843	8/20	517.80
	I 5000 10	108.205395	108.205395	20/20	123.79	108.205395	108.205205	19/20	269.50
	II 5000 1	130.041711	129.903022	15/20	30.82	129.988730	129.890200	1/20	574.84
	II 5000 2	127.790529	127.790529	20/20	195.76	127.790529	127.785800	6/20	418.03
	II 5000 3	129.223564	129.223564	20/20	88.77	129.223564	129.220797	18/20	412.31
	II 5000 4	132.381785	132.381785	20/20	46.93	132.381785	132.381785	20/20	121.94
	II 5000 5	131.291478	131.273801	11/20	445.48	131.262016	131.262016	20/20	201.13
	II 5000 6	128.199403	128.199403	20/20	56.60	128.199403	128.198547	16/20	421.87
	II 5000 7	128.901011	128.901011	20/20	241.46	128.901011	128.869417	3/20	450.94
	II 5000 8	129.742428	129.742428	20/20	245.07	129.742428	129.741596	18/20	511.32
	II 5000 9	127.593892	127.585685	18/20	388.89	127.593892	127.543106	4/20	505.00
	II 5000 10	134.691155	134.691155	20/20	22.95	134.691155	134.691155	20/20	234.79
	III 5000	35.820098	35.809506	6/20	279.75	35.820098	35.813498	4/20	554.74
	III 5000	36.231529	36.214299	6/20	271.56	36.231529	36.216595	3/20	718.32
	III 5000	36.036199	36.030249	2/20	165.20	36.034200	36.032858	5/20	605.56
	III 5000	36.480238	36.462380	12/20	391.82	36.480238	36.477088	16/20	685.53
	III 5000	36.150412	36.141578	3/20	436.69	36.150412	36.145352	4/20	549.78
	III 5000	36.031067	36.025122	12/20	367.06	36.031067	36.029319	18/20	531.48
	III 5000	35.945148	35.932945	6/20	323.86	35.945224	35.941077	2/20	651.21
	III 5000	35.977378	35.958775	1/20	1397.13	35.977378	35.964061	3/20	646.35
	III 5000	36.174472	36.147119	5/20	407.26	36.174472	36.146802	1/20	616.11
	III 5000	36.450138	36.449973	18/20	174.13	36.450138	36.449407	13/20	457.63
	IV 5000	357.412342	357.299214	8/20	495.33	357.412342	357.355749	11/20	667.19
	IV 5000	363.733876	363.653599	7/20	241.50	363.733876	363.703214	5/20	641.44
	IV 5000	361.401490	361.233101	10/20	141.84	361.401490	361.316492	7/20	657.13
	IV 5000	365.320648	365.221758	7/20	379.34	365.320648	365.271635	12/20	607.23
	IV 5000	361.628709	361.619700	15/20	251.79	361.628709	361.627548	11/20	699.02
	IV 5000	358.013986	357.931943	5/20	370.20	357.976519	357.924349	6/20	740.73
	IV 5000	353.071271	352.935036	2/20	956.15	353.071271	352.952883	2/20	690.22
	IV 5000	359.201624	359.159182	17/20	377.93	359.201624	359.177581	14/20	521.58
	IV 5000	361.105769	361.016744	5/20	475.21	361.121622	361.088689	6/20	621.83
	IV 5000	361.123900	361.085726	6/20	179.52	361.123900	361.099469	5/20	718.69
	Avg.	157.856608	157.825271		331.84	157.853553	157.831891		545.03
	#Best	38				34			
	p-value	9.289e-2	2.204e-1						

Table 6 :

 6 Influence of the parameter η on the performance of the PBEA algorithm.

	favg

Table 7 :

 7 Comparative results of tabu search procedures with different neighborhoods under the same maximum number of iterations. Each instance was solved 20 times by each tabu search variant, and the average objective values and the run times are recorded.

			Average objective value		Average computing time (s)	
	Instance	N 1	N 4	N 2	N 3	N 1	N 4	N 2	N 3
	I 3000 1	80.370223	80.331709	80.419228	80.397729	1.70	2.48	1196.98	1211.05
	I 3000 2	84.160923	84.175919	84.132061	84.156005	1.70	2.62	1234.33	1181.27
	I 3000 3	81.543666	81.563254	81.493745	81.567133	1.71	2.36	1178.35	1281.49
	I 3000 4	80.009048	80.044790	80.074550	80.099239	1.70	2.40	1219.60	1294.26
	I 3000 5	81.105796	81.086351	81.028486	81.129050	1.70	2.26	1289.05	1177.42
	I 3000 6	83.122833	83.139438	83.053114	83.136528	1.77	2.25	1178.04	1190.21
	I 3000 7	81.68306	81.727730	81.683873	81.724791	1.69	2.25	1167.27	1173.33
	I 3000 8	80.525859	80.526347	80.477204	80.528973	1.70	2.37	1253.14	1192.05
	I 3000 9	80.556881	80.560794	80.502281	80.556804	1.78	2.51	1179.42	1193.18
	I 3000 10	83.326823	83.320350	83.315442	83.320493	1.70	2.37	1200.32	1194.71
	II 3000 1	98.980639	99.000333	98.969911	98.980702	1.74	2.30	1177.97	1193.19
	II 3000 2	105.448977	105.488372	105.387800	105.468175	1.74	2.36	1280.10	1159.60
	II 3000 3	101.099149	101.134966	101.043572	101.198633	1.70	2.59	1172.63	1163.89
	II 3000 4	101.074346	101.078024	101.064486	101.075638	1.77	2.41	1202.44	1156.11
	II 3000 5	99.876333	99.893006	99.789128	99.869741	1.71	2.42	1256.77	1243.89
	II 3000 6	101.970764	101.968581	101.869966	101.961902	1.71	2.30	1163.45	1155.65
	II 3000 7	100.132899	100.123789	100.103272	100.158365	1.70	2.33	1171.30	1194.30
	II 3000 8	101.105064	101.027986	100.970914	101.154872	1.69	2.26	1167.71	1241.09
	II 3000 9	98.601737	98.596904	98.508047	98.598148	1.70	2.27	1273.98	1172.29
	II 3000 10	104.862917	104.887103	104.795615	104.874885	1.68	2.30	1183.17	1164.99
	III 3000 1	27.754071	27.774755	27.818733	27.781418	1.69	2.53	1298.58	1355.77
	III 3000 2	27.702657	27.719219	27.757757	27.716593	1.73	2.48	1397.21	1349.85
	III 3000 3	27.881157	27.885209	27.920852	27.897084	1.69	2.36	1317.78	1367.02
	III 3000 4	27.723692	27.732678	27.766265	27.744262	1.72	2.27	1293.15	1320.68
	III 3000 5	27.66126	27.643878	27.699754	27.671768	1.69	2.37	1416.65	1370.78
	III 3000 6	27.612341	27.627724	27.638232	27.631653	1.68	2.34	1431.19	1302.33
	III 3000 7	27.580934	27.582994	27.605799	27.574759	1.74	2.34	1303.56	1354.12
	III 3000 8	27.671951	27.680622	27.712513	27.693571	1.69	2.55	1297.23	1365.41
	III 3000 9	27.650248	27.651881	27.685241	27.665465	1.70	2.52	1419.31	1372.90
	III 3000 10	27.462855	27.471166	27.503728	27.480884	1.78	2.61	1306.16	1311.41
	IV 3000 1	277.297445	277.456078	277.707822	277.411484	1.70	2.32	1309.75	1369.06
	IV 3000 2	275.569955	275.505513	275.964659	275.865817	1.70	2.33	1303.08	1368.02
	IV 3000 3	276.736029	277.062846	277.089373	276.904170	1.70	2.24	1319.46	1379.99
	IV 3000 4	278.244348	278.299395	278.576349	278.460311	1.75	2.37	1391.38	1382.73
	IV 3000 5	275.912872	275.856499	276.179065	276.011616	1.69	2.36	1319.15	1386.32
	IV 3000 6	279.908391	280.232102	280.348491	280.295156	1.68	2.31	1437.05	1357.70
	IV 3000 7	272.736927	272.878628	273.156411	272.960018	1.73	2.48	1312.67	1373.88
	IV 3000 8	275.456754	275.566789	275.983281	275.651022	1.70	2.56	1427.62	1403.40
	IV 3000 9	273.611056	273.878003	274.185110	273.944759	1.75	2.43	1306.62	1492.63
	IV 3000 10	275.58143	275.532812	275.907729	275.621588	1.69	2.31	1315.50	1356.68
	#Better		28	23	33		0	0	0
	#Equal		0	0	0		0	0	0
	#Worse		12	17	7		40	40	40

Table 8 :

 8 Comparative results of tabu search procedures with different neighborhoods under the same time limit. Each instance was solved 20 times by each tabu search variant, and the average objective values are recorded. The best f best values among the compared results are indicated in boldface.

	favg

Table 9 :

 9 Comparison between the PBEA algorithms with the neighborhoods N 1 and N 4 on the set of 40 GMaxMeanDP instances with n = 3000. The better results between two algorithms are indicated in bold both in terms of f best and favg

			PBEA * (N 1)				PBEA(N 4)		
	Instance	f best	favg	SR	t(s)	f best	favg	SR	t(s)
	I 3000 1	80.743467	80.743467	20/20	107.21	80.743467	80.743467	20/20	92.53
	I 3000 2	84.201027	84.201027	20/20	35.87	84.201027	84.201027	20/20	46.71
	I 3000 3	81.630082	81.630082	20/20	15.60	81.630082	81.630082	20/20	9.34
	I 3000 4	80.234334	80.234334	20/20	43.26	80.234334	80.234334	20/20	28.07
	I 3000 5	81.218062	81.218004	17/20	182.29	81.218062	81.218062	20/20	138.28
	I 3000 6	83.197618	83.197618	20/20	78.91	83.197618	83.197618	20/20	64.05
	I 3000 7	81.732080	81.732080	20/20	5.31	81.732080	81.732080	20/20	4.50
	I 3000 8	80.624273	80.623660	19/20	130.81	80.624273	80.624273	20/20	83.53
	I 3000 9	80.574438	80.574438	20/20	10.83	80.574438	80.574438	20/20	10.76
	I 3000 10	83.397670	83.397670	20/20	132.95	83.397670	83.397670	20/20	138.84
	II 3000 1	99.055143	99.055143	20/20	19.81	99.055143	99.055143	20/20	12.66
	II 3000 2	105.574146	105.574146	20/20	73.35	105.574146	105.574146	20/20	63.27
	II 3000 3	101.299271	101.299271	20/20	5.97	101.299271	101.299271	20/20	6.71
	II 3000 4	101.079824	101.079824	20/20	9.76	101.079824	101.079824	20/20	8.03
	II 3000 5	100.029225	100.028216	15/20	257.77	100.029225	100.028322	18/20	241.64
	II 3000 6	101.978783	101.978783	20/20	6.25	101.978783	101.978783	20/20	4.56
	II 3000 7	100.189718	100.189718	20/20	20.30	100.189718	100.189718	20/20	17.36
	II 3000 8	101.160428	101.160428	20/20	5.97	101.160428	101.160428	20/20	4.52
	II 3000 9	98.665034	98.665034	20/20	45.85	98.665034	98.665034	20/20	59.96
	II 3000 10	104.896612	104.896612	20/20	9.17	104.896612	104.896612	20/20	11.86
	III 3000	27.847334	27.846822	19/20	92.23	27.847334	27.847334	20/20	108.70
	III 3000	27.776796	27.774430	5/20	99.81	27.776796	27.774272	4/20	120.08
	III 3000	27.946519	27.946519	20/20	146.48	27.946519	27.946519	20/20	157.85
	III 3000	27.816272	27.816272	20/20	82.58	27.816272	27.816272	20/20	70.66
	III 3000	27.727167	27.726868	18/20	150.04	27.727167	27.727167	20/20	160.51
	III 3000	27.691682	27.683984	4/20	144.90	27.691682	27.686631	4/20	131.25
	III 3000	27.642060	27.642060	20/20	137.72	27.642060	27.642060	20/20	158.84
	III 3000	27.736643	27.733845	5/20	151.96	27.736643	27.734079	6/20	184.58
	III 3000	27.745820	27.742271	17/20	88.43	27.745820	27.745820	20/20	77.88
	III 3000	27.561083	27.561083	20/20	101.94	27.561083	27.561083	20/20	92.74
	IV 3000 1	278.039443	278.023159	13/20	159.32	278.039443	278.027811	15/20	151.80
	IV 3000 2	276.539877	276.539784	19/20	228.20	276.539877	276.539691	18/20	238.37
	IV 3000 3	277.334878	277.334878	20/20	61.11	277.334878	277.334878	20/20	40.40
	IV 3000 4	278.956422	278.956422	20/20	70.76	278.956422	278.956422	20/20	61.36
	IV 3000 5	276.595238	276.592466	19/20	123.03	276.595238	276.595238	20/20	108.00
	IV 3000 6	280.721533	280.721533	20/20	66.67	280.721533	280.721533	20/20	60.47
	IV 3000 7	273.653396	273.653396	20/20	143.06	273.653396	273.653396	20/20	169.85
	IV 3000 8	276.358447	276.358447	20/20	102.80	276.358447	276.358447	20/20	81.56
	IV 3000 9	274.864865	274.807248	15/20	201.57	274.864865	274.838571	18/20	241.92
	IV 3000 10	276.428571	276.381189	11/20	164.19	276.428571	276.407810	16/20	151.95
	Avg	121.961632	121.958056		92.85	121.961632	121.959884		90.40
	#Better	0	2			0	12		
	#Equal	40	26			40	26		
	#Worse	0	12			0	2		
	p-value					1.0	3.51e-3		

Available at http://www.info.univ-angers.fr/pub/hao/gmaxmeandp.html

Available at http://www.info.univ-angers.fr/pub/hao/maxmeandp.html and http:// www.mi.sanu.ac.rs/ ~nenad/edp/

Acknowledgments

We are grateful to the reviewers for their valuable comments and suggestions which helped us to improve the paper. This work was partially supported by the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20170904), the National Natural Science Foundation of China (Grant No. 61703213), six talent peaks project in Jiangsu Province (Grant No. RJFW-011), and NUPTSF (Grant Nos. NY217154 and RK043YZZ18004).