
HAL Id: hal-02309938
https://hal.science/hal-02309938v1

Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Higra: Hierarchical Graph Analysis
Benjamin Perret, Giovanni Chierchia, Jean Cousty, Silvio Jamil F. Guimarães,

Yukiko Kenmochi, Laurent Najman

To cite this version:
Benjamin Perret, Giovanni Chierchia, Jean Cousty, Silvio Jamil F. Guimarães, Yukiko Ken-
mochi, et al.. Higra: Hierarchical Graph Analysis. SoftwareX, 2019, 10, pp.100335.
�10.1016/j.softx.2019.100335�. �hal-02309938�

https://hal.science/hal-02309938v1
https://hal.archives-ouvertes.fr


SoftwareX 10 (2019) 100335

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Higra: Hierarchical Graph Analysis
B. Perret a,∗, G. Chierchia a, J. Cousty a, S.J. F. Guimarães b,a, Y. Kenmochi a, L. Najman a

a Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge UMR 8049, UPEMLV, ESIEE Paris, ENPC, CNRS, F-93162 Noisy-le-Grand, France
b PUC Minas - ICEI - DCC - VIPLAB, Brazil

a r t i c l e i n f o

Article history:
Received 19 July 2019
Received in revised form10 September 2019
Accepted 26 September 2019

Keywords:
Graph
Hierarchical clustering
Component tree

a b s t r a c t

Higra — Hierarchical Graph Analysis is a C++/Python library for efficient sparse graph analysis with a
special focus on hierarchical methods capable of handling large amount of data. The main aspects of
hierarchical graph analysis addressed in Higra are the construction of hierarchical representations (ag-
glomerative clustering, mathematical morphology hierarchies, etc.), the analysis and processing of such
representations (filtering, clustering, characterization, etc.), and their assessment. Higra targets a large
audience, from students and practitioners wanting an accessible library for quickly experimenting, to
researchers developing new methods for hierarchical analysis of graph data. Higra is a generic toolbox
for graph analysis and can be utilized in a large variety of application fields like machine learning, data
science, pattern analysis and computer vision. Moreover, it contains an image analysis module easing
the handling of pixel grid graphs by providing efficient algorithms dedicated to this field.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Version 0.4.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_243
Code Ocean compute capsule NA
Legal Code License Cecill-B
Code versioning system used git
Software code languages, tools, and services used C++, python
Compilation requirements, operating environments & dependencies C++ 14 compiler, Python, Numpy
If available Link to developer documentation/manual https://higra.readthedocs.io
Support email for questions benjamin.perret@esiee.fr

1. Motivation and significance

Graphs are getting increasingly popular in machine learning,
data science, pattern analysis and computer vision, as they pro-
vide a natural representation for structured or network data.
Among graph analysis methods, hierarchical approaches try to
capture the structure of a graph at various scales in a consistent
manner by sequentially merging graph vertices into increasingly
larger clusters until a single cluster remains. Such methods have
proven to be useful in a wide variety of application fields in which
data can be modelled as graphs such as image analysis, commu-
nity detection, mesh analysis, philogenetic tree construction, and
so on.

∗ Corresponding author.
E-mail address: benjamin.perret@esiee.fr (B. Perret).

Higra — Hierarchical Graph Analysis is a C++/Python library for
efficient sparse graph analysis with a special focus on hierarchical
methods. It aims at providing standard and state-of-the-art algo-
rithms for hierarchical graph analysis capable of handling large
amount of data (currently up to dozen of millions of vertices
on a classical desktop computer). It can handle both hierarchical
clustering and component trees, where each level of a hierarchy
represents a partial clustering of the space. Furthermore, the
design of Higra enables the user to easily switch between the dual
representations of hierarchical clustering: trees (dendrograms)
and saliency maps (ultrametric distances). Higra is a generic
toolbox for hierarchical graph representation construction, pro-
cessing and assessment: it is thus not focused toward a particular
application or domain and its fundamental functions can be used
in a variety of situations.

https://doi.org/10.1016/j.softx.2019.100335
2352-7110/© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2019.100335
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.100335&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_243
https://higra.readthedocs.io
mailto:benjamin.perret@esiee.fr
mailto:benjamin.perret@esiee.fr
https://doi.org/10.1016/j.softx.2019.100335
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 B. Perret, G. Chierchia, J. Cousty et al. / SoftwareX 10 (2019) 100335

Higra provides a Python API to ease its usage and to benefit
from the synergies created by the large amount of scientific
libraries available in the Python ecosystem. This API is thought to
be useable by students and expert researchers willing to quickly
develop new applications, experiment new methods, or develop
proofs of concepts. Vectorized operations on hierarchical repre-
sentations enable writing various algorithms working on hierar-
chical representations efficiently in Python. It is also thought for
seamless integration with classical Python data analysis pipelines
such as Scikit-Learn and modern optimization framework such
as PyTorch and TensorFlow. The Python interface is backed-up
by a C++ module where core algorithms are implemented to
ensure high performances. The C++ module is also useable as a
standalone library since it does not have any dependency to the
Python runtime.

Graphs are a common representation for data and many li-
braries exist to analyse them. Regarding generic toolbox for graph
processing with a Python interface, the main publicly available li-
braries are graph-tool [1], NetworkX [2], and igraph [3]. While they
propose numerous algorithms for graph analysis, they offer little
or no support for hierarchical analysis. Among major Python data
analysis libraries, Scipy [4] has a module dedicated to hierarchical
clustering but it is limited to complete graphs. On the contrary,
Scikit-Learn [5] has a module dedicated to agglomerative clus-
tering which can handle sparse graph. While it enables creating
flat clustering, also called partitioning, from a sparse graph using
classical agglomerative clustering algorithms, hierarchies cannot
be easily manipulated by users. The library mlpack [6], which
is a C++ machine-learning library with Python bindings, also
provides some hierarchical methods for point classification. It also
possesses numerous algorithms using hierarchical representation
of metric spaces and focused around the problem of efficient
distance computation; these algorithms and the associated data
structures are however not exposed in the user API. Hierarchical
clustering methods have also become popular in image analysis
and several libraries implement algorithms dedicated to appli-
cation domains and, sometimes proposing Python bindings, like
Pink [7], Olena [8], Vigra [9], or the more specialized iamxt [10].
Up to our knowledge, Higra is thus the first C++/Python library
providing a large variety of algorithms dedicated to hierarchical
graph analysis and not targeting a particular application.

This article is organized as follows. Section 2 presents the main
aspects of the library architecture and gives a summary of its
major functionalities. Section 3 provides two illustrative exam-
ples of the library on graph simplification and image filtering.
The computational performances of some standard agglomerative
hierarchical clustering algorithms are also assessed. Section 4
analyses the expected impact of the proposed library. Section 5
concludes the article.

2. Software description

In this section, we describe the structure of the library and the
major functionalities implemented.

2.1. Software architecture

Higra is composed of a core, header-only, C++ 14 module,
where performance critical data structures and algorithms are
implemented, and of a Python module exposing the C++ module
API and proposing higher level functions.

In Higra, graphs are analysed through their hierarchical rep-
resentations. The hierarchical representation of a graph corre-
sponds to a tree where each node is a cluster, also called a region,
of the input graph. The two main data structures of the library are

thus the graph class, implemented as an adjacency list, and the
tree class, implemented as a parent array [11].

These classes are lowly coupled to their associated data, ver-
tex and edge weights for graphs, and node weights for trees.
Those data are represented by multi-dimensional arrays using
the xtensor library [12] in C++ and Numpy [13] arrays in Python,
hence enabling their easy and efficient manipulation with stan-
dard array programming. This separation is achieved by imposing
that all the elements of a graph (vertices and edges) and all
the elements of a tree (nodes) are identified by integers indices
ranging from 0 to the number of elements minus one. Moreover,
in order to facilitate the exchange of data between a graph and
its hierarchical representation as a tree, we also impose that the
indices of the tree leaves are exactly the indices of the vertices of
the graph. In other words, an array representing vertex features
on the graph can be used as an array representing leaf node
features on the tree.

All dependencies of the core C++ module are header-only C++
library, thus ensuring that the library can be easily compiled and
extended on a large variety of systems. C++ functions and data
structures are mapped to Python types with Pybind11 [14]. Note
that xtensor arrays are mapped seamlessly to Numpy arrays.

The library is carefully tested with more than 98% (resp. 90%)
lines of codes of the C++ (resp. Python) module covered by unit
tests. Continuous integration is used to avoid regression issues on
major systems (Linux, Mac, and Windows).

2.2. Software functionalities

Higra contains a large amount of classical and recent algo-
rithms for the construction, the manipulation, and the analysis
of hierarchical graph representations:

• efficient methods and data structures to handle the dual
representations of hierarchical clustering: trees [15] (den-
drograms) and saliency maps [16] (ultrametric distances);

• hierarchical clusterings: quasi-flat zone hierarchy [17], hi-
erarchical watersheds [18,19], agglomerative clustering [20]
(single-linkage [11,21], average-linkage, complete-linkage,
exponential-linkage [22], Ward, or user-provided linkage
rule), constrained connectivity hierarchy [23];

• component trees: min and max trees [24,25];
• manipulate and explore hierarchies: simplification [26,

27], accumulators, cluster extraction, various attributes [28]
(size, volume, dynamics, perimeter, compactness, moments,
etc.), horizontal and non-horizontal cuts, alignment of hier-
archies [29];

• optimization on hierarchies: optimal cuts, energy hierar-
chies [30,31];

• algorithms on graphs: accumulators, vertices and clusters
dissimilarities, region adjacency graphs, minimum spanning
trees and forests, watershed cuts [32];

• assessment: supervised assessment of graph clusterings and
hierarchical clusterings [33,34];

• image toolbox: special methods for grid graphs, tree of
shapes [35], hierarchical clustering methods dedicated to
image analysis [36], optimization of Mumford–Shah en-
ergy [37].

3. Illustrative examples

This section presents illustrative examples of Higra usage and
performances. The first example demonstrates the use of hi-
erarchy simplification to improve clustering performances. The
second example shows how Higra can be used to perform image
filtering. Finally, the last example compares the performance of



B. Perret, G. Chierchia, J. Cousty et al. / SoftwareX 10 (2019) 100335 3

Higra agglomerative clustering algorithms to their Scikit-Learn
equivalent. These illustrations can be reproduced by downloading
the Python notebook.1

3.1. Hierarchical clustering simplification

Fig. 1 demonstrates the construction of a single-linkage hier-
archical clustering and its simplification by a cluster size crite-
rion [26]. One classical issue with the single-linkage clustering is
the presence of very small clusters branching very high in the
hierarchy. Such clusters are non-relevant and can be sent back to
the very bottom of the hierarchy. In the example, a hierarchy is
constructed in line 7 from a graph made of 3 clusters. One can see
that, in Higra, a hierarchy is indeed a tuple of 2 elements: a tree
and an array which associates an altitude with each node of the
tree (also called tree distance in the literature). A flat clustering
into three classes is extracted from the hierarchy on line 10.
The hierarchy is simplified on line 15: all clusters whose size is
smaller than 7 elements are removed. Finally, the dendrogram
of the simplified hierarchy is computed on line 16 and the new
3 class clustering is extracted on line 19. We can see that the
simplified hierarchy does not contain any small cluster anymore
and the corresponding flat clustering into 3 classes is greatly
improved.

3.2. Image filtering with a watershed hierarchy

The example in Fig. 2 demonstrates the use of hierarchical
clustering for image filtering [38]. The strategy followed here is
to first construct a watershed hierarchy by area [18,19] of the
gradient of the image represented as an edge-weighted graph.
The basic idea of the watershed segmentation [39] is to consider
an edge-weighted graph as a topographic surface and to associate
each catchment basin of this topographic surface with a cluster.
Intuitively, the watershed hierarchy by area is then obtained by
sequentially filtering the edge weights of the graph with area
closings [40] of increasing sizes and then computing the sequence
of watershed segmentations of these filtered edge weights. Then,
a flat clustering containing k clusters is extracted from the hierar-
chical representation. Finally, the colour, in the filtered image, of
each pixel contained in a cluster is replaced by the mean colour,
in the original image, of the pixels inside the cluster.

A 4-adjacency edge weighted graph is built from the gradient
of an image on lines 5 and 6. Then a watershed hierarchy by area
of the graph is constructed on line 9. The saliency map of the hi-
erarchy, which weights each edge of the graph by the ultrametric
distance between its extremities, is computed for illustrative pur-
pose on line 10 and is plotted in the 2D Khalimsky grid [41,42] on
line 12. This representation, sometimes called ultrametric contour
map [43], enables to visualize hierarchical clustering constructed
on a 4-adjacency graph as a contour image, where the strength of
a contour is (inversely) proportional to its brightness. Then, the
mean image colour inside each region of the hierarchy is com-
puted on line 16. The object of class HorizontalCutExplorer,
instantiated on line 19, eases the construction of horizontal-cuts
(flat clustering) of the given hierarchy. It is used to extract several
cuts containing different number of regions (line 19) and the
images corresponding to these cuts are reconstructed using the
mean image colour of their regions (line 20).

1 https://higra.readthedocs.io/en/latest/notebooks.html.

3.3. Performance comparison with Scikit-Learn

The performance of the agglomerative hierarchical clustering
algorithms of Higra and Scikit-Learn are compared in Fig. 3.
We generated sparse graphs of various sizes using a k-nearest
neighbours algorithm (with k = 10) on uniformly sampled points
in [0, 1]2. For each generated graph, we ran the single, complete,
average, and Ward linkage agglomerative clustering algorithms
from Higra (functions binary_partition_tree_X_linkage
where X is replaced by the name of the linkage rule) and Scikit-
Learn (functions linkage_tree for single, complete and average
linkage rules, and ward_tree for Ward linkage) 7 times and
we computed the mean and standard deviation runtime for each
graph size. We can see that Higra is constantly faster than Scikit-
learn by a factor comprised between 4 and 10 and the gap seems
to increase as the size of the graphs increases.

4. Impact

Up to our knowledge, Higra is the first library that gathers
so many algorithms for hierarchical graph analysis in one place.
As such, providing reference implementations of classical and
state-of-the-art algorithms will already provide great benefit by
favouring the spread of those methods among the community,
by easing reproducible research, and by helping the creation of
relevant comparisons between methods.

As Higra works on generic graphs and does not assume a
particular application, it can be used in a large variety of fields.
While its usage requires some knowledge on hierarchical repre-
sentations, it provides an easy-to-use Python interface which is
extensively documented. This can further help to spread the use
of the proposed approaches in the scientific community as well
as serving as a pedagogical tool for teachers.

While some algorithms still have to be written in C++ to
ensure high performances, we have found that the set of basic
operators provided in the library used in conjunction with the
vectorization of many operations on hierarchies indeed enables to
directly write many algorithms acting on hierarchies efficiently in
Python in a Numpy style. This enables to considerably simplify and
speed up the development of new methods compared to classical
C/C++ programming.

Higra is a new library, and as such, still has a limited base
of contributors and users. Some of its core functions have been
used for a long time in our research group and led to dozens
of publications [11,16,19,32,34,44–48] (among others) and the
usage of the library is spreading in new publications [26,49]. We
plan to incorporate all our future research works on hierarchical
graph representations in the library and we hope that Higra will
benefit from a large adoption from the community leading to
external users and contributors.

5. Conclusions

We presented Higra, a library for hierarchical sparse graph
analysis that contains many standard and state-of-the-art algo-
rithms in this field. Higra is made of a core C++ module and a
user friendly Python interface. Pre-compiled binaries of Higra are
available for Linux, Mac, and Windows 64 bits systems on the
Python Package Index - Pypi and can be installed with a simple
command: pip install higra.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

https://higra.readthedocs.io/en/latest/notebooks.html


4 B. Perret, G. Chierchia, J. Cousty et al. / SoftwareX 10 (2019) 100335

Fig. 1. Hierarchical clustering simplification. From left to right: the input graph with the true vertex labels, the dendrogram of the single linkage hierarchy, the
horizontal cut composed of 3 clusters in the single linkage hierarchy, the dendrogram of the simplified single linkage hierarchy, and the horizontal cut composed of
3 clusters in the simplified single linkage hierarchy.

Fig. 2. Image simplification with a watershed hierarchy. From left to right: original image, gradient, saliency map of the watershed hierarchy by area of the gradient,
simplified image reconstructed from the hierarchy with respectively 25, 50, and 100 regions.



B. Perret, G. Chierchia, J. Cousty et al. / SoftwareX 10 (2019) 100335 5

Fig. 3. Performance comparison between Higra and Scikit-Learn on single, complete, average, and Ward linkage agglomerative clustering.

Acknowledgements

The authors are grateful to CNPq (Universal 421521/2016-
3 and PQ 307062/2016-3), FAPEMIG (PPM-00006-16 and PPM-
00006-18) and PUC Minas for the financial support to this work.
This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Fi-
nance Code 001 and by CAPES/COFECUB 88887.191730/2018-
00. We also acknowledge financial support from the European
Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 721463 to the
SUNDIAL ITN network

References

[1] Graph-Tool. https://graph-tool.skewed.de/. [Online; Accessed 27 June
2019].

[2] NetworkX. https://networkx.github.io/. [Online; Accessed 27 June 2019].
[3] igraph. https://igraph.org/. [Online; Accessed 27 June 2019].
[4] Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools

for Python. http://www.scipy.org/. [Online; Accessed 27 June 2019].
[5] Scikit-Learn. https://scikit-learn.org/. [Online; Accessed 27 June 2019].
[6] Curtin RR, Edel M, Lozhnikov M, Mentekidis Y, Ghaisas S, Zhang S.

mlpack 3: a fast, flexible machine learning library. J Open Source Softw
2018;3:726. http://dx.doi.org/10.21105/joss.00726, URL https://doi.org/10.
21105/joss.00726.

[7] Pink. https://perso.esiee.fr/coupriem/Pink/doc/html/. [Online; Accessed 27
June 2019].

[8] Olena. https://www.lrde.epita.fr/wiki/Olena. [Online; Accessed 27 June
2019].

[9] Vigra. https://github.com/ukoethe/vigra. [Online; Accessed 27 June 2019].
[10] Souza R, Rittner L, Machado R, Lotufo R. iamxt: Max-tree toolbox for image

processing and analysis. SoftwareX 2017;6:81–4. http://dx.doi.org/10.1016/
j.softx.2017.03.001.

[11] Najman L, Cousty J, Perret B. Playing with Kruskal: Algorithms for mor-
phological trees in edge-weighted graphs. In: Hendriks CLL, Borgefors G,
Strand R, editors. Mathematical morphology and its applications to signal
and image processing. Lecture notes in computer science, vol. 7883, Berlin,
Heidelberg: Springer; 2013, p. 135–46. http://dx.doi.org/10.1007/978-3-
642-38294-9_12.

[12] xtensor. https://github.com/QuantStack/xtensor. [Online; Accessed 27 June
2019].

[13] Oliphant T. NumPy: A guide to NumPy. USA: Trelgol Publishing; 2006, URL
http://www.numpy.org/. [Online; Accessed 27 June 2019].

[14] Pybind11. https://github.com/pybind/pybind11. [Online; Accessed 27 June
2019].

[15] Carlsson G, Mémoli F. Characterization, stability and convergence of
hierarchical clustering methods. J Mach Learn Res 2010;11:1425–70.

[16] Cousty J, Najman L, Kenmochi Y, Guimarães S. Hierarchical segmentations
with graphs: Quasi-flat zones, minimum spanning trees, and saliency
maps. J Math Imaging Vision 2018;60(4):479–502.

[17] Meyer F, Maragos P. Morphological scale-space representation with level-
ings. In: Nielsen M, Johansen P, Olsen OF, Weickert J, editors. Scale-space
theories in computer vision. Berlin, Heidelberg: Springer; 1999, p. 187–98.

[18] Meyer F. The dynamics of minima and contours. In: Maragos P, Schafer RW,
Butt MA, editors. Mathematical morphology and its applications to image
and signal processing. US, Boston, MA: Springer; 1996, p. 329–36. http:
//dx.doi.org/10.1007/978-1-4613-0469-2_38.

[19] Cousty J, Najman L. Incremental algorithm for hierarchical minimum
spanning forests and saliency of watershed cuts. In: Soille P, Pesaresi M,
Ouzounis GK, editors. Mathematical morphology and its applications to
image and signal processing. Berlin, Heidelberg: Springer; 2011, p. 272–83.

[20] Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview.
Data Min Knowl Discov 2012;2(1):86–97.

[21] Gower JC, Ross GJS. Minimum spanning trees and single linkage cluster
analysis. J R Stat Soc C 1969;18(1):54–64.

[22] Yadav N, Kobren A, Monath N, Mccallum A. Supervised hierarchical clus-
tering with exponential linkage. In: Chaudhuri K, Salakhutdinov R, editors.
Proceedings of the 36th international conference on machine learning.
Proceedings of machine learning research, vol.97, Long Beach, California,
USA: PMLR; 2019, p. 6973–83.

[23] Soille P. Constrained connectivity for hierarchical image partitioning and
simplification. IEEE Trans Pattern Anal Mach Intell 2008;30(7):1132–45.
http://dx.doi.org/10.1109/TPAMI.2007.70817.

[24] Salembier P, Oliveras A, Garrido L. Anti-extensive connected opera-
tors for image and sequence processing. IEEE Trans Image Process
1998;7(4):555–70. http://dx.doi.org/10.1109/83.663500.

[25] Jones R. Connected filtering and segmentation using component trees.
Comput Vis Image Underst 1999;75(3):215–28. http://dx.doi.org/10.1006/
cviu.1999.0777.

[26] Perret B, Cousty J, Guimaraes SJF, Kenmochi Y, Najman L. Removing non-
significant regions in hierarchical clustering and segmentation. 2019, p.
1–7, submitted for publication.

[27] Barcelos IB, da Fonseca GB, Najman L, Kenmochi Y, Perret B, Cousty J, et
al. Exploring hierarchy simplification for non-significant region removal.
In: 32th SIBGRAPI conference on graphics, patterns and images, Rio de
Janeiro, Brazil, October, 2019; 2019. p. 1–7. (accepted for publication).

https://graph-tool.skewed.de/
https://networkx.github.io/
https://igraph.org/
http://www.scipy.org/
https://scikit-learn.org/
http://dx.doi.org/10.21105/joss.00726
https://doi.org/10.21105/joss.00726
https://doi.org/10.21105/joss.00726
https://doi.org/10.21105/joss.00726
https://perso.esiee.fr/coupriem/Pink/doc/html/
https://www.lrde.epita.fr/wiki/Olena
https://github.com/ukoethe/vigra
http://dx.doi.org/10.1016/j.softx.2017.03.001
http://dx.doi.org/10.1016/j.softx.2017.03.001
http://dx.doi.org/10.1016/j.softx.2017.03.001
http://dx.doi.org/10.1007/978-3-642-38294-9_12
http://dx.doi.org/10.1007/978-3-642-38294-9_12
http://dx.doi.org/10.1007/978-3-642-38294-9_12
https://github.com/QuantStack/xtensor
http://www.numpy.org/
https://github.com/pybind/pybind11
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb15
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb15
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb15
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb16
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb16
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb16
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb16
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb16
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb17
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb17
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb17
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb17
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb17
http://dx.doi.org/10.1007/978-1-4613-0469-2_38
http://dx.doi.org/10.1007/978-1-4613-0469-2_38
http://dx.doi.org/10.1007/978-1-4613-0469-2_38
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb19
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb19
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb19
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb19
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb19
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb19
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb19
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb20
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb20
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb20
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb21
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb21
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb21
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb22
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb22
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb22
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb22
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb22
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb22
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb22
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb22
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb22
http://dx.doi.org/10.1109/TPAMI.2007.70817
http://dx.doi.org/10.1109/83.663500
http://dx.doi.org/10.1006/cviu.1999.0777
http://dx.doi.org/10.1006/cviu.1999.0777
http://dx.doi.org/10.1006/cviu.1999.0777
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb26
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb26
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb26
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb26
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb26


6 B. Perret, G. Chierchia, J. Cousty et al. / SoftwareX 10 (2019) 100335

[28] Zhang D, Lu G. Review of shape representation and description techniques.
Pattern Recognit 2004;37(1):1–19.

[29] Pont-Tuset J, Arbeláez P, Barron JT, Marques F, Malik J. Multiscale combi-
natorial grouping for image segmentation and object proposal generation.
IEEE Trans Pattern Anal Mach Intell 2017;39(1):128–40. http://dx.doi.org/
10.1109/TPAMI.2016.2537320.

[30] Guigues L, Cocquerez JP, Le Men H. Scale-sets image analysis. Int J Comput
Vis 2006;68(3):289–317. http://dx.doi.org/10.1007/s11263-005-6299-0.

[31] Kiran BR, Serra J. Global–local optimizations by hierarchical cuts and
climbing energies. Pattern Recognit 2014;47(1):12–24. http://dx.doi.org/10.
1016/j.patcog.2013.05.012.

[32] Cousty J, Bertrand G, Najman L, Couprie M. Watershed cuts: Minimum
spanning forests and the drop of water principle. IEEE Trans Pattern Anal
Mach Intell 2009;31(8):1362–74.

[33] Heller KA, Ghahramani Z. Bayesian hierarchical clustering. In: Proceedings
of the 22nd international conference on machine learning. ICML ’05, ACM;
2005, p. 297–304. http://dx.doi.org/10.1145/1102351.1102389.

[34] Perret B, Cousty J, Guimarães SJ, Maia DS. Evaluation of hierarchical
watersheds. IEEE Trans Image Process 2018;27(4):1676–88. http://dx.doi.
org/10.1109/TIP.2017.2779604.

[35] Géraud T, Carlinet E, Crozet S, Najman L. A quasi-linear algorithm to
compute the tree of shapes of nD images. In: Hendriks CLL, Borgefors G,
Strand R, editors. Mathematical morphology and its applications to signal
and image processing. Berlin, Heidelberg: Springer; 2013, p. 98–110.

[36] Maninis K, Pont-Tuset J, Arbeláez P, Gool LV. Convolutional oriented
boundaries: From image segmentation to high-level tasks. IEEE Trans
Pattern Anal Mach Intell 2018;40(4):819–33.

[37] Mumford D, Shah J. Optimal approximations by piecewise smooth
functions and associated variational problems. Comm Pure Appl Math
1989;42(5):577–685. http://dx.doi.org/10.1002/cpa.3160420503.

[38] Salembier P, Garrido L. Binary partition tree as an efficient representation
for image processing, segmentation and information retrieval. IEEE Trans
Image Process 2000;9(4):561–76.

[39] Beucher S, Meyer F. The morphological approach to segmenta-
tion: the watershed transformation. Math Morphology Image Process
1993;34:433–81.

[40] Vincent L. Morphological area openings and closings for grey-scale images.
In: O Y-L, Toet A, Foster D, Heijmans HJAM, Meer P, editors. Shape in
picture. Berlin, Heidelberg: Springer; 1994, p. 197–208.

[41] Kovalevsky VA. Finite topology as applied to image analysis. Comput Vis
Graph Image Process 1989;46(2):141–61.

[42] Khalimsky E, Kopperman R, Meyer PR. Computer graphics and connected
topologies on finite ordered sets. Topology Appl 1990;36(1):1–17.

[43] Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hi-
erarchical image segmentation. IEEE Trans Pattern Anal Mach Intell
2011;33(5):898–916. http://dx.doi.org/10.1109/TPAMI.2010.161.

[44] Perret B, Collet C. Connected image processing with multivariate attributes:
an unsupervised Markovian classification approach. Comput Vis Image
Underst 2015;133:1–14. http://dx.doi.org/10.1016/j.cviu.2014.09.008.

[45] Santana Maia D, de Albuquerque Araujo A, Cousty J, Najman L, Perret B,
Talbot H. Evaluation of combinations of watershed hierarchies. In: Angulo J,
Velasco-Forero S, Meyer F, editors. Mathematical morphology and its ap-
plications to signal and image processing: 13th international symposium,
ISMM 2017, Fontainebleau, France, may 15–17, 2017, proceedings. Springer
International Publishing; 2017, p. 133–45. http://dx.doi.org/10.1007/978-3-
319-57240-6_11.

[46] Maia Santana D, Cousty J, Najman L, Perret B. Recognizing hierarchical
watersheds. In: Couprie M, Cousty J, Kenmochi Y, Mustafa N, editors.
Discrete geometry for computer imagery. Cham: Springer International
Publishing; 2019, p. 300–13.

[47] Santana Maia D, Cousty J, Najman L, Perret B. Watersheding hierarchies. In:
Burgeth B, Kleefeld A, Naegel B, Passat N, Perret B, editors. Mathematical
morphology and its applications to signal and image processing. Cham:
Springer International Publishing; 2019, p. 124–36.

[48] Robic J, Perret B, Nkengne A, Couprie M, Talbot H. Self-dual pattern spectra
for characterising the dermal-epidermal junction in 3D reflectance confocal
microscopy imaging. In: Burgeth B, Kleefeld A, Naegel B, Passat N, Perret B,
editors. Mathematical morphology and its applications to signal and image
processing. Cham: Springer International Publishing; 2019, p. 508–19.

[49] Chierchia G, Perret B. Ultrametric fitting by gradient descent. In: Advances
in neural information processing systems, vol. 32. NeurIPS, 2019, in press.
arXiv:1905.10566.

http://refhub.elsevier.com/S2352-7110(19)30247-X/sb28
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb28
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb28
http://dx.doi.org/10.1109/TPAMI.2016.2537320
http://dx.doi.org/10.1109/TPAMI.2016.2537320
http://dx.doi.org/10.1109/TPAMI.2016.2537320
http://dx.doi.org/10.1007/s11263-005-6299-0
http://dx.doi.org/10.1016/j.patcog.2013.05.012
http://dx.doi.org/10.1016/j.patcog.2013.05.012
http://dx.doi.org/10.1016/j.patcog.2013.05.012
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb32
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb32
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb32
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb32
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb32
http://dx.doi.org/10.1145/1102351.1102389
http://dx.doi.org/10.1109/TIP.2017.2779604
http://dx.doi.org/10.1109/TIP.2017.2779604
http://dx.doi.org/10.1109/TIP.2017.2779604
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb35
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb35
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb35
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb35
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb35
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb35
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb35
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb36
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb36
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb36
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb36
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb36
http://dx.doi.org/10.1002/cpa.3160420503
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb38
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb38
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb38
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb38
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb38
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb39
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb39
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb39
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb39
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb39
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb40
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb40
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb40
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb40
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb40
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb41
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb41
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb41
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb42
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb42
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb42
http://dx.doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1016/j.cviu.2014.09.008
http://dx.doi.org/10.1007/978-3-319-57240-6_11
http://dx.doi.org/10.1007/978-3-319-57240-6_11
http://dx.doi.org/10.1007/978-3-319-57240-6_11
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb46
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb46
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb46
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb46
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb46
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb46
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb46
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb47
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb47
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb47
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb47
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb47
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb47
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb47
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb48
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb48
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb48
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb48
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb48
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb48
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb48
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb48
http://refhub.elsevier.com/S2352-7110(19)30247-X/sb48
http://arxiv.org/abs/1905.10566

	Higra: Hierarchical Graph Analysis
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Hierarchical clustering simplification
	Image filtering with a watershed hierarchy
	Performance comparison with Scikit-Learn

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgements
	References


