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Abstract. The in vivo erythropoiesis, which is the generation of mature red blood cells in the bone marrow of whole organisms,
has been described by a variety of mathematical models in the past decades. However, the in vitro erythropoiesis, which
produces red blood cells in cultures, has received much less attention from the modelling community. In this paper, we
propose the first mathematical model of in vitro erythropoiesis. We start by formulating different models and select the best
one at fitting experimental data of in vitro erythropoietic differentiation obtained from chicken erythroid progenitor cells. It
is based on a set of linear ODE, describing 3 hypothetical populations of cells at different stages of differentiation. We then
compute confidence intervals for all of its parameters estimates, and conclude that our model is fully identifiable. Finally,
we use this model to compute the effect of a chemical drug called Rapamycin, which affects all states of differentiation in
the culture, and relate these effects to specific parameter variations. We provide the first model for the kinetics of in vitro
cellular differentiation which is proven to be identifiable. It will serve as a basis for a model which will better account for the
variability which is inherent to the experimental protocol used for the model calibration.

Keywords: Dynamic modelling, Identifiability analysis, erythropoiesis, In vitro differentiation

1. Introduction

Erythropoiesis is the process by which red blood
cells are produced. It occurs within the broader frame
of haematopoiesis, the process which generates all
blood cells. The dynamics of haematopoiesis has
been extensively modelled mathematically in the past
decades, with the first historical models published as
early as fifty years ago [1, 2] (for a review of the his-
tory of haematopoiesis modelling in general, see [3]).

∗Corresponding author: Ronan Duchesne, Tel.: +334 72 72 80
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Models of haematopoiesis have improved the under-
standing of both the processes they describe [4], and
the mathematical tools they use. These models com-
prise non-exhaustively Differential Equations (DE,
either ordinary [1, 2, 5], partial, which can be struc-
tured by age, maturity, or a combination of these [6],
or even delay differential equations [7]) and agent-
based models [8]. They can be fully deterministic [5]
or can include a more or less prominent stochastic
component [9–11].

Recent works specifically focusing on erythro-
poiesis comprise DE-based models [12, 13] and
multi-scale descriptions of these phenomena [14–16].
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All these works aim at modeling the in vivo phys-
iological processes, i.e. the processes occurring in
a whole organism. Those processes are related to
numerous pathologies, for which clinical data are
very sparse and must be acquired on experimen-
tally prohibitive time-scales, which complicates their
study. Modeling has therefore provided significant
insights into these pathologies [4]. On the contrary,
the in vitro context, i.e. the process that takes place in
cells grown in culture, is much simpler to characterize
experimentally. Yet, to our knowledge, no modeling
study has focused on it so far. Since the in vitro dif-
ferentiation is an experimental tool of choice for the
study of cellular decision-making [17–19], we pro-
pose to develop a model for the dynamics of the
in vitro erythropoiesis.

Moreover, the current models of erythropoiesis
suffer from one major drawback: the weakness of
their parameterization, which can fall within three
categories.

A vast majority of the existing models of erythro-
poiesis are based on experimental parameter values
from the literature. In some cases these values are
used in other contexts that those in which they were
obtained (typically, in other species [12]).

In other cases, the parameter values of a model
are chosen arbitrarily to reproduce a qualitative
behaviour. Apart from this qualitative fit, such
approaches do not provide any information regarding
the validity of the values [16].

Finally, when the parameters of a model are esti-
mated to reproduce a dataset, the precision of this
estimation is seldom investigated [20]. By this, we
mean that depending on the algorithmic details of the
estimation, it is possible that several values of the
parameters might render the same fit to the data. In
this case the model is said to be unidentifiable.

A model is said to be identifiable if and only if
it is possible to infer a unique value for each of its
parameter by comparing its output to experimental
data. Otherwise it is unidentifiable. A model can be
non-identifiable for several reasons [21, 22].

Structural identifiability is related to the structure
of the model, and the observed variables. A model is
structurally unidentifiable when several of its param-
eters are redundant, meaning that they can vary in
such a manner that the measured output of the model
is not affected [21–23]. A variety of methods, based
on different approaches, can be used to assess the
structural identifiability of a dynamic model. These
include, non-exhaustively, the Taylor series method
[24], the similarity transformation [25], the gener-

ating series method [26], and the profile likelihood
approach [22, 27, 28]. A review of these methods is
provided in [21] and their performance is assessed in
[23].

Practical Identifiability is related to the quantity
and quality of the data used for model calibration.
If the data is too sparse or too noisy to estimate
all parameters together, then the model is said to be
practically unidentifiable [21, 22]. Essentially three
kinds of frequentist methods can be used to assess
the practical identifiability of a model: methods based
on the Fisher Information Matrix (FIM) [29], which
use a parabolic approximation of the likelihood func-
tion, profile-likelihood-based methods [22, 28], and
bootstrapping, which is based on the resampling of
the data [30]. FIM-based methods are less com-
putationally demanding, because they require the
fewest parameter estimation steps [31], but due to
their parabolic approximation they are proven to
render biased results [22]. On the other hand, the
profile likelihood-based method is computationally
cheaper than bootstrapping [31], and is proven to
detect both structural and practical unidentifiabilities
[22, 27].

Despite the growth of the interest in identifiability
and related concepts among the biological systems
modelling community [21, 32–34] the identifiabil-
ity of models remains seldom investigated [20]. With
this in mind, the most rigorous way to design and
calibrate a model of erythropoiesis seems to use ded-
icated experiments to determine its parameter values.
Once these values have been determined, one should
then test the identifiability of the model before using
it for any prediction.

In this paper, we aim at developing an identifiable
model for the dynamics of the in vitro erythroid dif-
ferentiation. The data that we generated to calibrate
it consists in counts of different cell sub-populations
at regularly spaced time-points during the course
of proliferation and differentiation of chicken ery-
throid progenitors. We start by formulating different
possible structures for the dynamics of the system,
and for the distribution of residuals. We select the
best structure and distribution using classical infor-
mation criteria. We then assess the identifiability of
our model using an approach based on the profile
likelihood concept. Finally, we test the adaptation
of our model in a perturbed context, when cells are
exposed to rapamycin, a drug which is known to affect
the dynamics of differentiation, although its precise
effect on proliferation and differentiation remains
unclear. Since our model is identifiable, it is possi-
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ble to quantify the effect of the drug on each of its
parameters.

2. Methods

2.1. Experimental Data

2.1.1. T2EC cell culture
The experimental setting from which all the data

used in this study were obtained consists in a cul-
ture of chicken erythroid progenitors called T2EC
that were extracted from the bone marrow of 19 days-
old SPAFAS white leghorn chickens embryos (INRA,
Tours, France). They may either be maintained in
a proliferative state or induced to differentiate into
mature erythrocytes depending on the medium in
which they are grown [35].

2.1.2. LM1 experiment
In the self-renewal medium (referred to as the LM1

medium) the progenitors self-renew, and undergo
successive rounds of division. LM1 medium was
composed of α-MEM medium supplemented with
10% Foetal bovine serum (FBS), 1 mM HEPES,
100 nM β-mercaptoethanol, 100 U/mL penicillin and
streptomycin, 5 ng/mL TGF-α, 1 ng/mL TGF-β and
1 mM dexamethasone as previously described [35].
After 10 days in LM1, the culture is composed at
>99% of erythroid progenitors cells [36, 37]. Cell
population growth was evaluated by counting living
cells in a 30µL sample of the 1mL culture using a
Malassez cell and Trypan blue staining (SIGMA),
which specifically dyes dead cells (Fig. 1-A), each
24h after the beginning of the experiment.

2.1.3. DM17 experiment
T2EC can be induced to differentiate by remov-

ing the LM1 medium and placing cells into 1mL
of the differentiation medium, referred to as DM17
(α-MEM, 10% foetal bovine serum (FBS), 1 mM
HEPES, 100 nM β-mercaptoethanol, 100 U/mL peni-
cillin and streptomycin, 10 ng/mL insulin and 5%
anaemic chicken serum (ACS)). Upon the switch-
ing of culture medium, a fraction of the progenitors
undergoes differentiation and becomes erythrocytes.
The culture thus becomes a mixture of differentiated
and undifferentiated cells, with some keeping prolif-
erating. Cell population differentiation was evaluated
by counting differentiated cells in a 30µL sample
of the culture using a counting cell and benzidine
(SIGMA) staining which stains haemoglobin in blue

(Figure 1B). A parallel staining with trypan blue still
gives access to the overall numbers of living cells
(Figure 1B). Consequently, the data available from
this experiment are the absolute numbers of differen-
tiated cells, as well as the total number of living cells
(which comprises both self-renewing and differen-
tiated cells) at the same time points as in the LM1
experiment. The data presented on Figs 1C and 5A
are the total number of living cells in the culture, and
the fraction of differentiated cells, extrapolated from
the counting.

2.1.4. Rapamycin treatment
In the control condition, cells were grown in their

regular medium with 0.1% DMSO (Figure 1C, black
dots). In the treated condition, cells were grown in
the presence of rapamycin (Calbiochem), a chemical
drug known to affect both the number of living cells in
culture, and the proportion of differentiated cells [36,
38], as displayed on Figure 1C. Cells were treated
with Rapamycin at 50 nM just after switching them
to the DM17 medium. It should be noticed that the
very same original culture was used to initiate all the
experiments presented on Figure 1C (in the LM1 and
DM17 media, as well as in the treated and untreated
conditions).

2.1.5. Commitment experiment
Another piece of experimental data that will be of

use for calibrating our models is the result of the com-
mitment experiment. The full protocols and results of
this experiment are described in Figure 10 of [17] and
are summarized on Figure 1D. In this experiment,
once a cell culture has been switched to the DM17
medium, it can be switched back to the LM1 medium.
Switching back after 24 hours of differentiation does
not cancel the self-renewing ability of the progeni-
tors, but switching back after 48 hours does: instead of
proliferating again, the culture stagnates. This means
that there must remain some self-renewing cells in
the culture after one day, but that they all have started
differentiating after two days.

2.2. Models

2.2.1. Structural Model
We propose three alternative dynamic models of

the erythroid differentiation, which are summarized
on Figure 2.

The SB model comprises only two compartments
(Figure 2A), a self-renewing one (S) and a differen-
tiated one (B, which stands for benzidine-positive),
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Fig. 1. Experimental context. A: In LM1 medium the culture is only composed of living and dead cells in the self-renewal state. The amount
of living cells can be measured by trypan blue staining. B: In DM17 medium, the culture is a mixture of living and dead, self-renewing and
differentiating cells. The amount of living cells can be measured by trypan blue staining. The amount of differentiated cells can be measured
by benzidine staining. C: Data used to calibrate the models. Black dots are the results of a single experiment in the control situation (no
treatment). Red triangles are the results of the same experiment under rapamycin treatment. Both conditions were obtained with the same
initial populations, so the black dot and red triangle are the same at t = 0. For readability, living cell counts are displayed in log-scale, and
differentiated cell counts are displayed as a fraction of the total living cell count. D: Commitment experiment. If the differentiating cells are
switched back to LM1 after 24h of differentiation the culture starts proliferating again (upper trajectory). If the cells are switched back to
LM1 after 48h, the culture stagnates (lower trajectory).
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Fig. 2. Diagrams of three possible dynamic models for our data. A: The SB model has no intermediary compartment. B: The S2B model
has no intermediary compartment, but the self-renewing cells change proliferation rate in DM17. C: The SCB model has an intermediary
compartment.

whose dynamics are given by the equations:

dS

dt
= ρSS(t) − δSBS(t), (1a)

dB

dt
= ρBB(t) + δSBS(t). (1b)

This model is characterized by a set θ =
(ρS, δSB, ρB) of three parameters, where ρi is the net
proliferation rate of compartment i. For estimation-
related reasons, it incorporates the balance between
cell proliferation and cell death. This means that ρi

can be either positive (more proliferation than death)
or negative (more death than proliferation). On the
other hand δij is the differentiation rate of cell type i

into cell type j, which is positive.
The S2B model comprises also the S and B

compartments (Figure 2B), but allows the self-
renewing cells to change their net proliferation rate
upon culture medium switching. This formulation
arose from the consideration that proliferation is
faster in the DM17 than in the LM1 medium (Fig-
ure 1C). The dynamics of this model are given by the
equations:

dSLM1

dt
= ρLM1SLM1(t), (2a)

dSDM17

dt
= ρDM17SDM17(t) − δSBSDM17(t), (2b)

dB

dt
= ρBB(t) + δSBSDM17(t). (2c)

It is characterized by the set (ρLM1, ρDM17,

δSB, ρB) of four parameters, following the same nota-
tion convention as in the SB model.

Finally, the SCB model (Figure 2C) also comprises
the same self-renewing and differentiated compart-
ments as the SB model, as well as a hypothetical
committed cells compartment C. This compartment
comprises intermediary cells that are committed
to differentiation, yet not fully differentiated. The
dynamics of these three compartments are given by

the equations:

dS

dt
= ρSS(t) − δSCS(t), (3a)

dC

dt
= ρCC(t) + δSCS(t) − δCBC(t), (3b)

dB

dt
= ρBB(t) + δCBC(t). (3c)

It is characterized by the set (ρS, δSC, ρC, δCB, ρB)
of five parameters, following the same naming con-
vention as the two other models.

Moreover, it should be noted that differential sys-
tems (1) to (3) are fully linear, and that their matrices
are lower-triangular, which makes them easily solv-
able analytically. Their simulation is thus very fast.
The detail of the analytical solutions to these systems
is given as supplementary material.

Finally, not all variables in the models can be mea-
sured through the experiments that we presented in
section 2.1, and we only have access to two observ-
ables of the system: the total amount of living cells
T (t) through trypan blue staining, and the amount of
differentiated cells B through benzidine staining. The
number of living cells T can be measured in LM1 and
in DM17, yet in LM1 there is no differentiation, so in
the LM1 experiment T = S (or T = SLM1 in the S2B
model). The number of differentiated cells B can be
measured in DM17 (it is null in LM1).

2.2.2. Error Model
In order to properly define the likelihood of

our model, we need to define a statistical model
for the prediction error of our dynamical model,
y − f (t, y0, θ), where y is the data and f the pre-
diction from the dynamical model (which depends
on time t, the initial condition y0 and the parame-
ters θ of the model). This prediction error is usually
modelled by a gaussian distribution with a null mean
[22, 39, 40]. Then, the standard deviation of the error
remains to be characterized.
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Table 1
Definition of three different error models [40].

Error model Definition of g Error parameters

Constant error ∀ j gi(tj) = a ξ = (a)
Proportional error ∀ j gi(tj, y0, θ) = b.fi(tj, y0, θ) ξ = (b)
Combined error ∀ j gi(tj, y0, θ) = a + b.fi(tj, y0, θ) ξ = (a, b)

When dealing with small datasets, a reasonable
option is to build an additional model layer for the
standard deviation of the error [39]. This means
finding a suitable function g, of the time t, the
initial condition y0, the dynamical parameters θ

and possibly other parameters ξ (which we will
call the error parameters), to describe this vari-
ance. The error model is then completely described
as: yi,j ↪→ N (

fi(tj, y0, θ), gi(tj, y0, θ, ξ)
)
. Several

simple forms have been proposed for the function
g [40], that we summarize in Table 1. However, it is
not obvious whether one should be used in general,
or if the choice of g should be context-specific.

With this representation, the log-likelihood of the
model follows as:

−2 log(L) = nm log(2π) +
n∑

i=1

m∑
j=1

((
yi,j − fi(tj, θ)

)
gi(tj, θ, ξ)

)2

+2log(gi(tj, θ, ξ)), (4)

where n is the number of variables of the dynamic
model, and m the number of measurement points for
each variable, and from which the log(2π) term is
dropped. In the end, the best-fit parameters of the
model are the values of θ and ξ which minimize the
quantity defined in Equation (4). In this equation, the
datayi,j and the predictionfi

(
tj, θ

)
are the total num-

ber of cells in each measured compartment of the
model (without any transformation of the variables).

2.3. Parameter Estimation

Considering the data at our disposal, we adopted
the following procedure for parameter estimation:

1. Estimate ρS (or ρLM1 in the S2B model), and the
corresponding error parameters ξ1 from the LM1
experiment. In LM1 there is no differentiation,
so the S compartment just follows an exponential
growth with rate ρS .

2. (a) In the SB model, set δSB so that there are
no more self-renewing cells after 2 days
of differentiation (which we interpret as

S(48h) ≤ 1, i.e. δSB ≥ ρS + 1
2 ln(S(0)) from

Equation (1a)).
(b) In the SCB model, set δSC so that there are no

more self-renewing cells after 2 days of dif-
ferentiation (which we interpret as S(48h) ≤
1, i.e. [4] δSC ≥ ρS + 1

2 ln(S(0)) from Equa-
tion (3a)).

3. Estimate the remaining parameters, and the cor-
responding error parameters ξ2, using the data
from the DM17 experiment. In the SB model,
the only remaining parameter is ρB. In the S2B
model, the remaining parameters are ρDM17, δSB

and ρB. In the SCB model, these are ρC, δCB,
ρB.

The second step of this estimation sets δSC (δSB

in the SB model) to a value such that there are no
more self-renewing cells after 2 days of differentia-
tion. This observation does not come from the cellular
kinetics experiment that we presented on Figure 1C.
It rather uses the results of the commitment experi-
ment (Section 2.1.5 & Figure 1D), which shows that
some self-renewing cells remain in the culture after
one day, but that they all are differentiated after two
days [17].

In the SCB model, considering that the self-
renewing compartment S is characterized by an
exponential dynamic, and that there are no more self-
renewing cells if and only if S ≤ 1, this provides an
upper and a lower bound for δSC:

ρS + 1

2
ln(S0) ≤ δSC ≤ ρS + ln(S0). (5)

For the sake of simplicity, we will set
δSC = ρS + 1

2 ln(S0) in order to verify the equality:
S(48h) = 1 in the following. Figures S2 and S3
show that varying δSC between its two bounds does
not refute our conclusions.

These considerations do not affect the S2B
model, in which the switching of the culture
medium only affects the proliferation rate of the S
compartment.

In both estimation steps, the -log likelihood was
minimized using the Truncated Newton’s algorithm
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[41, 42] implemented in the python package for scien-
tific computing scipy [43]. Convergence to the global
minimum was assured by a random sampling of the
initial guesses for parameter values (Figure S1).

2.4. Model Selection

In order to choose a proper error model, one needs
to adopt a selection criterion, which allows to rank
models and keep only the best ones, by balancing the
quality of the fit of the models with their complexity.

We used a selection approach based on the cor-
rected Akaike’s Information Criterion (AICc, [44]):

AICc = −2 log(L) + 2kn

n − k − 1
. (6)

where k is the number of parameters of the model and
n is the sample size. The corrective term in AICc has
been developed for linear models and small samples.
However, since there is no selection criterion derived
from AIC for non-linear models, the literature rec-
ommends using AICc when in doubt [44].

From the AICc values of a set of models, we com-
pute the corresponding Akaike’s weights [44]:

wi = exp(− (AICci−min(AICc))
2 )∑R

j=1 exp(− (AICci−min(AICc))
2 )

, (7)

where wi is the Akaike’s weight of the i-th model, and
R is the number of competing models. The Akaike’s
weight of a given model in a given set of models can
be seen as the probability that it is the best one among
the set [44]. In this setting, selecting the best models
of a set of models means computing their Akaike’s
weights, sorting them, and keeping only the models
whose weights add up to a significance probability
(for example, 95%).

2.5. Identifiability Analysis

We assessed the identifiability of our model using
the method based on the statistical notion of profile
likelihood [22, 45].

For a model with k parameters, a parameter space

 = {(θi, i ∈ {1, 2, . . . , k}), θi ∈ R}, and a likeli-
hood L, the profile likelihood PLθi with respect to
parameter θi is defined as:

∀x ∈ R PLθi (x) = max
θj /= i

(
L(θi = x, θj)

)
. (8)

Namely, the profile likelihood with respect to a
parameter at a certain value is the likelihood of the
model, maximized with respect to all the other param-
eters. Computing the profile likelihood at a certain
value x of a parameter θi means to set θi = x and
to estimate the values of the other parameters θj

that minimize the error −2 log(L) in this setting.
Consequently, −2 log(PL) is minimal at the optimal
parameter values set, and increases in both directions.

It is possible to define a confidence interval CIθi

at a level of confidence α ∈]0, 1[ for a parameter θi,
derived from the evaluation of the profile likelihood
[22]:

CIθi (α) = {x ∈ R | − 2 log(PLθi (x))

+2 log(PLθi (x̂)) ≤ χ2(α, k)
}

, (9)

where x̂ is the optimal estimate of θi, k is the num-
ber of parameters being estimated and χ2(α, k) is the
α-quantile of the χ2 distribution with k degrees of
freedom.

Namely, all the parameter sets that render a profile
likelihood closer to its minimal value than a threshold
χ2(α, k) belong to the confidence interval.

A model is then practically identifiable at the
level of confidence α if and only if the confidence
intervals at level α of all of its parameters are bounded
[22]. In this study, we used α = 0.95.

The profile likelihood approach is a good way of
addressing the identifiability of a model, because it
allows to detect both structural and practical uniden-
tifiabilities. This feature makes the approach more
efficient in practice than most of the other methods
in the field [21, 23, 27, 46].

3. Results & discussion

3.1. Measurement error

The data that we used for the calibration of our
models are displayed on figure 1C. For readability,
it displays the total cell counts in log scale, and the dif-
ferentiated cell counts as a fraction of the total count.
This representation emphasises the fact that the mea-
sured cell population in LM1 decreases between 0h
and 24h, in both conditions (control, and rapamycin-
treated).

Every time-point displayed on figure 1C was
obtained by a single measurement, which increases
the measurement error compared to a replicated
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Table 2
Selection criteria evaluated for the nine possible pairs of error model and dynamic model.

Dynamic model Error model −2 logL1 −2 logL2 k AIC AICc �AICc wAICc

SB constant 107 228 4 343 347 45 8.9 × 10−11

SB proportional 106 199 4 313 317 15 2.5 × 10−4

SB combined 106 199 6 317 328 26 1.3 × 10−6

S2B constant 107 195 6 314 324 22 7.6 × 10−6

S2B proportional 106 174 6 291 302 0 0.55
S2B combined 106 174 8 295 319 18 8.7 × 10−5

SCB constant 107 195 6 314 325 23 6.7 × 10−6

SCB proportional 106 174 6 292 302 0.40 0.45
SCB combined 106 174 8 296 320 18 7.1 × 10−5

L1 is the log-likelihood of the model for the LM1 data. L2 is the log-likelihood of the model for the DM17
data. k is the number of estimated parameters in each of the models, according to the procedure described
in section 2.3. For each model, the sample size is n = 15. AIC = −2 logL1 − 2 logL2 + 2k is the Akaike’s
Information Criterion [44]. AICc is the corrected AIC (Equation (6)). �AICc = AICc − min(AICc) is
the AICc difference. wAICc is the Akaike’s weight (Equation (7)).

experiment. We conclude that the observed decrease
in the total living cell number in the LM1 medium
(in both conditions) is due to the experimental error
that the protocol suffers rather than to a hypothetical
biological feature of the cells under study.

3.2. Fitting the model with no treatment: Model
design and validation

3.2.1. Choosing a structural and an error model:
selection approach

By combining the three error models presented in
Table 1 with the three dynamic models presented in
Figure 2, it is possible to define 9 different models
of our system. In order to choose the best one at
reproducing the in vitro dynamics of erythropoiesis,
we computed the maximum-likelihood estimates of
the parameters of these nine models, (which are dis-
played in Table S1).

For each of these nine models, we computed the
likelihood-based selection criteria that are displayed
on Table 2. The S2B and SCB dynamic models with
a proportional error appear as the best ones and offer
very similar fits. All other models are far worse (their
Akaike’s weights add up to around 4 × 10−4) but it
remains impossible, based on this criterion, to deci-
pher which of the two remaining models should be
used to best describe the in vitro erythropoiesis.

However, the S2B model does not describe the
results of the commitment experiment (Figure 1D).
In this model indeed, self-renewing cells switch
between different self-renewing rates upon medium
switching. As a consequence, switching the cells back
and forth between the two media should just switch
their proliferation rate, without affecting their pro-
liferation ability. So the cells would never lose their

proliferation ability, as opposed to the result of the
commitment experiment.

On the other hand, the SCB model predicts that
upon switching to the differentiation medium, the
cells from the S compartment start differentiating.
Once they are all differentiated, cells from the C and
B compartments can still proliferate, but this prolif-
eration might be cancelled by a switch back to the
LM1 medium. It is thus impossible to describe the
process of commitment with the S2B model, while it
is possible with the SCB model.

As a conclusion, the SCB model with a pro-
portional error is the best-fitting model which also
accounts for the results of the commitment experi-
ment, making it our dynamic model of choice for the
rest of this study.

3.2.2. Identifiability analysis
In order to use a model for predictive purposes,

one needs to assess its identifiability. The profile
likelihood curves of all estimated parameters are
displayed on Figure 3, for the SCB model with pro-
portional error. For ρS and b1, which are estimated
together, the identifiability threshold at confidence
α = 0.95 is χ2(0.95, 2) = 5.99. For ρC, δCB, ρB and
b2, which are also estimated together, the threshold
is χ2(0.95, 4) = 9.49.

For every parameter of the model, the profile like-
lihood curve crosses the threshold on both sides of
the optimum, which means that every parameter of
the model is identifiable, at the level of confidence
α = 0.95. The confidence intervals of the parameters
[22], extracted from these profiles (Equation (9)) are
displayed in Table 3.

For a given parameter, the size of the confidence
interval depends on the number of parameters that are
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Fig. 3. The SCB model with proportional error is fully identifiable. Solid curves are the profile likelihood curves of each estimated parameter
of the model. Dashed lines give the identifiability threshold of each parameter at confidence level α = 0.95.

Table 3
Confidence Intervals of the parameters of the SCB model with proportional error.

Parameter Lower bound Optimal value Upper bound

ρS 0.35 0.53 0.70
(doubling time) 24 31 48
b1 0.18 0.34 1.1
δSC 5.6 - 11
(half-life) 2 - 3
ρC 0.049 0.49 0.80
(doubling time) 21 31 340
δCB 0.11 0.18 0.34
(half-life) 49 92 150
ρB 0.44 0.92 1.3
(doubling-time) 13 18 38
b2 0.081 0.15 0.41

Highlighted in gray are the confidence interval boundaries at level α = 0.95, extracted from figure 3, and the best-fit estimate of all the
parameters of the model (expressed in d−1). For δSC , which is not estimated, no optimal value can be computed, but absolute bounds on
its values can be computed with Equation (5). Parameters are grouped by their estimation step in our procedure: ρS and b1 are estimated
together in the first step, then δSC is set, and finally the four other parameters are estimated together. For the proliferation rates ρS , ρC and
ρB, we also give the corresponding doubling times of the populations in hours (i.e. how long would it take to double the population in the
absence of differentiation?). For the differentiation rates δSC and δCB, we also give the half-life of the corresponding populations in hours
(i.e. how long would it take to differentiate half the cells from the undifferentiated population, in the absence of proliferation?)
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estimated together, the required level of confidence,
and the likelihood function used for the computation.
By definition (Equation (8)), the profile likelihood
renders as large of a confidence interval as possi-
ble, because it increases as slowly as possible on
each side of the optimal parameter value. This means
that identifiability is harder to satisfy with the pro-
file likelihood approach than with other definitions,
for example based on a linearization of the likelihood
surface at the optimal parameter set [22].

As a consequence, the fact that the parameter con-
fidence intervals presented in Table 3 may appear as
quite large is not a sign that the parameters are poorly
estimated. It is rather the evidence that they remain
identifiable even with a very stringent definition of
identifiability, and at a high level of confidence.

It is not possible to study the identifiability of δSC,
since it is not estimated from the data. However, the
commitment experiment (Figure 1D) give us access
to a lower and an upper bounds for its value (Equa-
tion (5)). We determined the optimal likelihood of
the model, and its optimal parameters in this range of
value (figures S1 and S2), showing that the choice of
δSC does not influence the dynamics of our model.

3.3. Modelling differentiation in the control case

A simulation of the model with the identified
values of its parameters is reproduced, with the cor-
responding experimental data, on Figure 5A. The
overall quality of the fit is good, especially for the
DM17 populations.

The precise values of each parameter of the model
are reported in Table 3. The proliferation rate of the
committed cells is slightly lower than the one of
the self-renewing cells (the net doubling-time of the
committed compartment is about 34h, whereas the
doubling-time of the self-renewing compartment is
around 31h). The differentiated cells proliferate with
a higher rate (their doubling time is about 18h). Taken
together, these doubling times explain the faster pro-
liferation of cells in the DM17 medium than in the
LM1, in agreement with previous data [35]. Finally,
the self-renewing cell differentiation is very fast: the
lowest possible value of δSC gives them a half-life of
3h in DM17. This means that half of the S compart-
ment would differentiate every 3h in the absence of
proliferation. On the contrary, the differentiation of
the committed cells is much slower (if they stopped
proliferating, they would have a half-life of 90h).

The timescales at which these processes occur are
pictured on Figure 5B, which displays the number of

cells in each state during a simulation of the model.
As specified by the setting of the value of δSC, the
population of self-renewing cells quickly collapses,
and the culture becomes a mixture of committed and
differentiated cells. Both of these compartments then
grow at their own rate.

At this stage, we have developed a very simple
model of erythroid differentiation, that accounts well
for the data used to calibrate it. Plus, it is fully iden-
tifiable (at confidence level 95%). We thus use it to
study the effect of rapamycin, a drug known to affect
the in vitro erythroid differentiation [36, 38].

3.4. Modelling differentiation under Rapamycin
treatment

Rapamycin is known to increase the proportion of
differentiated cells in cultures of chicken erythroid
progenitors [36, 38] (Figure 1C). Yet this effect might
have several origins: a decreased mortality of the dif-
ferentiated cells, or an increased differentiation rate
for example. To decipher between these different pos-
sible effects of the rapamycin treatment, we estimated
the values of the parameters of our model in the
rapamycin treated case.

To avoid an overparameterization of the rapamycin
effect, we considered that for each estimated parame-
ter of the model, the value under rapamycin treatment
could be either equal to the value in the untreated
case, or equal to another value yet to be estimated.
The first option would not introduce a new param-
eter in the model, but the latter would. Our model
has seven parameters (5 dynamical parameters and
2 error parameters), of which 6 only are estimated
(since δSC is entirely determined by the value of ρS).
This means that we can define 26 = 64 models of
rapamycin treatment, by keeping some of the param-
eters unchanged compared to the untreated case, and
re-estimating the others with the data presented on
Figure 1C.

We thus estimated the parameters of these 64 pos-
sible models of the treatment, and computed their
likelihood-based selection criteria, the same way as
we did for the dynamic model and the error model
(see section 3.2). The Akaike’s weights of the best
three of these models are shown on Figure 4A. The
best model of the treatment is responsible for 94 %
of the weight of the 64 models, making it by far the
best model for the rapamycin treatment. A simulation
of this model is displayed on Figure 5, which indeed
shows the quality of its fit to the data obtained under
rapamycin treatment.
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Fig. 4. Modelling erythropoiesis under rapamycin treatment. A. Akaike’s weights of the three best models of the rapamycin treatment. The
61 other models are not displayed for readability. B. Parameter values in the best model of rapamycin treatment. Red dots are the ratio of the
parameter values under rapamycin treatment with their values in the untreated case. Black straight lines represent the confidence intervals of
the values in the untreated case, computed from Figure 3. Red straight lines represent the confidence intervals at α = 95% of the values in
the treated case, computed with the Profile Likelihood as well (Figure S4). The dashed line indicates the parameter values in the untreated
case, by which all parameters are scaled for readability.

This model is obtained by varying all the parame-
ter values except b1, compared to the control case, as
displayed on Figure 4B. Moreover, we computed con-
fidence intervals for the parameters that vary under
the treatment, showing that all these parameters are
identifiable at α = 0.95 (Figure S4). The confidence
intervals of ρS , δCB, ρB and b2 show very little over-
lap with their confidence intervals in the control case,
showing the strength of the treatment effects. The
three proliferation rates ρS , ρC and ρB are reduced
under the treatment, while the differentiation rate δCB

is increased.
Finally, the effect of rapamycin on the distribu-

tion of cells between the different compartments is
displayed on Figure 5C. Under rapamycin, the C com-
partment decays, when it proliferated in the control
case. Moreover the B compartment has a longer dou-
bling time under rapamycin treatment (48h instead of
18h in the untreated case). These two effects explain
why the drug treatment reduces the overall amount
of cells and increases the proportion of differentiated
cells in the culture.

4. Conclusion

We proposed a model for the in vitro erythroid dif-
ferentiation, which comprises two components. First,

the dynamic component is the set of ODE written in
Equation (3), which describes the dynamics of three
cell populations. Second, we added an error compo-
nent which describes the distribution of the residuals
of the dynamic model,

The three populations of our dynamical model are
related to three different stages of differentiation of
the progenitors. The first one is in a self-renewal state
S where differentiation has not started, and the third
one has finished differentiating. The second popu-
lation lies in the middle, in a state of commitment C
where cells are not fully differentiated yet, but cannot
go back to self-renewal.

Similar 3-states models have already been used
to describe differentiation [19]. Their success prob-
ably stems from the fact that it would be difficult
to describe differentiation as the transition between
only 2 states, as we highlighted in the context of
in vitro erythropoiesis with our SB model. Actu-
ally, differentiation from one cell type to another is
a continuous process, so its best description would
probably be a continuum of states, which would
punctuate the transition between the two cell types
[19, 47].

However, explicitly accounting for this continuum
would require an infinity of intermediary states. For
example, the levels of differentiation factors inside
the cell could be used as a measure of its differenti-
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Fig. 5. The model reproduces the cellular kinetics observed in vitro. A: Simulation of the SCB model with proportional error in the untreated
(black) and rapamycin-treated cases (red). Solid lines represent a simulation of the SCB model with proportional error, with its best-fit
parameters. Dots are the experimental data in the untreated condition. Triangles are the experimental data under rapamycin treatment.
Displayed are the total number of living cells in LM1 and DM17 media (in log-scale), and the fraction of differentiated cells in DM17,
although the fit was performed on the raw cell numbers. B-C: Numbers of cells in each compartment as a function of time in the untreated
(B) and treated (C) cases.

ation state [48, 49]. Such kind of a model should be
able to describe differentiation more faithfully than
ours. Yet our model, though simplistic, reproduces
our experimental data quite well, and is identifiable.
Moreover, since it is fully linear and thus analyt-
ically integrable, its simulation and calibration are
very quick.

Such simplicity and identifiability of our model
would probably make it valuable to describe differ-
entiation in other contexts.

Once the model was chosen, we verified the accu-
racy of its parameter estimates. We showed that
among the seven parameters of our model, the six that
are estimated by the maximum-likelihood approach
are identifiable, and that the choice of the seventh
one does not alter the behaviour of the others. Using
the Profile Likelihood approach, we computed confi-
dence intervals for our parameters. Even though their

relatively large size might be interpreted as a lack
of accuracy in the estimates of the parameters, it is
not the case since the identifiability of a parameter is
harder to satisfy by the Profile-Likelihood approach
than using other methods. We thus showed that our
model is fully identifiable, even using a very stringent
criterion.

After demonstrating the validity of our model
in the control case, we used it to study the effect
of rapamycin, a chemical drug which is known to
impact the differentiation of erythroid progenitors
[36, 38]. We designed 64 different models of the
rapamycin treatment, which differ by the combina-
tions of parameters that are affected by the treatment.
Evaluating the quality of their fit to the data allowed
us to retain only the best model of rapamycin treat-
ment. The parameter values in this model reveal
that rapamycin increases the differentiation rate of
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the intermediary cell compartment, and reduces the
net growth rates of the three other compartments.
This means that rapamycin increases the differen-
tiation of the cells in culture, and also affects the
balance between their proliferation and mortality. The
reduced net proliferation rates might be caused by a
reduced proliferation, an increased mortality or any
joint variation of the two processes equivalent to one
of these effects (e.g. reduced mortality, and an even
more reduced proliferation).

In the context of other perturbations of differenti-
ation (for instance, treating cultures with a different
drug than rapamycin), should the drug influence be
less strong, we might need a more subtle means of
parameter evaluation, such as the fused lasso penal-
ized regression [50].

At the moment, our approach suffers one major
drawback that is the size of our dataset. Indeed, the
precision of our prediction of cell numbers at one
time-point relies on the precision of our measures of
these numbers. And this measurement precision is
directly related to the number of repetitions of the
measurements.

Repeating the same experiment several times
would thus increase measurement precision and aver-
age out measurement noise. This would allow a more
precise estimation of the error model parameters, and
in turn would increase the precision of the dynamic
model. What we call repeating the same experiment
here does not simply consist in counting cells from
the same time point several times to average out sam-
pling biases. It rather involves putting new cells in
culture and following their populations over time, as
two full replicates of the experiment.

In this setting, the measurement error would not
just be limited to technical noise due to the sam-
pling of cells from the culture for counting. It would
rather be related to differences between the kinetic
features of the cells in culture, i.e. to actual biological
heterogeneity. This heterogeneity would be averaged
by the estimation of one parameter set to fit all
the data.

One way of accounting for this heterogeneity in
a model, without averaging it out during parame-
ter estimation, is through the use of a mixed effect
model, that is a mathematical model (e.g. a set of
deterministic ODE, like ours) whose parameters are
modeled by distributions of random variables [40].
We are presently assessing the ability of such mixed
effect models to characterize both the behaviour of
the cells in culture on average, as well as their
variability.
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