
HAL Id: hal-02309924
https://hal.science/hal-02309924v1

Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular µ-calculus model-checking with
formula-dependent hierarchical abstractions

Yves-Stan Le Cornec, Franck Pommereau

To cite this version:
Yves-Stan Le Cornec, Franck Pommereau. Modular µ-calculus model-checking with formula-
dependent hierarchical abstractions. 2014 14th International Conference on Application of Concur-
rency to System Design, Jun 2014, Tunis La Marsa, France. pp.11-20, �10.1109/ACSD.2014.14�.
�hal-02309924�

https://hal.science/hal-02309924v1
https://hal.archives-ouvertes.fr

Modular µ-calculus model-checking with
formula-dependent hierarchical abstractions

Yves-Stan Le Cornec, Franck Pommereau
IBISC, University Paris-Sud/Saclay

IBGBI, 23 bd de France, 91037 Évry
France

Email: yves-stan.lecornec@ibisc.univ-evry.fr, franck.pommereau@ibisc.univ-evry.fr

Abstract—This paper defines a formal framework for the
modular and hierarchical model-checking of µ-calculus against
modular transitions systems. Given a formula ϕ, a module can
be analysed alone, in such a way that the truth value of ϕ may
be decided without the need to analyse other modules. If no
conclusion can be drawn locally, the analysis provides information
allowing to reduce the module to a smaller one that is equivalent
with respect to the truth value of ϕ. This way, modules can be
incrementally analysed, reduced and composed to other reduced
modules until a conclusion is reached. On the one hand, modular
analysis allows to avoid modules compositions and thus the corre-
sponding combinatorial explosion; on the other hand, hierarchical
analysis allows to reduce the modules that must be composed,
which limits combinatorial explosion. Moreover, by proposing
three complementary formula-dependent reductions, we expect
better reductions than general approaches like bisimulation or
τ∗ reductions. The current paper is focused on defining the
theoretical tools for this approach; finding interesting strategies
to apply them efficiently is left to future work.

I. INTRODUCTION

Model-checking is a verification technique that suffers from
the well-know state explosion problem. Among the numerous
approaches to alleviate this problem, one way is to exploit
modularity in the system under analysis by trying to analyse
its modules independently of each other as much as possible.
Doing so, subsystems smaller than the whole system are con-
sidered, which reduces combinatorial explosion. The difficulty
is then to conclude globally by reassembling local conclusions
instead of reassembling the system itself, which would bring
back the combinatorial explosion we tried to avoid.

In this paper, we propose to combine modular analysis
with hierarchical abstraction for the model-checking of µ-
calculus formula against modular systems defined as the syn-
chronised product of labelled transitions systems (LTS). Our
goal is to avoid as much as possible to actually build the
whole synchronisation. Take a formula ϕ and a modular LTS
(S1, . . . , Sn) whose flat semantics is the synchronised product
S df= S1 ⊗ · · · ⊗ Sn. We define tools to check ϕ against any
Si, allowing to either conclude about the global truth value
of ϕ on S, or to abstract away from Si any information
that is only local to it and unrelated to ϕ. This results in a
smaller LTS S′i that is equivalent to Si with respect to the
truth value of ϕ in the context of S globally. In other words,
S′i may safely replace Si to construct S without changing the
conclusion about ϕ. Then, assuming that another module Sj
is analysed and abstracted to S′j , it is possible to compute
S′i⊗S′j (that is likely to be much smaller that Si⊗Sj) and to

apply on it the same technique, resulting on either a conclusion
about the truth value of ϕ, or an abstracted representation of
this subsystem, in which additionally to what was previously
removed from Si and Sj , we have also removed unnecessary
information about how the two modules interact. This leads
to an incremental analysis in which modules are progressively
analysed, abstracted and combined in a hierarchical fashion,
until a conclusion is reached. Because formula-dependent
abstraction is used at every level of the construction, the
combinatorial explosion is constantly limited to only what is
necessary to conclude about ϕ. Moreover, it can be expected
that a conclusion is reached before all the modules have to be
considered.

The work presented in this paper is focused on defining
theoretical tools to apply the method explained above. The
next section defines modular LTS, then section 3 defines the
µ-calculus and its semantics. Given a formula ϕ and an LTS
S, our method consists of five steps. (1) In section IV-A a
function Passϕ (resp. Failϕ) is computed, that returns for every
state x a formula that the environment has to verify in order
to ensure that ϕ holds at x (resp. ϕ does not hold). If Passϕ

(resp. Failϕ) is true at the initial state, then we can immediately
conclude about ϕ globally. (2) Based on Passϕ and Failϕ, in
section IV-B, a relation 〈〈ϕ〉〉 is computed such that, for any
states x and y, when x〈〈ϕ〉〉y then x and y can be interchanged
to evaluate the truth of ϕ, whatever the environment is. (3) In
section V-A, our knowledge of the formula is injected by
computing a product graph (namely Sϕ) between the LTS S
and the formula ϕ. On the one hand this allows to prune off
parts of the module which are unnecessary to the verification of
the property, on the other hand, it provides us with information
about the verification algorithm behavior which is useful in
the computation of the subsequent reductions. (4) The second
reduction is defined in section V-B where we show that any
state x of Sϕ can be replaced by another state y such that
x〈〈ϕ〉〉y as long as y does not depend on x to compute the
value of ϕ. This reduces the graph if less states are reachable
from y than from x. For instance, if the system starts with
an initialization phase that is not considered in ϕ, then the
corresponding states can be dropped this way. (5) Finally, in
section V-C, we define another formula dependent equivalence
relation ≈ϕ on the remaining states. Unlike 〈〈ϕ〉〉 this relation is
preserved by merging equivalent states, so we can quotient the
LTS resulting from the previous step by this relation. This is
our third reduction. Section VI showcases some experimental
results obtained with the reduction from V-B. We conclude
with a comparison to related works and some perspectives.

In particular, we will work on defining practical approaches
to effectively use this framework and reach the expected
improvements. All the proofs are given in the appendix that
will be moved to a technical report if the paper is accepted.

II. MODULAR LABELLED TRANSITIONS SYSTEMS

We define a modular LTS as a straightforward extension of
LTS based on the synchronized products with respect to some
transitions labels, distinguished as synchronized actions by the
fact that they appear in more than one module.

Definition 1: A LTS is a tuple S df= (Q, q0, A,R, L) where
Q is a set of states, q0 ∈ Q is the initial state, A is the set of
actions used as transition labels, R ⊆ Q × A × Q is the set
of transitions and L : Q 7→ B(V) is a labelling of states with
Boolean formulas on propositional variables from a set V. A
transition (q, a, q′) ∈ R is usually denoted by q a→ q′.

Definition 2: A modular LTS is a collection of LTS
(Qi, q0i, Ai, Ri, Li)1≤i≤n where each Ai is partitioned as
Aloc
i]Afus

i such that, for 1 ≤ i ≤ n: Aloc
i

df= Ai \
⋃
j 6=iAj and

Afus
i

df= Ai \Aloc
i .

The behaviour of a modular LTS is the synchronised
product of its components, where synchronisation takes place
on the fused transitions (those labelled by action in some Afus

i),
which is the usual definition of a n-ary synchronised product.
We denote by x[i] the i-th component of a tuple x and by
x[i ← yi] the tuple x in which the i-th component has been
replaced by yi, this latter notation is naturally extended to
replace several components.

Definition 3: Let (Si)1≤i≤n be a modular LTS with Si
df=

(Qi, q0i, Ai, Ri, Li) and Ai
df= Aloc

i] Afus
i , the synchronised

product of the Si’s, is the LTS (Q, q0, A,R, L) defined by:

• Q df=
∏

1≤i≤nQi;

• q0
df= (q01, . . . , q0n);

• A df=
⋃

1≤i≤nAi;

• R is the smallest subset of Q×A×Q such that x a→
y ∈ R iff either
◦ ∃i such that a ∈ Aloc

i : x[i]
a→ yi ∈ Ri and

y = x[i← yi],
◦ ∀i such that a ∈ Afus

i : x[i]
a→ yi ∈ Ri and

y = x[i← yi | a ∈ Afus
i];

• for all x ∈ Q, L(x) df=
∧

1≤i≤n Li(x[i]).

Because this product is associative and commutative, we shall
also use a binary notation for it: S1 ⊗ · · · ⊗ Sn.

In the definition of R above, the first point corresponds
to the cases where a module evolves on a local transition.
So only one component of the compound state evolves. The
second point corresponds to the firing of a fused transition,
in which case all the modules sharing this transition must
simultaneously fire and the corresponding components of the
compound state will simultaneously evolve. Note that by
definition, if a ∈ Afus

i for some i, then there exists at least
one j 6= i such that a ∈ Afus

j also (otherwise, we would have
a ∈ Aloc

i).

III. THE µ-CALCULUS

The (modal) µ-calculus is a temporal logic that encom-
passes widely used logics such as, in particular, CTL* (and
thus also LTL and CTL) [1], [2]. A µ-formula is derived from
the following grammar, where B is a Boolean formula, X is
a propositional variable and α is a set of actions:

ϕ ::= B | ¬ϕ | ϕ ∨ ϕ | 〈α〉ϕ | µX.ϕ | X

Moreover, in a formula µX.ϕ, ϕ must be positive in the
variable X , i.e., every free occurrence of X must be in the
scope of an even number of negations ¬. A formula is said to
be in positive form if all its negations occur applied to atomic
propositions.

A formula ϕ is evaluated over an LTS S df= (Q, q0, A,R, L)
and can be seen as a function of its free variables to 2Q. In
particular, if ϕ is a closed formula then it is a function with
no arguments that returns the subset of Q where ϕ holds. In
formula µX.〈a〉X ∨ B, the sub-formula 〈a〉X ∨ B defines a
function that, given X ⊆ Q, returns the states y such that
either y a→ x for some x ∈ X , or B holds on y. From this
point of view, µX.ϕ is the least fixed point of function ϕ.
More generally, the semantics ϕS of ϕ over S is defined as
follows:

• B holds in every state whose label implies B: BS df=
{x ∈ Q | L(x)⇒ B};

• ϕ1 ∨ ϕ2 holds in every state where ϕ1 or ϕ2 holds:
(ϕ1 ∨ ϕ2)S df= ϕS1 ∪ ϕS2 ;

• ¬ϕ holds in every state where ϕ does not: (¬ϕ)S df=
Q \ ϕS ;

• 〈α〉ϕ holds in every state where a transition labelled
by a ∈ α leads to a state where ϕ holds: (〈α〉ϕ)S df=
{x ∈ Q | ∃y ∈ ϕS ,∃a ∈ α, x a→ y ∈ R};

• µX.ϕ is the least fixed point of function ϕ:
(µX.ϕ)S df=

⋂
ρ∈2Q∧ϕ(ρ)⊆ρ ρ;

• XS df= X , can be seen as the identity function.

For closed formulas, ϕS is a subset of Q, which can be
equivalently seen as the image of a function with no arguments.
But for formulas with free variables, ϕS is a function exactly
like ϕ is and the above definition can be read as transfor-
mation of functions. For instance, for a ϕ with a single free
variable X , the definition of (¬ϕ)S can be reformulated as
(¬ϕ)S(X) df= Q\ϕS(X). Note that, to simplify the definitions
in the sequel, we have considered α as a set of actions in 〈α〉
instead of as a single action as usual. Moreover, because the
semantics of a formula is a set of states, we may use one or
the other form interchangeably.

The effective construction of µX.ϕ is made inductively by
defining 0X.ϕ df= ∅, and nX.ϕ df= ϕ[X ← (n− 1)X.ϕ] where
ϕ[X ← Y] denotes ϕ in which variable X is substituted by Y
everywhere. Knaster-Tarski’s theorem ensures that there exists
k ∈ N such that kX.ϕ = µX.ϕ. Indeed, ϕ is a monotonous
function over a complete lattice, and thus the set of its fixed-
points is also a complete lattice [3].

To write formulas more comfortably, we can use the
following operators:

2

• ϕ1 ∧ ϕ2
df= ¬(¬ϕ1 ∨ ¬ϕ2);

• [α]ϕ df= ¬〈α〉¬ϕ, which yields ([α]ϕ)S df= {x ∈ Q |
∀a ∈ α,∀x a→ y ∈ T, y ∈ ϕS};

• νX.ϕ df= ¬µX.¬ϕ[X ← ¬X] is the greatest fixed-
point of ϕ.

Finally, for q ∈ Q, we write S, q |= ϕ iff q ∈ ϕS , and
S |= ϕ iff S, q0 |= ϕ.

The closure of a formula ϕ is denoted CL(ϕ) and is
constructed with the two following rules:

• CL(ϕ) = {ϕ}
⋃
ϕ′ CL(ϕ′) where ϕ′ ranges over the

subformulas of ϕ.

• CL(σX.ϕ) = {σX.ϕ} ∪ CL(ϕ(σX.ϕ)) for a fixed
point formula (i.e., σ ∈ {µ, ν}).

In the rest of the paper, we refer to the act of replacing the
formula σX.ϕ by ϕ(σX.ϕ) as unfolding the formula.

IV. FORMULA DEPENDENT REDUCTION

As seen in definition 3, we can build the global behavior of
a modular LTS in a hierarchical way. Subsection IV-A defines
the functions Passϕ and Failϕ. Those functions may enable the
computation of the truth value of a formula by only analysing a
subset of modules. They are also used to define the equivalence
relations from definition 7 and figure 7, as well as the reduction
from V-A where they can allow us to cut out part off the graph
which we know are useless (because the analysis was already
done locally).

A. Pass and Fail

We seek to identify states of one module S that are
equivalent with respect to a formula ϕ, i.e., states that we
would not be able to tell apart by looking at the truth value of
ϕ over the global system. The first step is to define, for any
state x, the formulas Passϕ(x) and Failϕ(x) (ϕ may be omitted
if understood from the context). These are Boolean formulas
over the state variables appearing in ϕ which are external to the
module S, they can be seen as propositional constants from
the µ-calculus which can be evaluated on the label of any
state of the environment (the environment Env being defined
as the product of all the modules other that S). We want that
if a state env ∈ Env satisfies the formula Passϕ(x) (resp.
Failϕ(x)) then the formula ϕ is true (resp. false) in the global
state (x, env). If one or the other evaluates to true on the initial
state, then we can stop the analysis and provide a conclusion
about ϕ globally. Otherwise, we will use these two functions
to reduce the analysed module (see the next section).

Definition 4: Let x be a state of an LTS S =
(Q, q0, A,R, L), and B a state formula. We denote by B@x
the formula B[v ← v@x | v ∈ V], that is B in which each
propositional variable v that is local to S is replaced by its
value in x.

Definition 5 extends the order relation based on the impli-
cation of Boolean formulas to the set of functions used in the
construction of Pass and Fail.

Definition 5: Let Q be the states of an LTS S, ϕ a µ-
calculus formula, Venv the variables from ϕ which are external

PassB(x) df= B@x

Passϕ1∧ϕ2(x) df= Passϕ1(x) ∧ Passϕ2(x)

Passϕ1∨ϕ2(x) df= Passϕ1(x) ∨ Passϕ2(x)

Pass〈l〉ϕ(x) df=
∨
x

l→x′

Passϕ(x′)

Pass〈s〉ϕ(x) df= ⊥
Pass〈e〉ϕ(x) df= ⊥
Pass[l]ϕ(x) df=

∧
x

l→x′

Passϕ(x′)

Pass[s]ϕ(x) df=

{
> if

∧
x

s→x′ Pass
ϕ(x′) = >

⊥ otherwise

Pass[e]ϕ(x) df=

{
> if Passϕ(x) = >
⊥ otherwise

PassµX.ϕ(x) df=
∧
{f(x) | Passϕ(f)

Q⇒ f}

PassνX.ϕ(x) df=
∨
{f(x) | Passϕ(f)

Q⇐ f}

PassX(x) df= X

Failϕ(x) df= Pass¬ϕ(x)

Fig. 1. Definition of Pass and Fail, where ⊥ and > stand for Boolean values
false and true respectively, and l, s and e are respectively local, shared and
external sets of actions. Braces correspond to definitions by cases.

to S, B(Venv) the set of all Boolean formulas on these
variables, and two functions f and g : Q → B(Venv). We
define Q⇒ by: f Q⇒ g iff f(x)⇒ g(x) for every x ∈ Q.

We are now in position to define Pass and Fail, with their
main properties.

Definition 6 (Pass and Fail): Take a formula ϕ in positive
form, Q the states of one module and x ∈ Q. Passϕ and Failϕ

for this state are defined by the rules given in figure 1.

Lemma 1: The computation of Pass and Fail terminates.

Lemma 2 (Pass and Fail are compositional): Let S1 and
S2 be two modules from a modular LTS. For any states
x1 from S1 and x2 from S2, we have Passϕ(x1)@x2 ⇒
Passϕ((x1, x2)) and Failϕ(x1)@x2 ⇒ Failϕ((x1, x2)).

Lemma 3 (Pass and Fail are correct): For any x ∈ S
and env ∈ Env, if env |= Passϕ(x), then (x, env) |=
ϕ and env |= Failϕ(x)⇒ (x, env) 6|= ϕ

Theorem 1 (relation with the µ-calculus semantics):
Let ϕ be a formula that only contains actions and
propositional constants which are local to an LTS S,
then ϕS = {x | Passϕ(x) = >}.

Example 1: let us consider the formula Φ df= µX.(a ⇔
v) ∨ 〈l〉X , which means that a state where a has the same
value as v is reachable by only firing action l, and compute
PassΦ on the LTS N from figure 2.

With respect to this graph, a is a local variable, v is
an external variable and l is a local action. Because Φ is a
fixed-point formula, PassΦ will also be computed as a fixed
point. The initialization P0 is the function which return ⊥ for

3

a

1

a

2

¬al
3

l

Fig. 2. Example of an LTS N

every state, and we can compute the fixed point by using the
following recurrence relation. For any state x from N ,

P0(x) df= ⊥
Pn(x) df= (Passa⇔v∨〈l〉Φ(x))[PassΦ ← Pn−1]

= (Passa⇔v(x) ∨ Pass〈l〉Φ(x))[PassΦ ← Pn−1]

= (a⇔ v)@x ∨
∨
x

l→x′

Pn−1(x′)

The computation of PassΦ on graph N is thus performed
as follows:

step 0: P0(x) = ⊥ ∀x
step 1: P1(1) = v ∨ P0(2) = v

P1(2) = v ∨ P0(3) = v
P1(3) = ¬v

step 2: P2(1) = v ∨ P1(2) = v ∨ v = v
P2(2) = v ∨ P1(3) = v ∨ ¬v = >
P2(3) = ¬v

step 3: P3(1) = v ∨ P2(2) = v ∨ > = >
P3(2) = v ∨ P2(3) = v ∨ ¬v = >
P3(3) = ¬v

step 4: P4 = P3 (the fixed-point is reached)

Knowing that module N is in state 1 or 2, is thus sufficient
to conclude that the formula Φ holds on the global system.
However if N is in state 3, we know that Φ holds if the
environment is in a state verifying ¬v.

B. Local implication

This subsection is about finding local states which are
indistinguishable from one another by the formula, so we can
use this information in section V-B to reduce the size of the
module. More precisely, we are interested in finding local
implication relations between the states of a module S. Given
a formula ϕ, we look for pairs of local states (x, y) such that
for any state of the environment env ∈ Env, each time ϕ is
true in state (x, env) then it will also be true in state (y, env).
In order to find these equivalent states, we define a formula
that has to be verified by the state label of the environment in
order to ensure that this implication holds.

Definition 7 (local implication conditions): Let Q be the
states of a module S, and ϕ and ψ be two formulas. Let V
be the states variables from ϕ and ψ which are external to
S. We define the local implication conditions 〈〈ϕ,ψ〉〉 : Q2 7→
B(Venv) by the rules given in figure 3. We also write x〈〈ϕ〉〉y
iff 〈〈ϕ,ϕ〉〉(x, y) = 〈〈ϕ,ϕ〉〉(x, y) = >, in which case x and y
are said to be locally equivalent.

Intuitively, the rules from figure 3 can be understood as
follows:

• case 〈〈B1, B2〉〉: B1 and B2 are state properties which
can be evaluated on the global system. Note that

〈〈B1, B2〉〉(x, y) = B1@x⇒ B2@y

〈〈ψ,ϕ1 ∨ ϕ2〉〉(x, y) = 〈〈ψ,ϕ1〉〉(x, y) ∨ 〈〈ψ,ϕ2〉〉(x, y)

〈〈ψ, 〈l〉ϕ〉〉(x, y) = Failψ(x) ∨
∨
y

l→y′

〈〈ψ,ϕ〉〉(x, y′)

〈〈〈s〉ψ, 〈s〉ϕ〉〉(x, y) = Fail〈s〉ψ(x)

∨

{
> if

∧
x

s→x′ Fail
ψ(x′) ∨

∨
y

s→y′ 〈〈ψ,ϕ〉〉(x
′, y′)

⊥ otherwise

〈〈〈e〉ψ, 〈e〉ϕ〉〉(x, y) =

{
> if 〈〈ψ,ϕ〉〉(x, y)

⊥ otherwise

〈〈µX.ψ, ϕ〉〉(x, y) =
∨
{f(x, y) | 〈〈ψ,ϕ〉〉f Q2

⇐ f}
〈〈ψ,ϕ〉〉(x, y) = 〈〈¬ϕ,¬ψ〉〉(y, x)

〈〈ψ,ϕ1 ∧ ϕ2〉〉(x, y) = 〈〈ψ,ϕ1〉〉(x, y) ∧ 〈〈ψ,ϕ2〉〉(x, y)

〈〈ψ, [l]ϕ〉〉(x, y) =
∧
y

l→y′

〈〈ψ,ϕ〉〉(x, y′)

〈〈νX.ψ, ϕ〉〉(x, y) =
∧
{f(x, y) | 〈〈ψ,ϕ〉〉f Q2

⇒ f}

〈〈ψ,ϕ〉〉(x, y) = Failψ(x) ∨ Passϕ(y)

Fig. 3. Definition of the local implication conditions, when several rules can
be applied, we choose the one that is first defined in the list above.

〈〈B1, B2〉〉(x, y) is equal to the formula FailB1(x) ∨
PassB2(y). If a state env ∈ Env verifies this property
then (x, env) |= B1 ⇒ (y, env) |= B2 holds;

• case 〈〈ψ,ϕ1 ∨ ϕ2〉〉: if for any env, each time that
(x, env) |= ψ then (y, env) |= ϕ1 or (y, env) |= ϕ2,
then we have (x, env) |= ψ ⇒ (y, env) |= ϕ1 ∨ ϕ2;

• case 〈〈ψ, 〈l〉ϕ〉〉: if env |= 〈〈ψ, 〈l〉ϕ〉〉(x, y) then ei-
ther env |= Failψ(x) (in which case we know that
(x, env) 6|= ψ) or there exists some local transition
y

l→ y′ such that 〈〈ψ,ϕ〉〉(x, y′). If (x, env) |= ψ
implies (y′, env) |= ϕ then we know that it implies
(y, env) |= 〈l〉ϕ. Because l is a local action, we will
always be able to fire it as part of the global system;

• case 〈〈〈s〉ψ, 〈s〉ϕ〉〉: s is an action which is synchro-
nised between the local module and the environment.
Because we have no knowledge of the environment,
we need that for every x′ there exists y′ such that
〈〈ψ,ϕ〉〉(x′, y′). This way if (x, env) |= 〈s〉ψ, then we
can find a y′ such that (y′, env′) |= ϕ which means
that (y, env) |= 〈s〉ϕ;

• case 〈〈〈e〉ψ, 〈e〉ϕ〉〉: e is an external action. As before,
since we have no information about the environment,
we need 〈〈ψ,ϕ〉〉(x, y) to be true on any possible state;

• case 〈〈µXψ,ϕ〉〉: define Ψ df= µXψ, and note that ψ
contains only the free variable X while ϕ contains
no free variable. The computation of 〈〈ψ(Ψ), ϕ〉〉 can
lead to an expression which depends on 〈〈Ψ, ϕ〉〉 as
shown on figure 4. We thus have the recurrence
relation 〈〈Ψ, ϕ〉〉 = 〈〈ψ,ϕ〉〉(〈〈Ψ, ϕ〉〉), where 〈〈ψ,ϕ〉〉 is
a function from (Q2 → B(V)) to (Q2 → B(V)) and
we compute the greatest fixed point of this function

4

〈〈Φ,Φ〉〉

〈〈〈s〉Φ ∨B, 〈s〉Φ ∨B〉〉

〈〈〈s〉Φ ∨B, 〈s〉Φ〉〉

〈〈〈s〉Φ, B〉〉 〈〈〈s〉Φ, 〈s〉Φ〉〉

〈〈〈s〉Φ ∨B,B〉〉

〈〈B, 〈s〉Φ〉〉 〈〈B,B〉〉

Fig. 4. Dependency graph of 〈〈Φ,Φ〉〉 (where Φ df= µX.〈s〉X ∨B).

(always in a bounded number of steps as stated in
theorem 4);

• case 〈〈ψ,ϕ〉〉(x, y) = 〈〈¬ϕ,¬ψ〉〉(y, x): this is a short-
cut to express the dual rules of the above ones.

• last case: if none of the above rules is applicable, we
cannot do any better than to check if (x, env) never
verifies ψ or if (y, env) always verifies ϕ.

Lemma 4: 〈〈ϕ,ψ〉〉 is well defined and finitely computable.

The local equivalence is used in section V-B to reduce the
size of a module. For this reduction to work as intended, the
relation must preserve the truth value of the formula, i.e., we
could indifferently use any state from an equivalence class
during the verification.

Theorem 2 (preservation of the formula): Let x and y be
two states of a module such that x〈〈ϕ〉〉y, then Passϕ(x) ⇔
Passϕ(y) and Failϕ(x)⇔ Failϕ(y).

We also have that this relation is a congruence with
respect to the synchronised product of LTS, which enables
the use of reduced graphs during the incremental construction
of the product with the guarantee that we always work with
equivalent graphs.

Theorem 3 (modularity): Let x1, y1 be two states of an
LTS, x2, y2 be two states from another and ϕ be a formula. If
x1〈〈ϕ〉〉y1 and x2〈〈ϕ〉〉y2 then we have (x1, x2)〈〈ϕ〉〉(y1, y2).

V. REDUCTIONS

In this section, we define three complementary ways of
reducing a module. The goal of these reductions is to build the
smallest possible equivalent to one module S, given that we
know the formula ϕ that is to be checked on the global system,
as well as the initial state of module S. These reductions are
computed without knowledge of the environment and yield a
smaller LTS which can be used in place of the initial one by
any modular verification techniques.

A. Useless paths pruning

The first step lets us use our knowledge of both the formula
and the initial state of the module. It consists in building the
LTS Sϕ as shown in definition 8 which is a product between
the module (S) and the formula (ϕ) and serves three different
purposes. Firstly it prunes off the states and the transitions
which are not needed in the verification of the formula. For

example, if a state is only reachable by using an action which
does not appear in the formula, it can be safely removed from
the LTS. States which are part of the Pass or Fail set of a
sub-formula may also be left out of Sϕ if we know that they
will not bring anything of interest to the formula. Secondly it
shows information about which sub-formula may be verified
on which state, which is used in the subsequent reductions
from subsections V-B and V-C. Lastly, we can use it to know
is a state depends on another for the computation of a sub-
formula which is needed in the definition of the reduction from
subsection V-B.

Definition 8 (reachability according to a formula): Let
S = (Q, i,A,R,L) be an LTS and ϕ be a formula. We build
LTS Sϕ = (Q′, i′, A′, R′, L′) from S in which each state is
labelled by the formulas that may be verified on it. Below, f
is a Boolean function, and ϕ1, . . . , ϕk are formulas which are
either in form ϕj = 〈a〉ϕ′j or ϕj = [a]ϕ′j . Any formula which
is not composed only of fixed points can be represented that
way, unfolding it if necessary (this is done implicitly in the
following). Sϕ is defined by:

• the set of states is Q′ df= St(ϕ, i), where

St(f(ϕ1, . . . , ϕk), x) df= {(x, f(ϕ1 . . . ϕk))} ∪

⋃
j=1...k

⋃
x

a→x′,Fail
ϕ′
j (x′) 6=>

St(ϕ′j , x
′)

if ϕj = 〈l〉ϕ′j or ϕj = 〈s〉ϕ′j ,⋃
x

a→x′,Pass
ϕ′
j (x′)6=>

St(ϕ′j , x
′)

if ϕj = [l]ϕ′j or ϕj = [s]ϕ′j ,
St(ϕ′j , x)

if ϕj = 〈e〉ϕ′j or ϕj = [e]ϕ′j ;

• the initial state is i′ df= (i, ϕ);

• A′ df= A ∩ {α | α appears in ϕ}

• R′ is defined such that if (x, f(ϕ1, . . . , ϕk)) and
(x′, ψ) belong to St, then (x, f(ϕ1, . . . , ϕk))

a→
(x′, ψ) ∈ R′ iff x a→ x′ ∈ R and ∃j ∈ 1 . . . k such
that ϕj = 〈a〉ψ or ϕj = [a]ψ;

• L′ df= L ∩ {λ | λ appears in ϕ}.

Lemma 5: The computation of St terminates.

Graph Sϕ can be larger than S because each of its
state (from Q) is constituted from a state of S associated
to a formula. We can however reduce it to a graph that
is smaller than S, by removing these formulas using the
following operation. If x is a state of a LTS S, we define
Formϕ(x) df= {ψ | (x, ψ) ∈ Q}.

Definition 9 (reduced reachable graph): Let S be an LTS
and ϕ a formula such that Sϕ df= (Q, i,A,R,L). The reach-
able sub-graph of S with respect to ϕ is Reduced(Sϕ) df=
(Q′, i′, A,R′, L) where:

• Q′ = {x | Form(x) 6= ∅};

• (i′, ϕ) = i;

• x
a→ y ∈ R′ iff it exists ϕ1 and ϕ2 such that (x, ϕ1)

a→
(y, ϕ2) ∈ R.

5

FailΦ(2) = >

l3 6∈ L

a,¬b1,Φ

¬a,¬b 2

¬a,¬b 3

l1

l2 l2 a,¬b
4,Φ

a,¬b

5,Φ

a, b

6,Φ

a,¬b 7,Φa, b8,Φ

a, b

9

. . .
l3

l1

l2 s1

s2

s1

s2

Fig. 5. Formula dependent exploration with pruning of useless paths.

Finally, if we are verifying formula ϕ on a state where the
module S in its initial state, we can use this reduction without
losing relevant information with respect to ϕ.

Theorem 4 (local equivalence preservation): Let S and S′
be two LTSs and ϕ a formula. We write S〈〈ϕ〉〉S′ if the initial
states of S and S′ are equivalent with respect to 〈〈ϕ〉〉. We have
both, S〈〈ϕ〉〉Sϕ and Reduced(Sϕ)〈〈ϕ〉〉Sϕ.

Example 2: figure 5 shows the exploration of an LTS
according to formula Φ df= µX.〈L〉X ∨ B where L df=
{l1, l2, s1, s2} and B df= ((a∧ v)∨ (b∧w)). We know that the
verification algorithm will never execute a transition labelled
by l3 because it does not appear in the formula. We thus do
not need to keep track of the right side of the graph in order
to verify the formula on the global system. Likewise, since
FailΦ(2) = > we can remove action l1 heading to state 2, and
forget about the states 2 and 3, because they will not bring
anything more to the computation of the truth value of Φ.

B. Paths cutting

Let x and y be two states of a module such that x〈〈ϕ〉〉y.
We have shown that for any state env of the environment,
(x, env) |= ϕ ⇔ (y, env) |= ϕ. The idea is to choose the
state which will generate the smallest graph reachable by the
formula ϕ (as defined in section V-A). For instance when a
formula addresses executions of a system after an initialization
phase: the states corresponding to this initial part will be
removed. In some cases the graph Sϕ will be composed of one
big strongly connected component (SCC) and this reduction
will not be relevant. We show in theorem 5 that we are able to
modify the graph Sϕ by replacing a state (x, ψ) by another one
(y, ψ) as long as we have (x, ψ)〈〈ψ〉〉(y, ψ) and if there is no
path from (y, ψ) to (x, ψ) in Sϕ. This replacement operation
allows us to “jump over” a state. The reduction is thus, for
each state (x, ψ) (including but not only the initial one), to
replace it if possible by another one (y, ψ) that is equivalent
and such that there are fewer states reachable from (x, ψ) than
from (y, ψ).

The following replacement operation is defined on LTS
which states belong to Q× CL(ϕ) and can be iterated on the
reachable graph from section V-A before applying Reduced.

Definition 10 (state replacement): Let Sψ df= (Q, i,A,R,
L) be an LTS obtained from definition 9, and (x, ϕ) and

a,¬b

5,Φ

a, b

6,Φ

a,¬b 7,Φa, b8,Φ

s1

s2

s1

s2

a,¬b{5, 7}

a, b{6, 8}
s1 s2

Fig. 6. Path cutting (left) followed by quotienting (right).

(y, ϕ) ∈ Q. Replace(Sψ, (x, ϕ), (y, ϕ)) is constructed by con-
necting all the input transitions of (x, ϕ) to (y, ϕ) instead. For-
mally, Replace(Sψ, (x, ϕ), (y, ϕ)) df= (Q′, i′, A,R′, L) where:

• Q′ df= Q \ (x, ϕ);

• i′ df= (y, ϕ) if i = (x, ϕ), otherwise i′ df= i;

• R′ df= (R \ {(x′, ϕ′) a→ (x, ϕ)})
∪ {(x′, ϕ′) a→ (y, ϕ) | (x′, ϕ′) a→ (x, ϕ) ∈ R}.

The following theorem provides the conditions under which
we can safely replace one state by another.

Theorem 5: Let Sψ be an LTS, and (x, ϕ) and (y, ϕ)
be two states such that (x, ϕ)〈〈ϕ〉〉(y, ϕ). If there is
no path from (y, ϕ) to (x, ϕ) in Sψ , then we have
Sψ〈〈ψ〉〉Replace(Sψ, (x, ϕ), (y, ϕ)).

This operation allows us to avoid state (x, ϕ) and to go
directly to (y, ϕ). This may lead to an important reduction
when (x, ϕ) and subsequent states become unreachable, in
which case they can be simply removed.

Example 3: the left LTS from figure 6 is obtained by
replacing (1,Φ) with (5,Φ) as the initial state in the graph
from figure 5. We can do so because all the states here are
equivalent with respect to 〈〈Φ〉〉 (1 and 5 in particular), and
because there is no path from (5,Φ) to (1,Φ). This also allows
to remove states 1 and 4 that become no longer reachable.

In this example, we do not show how (5,Φ) is actually
chosen. In general, many choices are possible and it is left
to future work to define strategies to make good choices.
The prototype used in section VI proceeds by exploring the
graph Sϕ and replacing any new state (x, ψ) by an equivalent
one (y, ψ) which is reachable from (x, ϕ) as follows: it
explores the SCC reachable from (x, ψ) in reverse topological
order (i.e., from the farther ones to the closer ones) and
chooses (y, ψ) in the first SCC where it can be found. This
technique is however non-deterministic and there is still room
for improvement by better choosing a SCC among the possible
ones.

C. Reduction by quotienting

If two states are dependent on each other according to
an exploration of the graph we cannot try to delete one of
them, but we may be able to merge them in some cases. ϕ
being the property checked on the initial state, we define a
formula dependent equivalence relation ≈ϕ which is resilient
to the reduction of the graph by quotienting. We start by
defining a first relation ∼ψ such that equivalent states are
indistinguishable by ψ. We then make use of the LTS Sϕ form
subsection V-A in order to know which sub-formulas may be

6

∼B (x, y) df= B@x⇔ B@y

∼ϕ1∧ϕ2 (x, y) df=∼ϕ1 (x, y)∧ ∼ϕ2 (x, y)

∼〈l〉ϕ (x, y) df= Fail〈l〉ϕ(x) ∨
∧
x

l→x′

∨
y

l→y′

∼ϕ (x′, y′)

∧
Fail〈l〉ϕ(y) ∨

∧
y

l→y′

∨
x

l→x′

∼ϕ (y′, x′)

∼〈s〉ϕ (x, y) df= Fail〈s〉ϕ(x)

∨

{
> if

∧
x

s→x′

∨
y

s→y′ ∼
ϕ (x′, y′)

⊥ otherwise∧
Fail〈s〉ϕ(y)

∨

{
> if

∧
y

s→y′
∨
x

s→x′ ∼ϕ (y′, x′)

⊥ otherwise

∼〈e〉ϕ (x, y) df=

{
> if ∼ϕ (x, y)

⊥ otherwise

∼µX.ϕ (x, y) df=
∨
{f(x, y) |∼ϕ f Q2

⇐ f}
∼¬ϕ (x, y) df=∼ϕ (x, y)

Fig. 7. Definition of the merging equivalence relation

verified on which state. This allows us to merge states which
are equivalent (according to ∼) on at least these sub-formulas,
whereas without the information form graph Sϕ we would
need equivalency on every possible sub-formula.

For this purpose, given an LTS S, two states x, y, and a
formula ϕ, we define the function ∼ϕS as shown in figure 7
and write x ∼ϕ y iff ∼ϕ (x, y) = >.

Lemma 6: For any formula ϕ, ∼ϕs is well defined and is
an equivalence relation.

The reduction of the graph is made by merging the states
which are equivalent with respect to all the formulas that may
be verified on this state.

Definition 11: For any LTS S and formula ψ, we write
x ≈ψ y iff Formψ(x) = Formψ(y) and x ∼ϕ y for any ϕ ∈
Formψ(x).

We then build the reduced graph by quotienting according
to ≈ψ , which is quite a classical construction.

Definition 12: Let S df= (Q, i,A,R,L) be an LTS with
A df= Aloc] Afus, and ϕ be a formula. The reduction of S
with respect to ϕ, is the LTS (Q′, i′, A′, R′, L′) such that:

• Q′ df= Q/≈ϕ is the quotient set of Q by ≈ϕ;

• i′ df= [i] is the equivalence class containing i;

• A′ is exactly A and is partitioned the same way;

• R′ df= {(c1, a, c2) ∈ Q′ × A′ × Q′ | ∃q1 ∈ c1,∃q2 ∈
c2, (q1, a, q2) ∈ R};

• L′(c) df=
∨
q∈[c] L(q).

Similarly to before, the next three theorems ensure that this
reduction operation preserves the truth value of the formula at
a global level.

Theorem 6 (compositionality): Let x1, y1 be two states of
S1, x2, y2 be two states of S2, and ϕ be a formula. If x1 ≈ϕ y1

and x2 ≈ϕ y2 then (x1, x2) ≈ϕ (y1, y2).

Theorem 7 (Pass and Fail preservation): Let x and y be
two states of S, and ψ be a formula. If x ≈ψ y then for
any ϕ ∈ Formψ(x), Passϕ(x) ⇔ Passϕ(y) and Failϕ(x) ⇔
Failϕ(y).

Theorem 8 (equivalence preservation): For all state x and
formula ψ, x ≈ψ [x].

Example 4: The right LTS of figure 6 is obtained from
the left one by applying the quotienting with respect to ≈Φ

(Φ being defined in example 2).

VI. EXPERIMENTS

A prototype implementation of the method presented above
is currently in progress. We report here limited experiments
about the efficiency of the combined reductions from sub-
sections V-A and V-B (the third reduction is not currently
implemented), referred to as SKIP, on different kinds of models
and formulas. This is far from a rigorous benchmarks but this
already shows the potential of our approach compared with
a generic reduction consisting of quotienting by the safety
equivalence after having replaced as many actions as possible
by τ -transitions (hide them) [4], referred to as SAFETY.

We have considered a toy example representing a mutual
exclusion system, expressed as the modular Petri net depicted
in figure 8 which provides us with a way of generating state
spaces of different sizes by changing the initial number of
token in place i. Even though modular Petri nets are not
formally defined in this paper, they are suitable candidates
to apply our techniques because their behaviour is defined
exactly as the semantics of modular LTS from definition 2:
each module is a Petri net whose semantics is a LTS, the
semantics of the whole system is obtained as the synchronous
product of the semantics of its modules [5].

••

i

p_crit

l1

l2 l3

loop

go_crit

exit_crit

•
go_crit

exit_crit

Fig. 8. Modular Petri net modeling a mutual exclusion system, each module
is surrounded by a dashed box, fused transitions are draw with dotted borders.

We have considered the reduction of the behavior of one
module (that is drawn above in figure 8) obtained by SKIP

7

considering formulas that preserve some safety and reachabil-
ity properties so that a comparison with SAFETY makes sense.
We thus have A df= {l1, l2, l3, go_crit, exit_crit} the set of all
transitions (setting aside loop), and define p a propositional
constant that is true if and only if there is strictly more than
one token in place p_crit. We also defined Hϕ as the maximal
set of actions that it is possible to hide before quotienting the
module by the safety equivalence. We have considered three
formulas presented now on, the first one is a counter example
where we obtain no reduction from our method; the second
one is a case where SKIP is dramatically efficient, reducing
the LTS to only one state; the third one is more balanced. The
corresponding results are displayed in figure 9.

ϕ1
df= µX(〈go_crit〉true ∨ 〈A ∪ {loop}〉X) (1)

This formula means that we can reach a state were go_crit
is a possible action. ϕ1 checked on this particular graph will
not benefit from the SKIP reduction for two reasons. Firstly,
the product graph Sϕ1

i is composed of only one SCC so SKIP
will never be able to find a suitable replacement for a state.
Secondly no state of the graph is part of either Passϕ1 or
Failϕ1 , so they all have to be included in the product graph.

In order to obtain an example on which it is relevant to ap-
ply reduction SKIP, we now consider a system where transition
loop and the corresponding actions have been removed.

ϕ2
df= µX(p ∨ 〈A〉X) (2)

Formula ϕ2 means that a state with at least two tokens
in place p_crit is reachable. This property will be preserved
by the safety equivalence if we hide every local actions, so
Hϕ2 df= {l1, l2, l3}. As a matter of fact it is always possible to
conclude locally about the truth value of ϕ2. This is why the
SKIP reduction always returns a LTS composed of only one
state. In the case where there is only one token in i initially,
the initial state belongs to Failϕ2 because it is never possible
to have two tokens in pcrit in the future. So the module can
be reduced to only one state that satisfies ¬p. In the cases
where they are at least two tokens in i initially, it is possible
to place two tokens in pcrit by using only local transitions, so
the initial state belongs to Passϕ2 and the module is equivalent
to the one composed of only one state that satisfies p.

ϕ3
df= νY (¬p ∧ [A \ l2]Y) (3)

Formula ϕ3 means that no path which does not contain l2
leads to a state verifying p. For this property we cannot hide
action l2 because we need to be able to differentiate it from
the other local actions, so we have Hϕ3 df= {l1, l3}. This
local action is however ignored when computing the product
between the graph and the formula as well as the equivalence
relation. If there is only one token in the net, then the initial
state belongs to Passϕ3 and the graph is reduced to a single
state. In the other cases, we have to keep track of all the
synchronized transitions. As mentioned before finding the best
replacement for a state among the equivalent ones is not trivial

Number of initial tokens 1 2 5 10
Full LTS (no reduction) 8 18 128 1003

ϕ1
SAFETY 4 7 22 67

SKIP 8 18 128 1003

ϕ2
SAFETY 4 7 22 67

SKIP 1 1 1 1

ϕ3
SAFETY 5 11 57 287

SKIP 1 4 28 102

Fig. 9. Number of states depending on formulas, number of initial tokens,
and reductions used.

and the algorithm used in this prototype is only a simple
heuristic.

Even if on this example SKIP yields a better reduction
than SAFETY, it may be a good choice in practice to combine
both reductions. Indeed, SAFETY is a generic method that is
likely to have a lower complexity than SKIP (and to be more
efficiently implementable). So SKIP could be applied quicker
on a LTS already reduced by SAFETY. This holds on this
example but also in general, in particular, with formula ϕ1,
chaining both reductions allows to gain the reduction from
SAFETY even when SKIP yields no reduction at all.

VII. CONCLUSION AND PERSPECTIVES

We have presented a formal framework to perform the
model-checking of µ-calculus formula on modular transitions
systems. This framework allows for: (1) separate analysis of
modules, possibly yielding a conclusion on the truth value
of the formula for the complete system; (2) abstraction of
the analysed modules that do not allow to conclude, using
the information collected during analysis; (3) incremental
recombination of the abstracted modules, the result being
again candidate to analysis, possibly yielding a conclusion
or allowing for further abstraction; (4) incremental bottom-
up analysis with hierarchical abstraction at each step, with a
possibility to conclude before the whole system is analyzed.

Within this framework, we now intend to explore strategies
to obtain the best possible reductions. We have indeed iden-
tified a number of places where various choices are possible,
for instance as discussed in section V-B. More generally, the
order in which modules are considered and then recombined
should widely influence the overall performance. Indeed, a
modular system is a set of modules that can be analysed
bottom-up in any order, and recombined arbitrarily. The need
arises to develop strategies to always chose the best order, or
at least a good one, or to avoid the worst ones. A good order
should allow to: (1) conclude earlier, avoiding the analysis of
most modules; (2) reduce efficiently the analysed modules;
(3) limit combinatorial explosion when abstracted subsystems
are recombined [6], [7].

Defining strategies to guarantee a good order is a difficult
problem, searching for optimal orders is far more difficult. We
intend to proceed by first finishing our prototype in order to be
able to run a variety of case studies to validate our approach
in practice. We intend then to exploit the results of these case
studies to identifies sources of efficiencies and inefficiencies
so that we will be able to define good or bad ways to put
hierarchical abstraction into practice, which should lead to

8

strategies that will be progressively refined with the aim to
introduce performance guarantees.

Another future work is to define precisely how a counter-
example can be constructed when our analysis concludes that
a formula is not satisfied. This possibility to exhibit a trace
is a key feature of model-checking that we consider as critical
to preserve.

A. Related works

While modular model-checking is quite a well explored
approach [8], [9], [10], [11], [5], [12], it is not always
amened to hierarchical analysis. Indeed, in many cases, the
recombination of modules is often an object of a different
nature than the modules themselves. For example, in [13],
modules are combined using a synchronisation graph that
cannot itself be recombined further. Approaches proposing hi-
erarchical abstraction are usually based on a generic reduction
of the modules preserving a full class of properties. Some
for instance focus on reachability [10], [14], [15] or safety
[4]; others preserve all the formulas from a given logic [16],
[8], [17], [18]. In [19], hierarchical abstraction is proposed
using a generic reduction that hides and collapses sequences
of local transitions in the modules before they are recombined;
model-checking is then performed on-the-fly using the CADP
toolbox [20].

To the best of our knowledge, formula-dependent abstrac-
tions are always approached through a reduction that preserves
a fragment of a logic. Either, this fragment is predetermined
before the analysis, or it is determined according to the formula
of interest [21], [22]. This differs from our proposal where
only one formula is preserved by the reductions. Hierarchical
abstraction preserving only one formula was used in [23], in
which a preliminary version of the current work has been
proposed, namely the “reduction by quotienting” presented
here in section V-C; moreover, the current version has been
completely reworked, with a slight generalisation and a wide
simplification of the definitions and proofs.

In [24], the authors propose a compositional verification
technique which shows similarities with our work. Given a µ-
calculus formula, they are able to locally study some part of
a Kripke modal transition system with the use of a 3-valued
model checking game. Setting aside the differences due to the
models, the local exploration techniques are similar and the
game graph resembles the product graph from section V-A.
(More generally, building a product between a LTS and a
formula is quite a classical method in the field of model-
checking.) However, our approach and that from [24] differ
in their goals and actually serve complementary purposes.
In [24], a module is viewed as an abstraction of the global
system that be studied locally with the help of the game
graph. Information about the environment is then injected in
the form of a refinement of the system in the parts where partial
analysis yields an indefinite result. This results in a composi-
tional method that ends with the validation/invalidation of the
formula. In the present work however, the local reductions
yield an object of the same nature as the input module and
does so without information about the rest of the system. As
such, our reductions can be used in conjunction with another
compositional verification method.

Partial analysis is also encountered in the literature as a
dual method for the analysis of modular systems. For example,
in [25], [26], [27], a formula is combined with a module,
yielding a (possibly big) new formula that the rest of the
system has to validate. It is then possible to apply this principle
incrementally by considering one module after the other.

REFERENCES

[1] D. Kozen, “Results on the propositional µ-calculus,” Theoretical Com-
puter Science, vol. 27, no. 3, pp. 333–354, 1983.

[2] C. Stirling, Modal and temporal properties of processes. Springer,
2001.

[3] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,”
Pacific journal of Mathematics, vol. 5, no. 2, pp. 285–309, 1955.

[4] A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis,
“Safety for branching time semantics,” in Automata, Languages and
Programming. Springer, 1991, pp. 76–92.

[5] S. Christensen and L. Petrucci, “Modular analysis of Petri nets,” The
Computer Journal, vol. 43, no. 3, pp. 224–242, 2000.

[6] P. Crouzen and H. Hermanns, “Aggregation ordering for massively
compositional models,” in Application of Concurrency to System Design
(ACSD), 2010 10th International Conference on. IEEE, 2010, pp. 171–
180.

[7] P. Crouzen and F. Lang, “Smart reduction,” in Fundamental Approaches
to Software Engineering. Springer, 2011, pp. 111–126.

[8] R. Milner, Communication and concurrency. Prentice-Hall, Inc., 1989.
[9] S. Graf and B. Steffen, “Compositional minimization of finite state

systems,” in Computer-Aided Verification. Springer, 1991, pp. 186–
196.

[10] A. Valmari, Compositional state space generation. Springer, 1993.
[11] J.-P. Krimm and L. Mounier, “Compositional state space generation

from lotos programs,” in Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 1997, pp. 239–258.

[12] F. Lang, “Refined interfaces for compositional verification,” in For-
mal Techniques for Networked and Distributed Systems-FORTE 2006.
Springer, 2006, pp. 159–174.

[13] C. Lakos and L. Petrucci, “Modular analysis of systems composed of
semiautonomous subsystems,” in proc. of ACSD’04. IEEE Computer
Society Press, 2004.

[14] K.-C. Tai and P. V. Koppol, “An incremental approach to reachability
analysis of distributed programs,” in Software Specification and Design,
1993., Proceedings of the Seventh International Workshop on. IEEE,
1993, pp. 141–150.

[15] D. Giannakopoulou, J. Kramer, and S. C. Cheung, “Behaviour analysis
of distributed systems using the tracta approach,” Automated Software
Engineering, vol. 6, no. 1, pp. 7–35, 1999.

[16] K. Klai, L. Petrucci, and M. Reniers, “An incremental and modular tech-
nique for checking ltl\ x properties of petri nets,” Formal Techniques for
Networked and Distributed Systems–FORTE 2007, pp. 280–295, 2007.

[17] D. Dams, O. Grumberg, and R. Gerth, “Generation of reduced mod-
els for checking fragments of ctl,” in Computer Aided Verification.
Springer, 1993, pp. 479–490.

[18] R. J. Van Glabbeek and W. P. Weijland, “Branching time and abstraction
in bisimulation semantics,” Journal of the ACM (JACM), vol. 43, no. 3,
pp. 555–600, 1996.

[19] N. D. Mendes, F. Lang, Y.-S. Le Cornec, R. Mateescu, G. Batt,
and C. Chaouiya, “Composition and abstraction of logical regulatory
modules: application to multicellular systems,” Bioinformatics, vol. 29,
no. 6, pp. 749–757, 2013.

[20] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “Cadp 2010: a toolbox
for the construction and analysis of distributed processes,” in Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2011, pp. 372–387.

[21] R. Barbuti, N. De Francesco, A. Santone, and G. Vaglini, “Selective mu-
calculus and formula-based equivalence of transition systems,” Journal
of Computer and System Sciences, vol. 59, no. 3, pp. 537–556, 1999.

9

[22] R. Mateescu and A. Wijs, “Property-dependent reductions for the modal
mu-calculus,” in Model Checking Software. Springer, 2011, pp. 2–19.

[23] Y.-S. Le Cornec, “Compositional analysis of modular petri nets using
hierarchical state space abstraction,” Joint Proceedings of:» LAM’12 «,
p. 119, 2012.

[24] S. Shoham and O. Grumberg, “Compositional verification and 3-valued
abstractions join forces,” in Static Analysis. Springer, 2007, pp. 69–86.

[25] H. R. Andersen, “Partial model checking,” in Logic in Computer
Science, 1995. LICS’95. Proceedings., Tenth Annual IEEE Symposium
on. IEEE, 1995, pp. 398–407.

[26] H. R. Andersen and J. Lind-Nielsen, “Partial model checking of modal
equations: A survey,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 3, pp. 242–259, 1999.

[27] F. Lang and R. Mateescu, “Partial model checking using networks of
labelled transition systems and boolean equation systems,” in Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2012, pp. 141–156.

10

APPENDIX

The following proofs are most of the time done by induction on the structure of the formulas. They are not exhaustive because
we choose to only show one case when faced with a set of very similar ones. We also do not deal directly with the cases of
fixed-points, because as shown in the proofs A and F, any formula can be replaced by an equivalent fixed-point free formula on
a given finite model.

A. Lemma 1: the computation of Pass terminates

Let us consider a finite set of variables V and a set Q of states. The set of functions from Q to B(V) is a complete lattice
with respect to Q⇒, as long as we make it finite by choosing one canonical representative for each set of equivalent formulas (for
instance the disjunctive normal form). For any formula Φ = µ.Xϕ, the only negation operators in Passϕ can arise form the base
case. This means that Passϕ is monotonous in X and we can use the Knaster-Tarski theorem to show that the least and greatest
fixed point are well defined. A corollary often used in the following proofs, is that for a given model, there exists n ∈ N such
that PassµXϕ = Passϕ

n(⊥) (PassνXϕ = Passϕ
n(>)).

B. Lemma 2: Pass is compositional

Let us show that Passϕ(x1)@x2 ⇒ Passϕ(x1, x2).
The property for Fail follows because we have Failϕ = Pass¬ϕ.

Case B: B@x1@x2 is equal to B@(x1, x2).

Case ϕ1 ∧ ϕ2: By applying the induction hypothesis, we know the following. Passϕ1(x1)@x2 ∧Passϕ2(x1)@x2 implies
Passϕ1((x1, x2)) ∧ Passϕ2((x1, x2)), which is equal to Passϕ1∧ϕ2((x1, x2)) by definition.

Case 〈l〉ϕ: Similarly,
∨
x1

l→x′
1

Passϕ(x′1)@x2 implies
∨
x1

l→x′
1

Passϕ((x′1, x2)).

Which is the same as
∨

(x1,x2)
l→(x1,x2)′

Passϕ((x1, x2)′) since l is an action which is local to module 1.

Cases 〈s〉ϕ and 〈e〉ϕ: In these cases Pass is equal to ⊥ so the implication holds.

Case [e]ϕ: Here we can directly apply the induction hypothesis.

C. Theorem 1: relation with the µ-calculus semantics

This proof is based on the fact that if a formula ϕ only contains local variables, then Passϕ(x) can only evaluate to > or ⊥.

Case B: If B@x = > then x belongs to BS , otherwise we have B@x = ⊥ and x is in Q \BS .

Case ϕ1 ∨ ϕ2: Passϕ1∨ϕ2(x) = Passϕ1(x) ∨ Passϕ2(x). If this is equal to >, we have x ∈ ϕS1 ∪ ϕS2 with the induction
hypothesis, i.e. x ∈ (ϕ1 ∨ ϕ2)S .

Case 〈l〉ϕ: Pass〈l〉ϕ(x) =
∨
x

l→x′(Pass
ϕ(x′)) so Pass〈l〉ϕ(x) = > if and only if exists x l→ x′ such that x′ ∈ ϕS .

Case µXϕ: For any n ∈ N,Passn.Xϕ(x) = > if and only if x ∈ (n.Xϕ)S .

D. Lemma 3: Pass and Fail are correct

Let us show that for any x ∈ S and env ∈ Env then env |= Passϕ(x) ⇒ (x, env) |= ϕ. The result about Fail follows
because Failϕ is defined as Pass¬ϕ and (x, env) 6|= ϕ is equivalent to (x, env) |= ¬ϕ. The property is proven by induction on
the structure of the formula.

Case ϕ = B : If env |= B@x then (x, env) |= B.

Case ϕ = ϕ1 ∧ ϕ2 : We have env |= Passϕ1(x) and env |= Passϕ2(x). The IH allows us to deduce (x, env) |= ϕ1 and
(x, env) |= ϕ2, i.e. (x, env) |= ϕ1 ∧ ϕ2.

Case ϕ = 〈l〉ψ : Passϕ(x) =
∨
x′ Pass

ψ(x′). With the IH, we know that exists x′ such that (x, env) |= ψ. From which we
deduce (env, x) |= ϕ.

Case ϕ = [s]ψ : We suppose that for every x
s→ x′ we have Passψ(x′) = >. So for every (x, env)

s→ (x, env)′ we have
(x, env)′ |= ψ i.e. (x, env) |= ϕ.

Case ϕ = µXψ: for any n ∈ N, env |= PassnX.ψ(x)⇒ (x, env) |= nX.ψ.

11

E. Lemma 4: 〈〈ϕ,ψ〉〉 is effectively computable

The proof is similar to lemma 1. The difference is that we consider functions from Q2 to B(V). For the case 〈〈Φ, ψ〉〉 where
Φ = σXϕ, since the rules from figure 3 only build formulas which contain no negation, the function 〈〈ϕ,ψ〉〉 : (Q2 → B(V))→
(Q2 → B(V)) is monotonous in the complete lattice (Q2 → B(V),

Q2

⇒).

F. Unfolding

From lemma 4 we can deduce that for a model S and two formulas ϕ,ψ, there thus exists two unfolded formulas ϕ′, ψ′
which do not contain fixed-point terms, such that 〈〈ϕ,ψ〉〉 = 〈〈ϕ′, ψ′〉〉. Moreover for a fixed-point formula µ.Xϕ (resp.νXϕ), we
can find n ∈ N such that 〈〈µXϕ,ψ〉〉 = 〈〈ϕn(⊥), ψ〉〉 (resp. 〈〈νXϕ,ψ〉〉 = 〈〈ϕn(>), ψ〉〉), where n corresponds to the maximum
number of unfolding of ϕ in the unfolded formula. This property allows us to only prove the various theorems on formulas
which does not contain fixed-point subformulas.

G. Transitivity of 〈〈ϕ〉〉

Let us prove that if we have 〈〈ϕ,ψ〉〉(x, y) and 〈〈ψ, ξ〉〉(y, z) then we also have 〈〈ϕ, ξ〉〉(x, z).

Base case: We have 〈〈ϕ,ψ〉〉(x, y) = Failϕ(x) ∨ Passψ(y) and 〈〈ψ, ξ〉〉(y, z) = Failψ(x) ∨ Passξ(z). If we have Failϕ(x) then
〈〈ϕ, ξ〉〉(x, z) holds. If Passψ(y) is verified then Failψ(y) is not possible. This means that we have Passξ(z) which implies
〈〈ϕ, ξ〉〉(x, z). Note that case in fact includes the case B1, B2, which only appears in the definition for the sake of clarity.

Case 〈〈ϕ1 ∧ ϕ2, ψ〉〉 and 〈〈ψ, ξ〉〉 : We have either 〈〈ϕ1, ψ〉〉(x, y) ∧ 〈〈ψ, ξ〉〉(y, z) or 〈〈ϕ2, ψ〉〉(x, y) ∧ 〈〈ψ, ξ〉〉(y, z)@y1. Which
gives us 〈〈ϕ1 ∧ ϕ2, ξ〉〉(x, z) using the induction hypothesis.

Case 〈〈ϕ,ψ1 ∧ ψ2〉〉 and 〈〈ψ1 ∧ ψ2, ξ〉〉 : We have 〈〈ϕ,ψ1〉〉(x, y),〈〈ϕ,ψ2〉〉(x, y) and 〈〈ψ1, ξ〉〉(y, z) ∨ 〈〈ψ2, ξ〉〉(y, z).If
〈〈ψ1, ξ〉〉(y, z) holds then can deduce
〈〈ϕ, ξ〉〉(x, z). Similarly if we have 〈〈ψ2, ξ〉〉(y, z).

Case 〈〈〈l〉ϕ′, ψ〉〉 and 〈〈ψ, ξ〉〉 :

Suppose we have
∧
x

l→x′

〈〈ϕ′, ψ〉〉(x′, y) and 〈〈ψ, ξ〉〉(y, z).

The induction hypothesis gives us:∧
x

l→x′

〈〈ϕ′, ξ〉〉(x′, z) = 〈〈〈l〉ϕ′, ξ〉〉(x, z).

Case 〈〈ϕ, 〈l〉ψ′〉〉 and 〈〈〈l〉ψ′, ξ〉〉 :

Suppose we have
∨
y

l→y′

〈〈ϕ,ψ′〉〉(x, y′) and
∧
y

l→y′

〈〈ψ′, ξ〉〉(y′, z).

This implies:
∨
y

l→y′

〈〈ϕ, ξ〉〉(x, z) = 〈〈ϕ, ξ〉〉(x, z).

12

Case 〈〈〈s〉ϕ′, 〈s〉ψ′〉〉 and 〈〈〈s〉ψ′, 〈s〉ξ′〉〉 :

〈〈ϕ,ψ〉〉(x, y) =

{
> if

∧
x

s→x′

∨
y

s→y′ 〈〈ϕ
′, ψ′〉〉(x′, y′)

⊥ otherwise

〈〈ψ, ξ〉〉(y, z) =

{
> if

∧
y

s→y′
∨
z

s→z′ 〈〈ψ
′, ξ′〉〉(y′, z′)

⊥ otherwise

We have for any x′,
∨
y

s→y′

〈〈ϕ′, ψ′〉〉(x′, y′) = >.

We also know that for any y′,
∨
z

s→z′

〈〈ψ′, ξ′〉〉(y′, z′) = > holds so:

for any x′,
∨
y

s→y′

(
〈〈ϕ′, ψ′〉〉(x′, y′) ∧

∨
z

s→z′

〈〈ψ′, ξ′〉〉(y′, z′)
)

= >

⇔
∨
y

s→y′

∨
z

s→z′

〈〈ϕ′, ψ′〉〉(x′, y′) ∧ 〈〈ψ′, ξ′〉〉(y′, z′) = >

⇒
∨
y

s→y′

∨
z

s→z′

〈〈ϕ′, ξ′〉〉(x′, z′) = >

⇒
∨
z

s→z′

〈〈ϕ′, ξ′〉〉(x′, z′) = >.

H. Theorem 2: preservation of the formula by 〈〈ϕ〉〉
Let us show that 〈〈ψ,ϕ〉〉(x, y) ⇒ (Passψ(x) ⇒ Passϕ(y)). The result for Fail follows because we have Failϕ = Pass¬ϕ

and 〈〈ψ,ϕ〉〉(x, y) = 〈〈¬ϕ,¬ψ〉〉(x, y). We define the following rules for the construction of 〈〈ϕ,ψ〉〉P . This is another way of
computing the formula Passϕ(x) ⇒ Passψ(y). This reformulation is meant to be compared to the definition of 〈〈ϕ,ψ〉〉 more
easily.

〈〈B1, B2〉〉P (x, y) = B1@x⇒ B2@y

〈〈ψ,ϕ1 ∨ ϕ2〉〉P (x, y) = 〈〈ψ,ϕ1〉〉P (x, y) ∨ 〈〈ψ,ϕ2〉〉P (x, y)

〈〈ψ, 〈l〉ϕ〉〉P (x, y) = ¬Passψ(x) ∨
∨
y

l→y′

〈〈ψ,ϕ〉〉P (x, y′)

〈〈〈s〉ψ, 〈s〉ϕ〉〉P (x, y) = >
〈〈〈e〉ψ, 〈e〉ϕ〉〉P (x, y) = >
〈〈µX.ψ, ϕ〉〉P (x, y) =

∨
{f(x, y) | 〈〈ψ,ϕ〉〉P f Q2

⇐ f}

〈〈ψ,ϕ〉〉P (x, y) = 〈〈¬ϕ,¬ψ〉〉P (y, x)

〈〈νX.ψ, ϕ〉〉P (x, y) =
∧
{f(x, y) | 〈〈ψ,ϕ〉〉P f Q2

⇒ f}

〈〈ψ,ϕ1 ∧ ϕ2〉〉P (x, y) = 〈〈ψ,ϕ1〉〉P (x, y) ∧ 〈〈ψ,ϕ2〉〉P (x, y)

〈〈ψ, [l]ϕ〉〉P (x, y) =
∧
y

l→y′

〈〈ψ,ϕ〉〉P (x, y′)

〈〈ψ,ϕ〉〉P (x, y) = Passψ(x)⇒ Passϕ(y)

By comparing the rules and because of the monotony of our expressions, we see that 〈〈ϕ,ψ〉〉 Q⇒ 〈〈ϕ,ψ〉〉P .

I. Theorem 3: modularity of 〈〈ϕ〉〉
Let us show that if we have 〈〈ϕ,ψ〉〉(x1, y1)@x2 and 〈〈ψ, ξ〉〉(x2, y2)@y1

then 〈〈ϕ, ξ〉〉((x1, x2), (y1, y2)) holds. From there we can obtain that x1〈〈ϕ〉〉y1 and x2〈〈ϕ〉〉y2 implies (x1, y1)〈〈ϕ〉〉(x2, y2).

Base case:
〈〈ϕ,ψ〉〉(x1, y1) = Failϕ(x1) ∨ Passψ(y1)

and 〈〈ψ, ξ〉〉(x2, y2) = Failψ(x2) ∨ Passξ(y2).

13

If we have Failϕ(x1)@x2 then Failϕ(x1, x2) is verified,
which implies 〈〈ϕ, ξ〉〉((x1, x2), (y1, y2)). If Passψ(y1)@x2 then Failψ(x2)@y1 is not possible. This means that we have
Passξ(y2)@y1, then Passξ(y1, y2)
which implies 〈〈ϕ, ξ〉〉((x1, x2), (y1, y2)).

Case 〈〈ϕ1 ∧ ϕ2, ψ〉〉 and 〈〈ψ, ξ〉〉 :
We have 〈〈ϕ1, ψ〉〉(x1, y1)@x2 ∧ 〈〈ψ, ξ〉〉(x2, y2)@y1 or
〈〈ϕ2, ψ〉〉(x1, y1)@x2 ∧ 〈〈ψ, ξ〉〉(x2, y2)@y1.
Which gives us 〈〈ϕ1 ∧ ϕ2, ξ〉〉((x1, x2), (y1, y2)) using the IH.

Case 〈〈ϕ1 ∨ ϕ2, ψ〉〉 and 〈〈ψ, ξ〉〉 :
We have 〈〈ϕ1, ψ〉〉(x1, y1)@x2 ∧ 〈〈ψ, ξ〉〉(x2, y2)@y1 and
〈〈ϕ2, ψ〉〉(x1, y1)@x2 ∧ 〈〈ψ, ξ〉〉(x2, y2)@y1.
Which gives us 〈〈ϕ1 ∨ ϕ2, ξ〉〉((x1, x2), (y1, y2)) using the IH.

Case 〈〈ϕ,ψ1 ∧ ψ2〉〉 and 〈〈ψ1 ∧ ψ2, ξ〉〉 :
We have 〈〈ϕ,ψ1〉〉(x1, y1)@x2,〈〈ϕ,ψ2〉〉(x1, y1)@x2 and
〈〈ψ1, ξ〉〉(x2, y2)@y1 ∨ 〈〈ψ2, ξ〉〉(x2, y2)@y1.If 〈〈ψ1, ξ〉〉(x2, y2)@y1 holds then can deduce 〈〈ϕ, ξ〉〉((x1, x2), (y1, y2)). Same thing
if we have 〈〈ψ2, ξ〉〉(x2, y2)@y1.

Case 〈〈〈l〉ϕ′, ψ〉〉 and 〈〈ψ, ξ〉〉 :

Suppose we have
∧

x1
l→x′

1

〈〈ϕ′, ψ〉〉(x′1, y1)@x2 and 〈〈ψ, ξ〉〉(x2, y2)@y1

The induction hypothesis gives us:∧
x1

l→x′
1

〈〈ϕ′, ξ〉〉((x′1, x2), (y1, y2))

=
∧

(x1,x2)
l→(x1,x2)′

〈〈ϕ′, ξ〉〉((x1, x2)′, (y1, y2))

=〈〈〈l〉ϕ′, ξ〉〉((x1, x2), (y1, y2))

Case 〈〈〈s〉ϕ′, 〈s〉ψ′〉〉 and 〈〈〈s〉ψ′, 〈s〉ξ′〉〉 :

〈〈ϕ,ψ〉〉(x1, y1)@y2 =

{
> if

∧
x1

s→x′
1

∨
y1

s→y′1
〈〈ϕ′, ψ′〉〉(x′1, y′1)@x2

⊥ otherwise

〈〈ψ, ξ〉〉(x2, y2)@y1 =

{
> if

∧
x2

s→x′
2

∨
y2

s→y′2
〈〈ψ′, ξ′〉〉(x′2, y′2)@y1

⊥ otherwise

So we have for any x′1 and x′2,∨
y1

s→y′1

〈〈ϕ′, ψ′〉〉(x′1, y′1)@x2 and
∨

y2
s→y′2

〈〈ψ′, ξ′〉〉(x′2, y′2)@y1

=
∧

(x1,x2)
s→(x1,x2)′

∨
(y1,y2)

s→(y1,y2)′

〈〈ϕ′, ψ′〉〉(x′1, y′1)@x2 ∧ 〈〈ψ′, ξ′〉〉(x′2, y′2)@y1

and we can conclude by using the induction hypothesis.

J. Lemma 5: the construction of Sϕ terminates

St(σX.ϕ′) requires the computation of the least fixed-point of a monotonous function over Q× CL(ϕ), which is finite.

K. Theorem 4: Sϕ〈〈ϕ〉〉S

We begin to show the property: Passϕ ⇔ Passϕ((x, f)) if f is a boolean formula containing ϕ.

Case B: x and (x, f) have the same label.

Case ϕ1 ∧ ϕ2: Passϕ1(x) ∧ Passϕ2(x) = Passϕ1(x, f) ∧ Passϕ2(x, f) (if f contains ϕ1 ∧ ϕ2 it contains ϕ1 and ϕ2).

14

Case 〈l〉ϕ:
∨
x

l→x′ Pass
ϕ(x′) =

∨
(x,f)

l→(x′,ϕ)
Passϕ(x′, ϕ). The x′ which do not appear in the second formula are those such

that Failϕ(x′) = >, so we know that Passϕ(x′) = ⊥ for those.

Let us now show that for any states x, y and any formulas ϕ1, ϕ2,
〈〈ϕ1, ϕ2〉〉(x, y)⇔ 〈〈ϕ1, ϕ2〉〉((x, ϕ1), (y, ϕ2)). Then we have:
〈〈ϕ1, ϕ2〉〉(x, (x, ϕ2))⇔ 〈〈ϕ1, ϕ2〉〉((x, ϕ1), ((x, ϕ2), ϕ2))
⇔ 〈〈ϕ1, ϕ2〉〉((x, ϕ1), (x, ϕ2))⇔ 〈〈ϕ1, ϕ2〉〉(x, x).

Case Failψ,Passϕ: Fail and Pass are preserved.

Case ψ,ϕ1 ∧ ϕ2: 〈〈ψ,ϕ1 ∧ ϕ2〉〉(x, y) = 〈〈ψ,ϕ1〉〉(x, y) ∧ 〈〈ψ,ϕ2〉〉(x, y)
= 〈〈ψ,ϕ1〉〉((x, ψ), (y, ϕ1 ∧ ϕ2)) ∧ 〈〈ψ,ϕ2〉〉((x, ψ), (y, ϕ1 ∧ ϕ2))
= 〈〈ψ,ϕ1 ∧ ϕ2〉〉((x, ψ), (y, ϕ1 ∧ ϕ2)).

Case ψ, 〈l〉ϕ: 〈〈ψ, 〈l〉ϕ〉〉(x, y) = Failψ(x) ∨
∨
y

l→y′
〈〈ψ,ϕ〉〉(x, y′) = Failψ((x, ψ)) ∨

∨
(y,〈l〉ϕ)

l→(y′,ϕ)
〈〈ψ,ϕ〉〉((x, ψ), (y′, ϕ)).

Because for any y′ such that Failϕ(y′) = > (those which are not mapped to a state (y′, ϕ) of reachability graph), we have
〈〈ψ,ϕ〉〉(x, y′)⇒ Failψ(x), which make them useless in the formula.

Case 〈s〉ψ, 〈s〉ϕ: 〈〈〈s〉ψ, 〈s〉ϕ〉〉(x, y) =

Fail〈s〉ψ(x) ∨

{
> if

∧
x

s→x′ Fail
ψ(x′) ∨

∨
y

s→y′ 〈〈ψ,ϕ〉〉(x
′, y′)

⊥ otherwise
.

The argument is similar to the one above. If Failψ(x′) = > then it can be removed from the conjunction. And if Failϕ(y′) = >
then we have 〈〈ψ,ϕ〉〉(x′, y′)⇒ Failψ(x′), so the term 〈〈ψ,ϕ〉〉(x′, y′) brings nothing to the conjunction.

L. Theorem 5: the replacement operation preserves 〈〈ϕ〉〉
The transitivity of 〈〈ψ,ϕ〉〉 implies that if x〈〈ϕ〉〉y then for any z and ψ,

〈〈ψ,ϕ〉〉(z, x)⇔ 〈〈ψ,ϕ〉〉(z, y) as well as 〈〈ϕ,ψ〉〉(x, z)⇔ 〈〈ϕ,ψ〉〉(y, z).
In addition, the fact that there is no paths from y to x means that the state x will not be reachable by the computation of
〈〈ψ,ϕ〉〉(z, y) or 〈〈ϕ,ψ〉〉(y, z), so the removal of the transitions leading to x will not affect these values.

M. Lemma 6: ∼ϕ is well defined and is an equivalence relation

The argument for the convergence of the computation of ∼ϕ is the same as for 〈〈ψ,ϕ〉〉. The reflexivity and symmetry of ∼ϕ
are quite straightforward from the definition. Let us show that if we have ∼ϕ (x, y)∧ ∼ϕ (y, z) then we have ∼ϕ (x, z).

Case B: We have B@x⇔ B@y and B@y ⇔ B@z, which gives us B@x⇔ B@z.

Case ϕ1 ∧ ϕ2: The transitivity of ∼ϕ1 and of ∼ϕ2 propagates to ∼ϕ1∧ϕ2 .

Case 〈l〉ϕ: Let us suppose ¬Fail〈l〉ϕ(x), this means that we have∧
x

l→x′

∨
y

l→y′
∼ϕ (x′, y′). This also imply that Fail〈l〉ϕ(y) is not verified, and thus that we have

∧
y

l→y′
∨
z

l→z′
∼ϕ (y′, z′).

From there we can conclude
∧
x

l→x′

∨
z

l→z′
∼ϕ (x′, z′). The same can be done for the symmetrical conditions.

N. Theorem 6: compositionality of ≈ψ

The formulas which are part of Form(x1) and Form(x2) verify the compositionality property, i.e. Form((x1, x2)) ⊆
Form(x1)∩Form(x2). It remains to show that for any formula ϕ, we have (∼ϕ (x1, y1)∧ ∼ϕ (x2, y2))⇒∼ϕ ((x1, y1), (x2, y2)).
We define the property P(f1, f2, f3) as the following: for any x1, y1, x2, y2,

f1(x1, y1)⇒ f2(x2, y2)⇒ f3((x1, x2), (y1, y2)).

We then show that the rules used to build ∼ϕ preserves this property.

Case B: B@x1 ⇔ B@y1 and B@x2 ⇔ B@y2 so B@x1@x2 ⇔ B@y2@y2

Case ∧: If f1, f2, f3 verify P(f1, f2, f3) and f ′1, f
′
2, f
′
3 verify P(f ′1, f

′
2, f
′
3) then we have P(f1 ∧ f ′1, f2 ∧ f ′2, f3 ∧ f ′3).

Case 〈l〉ϕ: We have shown the compositionality of Fail in the proof of lemma 2. Let us consider (wlog) the case where l is
local to the module 1. Suppose

∧
x1

l→x′
1

∨
y1

l→y′1
∼ϕ (x′1, y

′
1) and ∼ϕ (x2, y2).

We have
∧

(x1,x2)
l→(x1,x2)′

∨
(y1,y2)

l→(y1,y2)′
∼ϕ ((x1, x2)′, (y1, y2)′)

=
∧
x1

l→x′
1

∨
y1

l→y′1
∼ϕ ((x′1, x2), (y′1, y2)).

15

O. Theorem 7: ≈ψ preserves Pass

Let us show that if x ≈ψ y then for any ϕ ∈ Form(x), Passϕ(x)⇔ Passϕ(y).

Case µXϕ: Exists n ∈ N such that ∼µXϕ=∼ϕn(⊥) and PassµXϕ = Passϕ
n(⊥).

Case νXϕ: Exists n ∈ N such that ∼νXϕ=∼ϕn(>) and PassνXϕ = Passϕ
n(>).

Case B: We have ∼B (x, y) = B@a⇔ B@y,PassB(x) = B@x and PassB(y) = B@y.

Case ϕ1 ∧ ϕ2: Let us suppose ∼ϕ1 (x, y)∧ ∼ϕ2 (x, y) and Passϕ1(x) ∧ Passϕ2(x).
The induction hypothesis gives us Passϕ1(y) ∧ Passϕ2(y).

Case ϕ1 ∨ ϕ2: As before we suppose ∼ϕ1 (x, y)∧ ∼ϕ2 (x, y) as well as
Passϕ1(x) ∨ Passϕ2(x). Which gives us Passϕ1(y) ∨ Passϕ2(y).

Case 〈l〉ϕ : We have

∼〈l〉ϕ (x, y) = Fail〈l〉ϕ(x) ∨
∧
x

l→x′

∨
y

l→y′

∼ϕ (x′, y′)

∧
Fail〈l〉ϕ(y) ∨

∧
y

l→y′

∨
x

l→x′

∼ϕ (y′, x′)

and Pass〈l〉ϕ(x) =
∨
x

l→x′

Passϕ(x′).

If Fail〈l〉ϕ is verified then Pass〈l〉ϕ is not and the implication holds. So let us suppose
∧
x

l→x′

∨
y

l→y′
∼ϕ (x′, y′) and∨

x
l→x′ Pass

ϕ(x′).
This gives us

∨
y

l→y′
Passϕ(y′).

Cases 〈s〉ϕ and 〈e〉ϕ: Pass〈s〉ϕ(x) and Pass〈e〉ϕ(x) both are equal to ⊥ for any x.

P. Theorem 8: the quotienting preserves the equivalence

We have Form(x) = Form([x]). Let us show that for any state x, for any ϕ ∈ Form(x), x ∼ϕ [x].

Case B: x and [x] have the same label.

Case ϕ1 ∨ ϕ2: ∼ϕ1∧ϕ2 (x, [x]) =∼ϕ1 (x, [x])∧ ∼ϕ2 (x, [x]), which is true according to the IH.

Case 〈l〉ϕ :

∼〈l〉ϕ (x, [x]) = Fail〈l〉ϕ(x) ∨
∧
x

l→x′

∨
[x]

l→[x]′

∼ϕ (x′, [x]′) = >

because for any x′ there exist [x]′ such that [x]′ = [x′],

and if x has no successor then Fail〈l〉ϕ(x) = >.
∼〈l〉ϕ ([x], x) = Fail〈l〉ϕ([x]) ∨

∧
[x]

l→[x]′

∨
x

l→x′

∼ϕ ([x]′, x′) = >

because for any x′ there exist [x]′ such that [x]′ = [x′],

and if x has no successor then Fail〈l〉ϕ(x) = >.

Cases 〈e〉ϕ and ¬ϕ: We can apply the induction hypothesis directly.

16

