
HAL Id: hal-02309814
https://hal.science/hal-02309814v1

Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quickly prototyping Petri nets tools with SNAKES
Franck Pommereau

To cite this version:
Franck Pommereau. Quickly prototyping Petri nets tools with SNAKES. International Workshop on
Petri Nets Tools and APplications PNTAP 2008„ Mar 2008, Marseille, France. �hal-02309814�

https://hal.science/hal-02309814v1
https://hal.archives-ouvertes.fr

Quickly prototyping Petri nets tools with SNAKES

Franck Pommereau
LACL, Université Paris Est

61 avenue du Général de Gaulle
94010 Créteil, France

pommereau@univ-paris12.fr

ABSTRACT
This paper presents the toolkit snakes that is aimed at
providing a flexible solution to the problem of quickly pro-
totyping Petri nets tools. In particular, snakes is expected
to have as few built-in limitations as possible with respect
to the particular variant of Petri net to be used. The goal
is to make snakes suitable for any kind of Petri net model,
including new ones for which there exists no available tool.
For this purpose, snakes is designed as a very general Petri
net core library enriched with a set of extension modules
to provide specialised features. On the one hand, the core
library is versatile in that it defines a general Petri net struc-
ture where all the computational aspects are delegated to an
interpreted programming language. On the other hand, the
extension modules provide with enough flexibility to allow
to redefine easily any part of the base Petri net model.

snakes is released under the gnu lgpl, it can be down-
loaded at 〈http://www.univ-paris12.fr/lacl/pommereau/
soft/snakes〉 with the api documentation and a tutorial.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Petri nets, Software libraries; D.2.1 [Software En-
gineering]: Specifications—Rapid prototyping

General Terms
Design,Experimentation

Keywords
Petri nets, quick prototyping

1. INTRODUCTION
There exists a wide range of Petri net tools [19], most of
them (if not all) being targeted to a particular variant of
Petri nets or a few ones. When a new interesting variant is
defined, it is often necessary to develop a software to sup-
port it, and this tool has to be updated as the model and the

International Workshop on Petri Nets Tools and APplications PNTAP 2008,
March 3, 2008, Marseille, France.

associated techniques evolve. When the research is targeted
on a defined usage, as model-checking for instance, the for-
malism is often fixed and this situation causes no problem.
The tool is simply improving over the time. But when the
research is centred on the evolutions of the model itself, a
tool often has a very short lifetime. It becomes then very
hard for the developer to keep the pace with the theory and
often it does not worth the effort as the tool will not be used
anymore when the next variant of the model will be defined.

snakes is an attempt to solve this problem by providing
a general and flexible Petri net library allowing for quick
prototyping and development of ad-hoc and test tools. The
requirements for such a toolkit may be the following:

1. Built-in Petri net model. This is the most obvious
need.

2. General and flexible. The toolkit should be able to
cope with a large variety of Petri net models. More-
over, it should be easy to extend it with new variants
of Petri nets.

3. Easy to use and portable. The goal being to be able to
quickly implement new ideas, it should not be intim-
idating to start programming, so the toolkit must be
easy to understand. It should be also easy to install it
anywhere, as well as the resulting programs.1

4. Intended for prototyping. This requirement alleviates
the question of performances and solves a contradic-
tion that would arise otherwise: a flexible and general
tool with dynamic reconfiguration of its features would
be hard to make fast.

It is a well known pattern for programs that need to have
few built-in limitations to define a general framework with
the basic required features and to provide then scripting ca-
pabilities allowing to extend the tool or redefine parts of it.
This is the case for instance for the text editor emacs or
the typesetting system TEX/LATEX, both being often per-
ceived as tools with unlimited features. snakes follows this
pattern by defining a simple but very general Petri net struc-
ture: places, transitions, arcs, tokens. This is indeed what
all Petri nets have in common. At this level of generality

1This is actually a general requirement as if a software is
complicated and works on a very specific platform, it is likely
that only few people will use it.

however, not many features are available. Then, Python [28]
has been chosen as the extension language. Python is a ma-
ture, well established, interpreted language, that has all the
required characteristics to meet the needs expressed above.
According to its web site:

Python is a dynamic object-oriented
programming language that can be used for
many kinds of software development. It offers
strong support for integration with other
languages and tools, comes with extensive
standard libraries, and can be learned in a few
days. Many Python programmers report
substantial productivity gains and feel the
language encourages the development of higher
quality, more maintainable code.

It may be added that Python is free software and runs on a
very wide range of platforms. In order to provide with (hope-
fully) unlimited scripting capabilities, snakes delegates all
the computational aspects of Petri nets to Python. In par-
ticular, a token is an arbitrary Python object, transitions
execution can be guarded by arbitrary Python Boolean ex-
pressions, and so on. As a result, a Petri net in snakes is
mainly a skeleton with very general behavioural rules (con-
sume and produce tokens in places through the execution of
transitions) and with the full power of a programming lan-
guage at any point where a computation is required. snakes
itself is programmed in Python and uses the capability of
the language to dynamically evaluate arbitrary statements.
Using the same programming language for snakes and its
extension language is a major advantage for the generality:
Petri nets in snakes can use snakes as a library and work
on Petri nets. For instance, as a token in snakes may be
any Python object, it could be an instance of the Petri net
class of snakes.

snakes is more particularly targeted to the family of the
Petri Box Calculus (pbc) [4, 5] and M-nets [6] for which
Petri nets may be composed as terms in a process algebra.
Many variants of the base model exist and new ones are still
under development, each being focused on the study of a par-
ticular feature (e.g., time, preemption, threads, exceptions,
. . .). In order to provide support for these models without
specialising the general framework presented above, snakes
comes with various extension modules (also called plugins)
to address the various aspects of these models. This plugin
system is a simple and convenient way to extend and spe-
cialise the core library. Many short-life tools or prototypes
can be developed as plugins; this was made for instance dur-
ing a work about the verification of Petri nets equipped with
unbounded integer variables [27]. This particular case is re-
lated in the section 3.2.3 below where the perceived benefits
of prototyping with snakes in parallel with writing the pa-
per are explained.

All but one of the requirements listed above have been dis-
cussed so far. The ease to use has been tested with four un-
dergraduate students in computer science, at the end of their
first year of master degree. All four were average students
having no prior knowledge of Python and only basic notions
about Petri nets. They were given a one hour presentation
of Python and snakes and provided with the Python tuto-

rial. Each of them had to implement an algorithm described
in a paper: McMillan’s unfolding [20], Finkel’s version of
Karp & Miller’s coverability graph [18], M-nets unfolding to
p/t-nets [6] and Petri net semantics of mins [24]. All the
four students could provide a working program after a few
weeks of work, none of them did request for help except to
understand the papers, and the quality of their programs
distributed evenly from acceptable to excellent.

1.1 Use cases
snakes has been used to implement various Petri nets se-
mantics:

• the Causal Time Calculus [25] is a pbc-like process al-
gebra with a Petri net semantics that has been imple-
mented on the top of snakes in less than 200 straight-
forward lines of code;

• boon [9] is an object-oriented programming notation
with a Petri net semantics that has been implemented
using snakes called from a Java program;

• a Petri net semantics of mins interconnection networks
has been implemented and used for simulation [24];

• a Petri net semantics of the Security Protocol Lan-
guage (spl) [8] has required also about 200 lines of
code.

In all these cases, performances were not an issue as the goal
was to use the ability of snakes to perform various compo-
sitions on Petri nets. But it was not used to execute the
nets produced (except for mins where execution time was
not critical). This kind of application is actually the main
intended usage for snakes that was started in order to sup-
port models from the pbc and M-nets family. It is often the
case when working with this family that the main issue is
to build a Petri net that is later verified using a specialised
tool. This holds for instance with the semantics of spl that
is computed using snakes, yielding a Petri net that is trans-
lated to the Helena [15] formalism for fast verification.

One other use case of snakes is developed more in details
in the section 3.2.3 and consisted in implementing a state
space construction. In this case also, performances were not
an issue: most of the computation involved when building
the state space was delegated to a library implemented in C.
The computation performed by Python was small enough to
allow us to run our examples and validate our algorithms.
However, our implementation was only a prototype and to
make it more efficient, one would need to replace snakes by
a fast Petri net library, which would fix the variant used.

1.2 Related tools
Several existing tools may be related in particular to snakes.
The first one is the Petri net kernel (pnk) [29] that shares
with snakes the aim to provide a general framework for
building Petri nets applications. The pnk provides a graph-
ical user interface for editing and simulating Petri nets, its
main aim being to provide the basis to real applications
rather than to allow for quick prototyping. With respect to
snakes, the basic model of the pnk is a less general model

of coloured Petri nets; however, this may be extended by
writing Java code. Another difference is that the pnk does
not provide any of the operations in order to manage models
from the pbc and M-nets family, which is of course not its
aim. The development of the pnk does not appear to be
active anymore, the last release being dated of March 2002.
The pnk is free software distributed under the terms of the
gnu gpl, which forces tools that use the pnk to be released
under the same licence. snakes uses the gnu lgpl, which is
less restrictive and allows to produce non-free software that
uses snakes, but forces to release under the gnu lgpl any
change made to snakes.

Another tool with which snakes shares some goals is the
Programming Environment based on Petri nets (pep) [23].
The main similarity between the two tools is that both deal
with pbc and M-net models. The main difference is that
pep is oriented toward model-checking, proposing a graphi-
cal user interface to model Petri nets through various ways.
The Petri nets models in pep are fixed, mainly variants of
pbc and a restricted version of M-nets, which cannot be
changed by the user. pep also appears to be not maintained
anymore, the last release being dated of September 2004.
pep was the tool we used before to decide to develop snakes.
The main reason for this decision was the impossibility to
update pep quickly enough with respect to the theoretical
developments in the pbc family, which is not surprising as
pep was never designed with this goal in mind. Like the
pnk, pep is released under the gnu gpl.

Compared with CPN tools [11], snakes shares the ability to
use a programming language for the inscriptions of the nets:
a variant of ml for cpn tools, and Python for snakes. This
makes it possible to extend a lot the features of cpn tools.
However, it uses fixed (but very general) Petri net models
and does not provide support to introduce another variant.
So, there might be new models of Petri nets that cannot be
represented using one of those provided by cpn tools, and
thus for which the tools cannot be used. Another important
difference is that cpn tools feature an advanced graphical
user interface while snakes is only a programming library.
Finally, cpn tools is not open source.

More generally, as any Petri net modelled in snakes may
be executed, it could be compared with any Petri net tool
that can simulate nets or compute their reachability graph.
However, executing nets is not the main purpose of snakes
and it is not designed to do it efficiently (even if it may be
efficient enough for simulation). This feature is only required
because using snakes for prototyping may require executing
Petri nets. For instance, when working on a new model of
Petri nets equipped with unbounded integer variables [27],
the fact that snakes could execute this new class of net was
necessary to prototype our state graph construction (see the
section 3.2.3 for details).

1.3 Outlines
The next section gives an overview of the core library. Then
we present the plugin system implemented in snakes. We
conclude the paper with a list of ongoing and future works.

2. THE CORE LIBRARY
snakes is organised as a hierarchy of modules:

snakes is the top-level module and defines the exceptions
used in the library.

snakes.data defines the basic data types (e.g., multisets and
substitutions) and data manipulation functions (e.g.,
cross product).

snakes.typing defines a typing system that can be used to
restrict the tokens accepted by a place (see the sec-
tion 2.2.1).

snakes.nets defines all the classes directly related to Petri
nets: places, transitions, arcs, nets, markings, reach-
ability graphs, etc. A simplified class diagram of this
module is presented in the top of the figure 3. It also
imports and makes available all the api from the mod-
ules above.

snakes.plugins is the root for all the extension modules of
snakes.

The first four modules above (plus additional internal ones
not listed here) form the core library of snakes which is
described further in the rest of the section. (The plugin
system will be described in the next section.)

snakes is designed so that it can represent Petri nets in a
very general fashion:

• each transition has a guard that can be an arbitrary
Python Boolean expression;

• each place has a type that can be an arbitrary Python
Boolean function that is used to accept or refuse to-
kens;

• tokens may be arbitrary Python objects;

• input arcs (i.e., from places to transitions) can be la-
belled by values (to consume a known value), variables
(to bind a token to a variable name) or several of these
objects (to consume several tokens). New kind of arcs
may be added (e.g., read arcs are provided as a simple
extension of existing arcs);

• output arcs (i.e., from transitions to places) can be la-
belled the same way as input arcs, moreover, they can
be labelled by arbitrary Python expressions in order
to compute new values to be produced;

• a Petri net with these annotations is fully executable,
the transition rule being that of coloured nets: a bind-
ing of variables must be found such that there are
enough tokens in input places and the guard of the
transition is respected as well as the type of the out-
put places.

More precisely, at any marking, each transition can compute
its enabling bindings (also called its modes) as follows:

• each combination of the available tokens with the vari-
ables on the input arcs provides a possible binding of
these variables;

• each such binding corresponds to a Python environ-
ment (i.e., a set of names associated to values) in which
the guard of the transition is evaluated;

• if the guard evaluates to True, each output arc is then
evaluated in the same environment and it is checked if
the produced tokens are accepted by the corresponding
places;

• if all these tests pass successfully, the binding is en-
abling.

Then, one of these enabling bindings can be used to fire the
transition, which follows the same process starting from the
second step and ending by actually consuming and produc-
ing the adequate tokens.

2.1 Example
A simple example of a coloured Petri net is depicted in the
figure 1. In this example, place p1 can be marked by any
integer-valued token (it currently holds two such tokens)
and place p2 is restricted to non-negative integers. In order
to model this net with snakes, one may run the following
Python program:

1
˛̨

from snakes.nets import ∗
2
˛̨

n = PetriNet(’simple net’)
3
˛̨

n.add place(Place(’p1’, [−1, 2], tInteger))
4
˛̨

n.add place(Place(’p2’, [], tNatural))
5
˛̨

n.add transition(Transition(’t’, Expression(’x>0’)))
6
˛̨

n.add input(’p1’, ’t’, Variable(’x’))
7
˛̨

n.add output(’p2’, ’t’, Expression(’x+1’))

The first line imports the main module. It exports in par-
ticular the classes PetriNet, Place, Transition, Expression and
Variable, and the objects tInteger and tNatural. Then, a Petri
net is created, being given the name “simple net”. Two
places are added to it, each is an instance of the class Place
whose constructor expects the name of the place, a list of
tokens for its marking and an optional constraint on the ac-
cepted tokens (see the section 2.2.1). Similarly, a transition
is added, being given a name and an optional Boolean ex-
pression for its guard. Finally, two arcs are created: one
input arc labelled by a variable and one output arc labelled
by an expression.

At the end of this program, various objects have been cre-
ated, which is summarised in the figure 2. We see on this
diagram that a new class appeared: instances of MultiSet
(from the module snakes.data) are used to represent the
marking of the places. Moreover, the attributes pre and
post of places and transitions are dictionaries whose keys
are node names and whose values are arc annotations. For
instance p1.post[’t’] is the variable x, which is used this way
on the diagram (instead of depicting the dictionary objects).

In order to get the list of enabling bindings for the transition,
one may use the following:

2
−1

p1

Z t

x > 0 p2

Nx x + 1

Figure 1: A simple coloured Petri net.

8
˛̨

t = n.transition(’t’)
9
˛̨

m = t.modes()

(The first line stores a reference to the transition in a vari-
able t in order to avoid using“n.transition(’t’)”everywhere.)
At this point, the value of m is the list [Substitution(x=2)]
because only the binding {x 7→ 2} enables t. Then, the tran-
sition may be fired with the first binding discovered (if t had
no enabling binding, this last statement would result in an
exception as m would be an empty list):

10
˛̨

t . fire (m[0])

A class StateGraph is provided in order to automate this
process and to compute the reachability graph by execut-
ing all the possible transitions for all the possible modes at
all the reached markings. The following code creates the
StateGraph object, computes all the reachable markings and
then iterates over the states in order to print their informa-
tion (marking, successors and predecessors).

9
˛̨

g = StateGraph(n)
10

˛̨
g.build()

11
˛̨

for s in g :
12

˛̨
print ’state’, s, ’is’, g.net.get marking()

13
˛̨

print ’ successors:’, g.successors()
14

˛̨
print ’ predecessors:’, g.predecessors()

Executing this code after the line 7 above prints the following
(except that lines have been wrapped below) where each
arc in the marking graph is labelled by the corresponding
transition and its mode at firing time:

state 0 is Marking({’p1’: MultiSet([2, -1])})
successors: {1: (Transition(’t’, Expression(’x>0’)),

Substitution(x=2))}
predecessors: {}

state 1 is Marking({’p2’: MultiSet([3]),
’p1’: MultiSet([-1])})

successors: {}
predecessors: {0: (Transition(’t’, Expression(’x>0’)),

Substitution(x=2))}

2.2 Other features
2.2.1 Type system for the places

As seen above, places in a Petri net are given a type that
is used to control the accepted tokens. We have used the
types tInteger and tNatural from the module snakes.typing.
This module actually provides a more general type system
that one can use to build complex type checkers for places.
In this system, a type is understood as a set of values, a
type checker being a test that decides whether a given value
belongs to the type or not.

Several type constructors are provided in order to build basic
types:

Instances(c) builds a type whose elements are instances of
the class c.

OneOf(a, b, ...) creates a type whose values are just those
enumerated, i.e., a, b, etc.

Place: ’p1’ Place: ’p2’Transition: ’t’

guard

PetriNet: ’simple net’

tInteger tNaturalVariable: x

pre[’p1’]post[’t’]

Expression: x + 1

post[’p2’] pre[’t’]

Expression: x > 0

MultiSet : {−1, 2}

tokens

MultiSet : {}

tokens

Figure 2: The objects diagram after executing the line 7 of the program. Some links indicate the names of
the attributes that hold the references.

Collection(container, items, min, max) creates a type for
collections of objects whose values are objects in the
type container (usually list or tuple) and contain at
least min and at most max values accepted by the type
items. There is similarly a type constructor Mapping
for dictionary-like objects.

Range(first, last, step) returns a type that accepts all the
values ranging from first to last by steps of step.

Greater(min) accepts all the values greater than min. Simi-
larly, there are type constructors GreaterOrEqual, Less
and LessOrEqual.

CrossProduct(t1, t2, ...) creates a type that accepts tuples
of values from the given types t1, t2, . . .

TypeCheck(fun) creates a type whose values are those for
which the function fun returns True. This allows to
build a type from an arbitrary Boolean function.

On this basis, types may be combined using various sets
operators: & (intersection), | (union), − (difference), b (dis-
joint union) and ∼ (complement). For instance, the module
snakes.typing defines:

1
˛̨

tInteger = Instance(int)
2
˛̨

tNatural = tInteger & GreaterOrEqual(0)

2.2.2 Arcs
We have seen so far that arcs may be labelled by values,
variables or expressions (only on output arcs). It is also
possible to create multi-arcs that transport multiple values.
For instance, MultiArc([Value(1), Variable(’x’)]) can be the
label of an input arc which is able to consume two tokens,
one being the value 1 and the other being an arbitrary value
bound to the variable x.

snakes also provides test arcs that never transport values.
On an input arc, this corresponds to a read arc; on an output
arc, it is used to check the type of a place with respect to the
annotation. For instance, creating an output arc with the
label Test(Expression(’x**2’)) will never produce a token
in the corresponding place but will allow the transition to
check if the place type accepts the value computed from the
expression.

New kind of arcs may be created, it is only necessary to
derive a class from the abstract class ArcAnnotation.2 More-
2There is no proper notion of abstract class in Python, how-
ever, this can be simulated using a class whose methods that
should be abstract raise NotImplementedError if called.

over, like Test or MultiArc the new class may encapsulate
existing arc classes.

2.2.3 Support for the Petri Net Markup Language
Every object that may be part of a Petri net in snakes can
be exported to or imported from pnml. The required mod-
ule for this purpose is snakes.pnml. It provides in particular
a function dumps that takes an object as argument and re-
turns its representation in pnml. The module also provides
the function loads that does the reverse, i.e., building an
object from its pnml representation.

When an object has no known pnml representation, snakes
uses standard Python serialisation (embedded in xml). This
is convenient because any object can be saved to pnml; but
in such a case, there is no chance for the produced pnml to
be compatible with an other tool.

2.2.4 Controlling the execution environment
It has been explained above how a transition binds the vari-
ables on its input arcs in order to build an environment that
is used to evaluate the Python expressions in the guard and
output arcs. When one of these expressions needs functions
or modules that are not available in the default environ-
ment, the evaluation fails. In such a case, it is necessary to
declare the needed objects before to start executing transi-
tions. There are two ways to do so.

One is to use the method declare of a PetriNet instance that
expects an arbitrary Python statement given as a string and
executes it. If this statement has some side effects, this will
be recorded for the next evaluation. For instance, one may
run n.declare(’import math’) in order to make the module
math available to all the evaluations occurring in the net n
after that.

The other solution is to access directly the evaluation envi-
ronment that is a dictionary stored as an attribute globals.
This attribute exists for any object that needs to evaluate
Python code and is shared over a whole Petri net. For in-
stance, in order to declare a global variable x, the method de-
scribed above should be used as“n.declare(’global x;x=2’)”
(first state that x is global and then assign it) or more simply,
using the attribute globals: “n.globals[’x’]=2”.

3. EXTENSION MODULES
An extension module is meant to extend an existing module
from the core library (usually snakes.nets) by subclassing
some of its classes. Because we do not know in advance

NetElement ArcAnnotation

Node

Place Transition

Value Variable Expression Test MultiArc

MarkingPetriNet StateGraph

snakes.nets

Place Transition PetriNet

snakes.plugins.pos

Position

PetriNet StateGraph

snakes.plugins.graphviz

Figure 3: The loading of the plugin graphviz, that depends on pos, on the top of snakes.nets.

which plugins will be loaded by the user and in which or-
der, the classes hierarchy cannot be fixed statically. In order
to do it dynamically, an extension module provides a func-
tion extend that takes as its single argument the module
to extend, which may be snakes.nets or a version of it al-
ready extended, and returns a new module with proper sub-
classes. (Python allows to create classes at run time.) The
module snakes.plugins provides some functions to make this
easy, allowing the programmer to concentrate on writing the
subclasses. This approach is summarised in the figure 3 that
illustrate the loading of the plugin graphviz on the top of the
plugin pos (on which it depends). First, the plugin pos is
loaded on the top of the module snakes.nets, which transpar-
ently calls snakes.plugins.pos.extend(snakes.nets). This re-
turns a new module whose classes are those from snakes.nets
except for Place, Transition and PetriNet that come from
snakes.plugins.pos, with the inheritances depicted in the fig-
ure 3. Then, on the top of this new module, the plugin
graphviz is loaded, following a similar process. The result is
a module that exhibits the same interface as snakes.nets and
whose classes come from snakes.plugins.graphviz for PetriNet,
snakes.plugins.pos for Place and Transition and snakes.nets for
the other ones.

The loading of plugins is supported by helper functions, so,
the example described above would simply result in the fol-
lowing code:

1
˛̨

import snakes.plugins
2
˛̨

snakes.plugins .load(’graphviz’, ’snakes.nets’, ’nets’)
3
˛̨

from nets import ∗

The first statement is a regular Python module import. The
second statement is the loading of the plugin: the extension

module called ’graphviz’ is loaded on the top of the module
called ’snakes.nets’ and the result is imported as the mod-
ule called ’nets’. This allows to execute the last statement
that imports every visible name from the newly constructed
module nets, thus avoiding to use the prefix “nets.” in order
to access its content.

Several plugins may be loaded using a single load statement,
in order to do so, it is just needed to give a list of plugin
names to be loaded instead of only one. For instance:

1
˛̨

snakes.plugins .load([’graphviz’, ’ops’, ’synchro’],
2
˛̨

’snakes.nets’, ’nets’)

3.1 Defining new Petri net variants
A new class of Petri nets can be easily defined using a plu-
gin. Let’s consider for example Merlin & Farber’s time Petri
nets [21]. A plugin is being developed to support them in
snakes. In its current state, it extends classes Transition,
Place, and PetriNet. In order to simplify the presentation,
the version presented here does not support transitions with
multiple enabling, it is discussed below how this is supported
in the actual implementation.

First, each transition is given a earliest and latest firing time
as well as a timer (i.e., its current time value). The construc-
tor of class Transition adds an attribute time for the timer,
and two attributes min time and max time initialised from
arguments added to the constructor. The default value for
max time is None, which is considered as an infinite bound-
ary. Then, the method enabled (that checks whether a bind-
ing enables or not a transition) is redefined in order to take
time into account. It accepts an additional optional argu-

ment untimed that allows to avoid checking time boundaries.
The method copy that duplicates a transition is also rede-
fined in order to properly copy timing information.

Next, class Place is extended so that whenever the marking
of a place is changed, its successor transitions are examined
in order to reset their timer if their enabling is changed. This
implies to redefine four methods: add that adds tokens to a
place, remove that removes tokens from a place, reset that
replaces the marking of a place, and empty that removes all
the tokens held by a place. In all cases, when a transition is
newly enabled its timer is reset to zero. When a transition
becomes disabled by its input marking, its timer is set to
None, which avoids to consider it when time passes. As a
result, the value None for a timer indicates that the tran-
sition is not enabled because of the marking, but when the
timer is not None, its value has to be compared with the
earliest and latest firing time of the transition to know if it
is enabled or not. Thus, the method Transition.enabled is
written as follows:

1
˛̨

def enabled (self , untimed=False) :
2
˛̨

if self .time is None :
3
˛̨

return False
4
˛̨

elif untimed :
5
˛̨

return super(Transition, self).enabled(binding)
6
˛̨

elif self .max time is None :
7
˛̨

return (self .min time <= self.time) \
8
˛̨

and super(Transition, self).enabled(binding)
9
˛̨

else :
10

˛̨
return (self .min time <= self.time) \

11
˛̨

and (self .time <= self.max time) \
12

˛̨
and super(Transition, self).enabled(binding)

The condition on the line 2 checks if the timer is None, in
which case the transition is disabled because of the marking.
Otherwise, the condition on the line 4 checks whether the
new argument untimed has been set to True when calling
the method. If so, the enabling is tested by the parent class
super(Transition, self), thus ignoring all timing information.
Then, the line 6 corresponds to the case where no latest
firing time has been given and the else case when it has been
given. The assumption that a transition is not enabled then
its timer is None is safe because this value is set by the pre-
places of each transition when their markings are changed.
For instance, the methods Place.add and Place.remove are
programmed as follows:

1
˛̨

def add (self , tokens) :
2
˛̨

enabled = self. post enabled()
3
˛̨

super(Place, self).add(tokens)
4
˛̨

for name in self.post :
5
˛̨

if not enabled[name] :
6
˛̨

trans = self .net. transition (name)
7
˛̨

if len(trans.modes()) > 0 :
8
˛̨

trans.time = 0.0
9
˛̨

def remove (self , tokens) :
10

˛̨
enabled = self. post enabled()

11
˛̨

super(Place, self).remove(tokens)
12

˛̨
for name in self.post :

13
˛̨

if enabled[name] :
14

˛̨
trans = self .net. transition (name)

15
˛̨

if len(trans.modes()) == 0 :
16

˛̨
trans.time = None

The method post enabled returns a dictionary whose keys
are the names of the transitions in the post-set of a place,

associated to Boolean values indicating whether each transi-
tion is currently enabled or not (which is checked by compar-
ing its timer to None). Then, after adding the tokens line 3,
the method add checks if a transition becomes enabled by
its marking, i.e., if at least one mode can be found for it. If
so, its timer is set to 0.0. Symmetrically, the method remove
checks if a transition that was enabled becomes disabled, in
which case its timer is set to None. In order to lift the im-
plementation to the case where transition can be multiply
enabled, it is enough to store one timer for each mode of
each transition, which is quite a simple change with respect
to the simplified implementation presented here.

Finally, the class PetriNet is given two new methods step
and time. The former computes the maximal delay that can
pass until the enabling is changed, either by enabling a tran-
sition (when its timer reaches its min time), or by requiring
a transition to fire (when its timer reaches its max time).
The latter can be used to let time pass, which corresponds
to increase all the timers that are not None. This method
time expects a duration as argument and returns the actual
duration that could be used. For instance, if the user request
an increasing of 1.0 but if after 0.4 time units a transition
becomes newly enabled, then the method will only increase
time by 0.4 and return this value to inform the user. Sim-
ilarly, time will never be increased enough to overcome the
latest firing time of a transition. So, when a transition has
to fire because of time, any call to time or step will return
0.0, corresponding to the fact that time cannot pass before
the urgent transition is fired.

These changes have been implemented in less than 100 lines
of code. In order to have a complete plugin, it will be neces-
sary to implement an extended StateGraph class to construct
a valid state space for time Petri nets (e.g., one of those
described in [3]). Support for transitions with multiple en-
abling as described above will be included as well. When
completed, the plugin will be included in snakes.

3.2 Main available plugins
3.2.1 Drawing nets and state graphs

The plugin graphviz used above in the example is dedicated
to draw PetriNet and StateGraph objects using GraphViz [1].
There are two ways to layout a Petri net: either by giving
an explicit position to each node,3 or by letting GraphViz
compute a layout using one of the five available engines.
Only the latter solution is available for a state graph. The
figure 4 shows examples of state graphs drawn by GraphViz.

3.2.2 PBC and M-nets operations
The pbc and M-nets models define two kinds of operations,
relying respectively on a labelling of places or transitions.

First comes a family of control flow compositions for which
places are given statuses indicating their roles. In particu-
lar, one distinguishes entry places and exit places that corre-
spond to the initial and final markings of a net. For instance,
a sequential composition of two nets consists in combining
the exit places of the first net with the entry places of the
second net in such a way that the termination of the former

3This feature is provided by the plugin pos on which the
plugin graphviz depends.

will correspond to the starting of the latter. Moreover, sta-
tuses distinguish data places that are given a name, which
corresponds to the variables in a program. When nets are
composed, data places with the same name are merged in
order to ensure a unique representation of each variable.

Places statuses are implemented in the extension module
status, then the extension module ops relies on it in order to
implement the usual pbc control flow operations (with au-
tomatic merging of data places): sequence, iteration, choice
and parallel. A name hiding operation is also provided, it re-
moves the name of a data place so that it cannot be merged
anymore, which corresponds to a local variable. All these
operations are implemented as Python operators, so, for in-
stance, if n1 and n2 are two PetriNet objects, one may write:

1
˛̨

p = n1 | n2 # parallel composition
2
˛̨

s = n1 & n2 # sequential composition
3
˛̨

c = n1 + n2 # choice
4
˛̨

i = n1 ∗ n2 # iteration
5
˛̨

h = n1 / ’var’ # hiding of name ’var’

The other set of operations comprises the transitions syn-
chronisation, restriction and scoping. They are inspired
from the ccs [22] action synchronisation as transitions can
synchronise on conjugated actions. However, with respect to
ccs, pbc and M-nets use multi-actions, allowing more than
two transitions to synchronise at the same time. Moreover,
these models distinguish the synchronisation that enables
the synchronised behaviour, from the restriction that for-
bids the independent behaviour (the scoping is the successive
application of both operations). Finally, these operations
are purely statical and construct explicitly the synchronised
transitions that may fire or not at execution time. With re-
spect to pbc, M-nets also define parameters for the actions,
allowing to exchange information between the synchronised
transitions.

This aspect is implemented in the plugin synchro that de-
fines classes for actions and multi-actions and adds methods
to the class PetriNet in order to perform the corresponding
operations. snakes generalises the models by not imposing
a fixed number of parameters for each action name. Instead,
matching the number of parameters becomes a part of the
unification process that takes place when two conjugated
actions participate in a synchronisation.

The M-nets model also includes a general refinement oper-
ation that allows to replace a transition with an arbitrary
M-net [13]. This operation has not been implemented in
snakes and it is not intended to add it since it leads to
very complex nets that are not tractable in practice. For
instance, place types, tokens and arc annotations become
trees after a refinement, so firing a transition implies match-
ing trees against trees. Moreover, the refinement is always
used for two purposes: synthesis of the control flow oper-
ations (sequence, choice, etc.), and colour-safe execution of
multiple instances of the same net. With the new models of
the family, both these effects are now feasible without using
the general refinement, see [26] for instance.

3.2.3 Handling unbounded counters
The plugin lashdata has been developed while working on a
model of p/t Petri nets equipped with unbounded integer

variables [27]. This model has been given a semantics in
terms of compact state graphs where one abstract state en-
codes possibly infinitely many concrete states that differ only
by the values of the integers variables. The fact that snakes
was available and allowed to implement this model has been
a benefit at several points. First, working on the theoretical
definitions and implementing them in parallel helped a lot
to clarify and simplify the definitions. Then, possible opti-
misations were discovered during the implementation of the
compact state graph construction. Indeed, going to the de-
tailed program level allowed to identify where programming
choices had to be made and thus to investigate the conse-
quences of different choices. Moreover, running the proto-
type on various examples allowed to exhibit cases where the
current construction were not satisfactory, which led to im-
prove the algorithm at the theoretical level. Another source
of satisfaction was the ability to produce automatically ex-
amples for illustrating the paper and the presentation, which
was not only convenient but also increased the confidence
that no mistake was introduced in the examples. Finally,
the fact that a prototype existed for the construction de-
scribed in the paper was perceived as very positive by the
referees as well as by the audience when the paper has been
presented.

The plugin lashdata relies on the library Lash [7] to represent
integers variables added to a Petri net. (With respect to the
paper [27], this plugin allows for any kind of Petri net and
not only for p/t nets.) The plugin defines a class Data that
encapsulates the data structures of Lash in order to store
the values of the variables. For instance, the creation of a
Petri net equipped with two variables x and y initialised to
zero requires the following Python code:

1
˛̨

import snakes.plugins
2
˛̨

snakes.plugins .load(’lashdata’, ’snakes.nets’, ’nets’)
3
˛̨

from nets import ∗
4
˛̨

n = PetriNet(’N’, lash=Data(x=0, y=0))

Then, the plugin extends transitions in order to take the
integer variables into account: the firing is subject to a con-
dition on the variables (which is independent of the guard)
and it is allowed to update their values. For instance one
may write:

5
˛̨

n.add transition(Transition(’t’),
6
˛̨

condition=’x<y’,
7
˛̨

update=’x=x+1; y=y-1’)

Finally, the class StateGraph is extended in order to im-
plement the construction defined in the paper: several op-
tions are added to the constructor in order to enable various
levels of compression. With no option, no compression is
performed and the abstract state graph corresponds to the
concrete reachability graph. Using the option “loops=True”
enables compression when a side-loop is detected (i.e., a
transition that changes the variables but not the marking).
Using “cycles=True” also enables the compression when gen-
eral loops are detected (i.e., cycles in the state graph). Using
“remove=True” then enables the removing of covered states
(i.e., existing abstract states that are included in newly com-
puted ones). Finally, using“fold=True”adds additional com-
pression when sequences of the same transition are detected.
This last option is not described in [27] and was added to the

0 1
t_1

2t_2

3t_1
t_3

4

t_4

t_2

5

t_1

t_5
t_3

6
t_4

t_2

7

t_1

t_5

t_3

8
t_4

t_2

9

t_1

t_5

t_3

10
t_4

t_2

11

t_1

t_5

t_3

12
t_4

t_2

13

t_1

t_5

t_3

14
t_4

t_2

15

t_1

t_5

t_3

16
t_4

t_2

17

t_1

t_5

t_3

18
t_4

t_2

19

t_1

t_5

t_3

20
t_4

t_2

t_5

t_3

21
t_4

t_5

22
t_3

23

t_4

t_2

t_5

24

t_3

25

t_4

t_2

t_5

26

t_3

27

t_4

t_2

t_5

28

t_3

29

t_4

t_2

t_5

30

t_3

31

t_4

t_2

t_5

32

t_3

33

t_4

t_2

t_5

34

t_3

35

t_4

t_2

t_5

36
t_3

37

t_4

t_2

t_5

38

t_3

39

t_4

t_2

t_5

40

t_3

41

t_4

t_2

t_5

0 1
t_1

t_1
2t_2

t_3

t_5

3
t_4

t_4

4

t_3

5

t_5

t_1

t_2

t_4

t_5

6
t_3

t_1

t_2

0 6
t_1

t_3 8t_5

9t_4
t_3

t_5

t_4

t_3

t_5

t_4

3

t_4

4
t_3

t_2

t_1

Figure 4: On the top: a concrete marking graph.
Below: its compact versions when the various com-
pression options are activated (top-down: loops,
cycles or remove, and fold). On this example, the
option remove does not provide more compression
than cycles.

plugin after the publication. The figure 4 shows an example
of a state graph at the different levels of compression.

One hidden but important task of the plugin lashdata is to
perform the translation between the variable-based repre-
sentation of data in the Petri nets and its vector-based im-
plementation in Lash. Indeed, Lash actually handles sets of
integer-vectors and matrix-based linear conditions and up-
dates. The plugin thus assigns to each variable an index in
such a vector and computes for each condition or update
expressed in Python (with constraints on the syntax in or-
der to ensure the linearity) the corresponding matrices as
expected by Lash. This work is facilitated by the module
snakes.compyler that was designed to handle Python expres-
sions in snakes. For instance, it is used to correctly rename
variables in expressions (e.g., in guards); it may be used also
to translate Python expression to another language like C
(provided in snakes.compyler for illustration) or cpn-ml. To
do so, the module compyler defines a class Parser that uses
the standard Python library to parse Python code and build
abstract syntax trees. This trees are then traversed and each
node is examined by a dedicated method of the class Parser.
By subclassing it, one may perform any operation on any
node of the abstract trees.

4. FUTURE AND ONGOING WORKS
snakes is still under active development and is still consid-
ered as a beta software at its current version (0.8.8). It is
planned to release the first stable version (numbered 1.0)
after a few features will be implemented (flagged “?” below)
and after some positive feedback will be received from the
users.

? Improving the documentation. The current documen-
tation for snakes is composed of an api reference manual
and a tutorial. The former is automatically generated from
the comments in the source code (Python “docstrings”) that
also contains the code used for unit testing. There are cur-
rently some modules, classes, methods or functions that lack
a proper documentation with sensible examples and unit-
test, which must be fixed in order to improve the usability.
However, the core library is currently quite complete to this
respect: 87% is documented, 47% has unit test and 49% has
detailed api specification. The tutorial is written separately
and currently does not introduce all the plugins of snakes,
but its is quite complete about the core library.

? Better PNML support. The current support of pnml is
not well tested, in particular for import. Moreover, many
extension modules do not properly support pnml export or
import. For the first stable release, it will be necessary to
check that every (reasonable) Petri net in snakes can be
exported to a pnml code that is compatible with the ma-
jor tools available. Moreover, it will be necessary to check
that import from these tools is possible for reasonable cases
(i.e., classes of Petri nets that naturally map to snakes core
library).

Support for other formats. Apart for pnml, other file for-
mats should be supported by snakes. In particular, those of
various model checkers that do not support pnml. The idea
is that snakes can be used to build a model taking advan-
tage of the pbc and M-nets compositions, then this model
can be model-checked with a specialised tool. This work re-
quires first a survey of the existing tools to see which ones
do not support pnml and which formats are already sup-
ported by some conversion tool. The goal is to minimise
the number of output formats to add to snakes in order to
avoid to duplicate existing tools. For instance, pep or the
model-checking kit [14] provide quite a lot of such transla-
tion tools.

There may exist also formats for which it may be interesting
to have an input filter to snakes, but this will not be a
priority as snakes is not intended to be used at the end of
a tool chain but rather at the beginning.

Support for more Petri nets variants. From the begin-
ning, snakes has been designed to be able to support as
many variants of Petri nets as possible. This aim should be
turned into acts by providing extension modules for popu-
lar Petri net models, in particular, those with time (see [10]
for a comprehensive survey), stochastic Petri nets [2] and
object Petri nets [17]. As presented above, Merlin & Far-
ber’s time Petri nets are being implemented, which causes
no particular difficulty.

API to other programming languages. As every library,
snakes is bound to a particular programming languages,
Python in its case. This may be a limitation to its usage,
even if Python is a language that is very easy to learn. In

particular, this is a limitation for a programmer that would
like to use snakes as the back-end of another application
not written in Python. For instance, a graphical editor could
use snakes as its data model in order to provide simulation
capabilities.

In order to remove this limitation, a C binding of snakes
is being developed. The approach chosen is to generate it
automatically by inspecting the actual Python code. Wrap-
pers for each class, method and function are generated as
Pyrex [16] code. This is a dialect of Python mixed with C
that can be compiled to pure C code. It is primarily in-
tended for building Python extension but is also suitable for
embedding Python into C programs.

Then, with a C api available, many other languages can be
mapped. Thin bindings can be easily obtained for a variety
of languages using a tool like swig [12]. But it is often more
interesting to produce a thick binding that is oriented toward
the programming style enforced by a particular language.
For instance, a Java binding should be object-oriented as
the original api is. (Note that there is no a priory limitation
with Java that can be interfaced to native libraries using the
jni framework [30].)

5. ACKNOWLEDGEMENTS
The author would like to thank Hanna Klaudel for her good
advices about how to present this paper, and Emmanuel
Polonowski who helped with the uml notation.

6. REFERENCES
[1] AT&T Research. Graphviz, graph visualization

software. 〈http://www.graphviz.org〉.
[2] F. Bause and P. S. Kritzinger. Stochastic Petri Nets

(2nd Edition). Vieweg Verlag, 2002.

[3] B. Berthomieu and F. Vernadat. State space
abstractions for time Petri nets. Handbook of Real
Time Systems, to appear, 2006.

[4] E. Best, R. Devillers, and J. Hall. The Petri box
calculus: a new causal algebra with multilabel
communication. In Advances in Petri Nets 1992,
volume 609 of LNCS. Springer-Verlag, 1992.

[5] E. Best, R. Devillers, and M. Koutny. Petri net
algebra. Springer-Verlag, 2001.

[6] E. Best, W. Fraczak, R. P. Hopkins, H. Klaudel, and
E. Pelz. M-nets: an algebra of high-level Petri nets
with an applications to the semantics of concurrent
programming languages. Acta Informatica, 35(10),
1998.

[7] B. Boigelot. The Liège automata-based symbolic
handler. 〈http://www.montefiore.ulg.ac.be/
~boigelot/research/lash〉.

[8] R. Bouroulet, H. Klaudel, and E. Pelz. A semantics of
security protocol language (SPL) using a class of
composable high-level Petri nets. In Proc. of
ACSD’04. IEEE Computer Society, 2004.

[9] C. Bui Thanh. Generating coloured Petri nets of
concurrent object-oriented programs. In Proc. of
ESMc’04. EUROSIS, 2004.

[10] A. Cerone and A. Maggiolo-Schettini. Time-based
expressivity of time Petri nets for system specification.
Theoretical Computer Science, 216(1-2), 1999.

[11] CPN Group, University of Aarhus. CPN Tools.
〈http://wiki.daimi.au.dk/cpntools〉.

[12] D. Beazley & al. Simplified wrapper and interface
generator. 〈http://www.swig.org〉.

[13] R. Devillers, H. Klaudel, and R.-C. Riemann. General
parameterised refinement and recursion for the M-net
calculus. Theoretical Computer Science, 300(1-3),
2003.

[14] J. Esparza, C. Schröter, and S. Schwoon. The
model-checking kit. 〈http://
www.fmi.uni-stuttgart.de/szs/tools/mckit〉.

[15] S. Evangelista. High level petri nets analysis with
Helena. In Proc. of ICATPN’05, volume 3536 of
LNCS. Springer-Verlag, 2005.

[16] G. Ewing. Pyrex, a language for writing Python
extension modules.
〈http://www.cosc.canterbury.ac.nz/greg.ewing/
python/Pyrex〉.

[17] B. Farwer and K. Misra. Modelling with hierarchical
object Petri nets. Fundamenta Informaticae, 55(2),
2003.

[18] A. Finkel. The minimal coverability graph for Petri
nets. In Papers from the 12th International Conference
on Applications and Theory of Petri Nets.
Springer-Verlag, 1993.

[19] F. Heitmann. Petri nets tool database at the Petri net
world. 〈http://www.informatik.uni-hamburg.de/
TGI/PetriNets/tools〉.

[20] K. L. McMillan. A technique of state space search
based on unfolding. Formal Methods in System
Design, 6(1):45–65, 1995.

[21] P. M. Merlin and D. J. Farber. Recoverability of
communication protocol. IEEE Trans. on
Communications, 24(9), 1976.

[22] R. Milner. Communication and concurrency.
Prentice-Hall, 1989.

[23] Parallel Systems Group, University of Oldenburg. The
PEP tool. 〈http://peptool.sourceforge.net〉.

[24] E. Pelz and D. Tutsch. Formal models for multicast
traffic in network on chip architectures with
compositional high-level Petri nets. In Proc. of
ICATPN’07, volume 4546 of LNCS. Springer-Verlag,
2007.

[25] F. Pommereau. Causal Time Calculus. In Proc. of
FORMATS’03, volume 2791 of LNCS.
Springer-Verlag, 2003.

[26] F. Pommereau. Versatile boxes: a multi-purpose
algebra of high-level Petri nets. In Prof of DASDS’04.
SCS/ACM, 2004.

[27] F. Pommereau, R. Devillers, and H. Klaudel. Efficient
reachability graph representation of Petri nets with
unbounded counters. In Proc. of Infinity’07, volume to
appear of ENTCS. Elsevier, 2007.

[28] Python Software Foundation. Python programming
language. 〈http://www.python.org〉.

[29] Research Group Petri Net Technology, Humboldt
Universität of Berlin. The Petri net kernel.
〈http://www.informatik.hu-berlin.de/top/pnkn〉.

[30] Sun Microsystems, Inc. Java native interface. 〈http:/
/java.sun.com/j2se/1.5.0/docs/guide/jni〉.

