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Abstract

We focus on kernel methods for set-valued inputs and their applica-
tion to Bayesian set optimization, notably combinatorial optimization.
We introduce a class of (strictly) positive definite kernels that relies on
Reproducing Kernel Hilbert Space embeddings, and successfully general-
izes “double sum” set kernels recently considered in Bayesian set opti-
mization, which turn out to be unsuitable for combinatorial optimization.
The proposed class of kernels, for which we provide theoretical guarantees,
essentially consists in applying an outer kernel on top of the canonical dis-
tance induced by a double sum kernel. Proofs of theoretical results about
considered kernels are complemented by a few practicalities regarding hy-
perparameter fitting. We furthermore demonstrate the applicability of
our approach in prediction and optimization tasks, relying both on toy
examples and on two test cases from mechanical engineering and hydro-
geology, respectively. Experimental results illustrate the added value of
the approach and open new perspectives in prediction and sequential de-
sign with set inputs.

∗PB and DG contributed equally to this work and are in alphabetical order.



1 Introduction

Kernel methods (Aronszajn, 1950; Kimeldorf and Wahba, 1970; Schölkopf and
Smola, 2002; Saitoh and Sawano, 2016) constitute a very versatile framework for
a variety of tasks in classification (Steinwart and Christmann, 2008), function
approximation based on scattered data (Wendland, 2005), and probabilistic
prediction (Rasmussen and Williams, 2006). One of the outstanding features
of Gaussian Process (GP) prediction, in particular, is its usability to design
Bayesian Optimization (BO) algorithms (Moćkus et al., 1978; Jones et al., 1998;
Frazier, 2018) and further sequential design strategies (Risk and Ludkovski,
2018; Binois et al., 2019; Bect et al., 2019). While in most usual BO and related
contributions the focus is on continuous problems with vector-valued inputs,
there has been a growing interest recently for GP-related modelling and BO
in the presence of discrete and mixed discrete-continuous inputs (Kondor and
Lafferty, 2002; Gramacy and Taddy, 2010; Fortuin et al., 2018; Roustant et al.,
2018; Garrido-Merchan and Hernández-Lobato, 2018; Ru et al., 2019; Griffiths
and Hernández-Lobato, 2019). Here we focus specifically on kernels dedicated to
finite set-valued inputs and their application to GP modelling and BO, notably
(but not only) in combinatorial optimization.

A number of prediction and optimization problems from various applica-
tion domains involve finite set-valued inputs, encompassing for instance sen-
sor network design (Garnett et al., 2010), simulation-based investigation of the
mechanical behaviour of bi-phasic materials depending on the position of inclu-
sion positions (Ginsbourger et al., 2016), inventory system optimization (Salemi
et al., 2019), selection of starting centers in clustering algorithms (Kim et al.,
2019), but also speaker recognition and image texture classification (as men-
tioned by Desobry et al. (2005)), natural language processing tasks with bags of
words (Pappas and Popescu-Belis, 2017), or optimal positioning of landmarks in
shape analysis (Iwata, 2012), to cite a few. Yet, the number of available kernel
methods for efficiently tackling such problems is still quite moderate, although
the topic has gained interest among the machine learning and further research
communities in the last few years. In particular, early investigations regard-
ing the definition of positive definite kernels on finite sets encompass (Kondor
and Jebara, 2003), (Grauman and Darrell, 2007), and also indirectly (Cuturi
et al., 2005) where kernels between atomic measures are introduced that can
also accomodate finite sets as a particular case (assuming a uniform measure,
as implicitly done in the considered embedding approach). Kernels on finite sets
that have been used in BO include to the best of our knowledge radial kernels
with respect to the the earth mover’s distance (Garnett et al., 2010, where the
question of their positive definiteness is not discussed), kernels on graphs implic-
itly defined via precision matrices in the context of Gaussian Markov Random
Fields in (Salemi et al., 2019), and a class that we refer to as “double sum”
kernels (traced back to Gätner et al. (2002)) in (Kim et al., 2019). From the
side of combinatorial optimization, while an approach relying on Bayesian net-
works was considered already in (Larraiiaga et al., 2000), the topic has recently
attracted attention in GP-based BO with respect to the set inputs (see for in-
stance Baptista and Poloczek (2018) where the emphasis is not on the employed
kernels, and Oh et al. (2019) where graph representations are used), and also in
GP-based BO over the latent space of a variational autoencoder (Griffiths and
Hernández-Lobato, 2019).
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Our approach here is to leverage the fertile framework of Reproducing Ker-
nel Hilbert Space Embeddings (Berlinet and Thomas-Agnan, 2004; Smola et al.,
2007; Sriperumbudur et al., 2011; Muandet et al., 2017) to build a novel class
of kernels on finite sets by chaining some “outer” kernels with the canonical
(pseudo-)distances attached to the double sum kernels of (Gätner et al., 2002;
Kim et al., 2019). We show that while restricting “inner” kernels to strictly
positive definite ones does not lead to strictly positive definite double sum ker-
nels, combining this assumption with another one guaranteeing strict positive
definiteness in Hilbert space of the “outer” kernel (Bachoc et al., 2018) is suf-
ficient for our proposed kernels to be strictly positive definite indeed, a crucial
property in particular for combinatorial optimization. We present in turn a few
additional results pertaining to the parametrization of this class of kernels and
to the related hyperparameter fitting problem, including geometrical considera-
tions around the choice of hyperparameter bounds in the embedding framework.

Section 2 is mainly dedicated to the construction and theoretical analysis
of the considered classes of kernels, and complemented by practicalities regard-
ing hyperparameter fitting. In Section 3, numerical experiments are discussed
that compare double sum and proposed kernels in prediction and optimization
tasks, both on analytical and on two application test cases, namely in mechan-
ical engineering with plasticity simulations of a bi-phasic material tackled in
(Ginsbourger et al., 2016), and in hydrogeology with an original monitoring
well selection problem based on the contaminant source localization test case
from (Pirot et al., 2019).

2 Set kernels via RKHS embeddings

2.1 Notation and Settings

We focus on positive definite kernels defined over subsets of some base set X .
Depending on the cases, X may be finite or infinite. The considered set of sub-
sets of X , denoted S, may be the whole power set P(X ) or a subset thereof, e.g.
Sp (also traditionally noted [X ]p in set theory) the set of subsets of X consisting
of p elements (where p is assumed smaller than or equal to the cardinality of
X ), or the set of all (non-void) finite subsets of X denoted here Sfin = ∪p≥1Sp.
Given a positive definite kernel kin over X and the associated Reproducing
Kernel Hilbert Space Hkin , what we call the embedding of Sfin in Hkin is the
mapping

E : S ∈ Sfin → E(S) =
1

#S

∑
x∈S

kin(x, ·) ∈ Hkin , (1)

where #S stands for the cardinality of S. Note that this “set embedding”
coincides with the Kernel Mean Embedding (Muandet et al., 2017) in Hkin of
the uniform probability distribution over S.
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2.2 From Double Sum to Proposed Kernels

A natural idea to create a positive definite kernel on Sfin from this embedding
is to plainly take the RKHS scalar product between embedded sets:

k(S, S′) = 〈E(S), E(S′)〉Hkin

=
1

#S

1

#S′

∑
x∈S,x′∈S′

kin(x,x′),
(2)

which is none other than the kernel used in (Kim et al., 2019) and that we refer
to here as double sum kernel. As we will see in the next section and in the
applications, this positive definite kernel may suffer in some settings from its
lack of strict positive definiteness. Yet it appears as a crucial building block in
the class of strictly positive definite kernels that we propose here. The first step
is to consider the canonical (pseudo-)distance on Sfin induced by this k, namely

dE(S, S
′) = ||E(S)− E(S′)||Hkin

=

(
1

(#S)2

∑
x∈S

kin(x,x) +
1

(#S′)2

∑
x′∈S′

kin(x′,x′)

− 2

(#S)(#S′)

∑
x∈S,x′∈S′

kin(x,x′)

 1
2

. (3)

Coming now to the proposed class of kernels per se, these are obtained by
composing what can be called a radial kernel on Hilbert space (See Bachoc
et al. (2018) for a reminder) with dE above. We hence obtain another class of
kernels on Sfin by writing

k(S, S′) = kout ◦ dE(S, S′)
= kout(||E(S)− E(S′)||Hkin

),
(4)

with kout : r ∈ [0,∞) → R being such that (h, h′) ∈ H → kout(||h − h′||H)
is positive definite for any Hilbert space (H, 〈·, ·, 〉H). The fact that kernels
k generated in this way are positive definite on Sfin follows directly from the
positive definiteness of kout on the Hilbert space Hkin and the representation
of dE(S, S

′) in terms of RKHS distance between the images of S, S′ by some
mapping E (See (Berg et al., 1984; Christmann and Steinwart, 2010) for similar
constructions). Furtheremore, as we develop next, we can ensure under some
assumptions that such kernels will further be strictly positive definite on Sfin, a
feature that will turn out to be crucial in combinatorial optimization.

2.3 Main Theoretical Results

Proposition 1 (Non-strict positive definiteness of double sum kernels). Let
X be a set, kin be a positive definite kernel on X , and Sfin be the set of finite
subsets of X . Then the kernel over Sfin defined by Eq. 2 is positive definite.
However, even if kin is strictly positive definite on X , such a k will generally
not be strictly positive definite on Sfin unless X is a singleton.
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Proof of Prop. 1. Let us consider here the case where the base set X is fi-
nite with cardinality c, so that Sfin = P(X )\{∅}. Since X is finite, a pos-
itive definite kernel kin on X boils down to a c × c Gram matrix, say Kin =
(kin(xi,xj))i,j∈{1,...,c} where X = {x1, . . . ,xc}. By reformulating Eq. 2 in terms
of a bilinear form with respect to a specific vector function of S and S′, we will
not only revisit the proof that k is indeed positive definite but also establish
that it is generally not strictly positive definite. Let us define for that purpose

u(S) =
1

#S
(1xi∈S)1≤i≤c ∈ Rc.

From there k(S, S′) can be reformulated into

k(S, S′) = u(S)TKinu(S′), (5)

so that, for any q ≥ 1, α1, . . . , αq ∈ R, and S = (S1, . . . , Sq) ∈ Sq,

q∑
i=1

q∑
j=1

αiαjk(Si, Sj)

=

(
q∑
i=1

αiu(Si)

)T
Kin

(
q∑
i=1

αiu(Si)

)
≥ 0,

by positive semi-definiteness of Kin, hence implying that k is p.d. indeed. Yet,
this representation will allow us to shed light on the fact that even if Kin is
a positive definite matrix (i.e., that kin is strictly p.d. on X ), the matrix
KS = (k(Si, Sj))i,j∈{1,...,q} will actually be systematically singular for q > c
and even sometimes in cases where q ≤ c. Exploiting Eq. 5 and defining
US = [u(S1), . . . , u(Sq)], we get KS in product form as follows

KS = UTSKinUS.

From there we get that KS = MT
SMS with MS = K

1
2

inUS and so rank(KS) =
rank(MS). Now, the rank of a matrix being invariant under pre (or post)
multiplication by a non singular matrix, we get in the case of a non-singular
Kin that rank(KS) = rank(US) ≤ min(q, c). Hence for q > c, rank(KS) ≤ c < q
and the matrix of interest is singular. To see that rank(KS) can be singular
when q ≤ c even in the case of an invertible Kin, one can think for instance of

the situation where c = 5, q = 4 and US ∝


1 1 0 0 1
0 0 1 1 1
1 0 0 1 1
0 1 1 0 1

.

Proposition 2 (Distance over Sfin induced by RKHS embedding). If kin is
strictly positive definite over X , then E is injective and dE : Sfin×Sfin → [0,∞)
defined by Eq.3 defines a distance over Sfin.

Proof of Prop. 2. dE(S, S
′) = ||E(S) − E(S′)||Hkin

straightforwardly inherits
from the triangle inequality associated with Hkin ’s distance. The only point
to check is the definiteness, i.e. that dE(S, S

′) 6= 0 for S 6= S′. Yet, assuming
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dE(S, S
′) = 0 with S = {x1, . . . ,xm} and S′ = {x′1, . . . ,x′m′} for some m,m′ ≥ 1

and x1, . . . ,xm,x
′
1, . . . ,x

′
m ∈ X would imply that∣∣∣∣∣∣

∣∣∣∣∣∣ 1

m

m∑
i=1

kin(xi, ·)−
1

m′

m′∑
i=1

kin(x′i, ·)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Hkin

= 0.

After regrouping terms when necessary, one would arrive at an equality of the

kind ||
∑m̃
i=1 ãikin(x̃i, ·)||2Hkin

= 0 (with, for instance in the case S ∩ S′ = ∅,
m̃ = m+m′, x̃i = xi and ãi = 1

m for 1 ≤ i ≤ m while x̃i = xm+i and ãi = − 1
m′

for m + 1 ≤ i ≤ m + m′), which would be in contradiction with kin’s strict
positive definiteness as soon as S 6= S′, proving in turn that E is injective.

Proposition 3 (Strict positive definiteness of k ). If kin is strictly positive
definite over X and kout : [0,+∞) → R is such that (h, h′) ∈ H2 → kout(||h −
h′||H) is strictly positive definite for any Hilbert space H, then k of Eq. 4 is
strictly positive definite over Sfin.

Proof of Prop. 3. (h, h′) ∈ H2 → kout(||h− h′||Hkin
) is strictly positive definite

on Hin by assumption on kout and the fact that Hin is a particular Hilbert space.
The strict positive definiteness of k on Sfin then follows from the injectivity of E
implied by the strict positive definiteness of kin (as established in Prop. 2).

Remark 1. As mentioned in Bachoc et al. (2018), continuous functions induc-
ing strictly positive definite functions on any Hilbert space can be characterized
following Schoenberg’s works both in terms of completely monotone functions
and of infinite mixtures of squared exponential kernels (See, e.g., Wendland
(2005)).

2.4 Practicalities

In what follows and as in many practical situations, we consider inner kernels
of the form kin(x,x′) = σ2

inrin(x,x′), where σ2
in > 0 and rin is a (strictly) posi-

tive definite kernel on Sfin taking the value 1 on the diagonal and parametrized
by some (vector-valued or other) hyperparameter ψin. In such a case, denot-
ing Erin(S) = 1

#S

∑
x∈S rin(x, ·) and dErin the associated canonical (pseudo-

)distance, we immediately have that E = σ2
inErin and dE = σindErin . As a con-

sequence, if kout(·) writes σ2
outrout(

·
θout

) for σ2
out, θout > 0 and rout(·) defining a

radial (strictly) positive definite kernel on Hilbert space (possibly depending on
some other hyperparameters ignored for simplicity) with rout(0) = 1,

k(S, S′) = σ2
outrout

(
σin

θout
dErin (S, S′)

)
,

and it clearly appears that having both σin and θout creates some overparametriza-
tion of k. For this reason, we adopt the convention that σin = 1, hence remain-
ing with the hyperparameters σ2

out, θout and ψin to be fitted, possibly along
with others such as trend and/or noise parameters. In our experiments, where
noiseless settings and a constant trend are assumed, we appeal to Maximum
Likelihood Estimation with concentration on the σ2

out parameter and a genetic
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algorithm with derivatives (Mebane Jr et al., 2011), in the flavour of the solution
implemented in the DiceKriging R package (Roustant et al., 2012).

In the numerical experiments presented next, the base set X is assumed
to be of the form [0, 1]d (in our examples d = 2), and we choose for rin an
isotropic Gaussian correlation kernel with a unique range parameter denoted
θin. As for rout, while any kernel admissible in Hilbert space such as those of
the Matérn family would be suitable, we also choose here a Gaussian one for
simplicity, and we hence end up with a triplet of covariance hyperparameters,
namely (σout, θout, θin) ∈ (0,+∞)3. As σ2

out is taken care of by concentration
(i.e. its optimal value for any given value of θout, θin can be analytically derived
as a function of θout and θin), there remains to maximize the corresponding
concentrated (a.k.a. profile) log-likelihood function with respect to θout and θin.
For this purpose the analytical gradient of the concentrated log-likelihood with
respect to these parameters has been calculated and implemented. Besides,
parameter bounds need to be specified to the chosen optimization algorithm
(recall that genoud is used here), and while it seems natural to choose bounds
in terms of

√
d, the diameter of the unit d-dimensional hypercube, for θout the

adequate diameter is slightly less straightforward and calls for some analysis
with respect to the range of variation of dErin and how it depends on θin. The
next proposition establishes simple yet practically quite useful results regarding
the diameter of Sr (r > 0) with respect to dErin and its maximal value when
letting θin vary.

Proposition 4. Let rin be an isotropic positive definite kernel on X = [0, 1]d

assumed to be monotonically decreasing to 0 with respect to the Euclidean dis-
tance between elements of X , and with a range parameter θin > 0. Then the
dErin

-diameter of Sp (p > 0), i.e. supS,S′∈Sp dErin
(S, S′), is reached with argu-

ments {0d, . . . ,0d} and {1d, . . . ,1d}, where 0d = (0, . . . , 0),1d = (1, . . . , 1) ∈ X .
Furthermore, the supremum of this diameter with respect to θin ∈ (0,+∞) is
given by

√
2.

Proof. Let us consider two sets S = {x1, . . . ,xp}, S′ = {x′1, . . . ,x′p} ∈ Sp.
Then, from the fact that a correlation kernel is upper-bounded by 1, we get

d2
Erin

(S, S′) =
1

p2

 p∑
i=1

p∑
j=1

rin(xi,xj) +

p∑
i=1

p∑
j=1

rin(x′i,x
′
j)

−2

p∑
i=1

p∑
j=1

rin(xi,x
′
j)


≤ 1

p2

2p2 − 2

p∑
i=1

p∑
j=1

rin(xi,x
′
j)


≤ 1

p2

2p2 − 2

p∑
i=1

p∑
j=1

rin(0d,1d)

 ,

where the last inequality follows from the assumed monotonicity of rin with re-
spect to the Euclidean distance between elements of X and the fact that the
maximal distance between two points of X , i.e. the Euclidean diameter of
[0, 1]d, is precisely attained for x = 0d and x′ = 1d. Finally, by assumption
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again, rin(0d,1d) is monotonically decreasing to 0 when θin decreases to 0, and
so the upper bound of d2

Erin
tends to 1

p2

(
2p2 − 0

)
= 2, showing that upper

bound of the dErin -diameter of Sp with respect to θin ∈ (0,+∞) is
√

2 indeed,
independently of the dimension.

3 Applications

We now demonstrate the applicability of the proposed class of kernels for both
prediction and optimization purposes, with comparisons when applicable to sim-
ilar methods based on double sum kernels, and also to random search in the
optimization case. In all examples, both inner and outer kernels are assumed
Gaussian. The three hyperparameters (σout, θout, θin) are estimated by Maxi-
mum Likelihood with concentration on σ2

out, as detailed in Section 2.4. Three
synthetic test functions and two application test cases are considered, respec-
tively in mechanical engineering (CASTEM) and in hydrogeology (Contaminant
source localization), all presented below. In the CASTEM case, the available
data set consists of a given number (404) of simulation input/outputs, while
in the other test cases one may boil down to a similar situation by studying
finite sets of subsets. Yet, the hydrogeology test case is the only one where
the points/elements of subsets are structurally restricted to remain in a finite
X , here a set of 25 possible well locations, hence leading to a combinatorial
optimization problem.

3.1 Presentation of Test Functions and Cases

3.1.1 Synthetic Functions

Our three synthetic test functions consist of extensions of the rescaled Branin-
Hoo test function (See Picheny et al., 2013), denoted below by g, for set-valued
inputs. These extensions are based respectively on the maximum (MAX), min-
imum (MIN), and mean (MEAN) of g values associated with each of p = 10
evaluation points in X = [0, 1]2, leading to

f(S) = max
x∈S

g(x) (6)

f(S) = min
x∈S

g(x) (7)

f(S) =
1

#S

∑
x∈S

g(x), (8)

where S ∈ Sp = ([0, 1]2)10. Let us remark that by design, the f of Eq. 8 is
well-suited to be approximated using the double sum kernel of Eq. 2. Indeed, if
g is assumed to be a draw of a GP with kernel kin, then f is a draw of a GP with
kernel 1

#S
1

#S′

∑
x∈S,x∈S′ kin(x,x′), as numerical results of Sections 3.2 and 3.3

do reflect.

3.1.2 CASTEM Simulations

The CASTEM dataset, inherited from (Ginsbourger et al., 2016), was origi-
nally generated from mechanical simulations performed using the Cast3m code
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(Castem, 2016) to compute equivalent stress values on biphasic material sub-
jected to uni-axial traction. The unit-square represents a matrix material con-
taining 10 circular inclusions with identical radius of R = 0.056419. The dataset
consists of 404 point-sets along with their corresponding stress levels. Fig. 1
illustrates two example input/response from this dataset. While the goal pur-
sued in (Ginsbourger et al., 2016) was rather in uncertainty propagation, we
consider this data set here also from an optimization perspective.

Figure 1: Examples of CASTEM data

3.1.3 Selection of Monitoring Wells for Contaminant Source Local-
ization

This test case relies on a benchmark generator of groundwater contaminant
source localization problems from (Pirot et al., 2019). The original problems
consisted in finding among given candidate source localizations xi ∈ R2 (1 ≤
i ≤ 2601) which globally minimizes some measures of misfit between “reference”
(or “observed”) and “simulated” contaminant concentrations at fixed times and
monitoring wells such as

g(x, S) =

(∑
i∈S

T∑
t=1

|cobs(i, t)− csim(x, i, t)|2
) 1

2

, (9)

where cobs(i, t) is the reference concentration at well i and time step t, csim(x, i, t)
is the corresponding simulated concentration when the source of contaminant
is at x, and S ⊂ Sfull := X = {1, 2, . . . , 25} is a given subset from 25 fixed
monitoring wells.

Here, instead of fixing the subset of well locations S and looking for the opti-
mal x, we consider instead the maps of score discrepancies g(·, Sfull)− g(·, S) as
a function of S. From there, the considered combinatorial optimization problem
consists in minimizing

f(S) =

2601∑
i=1

(g(xi, Sfull)− g(xi, S))2 (10)

over the set Sp of subsets of p < 25 wells from X . In the numerical experiments,
we fix p = 5, and hence the cardinality of the considered set of subsets S5 is
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Figure 2: Score discrepancy map: location of selected wells (input S), score dis-
crepancy landscape, and the spatial sum of score discrepancy objective function
value f(S).

(
25
5

)
= 53, 130. To test the efficiency of our approach on this application, the

two contaminant source locations (A and B) and two geological geometries of
(Pirot et al., 2019) are considered, leading to four cases.

Since the base set X = {1, 2, . . . , 25} is itself finite here, it follows from
Prop. 1 that resulting double sum kernels are not strictly positive definite so
that BO with those kernels fails after few iterations, as found in numerical
experiments. Two subsets of five well locations are plotted in Fig. 2 along with
contours of corresponding score discrepancy maps g(·, Sfull)− g(·, S) and values
of objective function f derived from them.

The first combination (left subfigure) better represents the misfit function
g(·, Sfull) overall with a lower f value. In fact, this subset is indeed the optimal
one, obtained by exhaustive search over all 53, 130 candidates. Our goal is
precisely to locate these optimal well locations whose contributions minimize
the spatial sum of score discrepancies without involving exhaustive enumeration.
The reader is referred to (Pirot et al., 2019) for further details and visualization
of the misfit objective function, location of the contaminant source, and the
coordinates of well locations.

3.2 Prediction: Settings and Results

To assess the predictive ability of the considered GP models under the considered
settings of data sets split into learning and test parts, we appeal to the so-called
Q2 or “predictive coefficient” (Marrel et al., 2008),

Q2 = 1−
∑ntest

i=1 (f(S
(test)
i )−mn(S

(test)
i ))2∑ntest

i=1 (f(S
(test)
i )− f̄)2

, (11)

where ntest is the number of test point-sets, f(S
(test)
i ) and mn(S

(test)
i ) are the

actual response and the mean values predicted by the GP model, respectively.

f̄ is the mean of f(S
(test)
i )’s. The closer to 1 the value of Q2, the more efficient

the predictor is. In addition, we also look at visual diagnostics based on the
comparison of standardized residuals (i.e. divided by GP prediction standard
deviations) with the normal distribution, both in cross- and external validation.
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Table 1: Prediction performance: Q2 values for models with proposed versus
double sum kernels

Q2 GP (proposed k) GP (double sum k)
20:80 50:50 80:20 20:80 50:50 80:20

MAX 0.6926 0.8001 0.8525 0.6189 0.7429 0.7725
MIN 0.3309 0.4582 0.4929 0.1406 0.2163 0.2538

MEAN 0.9996 0.9999 ∼1 ∼1 ∼1 ∼1
CASTEM 0.5806 0.6641 0.6543 0.5067 0.5326 0.5107

Cont (Src A,Geo 1) 0.7616 0.8790 0.9115 n.a. n.a. n.a.
Cont (Src A,Geo 2) 0.7228 0.8569 0.9048 n.a. n.a. n.a.
Cont (Src B,Geo 1) 0.7937 0.9029 0.9309 n.a. n.a. n.a.
Cont (Src B,Geo 2) 0.7958 0.8755 0.8968 n.a. n.a. n.a.

Figure 3: Residual analysis on the contaminant source localization problem
(Source A, Geology 1) with ratio (20:80). (a) Internal errors (left); (b) External
errors (right).

The total size of datasets used to assess prediction performances for the
three synthetic test problems, CASTEM, and the contamination applications
are 1000, 404, and 200, respectively. Each dataset is further partitioned into
training and testing sub-datasets with percentages (80:20), (50:50) and (20:80).
Average Q2 values over 20 replications are provided in Table 1. We see that the
proposed approach gives higher value of Q2 than that with double sum kernel
on all problems except for the MEAN function. Moreover, Q2 tends to increase
with the proportion of the full data set used for training, except in one case
with CASTEM.

Finally, to highlight the predictive performance of our method, Fig. 3 shows
the leave-one-out diagnostic (left panel) and the out-of-sample validation (right
panel) for the source localization application (Source A, Geology 1). The results
show relatively moderate departures from the normality assumptions.
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Table 2: The number of trials (out of 50) for which the minimum is found for
EI algorithms based on GP models with proposed versus double sum kernels,
as well as for Random Sampling

Problems
Number of trials

EI (proposed k) EI (double sum k) RANDOM
MAX 38 8 3
MIN 10 9 3

MEAN 50 50 2
CASTEM 33 10 6

Cont (Src A,Geo 1) 43 n.a. 0
Cont (Src A,Geo 2) 27 n.a. 0
Cont (Src B,Geo 1) 39 n.a. 0
Cont (Src B,Geo 2) 29 n.a. 0

3.3 Optimization: Settings and Results

In this section, the efficiency of proposed kernels against double sum kernels
are evaluated within the BO framework, using the Expected Improvement (EI)
(Moćkus et al., 1978) as infill sampling criterion.

Optimization performances are assessed on 50 repetitions of EI algorithms
with 10 initial design point-sets. For each repetition, all algorithms start with
the same initial design, and are allocated 40 additional objective function eval-
uations. The hyperparameters are iteratively re-determined in every iteration
using MLE. Concerning EI maximization, in all three synthetic problems and
in the CASTEM case, as the problem sizes are relatively small, it is feasible
to compute EI values at all point-sets and select the one attaining the highest
value. However, for our contaminant source application, since the problem size
is > 5× 105, EI maximization is surrogated by taking the best among 500 gen-
erated candidate point-sets using 2 strategies in the flavour of (Garnett et al.,
2010). The first one focuses on exploitation by considering candidate point-sets
departing by only one element from the current best subset. The second one
promotes exploration by randomly generating candidate subsets.

The performance is measured by (1) counting the number of trials (out
of 50) for which the algorithm could find the best point from the considered
dataset and (2) monitoring the distribution (or median/selected quantiles) of
best found responses over iterations. A random sampling method is used as
baseline. Table 2 summarizes the number of trials that the minimum is found
and Fig. 4 represents progress curves in terms of the median value of current
best f values over 50 trials along with the 25th and 75th percentiles.

It is clear that EI algorithms with any of the two considered kernels are supe-
rior to random sampling. Experiments on synthetic problems show that within
the two considered EI algorithm settings, the proposed kernels outperform the
double sum ones on the MAX and MIN problems in terms of the number of
trials that the minimum is found. On the MEAN problem, though, while both
methods could locate the minimum for all 50 replications, using a double sum
kernel used fewer number of iterations as can be seen in Fig. 4.

For the CASTEM dataset, EI algorithms with the proposed versus double
sum kernels could locate the minimum for 33 and 10 trials, respectively (against
6 for random sampling) confirming the superior performance of the proposed
method.
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Figure 4: Progress curves of the median value of the current best response on
problems (a) MAX, (b) MEAN, (c) CASTEM and (d) Contaminant Source
Localization (Source A, Geology 1)

Again due to lack of strict positive definiteness, the double sum kernel is not
applicable for the contaminant source applications. In this application, the EI
algorithm coupled with proposed kernel is by far better than the random sam-
pling on all four considered cases, being able to locate within 40 iterations the
global optimum of the considered combinatorial optimization problem respec-
tively in 43, 27, 39, and 29 out of 50 trials. These results certainly illustrate
the potential of our proposed class of kernels to efficiently address expensive
combinatorial optimization problems in a Bayesian Optimization framework.

4 Discussion

Experimental results obtained on the analytical objective functions and appli-
cation test cases clearly confirm the added value of the proposed approach for
set-function prediction and (combinatorial) optimization.

Yet a number of challenges and potential extensions remain to be addressed
in future work. This includes computational difficulties that will arise when
working with larger numbers of subsets and/or subset cardinalities, and this
not only to handle bigger matrices but also to tackle the optimization of infill
criteria.

From the test case perspective, future work may also include tackling further
prediction and subset selection problems (be it in continuous or combinatorial
settings), not only for optimization purposes but also with more general goals
around uncertainty quantification and reduction. Besides this, a nice feature of
the propose approach is that it would naturally extend to cases with varying
subset cardinalities and also with “marked” point sets (in the vein of (Cuturi
et al., 2005)’s molecular measures), hence accomodating applications such as
CASTEM but with varying inclusion numbers and radii. Furthermore, the
conceptual approach of chaining an embedding and a kernel in Hilbert space
(also in the flavour of (Christmann and Steinwart, 2010)) could apply to a variety
of other input types, opening the door in turn to numerous non-conventional
extensions of BO and related algorithms.
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