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SEMINAIRE D'ANALYSE CONVEXE

Montpellier 1979, Exposé n° 8

MATHEMATICAL COMPARISON OF THREE ALTERNATIVE

LAWS FOR LINEAR VISCOSITY

J.J. MOREAU

1. INTRODUCTION

This paper is restricted to incompressible fluids. Let U
i=1,2,3, denote the components of the fluid velocity at the point
;, relative to some inertial, orthonormal frame and let ui,j denote
the partial derivative of uy with respect to the coordinate x..
As far as viscosity may be described, at each point, by a
stress tensor Vij depending linearly on the local value of the tensor
ui,j’ the following relation, for a materially isotropic fluid, is

universally accepted by mechanists

(1.1) V.. = ulu. +ou. L)

with W =0, the viscosity coefficient. This tensor, to be added to
the "hydrostatic" stress - p 6ij in order to obtain the total stress
of the fluid, meets two essential requirements :
(i) it is symmetrical

and
(ii) it vanishes everywhere if’ only if the velocity field corresponds
to a rigid motion of the fluid.
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Let a portion of the fluid be limited, at the considered
instant, by a smooth surface S and let 3 denote the normal unit
vector at the generic point of S, directed toward the considered
portion ; the distribution of forces exerted along this surface by the
fluid upon the material beyond admits the surface density 6(3),
related in the conventional way to the total stress tensor. When (1.1)

is taken into account this yields
5

(1.2) ?(3) ==p v+ " Q% + p grad n.y
dv

where the last term is understood as the gradient of the scalar

- >,oy > -
function x - u(x).v, with v treated as a constant.

Disregarding what precedes, some textbooks of engineering
or elementary physics start with the simple example of a parallel
shear flow ; from this example, they induce as general, instead of

(1.2), the following expression for the tension on S

-
&5

T'(N) ==p v+ %% .

(1.3)
This would involve, for the viscosity stress tensor, the expression
1.4 Vi, = wu, .

( ) 1J 1,3 ’

inacceptable by mechanists as it does not meet the requirements (i)

and (ii) above. However, this incorrect law of viscosity is immediately

found to generate the same Navier - Stokes equations as the correct one.

And it has the mathematical advantage of leading to simpler calculation
on the other hand, its formal analogy with the law of heat conduction
may be suggestive.

The purpose of this paper is to discuss some topics regarding

to which the replacement of (1.2) by (1.3) turns out to be immaterial.



Meanwhile, another incorrect law of viscosity will be consi-

dered ; in fact the identity

(1.5) (curl u) x 3 = Q: - grad e
dv

shows that the expression

(1.6) %“(3) = —pv +ulom W) X v

for the tension on the surface S is equivalent to (1.2) and (1.3) in
the aforesaid case of a parallel shear flow orthogonal to v « If
this expression was accepted as general, the corresponding viscosity
stress tensor would be
(1.7) W, = u(ui’j —uj,i)
intrinsically inacceptable by mechanists but leading also to the cor-
rect Navier - Stokes equations.

Since the three alternative expressions (1.1), (1.4) and
(1.7) for the viscosity stress yield the sume Navier - Stokes equatians,
every boundary problem concerning the fluid, as far as the data of this
problem do not involve explicitely the tension on any surface, will
admit the same solutions (z,p) whichever of the three expressions is
adopted. Such is the problem of determining the flow in the presence
of boundaries with given motion ; this is no more the case on the con-

trary if some free surface is present.

= -
In view of (1.5), the comparison between T, T' and T"

sums up into :
(1.8) T(v) = B (v) + » grad (2.9)

(1.9) T(v) = T'(v) - » grad (3.9)

This yields in particular a known expression of the correct tension



wy

(1.10) %(v) =-p Vo2 n g% + o v x eur1 3
dv

(ef. R. Berker [1], [2]).

2. RESULTS OF THE PAPER

The following is established in Sect. 3 :

PROPOSITION 1. Let S denote a closed bounded and orientable surface

with piecewise continuous normal. Let the velocity field 3 and its

first order derivatives be defined and continuous at least in a one-

side neighborhood of S, with limits at every regular point of this

surface. Then the three expressions ?(U), %’(3) and %"(Cj of the

tension yield the same total on § 5 concerning the respective values

of the total moment of the tension on S, one has

(2.1) [ 3xTQ) a0 - [T IxT(@E) ao
S S

II 2x @ to - I 2 xm(d) ao
S S

]

a JI Txl ar ,
S

Observe that S is not supposed to constitute the boundary
of a domain in which 3 would have to be everywhere defined.

Sect. 4 is devoted to the proof of :

PROPOSITION 2. Let S Dbe a smooth surface portion, with the same

P
regularity assumptions for u as in the above proposition. If the limit

of 3 is the same at every point of S (for instance, S is the

=, - = -
boundary of a translating immersed body) , then T(v) = T'(v) = T"(V)




at every regular point of S.

- >
The equality T = T" wunder such circumstances has already

been pointed out by R. Berker [1], [2].

Sect. 5 derives the expressions of the power dissipated by

viscosity in a fluid portion D when the three alternative expressions

V, V', V" of the viscous stress are considered ; one respectively oblaius

(2.2 8 = 2u .. oe.. dr
) (W =2u JIf o0
which is the classical result, with e.. = L (u. .+ ou, .), and
i 2 1,J Js1

(2:3) 8 = Co.ou, . 4T

(u) E Jjj; ul;J uJyl
(2.4) o(u) = fff (Gm W2 ar

D

In the special case where 3 vanishes on the boundary of D these
three expressions are equal, a fact already observed
by J. Serrin [8] ; the proof of this is similar to the derivation of our

equ. (6.5).

In Sect. 6 it is established that these three expressions may
iindifferently be used in the variational characterization of the solu-
tion of the classical boundary value problem for Stokes flows, possibly
in unbounded domains.

As an example, Sect. 7 applies what precedes to an optimal
design problem recently studied [3], [7] : one considers the Stokes
flow around a fixed rigid body B, with velocity ?- at infinity ; the
volume of B being prescribed, the problem is that of determining the
shape of this body in order to minimize the drag or, equivalently, to
minimize the power dissipated in the fluid by viscosity. 0. Pironneau

[7] has established the following characterization of such a shape :



=
in the corresponding flow, the scalar %%l has a constant value over
the boundary surface. We show that similar conditionscan be derived

in the general framework of boundary problems whose solutions extremize
some functionals. In view of the results of Sect. 6 it is found that

Pironneau's condition may equivalently be replaced by one of the fol-

lowing : i) The norm of the vector rot 3 is constant over the
boundary ; ii) The norm of the tensor eij is constant over the
boundary.

3. RESULTANT OF THE TENSION ON A CLOSED SURFACE

Let S denote a bounded closed surface as in the statement
of Proposition 1. Let f ©be a real function, continuous as well as its
partial derivatives f,i at least in a one-side neighborhood of S,
with limits at every point of this surface. Then, denoting by do

the area measure on S, one has

(3.1) JJ (£.v,-f .v.)da = o.

In fact, when i % j the integrand equals one of the components of
- — .
the vector v X grad f ; by a well known variant of the Kelvin -
Stokes theorem, the integral of this vector over a surface portion
equals the line integral f £ dx relative to the boundary curve of
the surface portion. Now, as S is closed, its boundary curve vanishes.

By applying (3.1) with f = Uy j =1,2,3, one obtains
: .. v, do = . . v. do
”s g4 HS 9,8 71

which is zero by the incompressibility assumption. In the notations



— > >
of Sect. 1, this means the nullity of u ff grad u.v do ; then the
first part of Proposition 1 results from (1.8) and (1.9).
Concerning the moments, the components of

(3.2) Jf % x grad u.v do
s

may be expressed by introducing the fundamental alternate tensor sijk
of the oriented Euclidean three-dimensional space. The ith component
of the integrand in (3.2) is eijk xj ul,kvl ; if one observes that

= 8 = i
€53k T3,k = ik sk 0, this component becomes eijk(xjul),k vy o
which, in view of (3.1), yields the same integral over the closed

surface S as
S aclEgug) g vy = ik %50 %Vt Cigk %5 Va0 Vk T Cigk Yy Yk
. th =i, S .

this is the i component of u X v , hence (2.1) ; this completes

the proof of Proposition 1.

REMARK. Let S ©be the boundary of a rigid body B immersed in the
fluid ; by expressing that G' equals, at each point of this boundary,

the velocity v of the body, one obtains

(3.3)  [f Uxvao =ff ¥xvao =[f[ - curlvar .
S S B

—4
Now curl v is twice the angular velocity vector J of the rigid body ;

therefore, if U denotes the volume of the body, the expression (3.3)

-
equals -2 U w,



4. TENSION ON A TRANSLATING BOUNDARY

In this section, let S denote a smooth surface portion at
every point of which the fluid velocity : has the same limit. As
before it is supposed that : is defined and continuously differentia-
ble at least over some unilateral neighborhood of S and that its
partial derivatives have limits at every point of S.

These assumptions entail that, considering a point of S,

the differential

is zero for every d; tangent to the surface, i.e. for every
(dx1,dx2,dx3) satisfying vj dxj = 0. By Lagrange's multiplier theo-
rem, this is equivalent to the existence, for the considered point of

S, of (h1,>\2,)\3) such that

Aiv, =0 .
Jd J
_— 5
This gives to the components of grad u.v the form
u. . v. = A, v, v, = 0 .

i 7J d i

In view of (1.8) and (1.9) this establishes Proposition 2.



5. DISSIPATED POWER

As the nonsymmetric forms of the stress tensors in (1.4) and
(1.7) is not consistent with the usual framework of continuum mechanics,
there is a priori some risk of contradiction in rapproaching them from
the classical formulas concerning the power of such stresses. For this
reason, let us first retrace the elementary rationale of the subject.

Let ®ij denote the components of the (possibly nonsymmetric)
stress tensor field of a continuous medium and fi the components of
the volume density of external force. By expressing the balance of
momentum for every portion of the medium and applying the divergence
theorem, one obtains, if ®ij is continuously differentiable, the
local equations of dynamics
(5.1) Py = ®ij,j +f, 0,
where p denotes the local density and Yi the components of the
acceleration.,

Let vy be the components of a continuously differentiable
velocity field (actual or virtual) of the medium. For every bounded
portion D of the medium, with piecewise smooth boundary oD and 3
as normal outward unit vector, the corresponding power of the external

forces acting on this portion is

(5.2) Pext JJJD f,ov, a7+ fjaD ®ij Mg Wy do

]

1]

JJJ$ [(fi + ®ij,j) v+ ®ij Vi,j] dr

= Jﬁp (p Yyt 8 vi’j) ar



Therefore, in order to safeguard the d'Alembert "principle", or
"principle of virtual power" one is compelled to accept as the definition

of' the power of "internal forces", or power of the stress field @i. , the

following

(5.3) Pint = - JJJD ®ij vi,j ar .

In particular, by taking as vy the components uy of the actual

i ai N P P -
velocity, one obtains that the total power S + oxt * correspon

ding to the actual motion, equals the time-rate of change of kinetic

energy.

Coming back to the viscous incompressible fluid, let us
consider as ®ij the three alternative expressions proposed in

Sect. 1. Due to the nullity of U s the "hydrostatic" part - p éij
s

of the stress has zero power in the actual motion ; then P for

int’
a portion D of the fluid, reduces to the contribution of the viscous
stress, with the three respective expressions V. . » Ve o VU,

1J 1J 1J
Let us rather write down the negative of this power, also called the

power dissipated by viscosity, respectively

(5.4) 8(u) = u JJJ£ (ui,j + uj,i) ui,j dr
(5.5) UG = w Il uy ey e
(5.6) @) = u J;J'j‘D (w, j=uy duy gar .

These are three gquadratic functionals of the vector field

- -
u on the domain D. Clearly ®#'(u) is nonnegative ; in order to
display the same property for 8 or 8" , one proceeds to some easy

manipulations of indices. Classically, the components



1
€. = e o F W
ij 2 ( i,J J,i

) of the strain rate tensor are introduced 3 this
vields (2.2). Similarly (5.6) entails (2.4). Observe incidentally
that 8 + 8" =2 9,

As the ui,j are supposed continuous, the functional S(E)

vanishes if and only if e = 0 throughout D, i.e. the motion of the

fluid is rigid ; this is satisfactory from the physical standpoint.

On the other hand, ﬂ'(u) vanishes if and only if uy 3 =0, i.e. the
: 5

-,
motion of the fluid is a translation ; and 8"(u) vanishes if and

only if the motion is irrotational.

6. THE EXTREMAL PROPERTY OF STOKES FLOWS

In all the sequel, the volume density of external force is
supposed zero. Stokes flows are the motions of an incompressible vis-—
cous fluid under such circumstances that the left member in the
Navier - Stokes equations

BNy = =By % by o
turns out to be negligible before the right member. The equations

thus obtained

(6.1) "
(6.2) u, . = 0

express that, at every instant in every part of the fluid, the visco-
sity stress balances the hydrostatic stress ; hydrostatic stress may be
regarded as the reaction associated with the incompressibility
constraint (6.2).

Let us consider the simplest boundary value problem concer-

ning these flows : given a bounded domain D, with sufficiently smooth



boundary 9D, to find (;,p) satisfying (6.1), (6.2) in D and such

that 1—1) agrees on oD with a given velocity field \—; The existence

of a solution and its uniqueness (up to an additive constant in what

regards p) are classical (4] [9]. Every solution of (6.1), (6.2)

is Cc>° in the open set D ; we restrict ourselves here to the case

where OD and :r) are regular enough for the partial derivatives u.
’

to have limits at every boundary point. Then one elementarily

proves that the solution of the boundary value problem minimizes

the functional .\9(;1)) in the set of the vector fields possessing the

above regularity and agreeing with the two constraints

(6.3) u; ;= 0 in D

(6.4) e ¥ on D .

Il

As our two incorrect laws of viscosity generate the same
Navier-Stokes equations as the correct one, it may be expected that
the solution of this boundary value problem exhibits a similar
extremal property with regard to S'(x—;) and ﬂ"(z).

In fact, (5.4), (5.5) and (5.6) show that, up to the cons-
tant factor u, 8 and ®" differ from 9! by the term
IJ‘J‘D uj,i ui,j dT. When the elementary methods of the calculus of
variations are applied, this term contributes to the variations of the

considered functionals by

(6.5) 5 J‘J\ID uj,i ui,j dtr = 2 IIID ui,j (8 uj),i dr

=2 jU;D W 58wy v, Ao -2 j]]D ug 5p 6 ouy A

- -
which is zero if the variation 6 u preserves (6.4) and if u satis-

fies (6.3).



Let us turn now to the similar exterior boundary value problem.
Hence forth the fluid domain D shall consist at a given instant in all
the space outside a bounded body B. The flow is supposed uniform at

-
infinity, i.e. there exists a constant vector V such that
= - -
u(x) - Vl tends to zero when \x| tends to infinity. Precise results
=5

are available concerning the behavior of the solutions (u,p) of Stokes
equations under such assumptions [6] ; it is proved that, for IZI

tending to infinity,

-, - E |
(6.6) lu(x) - vl = o(lx]™")
21=2
(6.7) u; g o= o(1x17%)
with the existence of some constant P Such that
22
(6.8) P - P = 0(lx|™%)

(for other ways of specifying the conditions at infinity, see [4]).
If in addition the motion of the immersed body is pres-
cribed, one obtains a boundary condition of the form (6.4). Here again

the existence and the uniqueness of the solution (u,p) is well
known, under sufficient smoothness assumptions regarding the boundary
3D and the velocity field ; of this boundary. We restrict ourselves
as before to the casewhere the partial derivatives wu. . possess limits

,
at every boundary point ; then (6.7) guarantees that, in spite of
D being unbounded, the functionals s(;), ﬁ'(:), 3"(;) are well defined.
Similarly to the case of a bounded domain, the solution ; of the problem
minimizes the functional 9(;) over the set of the vector fields agreeing
with (6.3), (6.4), (6.6), (6.7). On the other hand, the calculation made
in (6.5) may be adapted to prove that this solution minimizes 9’(:) and

8(u) as well : the integration by part involved in this calculation



shall first be performed on some bounded domain DR , namely the part of
D enclosed in a large sphere ER with radius R. As a conseguience of

(6.6), the variation & ; satisfies |6 ul = O(]x’_1) s hence the con-

tribution of ZR vanishes when R tends to infinity.
7. A PROBLEM OF OPTIMAL DESIGN CONCERNING STOKES FLOWS

Let us come back to the exterior boundary value problem for-
mulated in last Section, but restricting ourselves to the special case

—
of a fixed immersed body, i.e. v = 0. According to Sect. 3 the resul-

tant force ﬁ experienced by the body may be calculated from the ex-

> o -
pressions T , T' or T" of the tension indifferently. The component

3
of F along the direction of the current at infinity constitutes the
- - -
drag ; up to the factor |V[ , this equals the scalar product F.V .
Several papers have recently been devoted to the following

o
optimal design problem : if the velocity V and the volume U of

the body B are prescribed, to determine the shape of D in order to

minimize the drag (cf. [3], [5], [7] where references to earlier pa-

pers may be found).

.
One first observes that F.V equals the power dissipated in

the fluid. In [5] and [7) this fact is only inferred from the compari-
son with the case where 7, instead of beeing the limit of ; at
infinity, constitutes the velocity of a large vessel containing the
whole system. Such an inference would call for careful investigation
if the flow was regulated by the complete Navier - Stokes equations,
i.e. if inertia was taken into account. But in the case of a Stokes
flow, we establish easily that

-, -

(7.1) FT = 8(3) = 8@ = @) .



In fact, the energy balance, investigated in Sect. 5 above,
may here be calculated for the domain DR comprised between the body
B and a large sphere ZR , with radius R. A4s : = 0 on the boundary
of B, this yields, when the correct law of viscosity is used,

2 W fff e
D

- -
T eij ar = II? T(v). u do
R R

=TS0 T o+ [T T().(5-7) a0
YR Eﬁ

(here 3 denotes the outward normal unit vector at the generic point

of TR)' In view of (6.6), (6.7) and (6.8), the last integral tends to

zero when R tends to infinity. On the other hand, using equation (6.1)

(which merely expresses that the total stress is self-equilibrated in

every part of the fluid), one obtains
e =
[J T a = F .
Zr

The same reasoning holds for the two incorrect laws of viscosity,

hence (7.1).

Let us finish this paper by connecting our results with the
optimality conditions derived by O. Pironneau [7] for the considered
optimal design problem.

More generally, we shall consider, instead of the boundary value
problem for Stokes flows, the following extremal problem :

Denoting again by D the domain outside the bounded body B,
let us call P(B) the problem of finding a vector field u on D,
with partial derivatives w, . continuous on D U 9 D, extremizing a

’

given functional

1(3) = jJJ‘ L(x, u, o, ouy j) dar
D ’



in the set of the vector fields satisfying (6.6) and (6.7) at infinity
as well as the two "constraints" E =0 over oD and u, 2 in D.
b

e
Let us denote by u(B) a solution of this problem ; the formulation
of the optimal design problem is now : to determine B in order to
extremize I(K(B)).

/the
Let’ expected solution Bo of this optimal design problem
correspond to the value A =0 in a family B)\ of bodies depending
on some real parameter M. Assume the surface aBO of Bo smooth
enough for the surface aB)\ of B)\ to be defined as follows, at least
if A igs sufficiently close to zero : some scalar functions x - h(')E')
-

is defined on aBO ; let v(;) denote the inward normal unit vector
at the point X of aBO ; then aB)‘ is represented as the set of the
points ;()‘,3:)

- - -\ P,

y(AE) =X+ 2 n(F) VE) ,

—-
for x ranging over aBo.
-\
Let D)\ denote the space outside BA ; let u be a vector

field defined on an open set containing the closure of D, . The consi-
deration of the volume swept by the boundary BDA = aB)\ when A

varies, in the spirit of the classical kinematics of continua, permits

the following calculation

. B volume = =) x dO(;)
(7.2) o (volume B,) JIaBO n(¥)
(7.3) L) - 0 &G ) er)
A

¥ fj L, u).\ ; u)i\,j) n(¥) do (%)

i
aB}\

After an integration by part, this yields



du
4 Ry AL _ (L et
(7.4) 1) =Jf] - G It
DA i 13
ou
A A - JL i
+ anB [L(%;ui ’ui,j) h(X) + T Vj Sxi]do
A 1,J
T R 9wt solobien e P(B,), it satisfies
(7.5) ui(; + A n(%) 3(;)) = 0

-
for every x in BBO and every A in the considered neighborhood of

zero ; by derivation, this entails

(7.6) aAl + uz hv = 0 .

On the other hand, the Euler condition for the problem P(Bx) makes the

triple integral in (7.4) vanish. Then (7.4) becomes

d Ay > A A oL A
aa I(u ) = '.rj‘ [L(X’ui’ui,j) Y ui,k Vj Vk]h do .
aB)\ 1,J

For Bo to be of optimal shape it is necessary that this
derivative vanishes at A = 0, for every continuous function e h(;j

defined on 6BO and such that the expression (7.2) is zero. Classically

this is equivalent to the existence of a constant C such that

g o o oL o _
(7.7) L(x T D ui,j) - SE;—; ui,k vj v o= c
’

holds on the surface ABO. Henceforth we shall omit the superscript O.
As U =0 on aBo , the reasoning used in Sect. 4 proves the existence

of (A AB) such that

1020
- 2 ;
(7.8) Uik iV

-
then, in view of v being a unit vector,



Therefore (7.7) takes the form

(7.9) L(; g W, o5 Uy ) = oL u, . = ¢
i’j

Let us observe in addition that in the problem of Stokes flows,

whichever of the three functionals 8, 8" or O is considered, the

integrand L 1is a guadratic form relatively to the nine variables uy 3
’

hence a homogeneous function with degree 2. By applying Euler's identity

one transforms the condition (7.9) into

-
[; ~(o) L(x B ui , ui,j) = const w

Here L may indifferently denote any of the integrands in
(2.2), (2.3), (2.4), (5.4), (5.6). It may be directly checked that the
five conditions obtained in that way are all equivalent, since at every

point of aBO , one has, in view of (7.8),

To be more precise, let us recall that the boundary of the opti-
mal body in Stokes flows has been found by Pironneau to admit two singular
points. The above reasoning is then to be applied with h vanishing on so-
me arbitrarily small neighborhoodsof these two points ; it yields that the

necessary condition (7.10) holds at every regular point of S.
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