
HAL Id: hal-02309481
https://hal.science/hal-02309481

Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA Implementation and Comparison of Protections
against SCAs for RLWE

Timo Zijlstra, Karim Bigou, Arnaud Tisserand

To cite this version:
Timo Zijlstra, Karim Bigou, Arnaud Tisserand. FPGA Implementation and Comparison of Pro-
tections against SCAs for RLWE. 20th International Conference on Cryptology in India, Dec 2019,
Hyderabad, India. �hal-02309481�

https://hal.science/hal-02309481
https://hal.archives-ouvertes.fr


FPGA Implementation and Comparison of
Protections against SCAs for RLWE

Timo ZIJLSTRA1, Karim BIGOU2[0000−0001−9294−5594], and
Arnaud TISSERAND1[0000−0001−7042−3541]

1 CNRS, Lab-STICC UMR 6285 and Université Bretagne Sud, Lorient, France
timo.zijlstra@univ-ubs.fr, arnaud.tisserand@univ-ubs.fr

2 Université Bretagne Occidentale and Lab-STICC UMR 6285, Brest, France
karim.bigou@univ-brest.fr

Abstract. We present various FPGA implementations of protections
against SCAs for RLWE-based PKE. We implemented the main solutions
from the state of the art with improved variants. We also propose a new
protection based on a redundant representation of the ring elements to
randomize computations. We compare the implementation results of all
these solutions.

Keywords: ring learning with errors, side channel attack, blinding,
masking, shuffling, randomization

1 Introduction

The algorithms currently used in public-key cryptography (PKC) in most of ap-
plications are not secure against quantum computers using Shor’s algorithm [28].
Post-quantum cryptography (PQC) relies on mathematical problems for which
known quantum algorithms offer no significant speed-up. Lattice problems such
as learning with errors (LWE) and ring-LWE (RLWE) received a lot of attention.
A standardization project for post-quantum encryption and signatures has been
launched by NIST in 2016 [8]. Its goal is to select and standardize post-quantum
solutions to replace RSA and ECC. The second round started in January 2019,
it includes 17 public-key encryption (PKE) submissions [1], and 9 of them are
based on lattice problems.

While PQC is resistant against quantum computers, its implementation must
be protected against physical attacks. Side channel attacks (SCAs) exploit the
leakage of secret information through the analysis of the power consumption,
electromagnetic radiation or computation timings of the cryptographic device.
For instance, correlation power analysis (CPA) uses a set of traces obtained by
measuring the power consumption of the device for different inputs.

The secret key in RLWE based cryptosystems consists of a polynomial in a
finite ring. Decryption involves a multiplication with the secret polynomial. This
multiplication is the ideal target for SCAs. One way to prevent such attacks is



to randomize the operands to remove the correlation between the power traces
and the secret polynomial coefficients.

In this work, we implement in hardware various countermeasures from the
state of the art against SCAs. We also improve some of them and propose a
new one. We consider the masking scheme from [25] for which we propose a new
masked decoder. Our decoder is deterministic and does not add to the decryption
failure probability, as opposed to the one from [25]. We also implement two ran-
domization techniques proposed by [27]: blinding, shifting ; and a combination of
the two. To the best of our knowledge, these are the first FPGA implementations
of these techniques. We also propose a new countermeasure based on a redundant
representation of the ring elements to randomize the computations during the
decryption algorithm. Our new protection leads to a small overhead in terms of
time and area. We also propose two methods to shuffle the operations during the
point-wise multiplications. Finally, we compare all those solutions implemented
on the same FPGA and using the same high-level synthesis (HLS) tools for fair
comparison. HLS allows us to quickly evaluate several architectures and param-
eters. Our results show that HLS tools lead to implementations with similar, or
even better, performances than VHDL or Verilog ones from the literature but
for a significantly reduced design cost.

2 Definitions and Notations

– For q a prime number and n a power of two, let Zq = Z/qZ and Rq =
Zq[x]/(xn + 1).

– Lower case bold variables (e.g. a) are polynomials in Rq of degree < n.

– Bλ denotes the symmetric binomial distribution centered around 0 with in-
teger parameter λ.

– a
$←− Bλ(Rq) is a polynomial in Rq whose coefficients are sampled from Bλ.

– � is used for point-wise multiplication of polynomials and vectors.

3 State of the Art Analysis

3.1 Learning with Errors based PKE

The LWE problem and LWE based cryptography have been introduced by Regev
in [24], where it is shown that LWE is at least as hard as some worst case
lattice problems. The introduction of RLWE by [17] gives rise to more efficient
cryptographic applications by adding an algebraic structure to the lattices. The
matrices and vectors from Regev’s cryptosystem are replaced by polynomials in
finite rings, reducing the size of the public key and allowing fast multiplication
algorithms. This speed-up has been studied by [11] in hardware implementation.
The definition of RLWE we give here is a practical instantiation of the more
general definition from [17].



Definition 1 (RLWE [17]). For some (secret key) polynomial s
$←− Bλ(Rq),

a RLWE sample is generated by sampling a polynomial a from the uniform dis-

tribution over Rq, and sampling e
$←− Bλ(Rq) and computing the output (a,b)

where b = a · s + e. The search variant of the RLWE problem is to find s given
a number of samples for s.

We describe the framework used for instance by NewHope. Other schemes
may use deterministic errors (“Learning with Rounding”) or Gaussian noise
instead of using the binomial distribution. RLWE based submissions still present
in the second round of the NIST standardization project include NewHope [2],
LAC [15] and Round5 [4].

1. Key generation. Let s
$←− Bλ(Rq) be the private key. Sample a uniform

random a ∈ Rq and e0
$←− Bλ(Rq). The public key is given by the RLWE

sample (a,b) where b := as + e0.
2. Encryption. Let the plaintext m ∈ Rq be a polynomial with coefficients in

the set {0, 1} only. Sample 3 polynomials e1, e2, e3
$←− Bλ(Rq). The cipher-

text is given by (c1, c2), where c1 ← ae1 + e2 and c2 ← be1 + e3 +
⌊
q
2

⌋
·m.

3. Decryption. Let d ← c2 − c1s. For each coefficient of d, decode to 0 if it is
closer to 0 than to

⌊
q
2

⌋
, else decode to 1.

3.2 Components of the Cryptosystem

Encoding/Decoding. The maps between the message space {0, 1}n and Rq are
called Encode and Decode. A string of bits is encoded by mapping 0 to 0 and 1
to
⌊
q
2

⌋
, resulting in a polynomial with coefficients in Zq. To decode a polynomial

in Rq, a coefficient is mapped to 0 if it is closer to 0 than to
⌊
q
2

⌋
in Zq, else it is

mapped to 1. That is, if c ∈
[⌊
q
4

⌋
,
⌊

3q
4

⌋)
then c 7→ 1 , else c 7→ 0.

Binomial sampling. The Bλ distribution over Zq is sampled by generating 2λ

uniformly random bits a1, . . . , aλ, b1, . . . , bλ and returning
∑λ
i=1(ai − bi) mod q.

Polynomial multiplication and NTT. The encryption and decryption functions
both rely on polynomial multiplication in Rq. The polynomial multiplication is
a costly operation. Hardware implementations of RLWE schemes such as [20]
tend to use the Number Theoretic Transform (NTT) to compute this operation.
It has also been suggested to use the schoolbook algorithm for area optimization
[21], but in general the NTT seems to yield better performance and highly area-
optimized implementations exist [26].

To compute a polynomial multiplication using the NTT, the polynomials
should be mapped to the NTT domain where the polynomial multiplication is a
point-wise operation taking only n modular multiplications in Zq. Addition and
subtraction can also be performed point-wise in the NTT domain. The inverse
NTT is applied to bring the result back in the time domain.



Definition 2 (NTT). Let ω ∈ Zq be a primitive n-th root of unity and a(x) =∑n−1
i=0 aix

i an element in Rq. Then the image of a under the NTT is given by

â =
∑n−1
j=0 âjx

j, where âj = a(ωj).

To use the NTT for multiplication in Rq, the polynomials have to be pre-
processed using the negative wrapped convolution (NWC) [16]. Let a,b, c,d ∈ Rq
such that a(x)b(x) = c(x)+d(x)(xn+1) in Zq[x] for some c(x) of degree smaller
than n. Let φ ∈ Zq be a primitive 2n-th root of unity such that φn = −1 mod q.
Then, in Zq[x] and for i ≥ 0, one has:

a(φωi)b(φωi) ≡ c(φωi) + d(φωi)((φωi)n + 1) mod q

≡ c(φωi) + d(φωi)(−1 + 1) mod q

= c(φωi)

This means that NTT(a(φx))�NTT(b(φx)) = NTT(c(φx)). In other words,
one gets the reduction mod(xn + 1) for free by applying the NTT to a(φx)
instead of a(x). To obtain the correct result from the polynomial multiplication,
the inverse of the NWC should be applied to NTT−1(NTT(c)). That is, each
coefficient has to be multiplied by a power of φ−1. Therefore, the values of
φi mod q have to be precomputed for 0 < i < n and −n < i < 0.

The transform is efficiently computed in log2(n) stages of n multiplications
using the Cooley-Tukey algorithm [9]. Several optimizations have been proposed
to accelerate this computation. The multiplication by the powers of the 2n-th
root of unity can be merged with the twiddle factors in the first stage or the
scaling multiplication by n−1 mod q [26]. Instead of precomputing n−1 and the
powers of φ−1, the values of n−1φ−i for 0 ≤ i < n can be precomputed directly.
A similar result merging the NWC with the final stage of the inverse NTT was
described by [22]. By making clever use of the Decimation-In-Time (DIT) and
Decimation-In-Frequency (DIF) transforms, [22] shows that the bit reversal can
be avoided. The DIT NTT is used to compute the inverse transformation. The
DIT NTT takes an input in bit-reversed order and returns the output in the
original order. The bit-reversal resulting from the DIF forward transformation
is thus automatically undone by the inverse NTT. All the operations in the
NTT domain are computed on the bit-reversed coefficient vectors. The public
and private keys are therefore stored in bit-reversed order in the NTT domain.
To limit the amount of modular reductions during the NTT, [14] allows variables
to grow slightly larger than q.

Not counting symmetric primitives, the NTT is the most expensive opera-
tion in the scheme with a complexity of O(n log n) . To reduce the number of
NTTs to be computed, the public and private keys can be stored in the NTT
domain. The ciphertext part c1 must also be sent in the NTT domain. During
the encryption, 2 forward NTTs and 1 inverse NTT have to be computed and
during the decryption only 1 inverse NTT is needed.

Using the constant geometry variant [19] of the NTT algorithm, the memory
access pattern is independent of the stage. The values are not read from the
same memory as the one that the updated variables are written to, therefore 2



BRAMs are needed in the implementation. At each iteration of the stage loop,
2 values are read from the memory, a butterfly operation is computed and the
2 results are written to the memory. A detailed description of the stage is given
by Algorithm 1. All arithmetic operations are performed in Zq.

Algorithm 1 i-th stage of the NTT [19]

1: function stage(X, i)
2: for j ← 0 to n

2
− 1 do

3: θ ← ω
b j

2i
c·2i

. Get twiddle factor from memory
4: (x0, x1)← (X[2j], X[2j + 1]) . Read from memory X
5:

(
Y [j], Y [j + n

2
]
)
← (x0 + x1, (x0 − x1)θ) . Write to memory Y

6: return Y

Modular reduction. Modular reduction for moduli of the form q = 2l1−2l2 +1 can
be efficiently computed using algorithms in the style of [29]. Using the fact that
2l1 ≡ 2l2 − 1 mod q, a modular reduction can be computed using only bitwise
shifts, additions and subtractions.

3.3 Side Channel Analysis

Power analysis attacks on cryptographic implementations have first been de-
scribed by [12]. Side channel attacks on LWE cryptography exploit vulnerabil-
ities in Gaussian sampling algorithms [6], [10], polynomial multiplication [3] or
the NTT [23]. The decryption algorithm makes use of the secret key and is
therefore vulnerable to statistical and machine learning attacks on side channels
such as power consumption (for instance differential power analysis, DPA) or
electromagnetic radiations (differential electromagnetic analysis, DEMA).

3.4 Protections

All the operations in the decryption handle inputs that depend on the secret
key. To protect it against DPA, these inputs should be randomized at the start
of each decryption. The decryption algorithm decodes the coefficients of some
polynomial d where d is defined by d = c2 − NTT−1(c1 � s). It should be
noted that knowledge of the coefficients of d leads to complete key recovery in
the chosen plaintext attack model. Since c1 and c2 are known inputs and c1 is
invertible in Rq with high probability, one can compute c−1

1 · (c2 − d) = s. To
prevent SCAs on the coefficients of d, these coefficients should not be computed
directly. Instead, a randomized or masked version of d is used. The decoder
should therefore be able to decode randomized or masked inputs. We now present
the main countermeasures from literature against statistical attacks on RLWE.



Masking. In [25] the secret key is split in two shares: s = s′ + s′′ for some
uniformly random s′ at the start of each decryption. The linear part of the
decryption function is computed twice: first the ciphertext is decrypted (but
not decoded) using secret key s′ and then using secret key s′′, yielding two
polynomials d′ and d′′. The final step consists of decoding the coefficients of
d = d′+d′′ to bits. This is a non linear operation, that is, Decode(a+ b) is not
necessarily equal to Decode(a) + Decode(b). As an example, if a = b =

⌊
q
6

⌋
,

2×Decode
(⌊
q
6

⌋)
= 0 but Decode

(
2×

⌊
q
6

⌋)
= 1. This means that one cannot

simply apply the decoder to the coefficients of d′ and d′′ separately and then
add the results in Z2 to obtain the correct plaintext.

Because of the DPA scenario mentioned above, the two shares d′ and d′′

should not be recombined before decoding to bits. Let d′ and d′′ denote a co-
efficient (of some fixed index) of polynomials d′ and d′′ respectively. A masked
decoder takes as input two coefficients (d′, d′′) ∈ Z2

q and computes the value
of Decode(d′ + d′′) without computing d′ + d′′. The solution from [25] makes
use of the fact that for some (d′, d′′) ∈ Z2

q it is easy to deduce the value of
Decode(d′ + d′′). For instance, if 0 ≤ d′ < q

4 and q
4 ≤ d

′′ < q
2 then it must hold

that q
4 ≤ (d′ + d′′) < 3q

4 , therefore the coefficient decodes to 1. Similar “easy
cases” exist, but not all (d′, d′′) ∈ Z2

q can be resolved in this way. If both d′ and
d′′ lie between 0 and q

4 , all we know is that 0 ≤ (d′+d′′) < q
2 and this can decode

to either 0 or 1.

The idea from [25] to solve the hard cases is to reshare the two shares: for
any δ ∈ Zq one has d′ + δ + d′′ − δ = d′ + d′′ = d. It is therefore possible to add
any constant to one of the shares and subtract the same constant from the other
one. However, there is no guarantee that (d′ + δ, d′′ − δ) is an easy case. If the
new shares still do not form an easy case, the shares have to be reshared again.
In [25] a list of constants {δ1, . . . , δ16} is presented that is supposed to minimize
the number of resharings to be performed. Their implementation refreshes the
shares 16 times such that with high probability an easy case is obtained in at
least one of the 16 iterations.

The computation time overhead due to the 16 iterations and the additional
decoding failures are important drawbacks to this solution. [18] propose an al-
ternative masked decoding. Their method effectively decodes without additional
decoding failures. The comparison that they make between this decoder and their
re-implementation of the one from [25] however shows only a very limited im-
provement in terms of performance. Their masked decryption takes over 3 times
more cycles to compute than the unmasked version. The same implementation
also uses a blinding countermeasure proposed by [27].

Blinding. With the blinding countermeasure [27] the polynomials s and c1

are multiplied by scalars a and b in Zq respectively. The blinded polynomial
multiplication is then computed: (as) · (bc1) = (ab)s · c1. The inverse (ab)−1

should be computed to obtain s ·c1. [27] suggested to use (pre-computed) powers
of ω and ω−1 as blinding factors to avoid the modular inversion. The decoding



process cannot be protected from DPA with the scalar blinding method. The
blinding multiplication has to be inverted before the coefficients can be decoded.

Shifting. It is also suggested in [27] to apply a random anti-cyclic shift to
the coefficients vector of the polynomials before multiplying. Due to the ring
structure, this anti-cyclic shift corresponds to a multiplication by some power of
x. For some random i, j < n, (xjs(x)) · (xic1(x)) = xi+js(x)c1(x) is computed
and s(x)c1(x) can be recovered by inversing the shift.

In practice it is not possible to obtain xis and xjc1 by applying anti-cyclic
shifts to their coefficients vectors, because they are represented in the NTT
domain. To multiply by xi in the NTT domain, observe that

NTT(xi) = (1, ωi, ω2i, . . . , ω(n−1)i), (1)

and NTT((φx)i) = φi · NTT(xi). All of the coefficients of NTT(xi) are already
pre-computed, since they are exactly the n powers of ω. Multiplication by xi

can thus be done by a pointwise multiplication with the powers of ω and φi (for
the NWC). This multiplication has to be performed in bit-reversed order, since
s and c1 are in the NTT domain.

Shuffling. Masking, blinding and shifting offer little to no protection against
single trace attacks. The single trace attack by [23] exploits leakage from the
operations performed during the NTT. In that paper, it is suggested to counter
the attack by randomizing the order in which the butterfly operations are com-
puted. During each stage, the n

2 butterfly operations can be computed in a ran-
dom order. The same shuffling methods can also be applied to all the pointwise
operations in the decryption.

4 Unprotected FPGA Implementation of RLWE

In this section, we present our implementation of the encryption and decryption
algorithms described in the previous section on an Artix XC7A200 FPGA using
Vivado HLS (version 2018.1). Our decryption architecture is the basis for the
protected implementations proposed in the next sections. We compare our un-
protected RLWE implementations with results from literature. One of our goals
is to show that competitive results can be obtained using HLS from C code for
a reduced design cost compared to VHDL or Verilog design.

Figure 1 presents the high-level architecture of our accelerator. For encryp-
tion, the public keys are first loaded into the local RAM, then the computa-
tions are performed by the functional units (FUs, see below). During encryp-
tion/decryption our accelerator is isolated for security reasons, it does not take
any input or generate any output. After encryption/decryption, the result is
sent out through the interface. In the paper, all the communications through
the interface are included in our results. Depending on parameter n, the typical
time spent for interfacing represents about 12% to 21% of the total encryp-
tion/decryption time.



Fig. 1. High level architecture of our accelerator.

CTRL

RAM

@

in out

interface

clk

data

status

cmd

data Functional 
units

internal zone

Fig. 2. Architecture computing the error polynomials in the NTT domain. The yellow
part uses the PRNG (TR unit) to generate samples from the Bλ distribution (here:
λ = 3). The +bit operator computes the sum of λ input bits. The NWC (upper left)
is computed using a shift-based multiplier and modular reduction (RED). The NTT is
computed on the right, using one Gentlemen-Sande butterfly (BF) operator.

RAM

RAM
BF

<<ROM + RED

TR
+bit

+bit
-6

3

3 2

2

3

13

13

13
13

13

13

13

16

16

Parameters. In order to compare with literature results, we implement RLWE
for the parameter sets (n, q, λ) = (1024, 12289, 8) and (256, 7681, 3). For n =
1024, we use a simplification of the CPA-secure version of NewHope1024 PKE
with key reuse. We do not implement the key refreshing, ciphertext compres-
sion/decompression and key encoding/decoding in this paper. For simplicity we
use the Trivium stream cipher as PRNG.

Encryption and Decryption. Following [22], we avoid the bit-reversal step by
implementing both the DIF and DIT NTT. The stage loop is fully pipelined,
such that it takes just over n

2 clock cycles to complete one stage. The complete
forward transformation is computed in few more than n

2 log n cycles.
The error polynomials e1, e2 and e3 are sampled from the binomial distri-

bution Bλ(Rq). The required random bits are provided by the PRNG. Since the
ciphertext part c1 = ae1+e2 will be sent in the NTT domain, the NTT has to be
applied to both e1 and e2. The NWC must be computed for both polynomials.
To compute these multiplications, we use the fact that the coefficients are sam-
pled from Bλ and therefore are bounded by −λ and λ. The multiplications can
be computed using only a few shifts and additions, without using a DSP block.



Table 1. FPGA implementation results for our RLWE solutions (denoted V1,
V2 and V3) and literature solutions. If specified, Encryption/Decryption and
Server/Client/Server (for a 3-step key exchange) timing results are shown separately.
Separate area results for Server and Client are indicated with +.

Latency Time Slice, DSP,
Source FPGA (clock cycles) MHz (µs) LUT, BRAM

n = 256

[20] XC6VLX75 6861/4404 262 26.2/16.8 1506, 1, 4549,
12

[26] XC6VLX75 6300/2800 313 20.1/9.1 n.a., 1, 1349, 2

V1 XC7A200 5039/2188 208 24.2/10.5 1624, 1, 4365, 5

V2 XC7A200 3764/2239 250 15.1/9.0 2122, 6, 5616, 8

n = 1024

[13] XC7Z020 6900/10300/2800 133/131 51.9/78.6/21.1 n.a., (8+8),
(18756+20826),
(14+14)

[30] XC7A035 171124/179292 125/117 1369/1532 0, (2+2),
(5142+4498),
(4+4)

V3 XC7A200 16146/9586 250 64.6/38.3 4106, 7, 11164,
12

The NTT is then applied to e1 and e2 simultaneously, using two parallel NTT
units each consisting of one butterfly unit and two BRAMs. The architecture for
sampling e1 (or e2) and mapping it to the NTT domain is shown in Figure 2.

The architecture for decryption is shown in Figure 3. The area and timing
implementation results for RLWE are shown in Table 1 with similar solutions
from the literature.

Our small implementation is denoted by V1. This implementation with only
1 DSP block is comparable in size and speed to [20] but is larger and 15 to 20%
slower than the cryptoprocessor from [26]. By computing the forward NTTs in
parallel in V2, we are faster than both, but more DSP blocks are needed. For
n = 1024, the key exchange implementation by [13] is comparable with our V3
results in terms of speed, but the V3 implementation uses 50% less DSP blocks
and BRAMs. We conclude that results obtained using HLS are comparable or,
in the best case, even better in terms of speed (up to 25%) and/or area (up to
50%) than results from works based on VHDL or Verilog implementations.

5 New Variants of State of the Art Protections

The protections proposed in this section and the next one are implemented
by modifying our base architecture from Figure 3 for n = 256 and q = 7681.
In real-world applications these protections should be part of an architecture
implementing the CCA2-secure version of the scheme, including a re-encryption
of the decrypted ciphertext and several evaluations of some hash function.



Fig. 3. Architecture for the decryption. The ciphertext is completely loaded in the
RAM before starting the computations. The two pointwise operations (one before and
one after the inverse NTT) in the blue region share a DSP block.

RAM

RAM
BF

13
13

13

13

13

RED

ROM 13

13RAM
13

1

- RED

Decoder
13

*

1

27

26

5.1 Masking with a New Masked Decoder

We implement a variant of the masking scheme described in the state of the
art [25], improving the masked decoding process. We propose a simple masked
decoder that does not need 16 iterations and that does not increase the decoding
failure probability. Let d′, d′′ ∈

[
0, q4
)
, then d′ + d′′ ∈

[
0, q2
)
. If either d′ or d′′

were to be shifted by exactly the right amount (cf. 4), then we would be able to
determine if either d′ + d′′ ∈

(−q
4 ,

q
4

)
or d′ + d′′ ∈

(
q
4 ,

3q
4

)
. The trick is then to

find a δ ∈
[−q

4 ,
q
4

]
such that d′ + δ changes quadrant while d′′ − δ does not (or

the other way around). Suppose that d′ ≥ d′′ and let δ = 1 + min(
⌊
q
4

⌋
− d′, d′′).

Then, depending on the value of δ, there are two possibilities for the new shares
d′ + δ and d′′ − δ:

1. d′ + δ =
⌊
q
4

⌋
+ 1 ∈

[
q
4 ,

q
2

)
and d′′ − δ is in the same interval as d′′. Then

d′ + d′′ must be in the interval
(
q
4 ,

3q
4

)
, therefore we decode to 1.

2. d′ + δ is in the same interval as d′ and d′′ − δ = −1 ∈
[−q

4 , 0
)
. Then d′ + d′′

must be in the interval
[
0, q4
)
∪
(−q

4 , 0
]

and therefore we decode to 0.

Similar solutions can be found for the other hard cases. Let Qi denote the

interval
[
iq
4 ,

(i+1)q
4

)
for 0 ≤ i ≤ 3, that we will refer to as “quadrants”. The

property that allows to solve the easy cases is the following:

Property 1. If d′ ∈ Qi and d′′ ∈ Qj then (d′ + d′′) ∈ Qi+j mod 4 ∪Qi+j+1 mod 4.

In the remainder of this section, we let i and j be the quadrant indices of
d′ and d′′ respectively. For i + j = 1 mod 4 it follows from Property 1 that
(d′ + d′′) ∈ Q1 ∪ Q2. In other words, the sum lies in the left half of Zq and
therefore decodes to 1. Similarly, the (d′, d′′) ∈ Z2

q for which i+ j = 3 mod 4 are
easy cases and decode to 0.

The hard cases are given by (d′, d′′) ∈ Z2
q for which i + j = 0 mod 4 or

i+ j = 2 mod 4, that is, (d′+ d′′) ∈ Q0 ∪Q1 or (d′+ d′′) ∈ Q2 ∪Q3 respectively.
To reduce to an easy case, it suffices to move either (but not both) d′ or d′′ to
an adjacent quadrant. Then for the new pair (d′ + δ, d′′ − δ) exactly 1 mod 4 is



Fig. 4. Left: given that d′, d′′ ∈
[
0, q

4

)
, there is no simple way to determine if d′+ d′′ ∈(

q
4
, 3q

4

)
, i.e. this is a hard case. Adding some δ to d′ while subtracting the same δ from

d′′ yields a new pair (d′, d′′) which is an easy case. Middle: for some hard cases, adding
and subtracting a constant δ does not give a solution: the new pair (d′, d′′) is another
hard case. Right: d′ is closer to q

4
than d′′ is to 0. We therefore let δ = 1 +

⌊
q
4

⌋
− d′.

Then by construction, d′ + δ changes quadrant while d′′ − δ does not. It follows that
d = d′ + δ + d′′ − δ > q

4
and d < 3q

4
. Therefore (d′, d′′) decodes to 1.

q/4

0

3q/4

q/2 1 1 1

d'

d''

0

d'

d''

0 0

d'

d''

added to or subtracted from the sum i + j. Then for the updated i, j it holds
that i+ j = 1 mod 4 or i+ j = 3 mod 4 and Property 1 applies.

It is always possible to modify the sum i+ j for the i, j corresponding to the
shares by exactly 1. Assume w.l.o.g. that d′ ≥ d′′. If d′ ∈ Qi, d′′ ∈ Qj and d′ is

closer to iq
4 than d′′ is to (j−1)q

4 , then there is a δ such that d′ + δ ∈ Qi+1 and
d′′−δ ∈ Qj . If the opposite holds, then d′′ can be moved to Qj−1 by subtracting
a δ while d′ stays in Qi. The new pair (d′ + δ, d′′ − δ) forms an easy case. This

method does not work when the distance δ′′ between d′′ and (j−1)q
4 is equal

to the distance δ′ between d′ and iq
4 . However, these are exactly the cases for

which d′+ d′′ is equal to either
⌊
q
4

⌋
or
⌊

3q
4

⌋
. This means that even an unmasked

decoder would not be able to decode these cases correctly. The parameters in
LWE-based cryptoschemes are usually chosen such that such cases appear with
negligible probability.

The comparison operation δ′ < δ′′ has to be implemented with caution. Gen-
erally, comparisons are performed by checking the bit sign of the subtraction of
its operands. Since δ′ − δ′′ = −(d′ + d′′) +

⌊
kq
4

⌋
for some integer k < 4, this

operation leaks information about the unmasked value of d.
Instead of implementing a combinatory circuit, we have implemented succes-
sive accesses to a look-up table to perform the comparison. The implemented
algorithm is described in Algorithm 2, where the bits of a and b are denoted
(a0, . . . , aw−1) and (b0, . . . , bw−1) respectively. The look-up table implements the
function T defined by T (ai, bi, Y ) =

(
ai ∧ (bi ∨ Y )

)
∨ (bi ∧ Y ).

Note that it is not necessary to assume that d′ > d′′. Given (d′, d′′) and
their corresponding quadrant indices (i, j) = index(d′, d′′), the distances δ′ =⌊ (i+1)q

4

⌋
− d′ and δ′′ = d′′ −

⌊
jq
4

⌋
are computed and compared. We have that:



Algorithm 2 Returns True if and only if a > b

1: function Compare(a, b)
2: Y ← False
3: for i = 0 to w − 1 do

Y ← T (ai, bi, Y )

4: return Y

δ′ < δ′′ ⇐⇒
⌊ (i+ 1)q

4

⌋
− d′ < d′′ −

⌊jq
4

⌋
⇐⇒

⌊ (j + 1)q

4

⌋
− d′′ < d′ −

⌊ iq
4

⌋
,

which means that swapping d′ and d′′ (and their corresponding indices) does not
change the boolean outcome of the comparison. The complete masked decoder is
given by Algorithm 3. The new reshared parts d′+δ and d′′−δ do not need to be
computed explicitely. The comparison of δ′ and δ′′ yields sufficient information
to update the indices (i, j) and determine the decoded bit.

Algorithm 3 Proposed masked decoder for (d′, d′′)

1: function decode(d′, d′′)

2: r
$←− {0, 1} . Mask for output

3: (i, j)← index(d′, d′′) . Quadrant indices
4: if i+ j ≡ 1 mod 4 then
5: return (r, r̄) . Easy cases i+ j ≡ 1 or 3.
6: else if i+ j ≡ 3 mod 4 then
7: return (r, r)
8: else
9: δ′ ←

⌊ (i+1)q
4

⌋
− d′ . Distance to interval boundaries

10: δ′′ ← d′′ −
⌊
jq
4

⌋
11: if Compare(δ′′, δ′) then
12: if i+ j + 1 ≡ 1 mod 4 then
13: return (r, r̄)
14: else
15: return (r, r)

16: else
17: if i+ j − 1 ≡ 1 mod 4 then
18: return (r, r̄)
19: else
20: return (r, r)

In order to make this masked decoder compatible with CCA2-secure imple-
mentations, the output is also masked. Instead of returning the plaintext bit, a



random bit is generated and XORed with the unmasked decoding result. The
decoder returns both the mask and the masked value.

A total of 2n log q = 23328 different masks can be obtained. The security of
the masking scheme with its original decoder is experimentally evaluated by [25].
They also mention the (small) possibility of horizontal DPA attacks targeting
the 16 iterations of their masked decoder. Our proposed decoder does not have
this vulnerability since it does not use 16 iterations.

5.2 Shifting

In [27] there is no mention of any masked decoder. To secure the complete
decryption function, we propose to apply the (normal) decoder to the shifted
polynomial xi+jc2(x) − xi+js(x)c1(x), meaning that c2(x) should be shifted
separately. The plaintext can then be obtained by applying the inverse shift to
the decoded polynomial. The minus sign that comes with the anti-cyclic shift
does not change the value of the decoded coefficient, because ∀a ∈ Z/qZ it holds
that Decode(a) = Decode(−a). The decryption procedure for a ciphertext
(c1, c2) can then be described as follows:

1. Generate random i, j < n.
2. Compute NTT(xi) � s and NTT(xj) � c1 by multiplying s and c1 by the

powers of ω and φ in an order determined by i and j respectively.
3. Compute the pointwise product to obtain xi+js · c1 and apply in the inverse

NTT.
4. Apply the anti-cyclic (i+ j)- shift to c2 and obtain xi+jc2.
5. Compute the subtraction xi+jc2 − xi+js · c1 = xi+j(c2 − s · c1).
6. Decode to obtain the shifted plaintext. Shift i+ j positions to the left.

5.3 Blinding

The blinding countermeasure is implemented by generating two random indices
0 ≤ i, j < n and multiplying c1 and s by ωi and ωj respectively.

5.4 Shifting and Blinding combined

Both shifting and blinding involve multiplication by the powers of ω and φ. To
shift the polynomial s(x) by i < n positions, we compute φi·NTT(xi)�s(x). With
almost no additional costs, this operation can be combined with the blinding
operation by simply modifying the exponents of ω. To shift the polynomial by i
positions and blind using ω−j for some j < n, we use:

ω−jφi ·NTT(xi)� s(x) = (φiω−j , φiωi−j , . . . , φiω(n−1)i−j)� s(x) (2)

Both s and c1 are shifted and blinded. The combined blinding factor has
to be removed before the decoding. The combination of the two countermea-
sures is therefore somewhat more expensive than shifting alone. The decoding is
performed in the shifted order.



Both shifting and blinding use two log(n)-bit randomization factors. As
pointed out by [27], the total amount of added noise entropy for shifting and
blinding combined is 4 log(n) bits. For n = 256 this is equal to 32.

6 New Protections

6.1 Shuffling

The first of the two shuffling methods proposed in this paper consists of replacing
loop counters by linear feedback shift registers (LFSR). An LFSR is parametrized
by an irreducible polynomial f ∈ F2[x] and its degree k. It computes xia mod f
for 0 ≤ i < 2k − 1 and some initial state a ∈ F2[x]/f . The computed values are
exactly all the 2k − 1 invertible elements of the finite field F2[x]/f . The order in
which they are computed is determined by the initial state a. Multiplication by
x in F2[x]/f is very fast and can be computed using only 1 shift and a XOR on
bit positions depending on f . Our second shuffling method consists of generating
a random permutation using a permutation network in the style of [5].

LFSR method. Let an LFSR be parametrized by some irreducible polynomial
f of degree n

2 . We let k = log2(n) − 1 and consider the coefficients vectors
of polynomials in F2[x]/f to be the binary representations of integers ranging
from 0 to n

2 − 1. The LFSR thus generates a sequence of n
2 − 1 integers that

will serve as indices for the loop counter in Algorithm 1. Instead of computing
the i-th butterfly operation at the i-th loop iteration, we compute the butterfly
operation that is on the j-th position, where j is the index corresponding to the
i-th element generated by the LFSR. In other words, the normal loop counter is
replaced by an LFSR. The LFSR has only 2k − 1 outputs, whereas we need 2k

for the n
2 butterfly operations. Therefore the first operation of each stage is not

shuffled: it is always computed in the first loop iteration of the stage.
To obtain a meaningful permutation, we use the PRNG to generate a new

initial state a at the start of each stage. Since a = 0 is not allowed as initial
state, we set a = 1 as the default state in the case that the PRNG outputs 0.
The initial state is thus set to default state with probability 4

n . All the other
initial states appear with probability 2

n . This slight bias could be reduced by
having the PRNG generate multiple initial states and selecting a non-zero state.

The 2k − 1 possible initial states determine 2k − 1 unique sequences. The
operations of a complete log2(n) stage NTT can then be computed in (2k −
1)log2(n) different ways. For n = 256 and k = 7 this is more than 255. With
the LFSR method applied to the pointwise operations outside the NTT as well,
the total number of random bits added is equal to 71. A single trace attack
like [23] that requires all of the log2(n) stages seems unlikely to succeed on an
implementation using the LFSR countermeasure as described.

We use an LFSR of degree k = log2(n) in a similar manner to shuffle the
order of the n pointwise multiplications outside the NTT.

Drawbacks to the LFSR loop counter include a limited permutation space, a
slightly biased outcome and the fact that the first element is not permuted.



Fig. 5. Permutation network for N = 8. Each box is controlled by a random bit and
swaps the inputs if this bit is equal to 1.

0
 
1
 
 
2
 
3
 
 
4
 
5
 
 
6
 
7

0
 
1
 
 
2
 
3
 
 
4
 
5
 
 
6
 
7

Permutation Network Method. We propose to use a permutation network
generator in the style of [5]. Their permutation generator is designed for use in
AES and is impractical for larger (N = 256) permutations. It is also biased. We
simplify their permutation network to obtain a permutation generator that can
generate NN/2 permutations and that is uniform on its range. In the remainder
of this section, the parameter N is the size of the permutation, which is equal to
n for the shuffling of the pointwise operations. To shuffle the butterfly operations
during the computation of the NTT, N is substituted by n

2 .

For b ∈ {0, 1}, let the operators Tb : {0, . . . , N − 1} → {0, . . . , N − 1} be
defined by the mapping x 7→

⌊
x
2

⌋
+ bN2 . Then T0 is a bitwise shift erasing the

least significant bit (LSB), and T1 applies the same shift and sets the MSB to 1.

The permutation network consists of k = log2(N) stages and takes as input
(x0, . . . , xN−1) = (0, . . . , N − 1). During each stage, N2 random bits b1, . . . , bN/2
are generated and for all pairs (x2i, x2i+1) the images Tbi(x2i) and Tb̄i(x2i+1)
are computed. In other words, for each pair (x2i, x2i+1), one is sent to position
i, while the other is mapped to i + N

2 . This is equivalent to writing one bit of
the image of x2i under the generated permutation and writing its complement
to the image of x2i+1. The network is shown for N = 8 in Figure 5. It is exactly
the same as the computation scheme of the constant geometry NTT, in which
the butterfly operators are replaced by controlled swap operators.

For any integer 0 ≤ x < N the image of x under the generated permutation
can be written as Tb1 ◦ · · · ◦ Tbk(x) and is equal to the value corresponding to
the binary representation (b1, . . . , bk)2. The kN

2 control bits thus determine the
image of each index under the generated permutation. By uniqueness of binary
representation it follows that any modification to any subset of the kN

2 control
bits would modify the generated permutation as well. The permutation generator
is therefore an injective map from {0, 1}Nk/2 into the set of all permutations ΣN .
This means that the number of possible configurations of the kN

2 control bits,

which is equal to NN/2, is exactly the number of permutations that can be
generated by the network. The number of different permutations that can be
obtained is 21024 for the pointwise operations and 2256 for the NTT. Moreover,



the output of the permutation network is uniform on its range given uniformly
random input.

Since the permutation space is much larger than the one we obtain with the
LFSR, we will only generate one {0, . . . , n2 − 1} → {0, . . . , n2 − 1} permutation
for the NTT at the start of each decryption. Each stage is then computed in the
order defined by this permutation. We also compute only one permutation of
size n that will be used for all the pointwise operations during one decryption.

6.2 Randomization using Redundant Number Representation

In RSA and ECC, some exponent or scalar randomization countermeasures have
been proposed against SCAs (see for instance [7]). A secret exponent or scalar
can be randomized without loss of information by adding a random multiple
of the group order to it. The corresponding power traces are thus randomized,
removing correlation between the side channel traces and the secret key. A similar
concept can be applied to RLWE.

We can add random multiples of the modulus q to the secret key coefficients
without invalidating the secret key. This is done at the start of each decryption.
The PRNG is used to generate small r-bit random numbers for some integer
parameter r. These numbers are multiplied by q and then added to the input
and to the secret key. We then continue using arithmetic operations in Z/(2rq)Z
instead of in Zq. The fact that for all a, b ∈ Z we have that ab mod (2rq) ≡
ab mod q, ensures us that the result is in the correct equivalence class.

The redundancy is not removed for the decoding. Instead we modify the
algorithm to decode the coefficients directly from Z/(2rq)Z to {0, 1}. The new

decoder returns 0 if the input lies in the union of sets
⋃2r

i=0

[−q
4 + iq, q4 + iq

)
and

returns 1 if the input is in
⋃2r

i=0

[
q
4 + iq, 3q

4 + iq
)
.

At each execution of the algorithm, the multipliers, adders and decoder are
handling different inputs. The computations (and the corresponding traces) are
thus randomized. A total of 256r random bits are added to the operands.

Fig. 6. Architecture with our redundant representation countermeasure. Before the
decryption, small r-bit random multiples of q are added to the coefficients of c1 and s.
The operations in the decryption function are performed in Z/(2rq)Z.

Decrypt Redundant
Decoder

w+r

w+r+

+

RAM

Mul
r w+r

r

w

TR 2r
Mul

w



Validation through Correlation Power Analysis Simulations. We eval-
uate the robustness of our countermeasure based on a redundant representation
by simulating CPAs. The polynomial multiplication in the NTT domain consists
of n independent multiplications in Z/qZ. They are of the form c·s mod q, where
s is a coefficient of the secret key and c is a coefficient of the input ciphertext.
We simulate correlation attacks on one modular multiplication of a known input
coefficient c with an unknown secret key coefficient s.

We assume that the attacker observes the modular multiplication c · s mod q
for a number of different (known) inputs c. For each modular multiplication
she/he obtains the exact Hamming weight (HW) of the result. The attacker
computes the “predictions”: the HW of the value c · s mod q for all subkey
candidates s ∈ Zq and for all inputs c. She/he evaluates the correlation between
the observed HW and the predictions. For each subkey possibility s̃ ∈ Zq, the
Pearson’s correlation coefficient between the observed HW and the predictions
is computed. Without countermeasures, the highest correlation is obtained for
the correct subkey guess.

The inputs are randomized by adding a multiple of q and used in computa-
tions in Z/(2rq)Z for some redundancy parameter r. The impact of our counter-
measure on the effectiveness of the CPA can be seen (for q = 7681) in Figure 7.
Without redundancy (r = 0), the attacker observes the exact HW of the value
c · s mod q for different values of c. These HWs coincide with the predictions for
the correct subkey guess, resulting in a correlation coefficient of 1. For higher
levels of redundancy, the average of the correlation coefficient for the correct
subkey guess decreases.

The right side of Figure 7 shows that the maximum correlation is obtained for
incorrect subkey guesses for all r ≥ 1. We refer to subkey guesses that yield to a
higher correlation coefficient than the correct subkey guess as false positives. The
number of these false positives increases with the redundancy level. For r = 8
and r = 9 there are on average around q

2 subkey guesses, for one coefficient of
the secret key, that yield to a higher correlation coefficient than the correct key
guess. Our countermeasure ensures that an exponential number of up to

(
q
2

)n
guesses have to be tested to recover the complete secret key.

7 Comparison of all Protections

FPGA implementation results for RLWE solutions with various countermea-
sures are presented in Table 2. Results from [25] are reported, and we also re-
implemented their solution on an Artix-7 XC7A200 (denoted “A7”) to provide
fair comparisons. We also implemented the blinding and shifting methods from
[27] and our shuffling methods. To the best of our knowledge, these are the first
FPGA implementations for these countermeasures. Finally, the results for mask-
ing with our new masked decoder and our redundant randomized countermea-
sures are reported. The amount of randomness added for each countermeasure
is specified in the second column of the table.
\renewcommand4pt3pt



Fig. 7. Mean correlation over 1000 simulations between the correct subkey guess and
the observed HW as a function of the number of traces (left) and the number of
redundant bits per coefficient (right). Right: average (1000 simulations of 100 traces
each) of the maximum correlation over all subkey guesses is shown in red and the
number of subkey guesses with higher correlation than the correct secret key in green.

0 20 40 60 80 100

number of simulated traces

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

co
rr

e
la

ti
o
n
 c

o
e
ff

.

r = 0
r = 1

r = 2
r = 3

r = 4
r = 5

r = 6

0 1 2 3 4 5 6 7 8

redundant bits per coefficient

0.0

0.2

0.4

0.6

0.8

1.0

co
rr

e
la

ti
o
n
 c

o
e
ff

.

correct subkey guess

max. over all guesses

0

500

1000

1500

2000

2500

3000

3500

4000

fa
ls

e
 p

o
si

ti
v
e
s

higher PCC than sk

We cannot directly compare our re-implementation of the masking from [25]
and their original results on a Virtex-II XC2VP7 (denoted “V2”). However, it
can be seen that the impact of masking on the performance of their V2 imple-
mentation is very high compared to our A7 re-implementation. The computation
time for decryption is tripled. This is probably because the number of arithmetic
operations in Zq is doubled while no parallelism is used. Moreover, it seems that
their masked decoder is implemented sequentially. In our re-implementation of
the masked decoder from [25], we use parallelism to significantly reduce the
performance penalty of their 16-step decoder. This increases the area.

Our new masked decoder is relatively simple and requires a small area (about
20% reduction compared to the re-implementation of the decoder from [25]),
with almost the performance of the unprotected implementation. Compared to
the unprotected solution, we use extra DSP blocks and BRAMs to compute the
decryptions of the two shares in parallel.

The blinding implementation gives a slightly slower solution. Its area over-
head is smaller than for both masking techniques. However, we stress that this
blinding countermeasure should be used in combination with another counter-
measure (as specified in [18]), since the blinding factor is removed before the
decoding step. The shifting implementation yields to similar overhead (although
with lower frequency) and its combination with blinding seems to be worthwhile.
The permutation network is relatively costly in area. The LFSR loop counter is
cheaper and slightly faster.

Finally, our redundant randomized countermeasure does not need additional
DSPs or BRAMs to be implemented for small redundancy parameters (r ≤ 4)
and can therefore be used as a cheap way to secure the decryption. For higher
redundancy levels the multiplication cannot be computed within a single 18×25



Table 2. FPGA results for RLWE with various countermeasures and (q, n) =
(7681, 256). The source column refers to the work in which the countermeasure was
first proposed in LWE context. Timing and area results are for the decryption only.

Counter- Entropy Src. Impl. FPGA Lat. Clk. Time Slice, LUT, DSP,
measure added (bits) (ns) (µs) BRAM

None 0 - [25]
V2

2800 8.3 23.5 -, 1713, 1, -
Masking 3328 [25] [25] 7500 10 75.2 -, 2014, 1, -

None 0 -

th
is

w
o
rk

A7

2357 3.3 7.8 483, 1163, 2, 3
Blinding 16 [27] 2768 3.8 10.6 941, 2284, 3, 4
Shifting 16 [27] 3138 4.7 14.8 832, 2150, 3, 4

Shift + Blind 32 [27] 3183 4.6 14.7 1063, 2781, 3, 4
Masking 3328 [25] 2517 4.0 10.1 2187, 5500, 5, 6

Our Mask. 3328
th

is
w

o
rk

2510 4.0 10.1 1722, 4269, 5, 6
Permutation 1280 2521 4.5 11.4 3183, 7385, 2, 4
LFSR ctr. 71 2846 3.6 10.3 1069, 2861, 2, 3
r = 1 256 2272 3.7 8.5 629, 1599, 2, 3
r = 2 512 2273 3.6 8.2 611, 1664, 2, 3
r = 3 768 2333 3.8 8.9 807, 2067, 2, 3
r = 4 1024 2338 3.6 8.5 872, 2285, 2, 3
r = 5 1280 2352 3.8 9.0 990, 2677, 2, 6
r = 6 1536 2394 3.9 9.4 1254, 3466, 3, 6
r = 7 1792 2410 3.9 9.4 1713, 5017, 3, 6
r = 8 2048 2426 3.9 9.5 2544, 7837, 3, 6

bits multiplier, as the ones hardwired in the Artix DSP blocks. A few additional
DSP blocks and BRAMs are needed.

8 Conclusion

In this work, we compared several countermeasures against SCAs for RLWE
from [25], [27] and proposed new ones. Our first proposed countermeasure is an
adaptation of [25] with a new masked decoder which is deterministic. Our second
one uses a redundant representation to randomize polynomial coefficients. We
also implemented two different methods for shuffling. All the countermeasures
(from literature and our ones) have been implemented on FPGA to evaluate the
overhead compared to a common reference implementation on the same FPGA.
Our new decoder uses over 20% less slices and LUTs than the one from [25]. To
the best of our knowledge, we also present the first FPGA implementations for
the blinding and shifting countermeasures from [27], and a combination of the
two. Finally, our protection based on redundancy at ring level provides a cheap
randomization method with an adjustable security/overhead trade-off.

In the future, we will explore other types of architectures, operators, algo-
rithms and countermeasures (e.g. at architecture level). We also plan to use our
solutions in the context of application benchmarks and evaluate their security
against SCAs using a hardware setup under development in our research group.



Acknowledgment

This work has been supported by a PhD grant from PEC/DGA/Région Bre-
tagne.

References

1. G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Quynh Dang, C. Miller,
D. Moody, R. Peralta, R. Perlner, A. Robinson, D. Smith-Tone, and Yi-Kai Liu.
Status report on the first round of the NIST post-quantum cryptography stan-
dardization process. Technical report, 2019.

2. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange
- A New Hope. In Proc. 25th USENIX Security Symposium, pages 327–343, 2016.

3. A. Aysu, Y. Tobah, M. Tiwari, A. Gerstlauer, and M. Orshansky. Horizontal side-
channel vulnerabilities of post-quantum key exchange protocols. In Proc. IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pages
81–88, May 2018.

4. H. Baan, S. Bhattacharya, S. R. Fluhrer, Ó. Garćıa-Morchón, T. Laarhoven, R. Ri-
etman, M.J.O. Saarinen, L. Tolhuizen, and Zhenfei Zhang. Round5: Compact and
fast post-quantum public-key encryption. In 10th International Conference on
Post-Quantum Cryptography (PQCrypto), pages 83–102, 2019.

5. A.G. Bayrak, N. Velickovic, P. Ienne, and W. Burleson. An architecture-
independent instruction shuffler to protect against side-channel attacks. ACM
Trans. Archit. Code Optim., 8(4):20:1–20:19, January 2012.

6. L. Groot Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. Flush, gauss, and
reload - A cache attack on the BLISS lattice-based signature scheme. In Proc.
18th International Conference on Cryptographic Hardware and Embedded Sys-
tems(CHES), pages 323–345, August 2016.

7. T. Chabrier and A. Tisserand. On-the-fly multi-base recoding for ECC scalar
multiplication without pre-computations. In Proc. 21st Symposium on Computer
Arithmetic (ARITH), pages 219–228. IEEE Computer Society, April 2013.

8. L. Chen, S. Jordan, Yi-Kai Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-
Tone. Report on post-quantum cryptography. Technical report, 2016.

9. J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

10. T. Espitau, P.-A. Fouque, B. Gérard, and M. Tibouchi. Side-channel attacks on
BLISS lattice-based signatures: Exploiting branch tracing against strongswan and
electromagnetic emanations in microcontrollers. In Proc. ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS), pages 1857–1874, Novem-
ber 2017.

11. N. Göttert, T. Feller, M. Schneider, J. A. Buchmann, and S. A. Huss. On the
design of hardware building blocks for modern lattice-based encryption schemes.
In Proc. 14th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), pages 512–529, September 2012.

12. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proc. 19th
Annual International Cryptology Conference (CRYPTO), pages 388–397, August
1999.

13. Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng, Chen-
Mou Cheng, and Bo-Yin Yang. Post-quantum key exchange on FPGAs. IACR
Cryptology ePrint Archive, 2017:690, 2017.



14. P. Longa and M. Naehrig. Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In Proc. 15th International Conference on Cryp-
tology and Network Security (CANS), pages 124–139, November 2016.

15. Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan He,
and Bao Li. LAC: practical ring-LWE based public-key encryption with byte-level
modulus. IACR Cryptology ePrint Archive, 2018:1009, 2018.

16. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A modest
proposal for FFT hashing. In Proc. 15th International Workshop on Fast Software
Encryption (FSE), pages 54–72, February 2008.

17. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In Proc. 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), pages 1–23. June
2010.

18. T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu. Practical CCA2-secure
and masked ring-LWE implementation. IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES), 2018(1):142–174, 2018.

19. M. C. Pease. An adaptation of the fast Fourier transform for parallel processing.
J. ACM, 15(2):252–264, 1968.

20. T. Pöppelmann and T. Güneysu. Towards practical lattice-based public-key en-
cryption on reconfigurable hardware. In Proc. 20th International Conference on
Selected Areas in Cryptography (SAC), pages 68–85, August 2013.

21. T. Pöppelmann and T. Güneysu. Area optimization of lightweight lattice-based
encryption on reconfigurable hardware. In Proc. IEEE International Symposium
on Circuits and Systemss (ISCAS), pages 2796–2799, June 2014.

22. T. Pöppelmann, T. Oder, and T. Güneysu. High-performance ideal lattice-based
cryptography on 8-bit ATxmega microcontrollers. In Proc. 4th International
Conference on Cryptology and Information Security in Latin America (LATIN-
CRYPT), pages 346–365, August 2015.

23. R. Primas, P. Pessl, and S. Mangard. Single-trace side-channel attacks on masked
lattice-based encryption. In Proc. 19th International Conference on Cryptographic
Hardware and Embedded Systems (CHES), pages 513–533, September 2017.

24. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Proc. 37th Annual ACM Symposium on Theory of Computing, pages 84–93, May
2005.

25. O. Reparaz, S. Sinha Roy, F. Vercauteren, and I. Verbauwhede. A masked ring-
LWE implementation. In Proc. 17th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), pages 683–702, September 2015.

26. S. Sinha Roy, F. Vercauteren, N. Mentens, D. Donglong Chen, and I. Verbauwhede.
Compact Ring-LWE cryptoprocessor. In Proc. 16th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES), pages 371–391, Septem-
ber 2014.

27. M.-J. O. Saarinen. Arithmetic coding and blinding countermeasures for lattice
signatures - engineering a side-channel resistant post-quantum signature scheme
with compact signatures. J. Cryptographic Engineering, 8(1):71–84, 2018.

28. P. W. Shor. Polynomial time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Sci. Statist. Comput., 26:1484, 1997.

29. J. A. Solinas. Generalized mersenne numbers. Technical Report CORR-99-39,
Center for Applied Cryptographic Research, University of Waterloo, 1999.

30. T. Güneysu T. Oder. Implementing the NewHope-Simple key exchange on low-
cost FPGAs. In Proc. 5th International Conference on Cryptology and Information
Security in Latin America (LATINCRYPT), September 2017.


	FPGA Implementation and Comparison of Protections against SCAs for RLWE

