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Abstract 

 The oligomeric state of the storage form of human insulin in pancreas, which may be affected by 

several endogenous components of  cells storage granules such as arginine, is not known. Here, 

the effect of arginine on insulin oligomerisation is investigated independently by protein 

crystallography, molecular dynamics simulations and capillary electrophoresis. The combined 

results point to a strong effect of ionic strength on insulin assembly. Molecular simulations and 

electrophoretic measurements at low/mM salt concentrations show no significant effect of arginine 

on insulin aggregation. In contrast, crystallographic data at high/molar ionic strength indicate 

inhibition of insulin hexamerization by arginine due to its binding at site relevant for 

intermolecular contacts, which was also observed in MD simulations. Our results thus bracket the 

in vivo situation in pancreatic  cells storage granules, where the ionic strength is estimated to be 

in the hundreds of millimolar to sub-molar range. The present findings add to molecular 

understanding of in vivo insulin oligomerization and storage, with additional implications for 

insulin stability in arginine-rich injections. 

Introduction 

 Human insulin is a hormone behind control of blood glucose levels, lipid metabolism, and 

life span, being also delivered exogenously to patients with diabetes.1 Mature human insulin is a 

51-amino acid protein consisting of two disulfide-linked chains: A1-A21 and B1-B30, which 

triggers cellular responses by binding as a monomer to the (αβ)2 hetero-dimer tyrosine-kinase type 

insulin receptor (IR). In vivo, insulin is synthesized first as a single chain (pre)proinsulin. Its mature 

two-chain form is formed by excision of the C-peptide from proinsulin at two-arginine rich sites, 
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and it is maintained in the storage granules of pancreatic β-cells, which release the hormone to the 

bloodstream in response to elevated blood glucose levels. 

In the pancreatic secretory granules, insulin is stored at mildly acidic pH in the presence of 

high concentrations of zinc and other ions and ligands.2 It has been suggested that proinsulin 

assembles in the Zn2+-containing granules into soluble hexamers, which aggregate, precipitate or 

even crystallize, upon excision of the C-peptide.3–6 Thus, an aggregated crystalline, or amorphous, 

hormone material is likely the stored form of the hormone in the granules.3,7,8 The formation of 

aggregating hexamers is supposed to play a role in protecting the insulin from degradation, while 

the existence of the initial proinsulin form ensures proper folding of the hormone and prevents its 

fibrillation.9–12 Although the sequence of events for insulin oligomerization and aggregation is not 

fully established yet, the path connecting monomeric insulin with its hexameric form goes likely 

through a dimeric intermediate.9,13    

Over 200 crystal/NMR insulin structures are deposited the Protein Data Bank (PDB), 

which include mostly dimers and hexamers of this hormone. Remarkably, the native monomeric 

form of the hormone has eluded crystallization efforts except for a case where concentrated acetic 

acid was employed,14 while mutants of insulin yielded several monomeric crystalline forms.15,16 

The in vitro insulin hexamer is an allosteric protein, which exhibits ligand-mediated 

interconversion between different conformational states referred to as T6, T3R
f
3, and R6. These 

states differ by the conformation of the B1-B8 residues of the B-chain, where T correspond to  its 

fully extended form, and  Rf/R to a helical conformation which contributes to the long B1-19 

helix.9 These insulin allosteric forms exhibit different physical properties such as dissolution rate 

that is particularly relevant for diabetes treatment.17,18 While the addition of Zn2+ to insulin in the 

absence of other ligands initiates formation of the hexameric T6 form, smaller phenolic-like  cyclic 
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compounds such as meta-cresol that is used in clinical formulations of insulin can stabilize the B1-

B19 helix in a fully helical R6 conformation.9,19,20 

  We have been interested in the impact of granule-endogenous ligands on insulin 

conformation and it quaternary states. Our previous work focused on such a role of 

neurotransmitters such as serotonin and dopamine, which are involved in the exocytosis of the 

storage granules and may affect insulin aggregation. We provided the first crystallographic 

evidence that arginine binds to T3R
f
3 insulin hexamers forming a ternary complex with serotonin 

and insulin. There, arginine penetrated the insulin T3R
f
3 hexamer filling the voids around Zn2+ and 

HisB10.21 Arginine is a biogenic molecule that may be abundant in the granules upon processing 

of proinsulin at its two arginine-rich sites.22 Its presence in insulin solution is also of a clinical 

relevance as small arginine-rich protamines are employed in some injection formulations of this 

hormone.23,24 Arginine is also known as a potent stimulator of insulin secretion from pancreas.25,26  

 Here, we investigate further in vivo allostery of insulin oligomers by studying the sole 

impact of arginine on the formation of insulin hexamers and its binding to different oligomeric 

forms of this hormone by a combination of molecular dynamics (MD) simulations, capillary 

electrophoresis, and X-ray crystallography.  

 

Methods 

Experimental details 

Crystallographic experiments 

Crystallizations of insulin at 5-10 mg/mL in 10 mM HCl were performed in in-house 

crystallization screens that consisted of known crystal growth condition of this hormone. All 

crystallizations were performed in the presence and absence of Zn2+, and at varying concentrations 
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of arginine of 25, 50, 75 and 100 mM. No-arginine controls have also been carried out. All trials 

were done at 203K.  Resulting crystals obtained at 0.6 M Na2SO4, 0.3 M Tris/HCl pH 8.2, 0.6 mM 

Zn2+ acetate, were flash-cooled directly in liquid N2. X-ray data were collected at Diamond Light, 

Didcot,  UK and processed by xia.27   

The structure was solved by Molecular Replacement28,29 using the structure of B1-B6 

truncated insulin monomer (PDB ID 1mso) as the model.  Model building and refinement were 

performed by COOT30 and the CCP4 suite of programs.31 Details of X-ray data collection, and 

refinement statistics are in Table S3 in the Supporting Information. Figures were made using 

CCP4mg.32 

 

Capillary electrophoresis  

Chemicals 

Human insulin, recombinant, expressed in yeast (Sigma, USA), L-arginine (>98 %, Sigma, USA), 

sodium hydroxide (p.a., Penta, Czech Republic), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES) (≥ 99.5 %, Carl Roth, Germany), and zinc nitrate hexahydrate (p. a., Lachema, 

Czech Republic) were used as purchased. Deionized water obtained by a water purification system 

(Premier MFG’D, USA) was used to prepare all aqueous solutions.  

Electrophoretic conditions 

Capillary electrophoresis experiments were carried out on an Agilent 1600 CE instrument (Agilent 

Technologies, Germany) using unmodified fused-silica capillaries (Polymicro Technologies, 

USA), of 50 μm I.D., 375 μm O.D., 35.0 cm total length, and 26.5 cm effective length. Prior to the 

first measurement of the day, the capillary was activated by rinsing with 1 M NaOH for 10 min, 

followed by water for 10 min using a pressure of 93 kPa. Between individual runs, the capillary 
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was flushed for 2 min with background electrolyte. The samples were introduced with a pressure 

of 5 kPa for 5 s. The diode array UV detector was operated at 200 nm wavelength. The temperature 

of the capillary cassette was maintained at 25 °C. The separation voltage was set to 25 kV, 

inducing an electric current of approximately 6 μA. 

Background electrolyte and sample solutions 

Background electrolyte solutions were prepared as follows. First, a 10 mM HEPES solution was 

prepared and its pH was adjusted to 7.5 with 1 M NaOH. Zinc nitrate and/or arginine were added 

to the buffer as 0.1 M aqueous solutions. Insulin was dissolved in water to obtain a 1 mg mL-1 

stock solution. From this solution, each sample was prepared by mixing appropriate amounts of 

the insulin stock solution, of an aqueous solution of thiourea (1 mg mL-1) as electroosmotic flow 

marker, and of the background electrolyte. The insulin concentration in all the samples was of 

8.6 μmol L-1, and the ionic strength was in the range 5.2 - 5.7 mM, depending on the arginine and 

zinc concentrations. 

 

Computational details 

Arginine force field  

The Amber force field for arginine was generated using the antechamber33 module.   Partial atomic 

charges were determined using the Gaussian09 software34 at the  HF/6-31+G* level of theory using 

the RESP35 method, after geometry optimization of the molecule at the same level of theory. Full 

description of the employed arginine force field is provided in the Supplementary Information.  

 

 

MD simulations  
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We performed force field MD simulations of the insulin dimer under different physicochemical 

conditions, which are summarized in Table 1. The insulin dimer was simulated in the presence of 

arginine at both low (System II) and high ionic strength (1.5 mol L-1, system III). To assess the 

stability of the experimentally observed binding site of arginine, we also performed simulations at 

minimal ionic strength conditions of the crystallographic complex obtained in this work, which 

consists of an insulin dimer with one arginine in each of its monomers (System I). Since a 

crystallographic complex of the insulin hexamer exhibiting insulin-bound arginine molecules was 

previously obtained in the presence of arginine and serotonin,21 we also explored the stability of 

the arginine binding site within the insulin hexamer. To this end, we performed simulations at 

minimal ionic strength conditions (i.e., only compensation of the protein charge) starting from the 

crystallographic structure (PDB 5MT9), after removal of the crystallographic serotonin molecules 

(system V). 

System 

No. 

Insulin 

Form 

Number 

of 

Arginine 

Na+ 

ions 
Cl⁻ 

ions 

Box 

Vectors* 

(Å) 

No. of 

water 

molecules 

Sim. 

Time 

(ns) 

I Dimer 2 2 0 

7.84 

7.84 

7.84 

8 030 20 

II Dimer 24 0 20 

11.60 

11.60 

11.60 

50 239 2000 

III Dimer 24 797 817 

11.60 

11.60 

11.60 

50 239 2000 

IV Dimer 1 3 0 

6.52 

6.32 

11.92 

15 929 --- 

V Hexamer 3 5 0 

7.49 

7.49 

7.49 

12 164 100 

Table 1. Characteristics of simulated systems. *Column [x,y,z] notation 
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To mimic a neutral pH, histidine residues were singly protonated in the δ-nitrogen sites in all 

cases.  In systems II and III, the structure of the insulin dimer was taken from the first two 

monomers of the T6 hexamer structure (PDB ID 1OS3) and 24 arginine molecules were randomly 

added using the antechamber utility of Amber33. The system was then explicitly solvated, before 

addition of the counterions (Na+ and Cl-). System IV was prepared by extracting a representative 

structure (protein with an arginine molecule bound to the Glu B13 binding site) from the trajectory 

of system II. This structure was subsequently solvated, and ions added as previously. In systems I 

and V, the protein structure together with the ligands were taken from the X-ray structures and the 

missing C-terminal threonine B30 residues were added using the antechamber utility.   

 All simulations were performed with the Gromacs 2016.4 software.36 The SPC/E model 

was used for water molecules.37 As the standard force fields are known to overestimate the 

interaction between ions and charged protein groups,38 we described the ions using the Electronic 

Continuum Correction (ECC).39–41 This is a mean field approach that implicitly accounts for the 

fast electronic polarization, absent in classical force fields, by a dielectric continuum. This 

approach is equivalent to scaling the ionic charges by the factor of (εel)⁻1/2, where εel is the fast 

electronic part of the dielectric constant of water (1.78). Previously developed ECC force fields 

were used for the Na+ (Ref.42) and Cl- (Ref.43) ions (see SI, Table S2). Consistently, the protein 

was described using an ECC, scaled charge version, of the AMBER99SB-ILDN force field.38,44 

For comparison, we provide in the Supplementary Information the results obtained with the 

standard (full charge) force field, which lead to the same conclusions. 

 The systems were first equilibrated using the steepest descend method with a force 

tolerance threshold of 100 kJ mol⁻1 nm⁻1. The equilibration was continued by rising the 

temperature up to 300 K within a 100 ps long run in the NVT ensemble using a Berendsen 
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thermostat45 a time constant of 0.1 ps. This was followed by equilibration in the NpT ensemble for 

100 ps using a Parinello-Rahman barostat46 (1 bar) with a 2 ps time constant. During this 

equilibration sequence, the backbone of the protein was constrained with harmonic restraints using 

a force constant of 100 kJ mol⁻1 nm⁻2 to retain its initial position for systems II and III.  A similar 

approach was employed in the case of systems I and V, but the arginine and zinc ions (in system 

V) were additionally restrained using a harmonic force constant of 500 kJ‧mol⁻1‧nm⁻2 to preserve 

their binding mode during the equilibration procedure. The production runs were then carried out 

in the NpT ensemble as previously described and without any constraints on the protein (except 

for system V, were the zinc-histidine distance was restrained even during the production run). We 

used a 2 fs integration time step and the LINCS algorithm47 to constrain hydrogen-containing 

bonds. Long-range electrostatic interactions were accounted for by the Particle Mesh Ewald 

method48,49 with 9 Å cutoff.  

Free energy calculations 

 Calculations of the binding free energy of arginine to the insulin dimer binding sites were 

performed using the umbrella sampling50 method. A starting configuration of the protein together 

with the ligand in the studied binding site was extracted from a previous MD simulation and 

solvated into a rectangular box prolonged in the z-direction (System IV). Starting configurations 

for the different umbrella sampling windows were generated by pulling the arginine into the bulk 

in the direction of the z vector using steered molecular dynamics51, with moving harmonic 

restraints on the arginine with a force constant of 150 kJ mol⁻1nm⁻2,  and static harmonic restraints 

on the protein with a force constant of 150 kJ mol⁻1nm⁻2. The free energy profile along the 

distance between the center of mass (COM) of arginine and COM of the B13 glutamate carboxylic 

groups was obtained using 60 roughly equidistant windows distributed between 2 and 50 Å. The 
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windows between 2 and 10 Å were sampled for 100 ns. The rest of the windows was sampled for 

20 ns. The simulation windows were combined and unbiased using the weighted histogram 

analysis method52 (WHAM) to yield a free energy profile along the distance coordinate, which 

was corrected by adding the standard entropic term RTln(4πr2).53 

Results and Discussion 

X-ray Crystallography 

Crystallization conditions consisting of 0.6 M Na2SO4, 0.3 M Tris pH 8.2, 0.6 mM Zn  

Acetate, and 75-100 mM arginine yielded a typical insulin dimer  crystal form (one insulin 

molecule/asymmetric unit), with each monomer of the dimer in a complex with one arginine 

residue. Although the electron density maps show some semi-continuous features on the surface 

of the dimer, only one Arg/monomer was modeled and refined (Figure 1). However, the initial 

electron density for this Arg ligand does not fully cover this amino acid, and refined 2wFo-DFc 

map is not entirely unambiguous, indicating its possible alternative conformation (Figure 2). 

Nevertheless, the arginine molecule is shown here in only one orientation that fits the most 

optimum network of ligand:insulin hydrogen bonds (Figure 2). Control crystallizations at pH > 

7.5 without the arginine gave typical T3R
f
3 hexamer insulin crystals. Crystallizations with arginine 

at pH 5.5, similar to the pH in the storage granules, gave also insulin T3R
f
3 hexamers without any 

bound arginine. 
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Figure 1. Crystal structure of insulin dimer in complex with arginine.  B- and A-chains are in 

white and coral respectively; C-, N- and O-atoms in arginines are in green blue and red, 

respectively. 

 

Figure 2. Network of H-bonds (dashed lines) at the arginine binding site. The 2wFo-DFc 

electron density map in blue mesh is contoured at 1 level; chains/atoms color coding as in 

Figure 1. The side chain of HisB10 is modelled in two alternative conformation according to its 

corresponding electron density. 

 

In the crystal dimer form at pH 8.2, arginine occupies a shallow insulin cavity between the 

T-state N-terminus of the B-chain and its B9-B19-helix, being involved in a network of hydrogen 

bonds (Figure 2, Figure 3). Here, the N atom of arginine is hydrogen bonded (2.37 Å) to N1 
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atom of HisB10, although a broader electron density of this side chain indicates its alternative 

conformations, and possible involvement in hydrogen bond (3.05 Å) with O of serine B9. The 

half-occupancies of the HisB10 side chain reflect likely the mobility of the ligand, which is also 

outlined by patchy, and partial in some places, electron density. The other arginine interaction that 

may impact assembly of insulin hexamer is between its free-NH3
+ group and carboxyl moiety of 

GluB13. It appears, that the crystal-observed arginine:insulin binding results more from ligand-

shape - hormone-surface fitting and hydrogen bond network that engage guanidine group  of the 

arginine, rather than electrostatic surface attractions (Figure 3). 

 

Figure 3. The arginine binding site at the insulin monomer electrostatic surface. Arginine 

color coding and depiction as in Figure 1. 

The arginine also seems to have some ‘natural affinity’ for insulin surface, as there is plenty of 

tubular, but low level, electron density network on this insulin dimer, which may indicate highly 

dynamic and weak multi-ligand:insulin associations. Such phenomenon has also been observed in 

insulin:spermine-like rich environment, which may contain many arginine molecules as well.23  

HisB10 and its protonation state thus emerges as a potential key factor in arginine binding, as the 
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likely protonation of HisB10 N1 atom at pH 5.5 did not yield any crystalline arginine:insulin 

complexes. 

Consequent investigations of the insulin – arginine interactions 

MD simulations at low ionic strength. The atomistic details of arginine binding to the 

insulin dimer were studied by low-ionic strength molecular dynamics simulations, starting from 

the Arg:insulin dimer crystal structure determined here by X-ray crystallography. Within 2 ns, the 

arginine ligands left their proposed crystallographic binding site and moved into the bulk solution 

(see Supplementary Information). This suggests that the crystal-observed binding site is not stable 

at the low ionic strength conditions of the simulation. 

 Possible arginine-insulin dimer interactions were investigated further by running MD 

simulations of the insulin dimer in the presence of arginine molecules in solution (See Methods, 

system II). Spatial distribution maps of arginine around the insulin dimer obtained from 

simulations performed at low ionic strength (system II) and at high ionic strength (system III) are 

depicted on panels A and B, respectively, in Figure 4. The binding sites discussed in the text are 

circled. The spatial distribution maps of arginine around the insulin dimer (Figure 4A) indicate 

that at low ionic strength, arginine molecules do not show any affinity to the crystallographic 

binding site. Rather, a high arginine density is found next to the pair of GluB13 side chains coming 

from each monomer (red circle in Figure 4A). Arginine also interacts with several negatively 

charged (glutamates A4, A17 and B21) or aromatic (phenylalanines B25) residues, but these 

interactions are unlikely to affect the insulin hexamerization process, as these residues are exposed 

on the surface of the hexamer.  
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Figure 4. Spatial distribution maps of arginine around the insulin dimer obtained from simulations 

performed at low ionic strength (system II) and at high ionic strength (system III) are depicted on 

panels A and B, respectively. In panel A, the arginine distribution at the B13 glutamate region is 

circled in red. The glutamate residues are colored red and the Zn2+ binding HisB10 are in blue. In 

panel B, the binding interaction in the GluB13 region is missing. However, the crystallographic 

binding sites (one for each monomer, circled in red) is captured here (compare with Figure 1). 

Chain color coding as in Figure 1. 

It seems then that GluB13 emerges as a residue that may impact hexamer formation. The 

general importance of GluB13 for hexamer stability is well known, as it occupies the central cavity, 

forming there a Ca2+ binding site consisting of six circularly arranged glutamate side chains 

contributed by each insulin monomer.54,55 We computed the free energy of arginine GluB13 

pairing as G = −17.8±1.7 kJ mol−1 (Figure 5). To assess whether such binding mode could affect 

the hexamerization process, we compared it to the G change associated with the hexamerization. 

Previous ITC calorimetry measurements found the overall free energy change associated with the 

hexamerization process, i.e., bringing together three insulin dimers and binding of two Zn2+, to be 

around G= −109 kJ mol⁻1.56 For a putative hexamerization in the presence of arginine, three 

arginine molecules (one from each dimer) must be displaced, which would correspond to a 55 

kJ mol−1 free energy cost, which is small enough to maintain the overall negative G of the 
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hexamerization in presence of arginine. Therefore, the arginine – GluB13 interaction does not 

appear to be strong enough to prevent the formation of insulin hexamers.  

 

Figure 5. Free energy profile for the arginine binding to B13 glutamate pair. 

 Capillary electrophoresis experiments. The effect of arginine on the hexamerization 

process was investigated further by capillary electrophoresis, performed at low ~ 5.5 mM ionic 

strength. We have shown in a previous study38 that the formation of insulin hexamers upon addition 

ofn gives rise to a very characteristic increase - in absolute value - of insulin electrophoretic 

mobility. Analogous experiments were thus repeated here in the presence of arginine and the same 

trend in the insulin mobility increase was observed. The magnitude of the change in the 

electrophoretic mobility remains constant over a wide spectrum of arginine concentrations (Figure 
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6). Hence, these results agree with the MD simulations, and suggest that arginine does not inhibit 

insulin hexamerization at low ionic strength. 

.  

Figure 6. Electrophoretic mobilities of insulin (cins = 8.6 μmol L−1) in the absence (blue) and 

presence (red) of 20 μmol L−1 zinc nitrate measured at varying arginine concentrations. 

 

 MD simulations at high ionic strength. There is a seeming discrepancy between the high 

ionic strength crystallographic experiments, which suggest that arginine binding to the insulin 

dimer prevents the formation of the hormone hexamer on the one side, and the low ionic strength 

electrophoresis and MD simulations on the other side, which find the experimental binding site to 

be unstable and suggest that the insulin-arginine interaction is not strong enough to inhibit 

hexamerization. To further investigate the cause of these apparent differences, we performed MD 

simulations at high ionic strength (see Methods, system III), chosen to mimic the conditions 

employed in the crystallographic experiments. In contrast to the previous MD simulations 

performed at low ionic strength, the obtained spatial distribution map (Figure 4B) now shows 

significant binding of arginine to the site located in the B1-B8 loop (red circles in Figure 4B), 

with specific hydrogen bonding to the backbone carbonyl oxygen atom of HisB5, hydrogen 
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bonding of the α-amino group of the arginine to the GluB13 residue, and additional π-π stacking 

interaction with the HisB10. This reflects the arginine binding mode identified in the 

crystallographic experiments (see Figure 2). In addition, the obtained trajectory shows high 

mobility of the arginine molecule in the binding site, that confirms poor electron density for this 

ligand in the crystal structure. These simulations revealed also other less specific, and short-lived, 

binding interactions such as hydrogen bonding of the arginine guanidinium group to the 

HisB10/HisB5 imidazole rings, and arginine – histidine stacking interactions.  

 

 MD simulations of arginine binding to the insulin hexamer. Since MD simulations as 

well as capillary electrophoresis and previous crystallographic experiments21 indicated that insulin 

hexamerization appears to be possible in the presence of arginine at least at low ionic strength, we 

also probed the arginine binding to the insulin hexamer using MD simulations. Firstly, we assessed 

the stability of the crystallographic binding site for arginine in a T3R
f
3 hexamer:serotonin:arginine 

complex.21 When simulations of the insulin hexamer at low ionic strength were started with 

arginine in its experimental binding site (Methods, system V), the arginine molecule remained in 

the crystallographic binding sites for the entire course of the 20 ns simulations (see Supplementary 

Information). Arginine binds to a rather specific cavity at the surface of the hexamer, which is 

created by several amino acid side-chains (Figure 7). Its bottom is formed by the B13 glutamate 

pair, to which the arginine binds via its positively charged guanidinium group. The guanidinium 

position is further stabilized by a π-π stacking interaction with the B10 histidine and a hydrogen 

bonding to the B9 serine oxygen atom. On top of this, the carboxylate group of the arginine is 

coordinating the zinc ion cofactor of the hexamer. Therefore this arginine binding mode 
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corresponds to the starting crystallographic structure,21 since the structure remained stable, and did 

not evolve significantly during the course of the simulation. 

 

Figure 7. Snapshot from MD simulations showing arginine bound to the insulin hexamer. The 

binding is mediated through the existence of a cavity (zoom in) cornered by the Ser B9 (orange), 

His B10 (blue) and Glu B13 (red) residues and the Zn2+ cofactor (gray) at the top. 

 

Conclusions 

The possible scenario of arginine-insulin binding that emerges from our crystallographic, MD 

simulation, and capillary electrophoresis studies can be summarized as follows: (i) At high – 

~molar – ionic strength there is good agreement between arginine binding observed in the MD 

simulations and the crystal structure.  Here, arginine binds to the insulin dimer at the shallow site 
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located in the B1-B8 loop, with specific hydrogen bonding interactions with HisB5, GluB13, and 

additional interactions with HisB10. (ii) At low – milimolar – ionic strength arginine binds to the 

insulin dimer at a different site than at the high ionic strength. While binding to GluB13 side chains 

could, in principle, interfere with insulin-insulin interactions, simulations and electrophoretic 

measurements indicate that it is not strong enough to prevent insulin hexamerization. (iii) Arginine 

can bind rather stably to the hexamer on its own, even in the absence of serotonine, in a mode 

observed in the arginine-serotonin-hexamer complex. (iv) Although the exact conditions in the 

storage granules in the -cells are not known, the ionic strength may be as high as 0.25-1.0 M.2 

Hence our experiments and simulations performed at the high salt conditions may closely reflect 

the in vivo molecular situation.  (v) Insulin granule concentration is estimated to be at ~15 mM2,57 

and the pro-insulin cleavage generated arginine may reach 50 mM. This implies that the higher 

ionic strength may promote arginine:insulin binding at physiologically relevant conditions. 

 In summary, our findings expand the possible in vivo patterns of insulin oligomerization 

and storage, being also relevant for the understanding of insulin stability in arginine-rich injections. 

They also indicate that the quantitative understanding of the in vivo effects of putative insulin 

allosteric ligands, such as arginine, on aggregation of the hormone need to be scrutinized in detail 

in granule-mimicking physico-chemical environment.  
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