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Abstract

Sporulation is a microbial adaptive strategy to resist inhospitable conditions for vegetative
growth and to disperse to colonise more favourable environments. This microbial trait is
widespread in Actinobacteria. Among them, Frankia strains are able to differentiate sporangia in
pure culture, while others can sporulate even when in symbiosis with sporulation occurring within
host cells. The molecular determinants controlling Frankia sporulation have not been yet
described. In order to highlight, for the first time, the molecular players potentially involved in
Frankia sporulation, we conducted (i) a comparison of protein contents between Frankia spores
and hyphae and (ii) a comparative genomic analysis of Frankia proteomes with sporulating and
non-sporulating Actinobacteria. Among the main results, glycogen-metabolism related proteins, as
well as oxidative stress response and protease-like proteins were overdetected in hyphae,
recalling lytic processes that allow Streptomyces cells to erect sporogenic hyphae. Several genes
encoding transcriptional regulators, including GntR-like, appeared up-regulated in spores, as well
as tyrosinase, suggesting their potential role in mature spore metabolism. Finally, our results
highlighted new proteins potentially involved in Frankia sporulation, including a pyrophosphate-
energized proton pump and YaaT, described as involved in the phosphorelay allowing sporulation

in Bacillus subtilis, leading us to discuss the role of a phosphorelay in Frankia sporulation.

Keywords: Frankia sporulation, actinorhizal symbiosis, desiccation, starvation, secondary

metabolites
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1. Introduction

During their life cycle, microorganisms are subjected to point and/or recurrent environmental
variations that exert strong selection pressures. To face such physico-chemical variations, some
microorganisms have developed dormancy strategies. These strategies generally include
morphological differentiation and physiological switches that result in cells with a robust cell wall to
prevent water loss and reduced activity allowing the organisms to preserve their genetic material
and survive until conditions become favourable again. Elaborate developmental processes have
for example been characterized in a limited number of bacterial lineages, leading to the formation
of highly resistant spores with a much reduced metabolism, in response to stresses such as
desiccation, starvation or DNA damage. Yet, spore differentiation (sporulation) has been
characterized in a limited number of bacterial lineages, including Actinobacteria. Indeed, many
Actinobacteria can produce, in parallel to their hyphal growth, a variety of spores, e.g. free isolated
spores (e.g. Micromonospora) or spores arranged in chains (e.g. Streptomyces), sporangia with
motile (e.g. Actinoplanes) or non-motile (e.g. Frankia) spores [1, 2]. Whether resulting in the
production of free spores or sporangia, the sporulation process represents a heavy energetic
investment which is why the developmental program is tightly controlled [3, 4]. This process has
been extensively studied in Streptomyces species [5-8]. In Streptomyces, nutrient deprivation and
the resulting growth impairment lead to autolytic degradation of the mycelium (probably involving a
programmed cell death (PCD)-like mechanism), resulting in the accumulation of cell wall-derived
metabolites (amino acids, amino sugars, nucleotides, and lipids) around the lysing substrate
mycelium. This accumulation represents a major trigger allowing cells to acquire the building
blocks needed to erect sporogenic structures called aerial hyphae [1, 2]. This is also coupled to
synthesis of antibiotics and other secondary metabolites [9]. This correlation between sporulation
and secondary metabolites production may exist because of the need to defend the colony when it
is undergoing PCD, and both could be under the control of the same regulators [10, 11]. Two major
classes of regulatory genes were found very early in Streptomyces coelicolor to be involved in the
formation of aerial hyphae and their differentiation to form chains of unigenomic spores: the bld
genes (for “bald” in reference to the “hairless” phenotype of mutants lacking the fluffy aerial

hyphae) controlling the formation of aerial hyphae that are the precursors of spores (as well as
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antibiotic production), and whi (“white”) genes involved in spore formation, named from the aerial
mycelium yielding white colonies caused by the lack of pigmented antibiotics [8, 12-14]. High levels
of additional proteins, such as SsgA-like proteins (SALPs) [15], have also been described to
control formation of sporulation septa, chromosome segregation and spore maturation processes
like spore wall synthesis and separation of spores.

Little research has been reported on sporulation morphogenesis and genetics of other
filamentous Actinobacteria, even though some of them show ability to sporulate in unusual
environmental conditions [1, 2, 16-19]. Indeed, it is now well known that sporulation allows bacteria
to resist conditions that are inhospitable to their vegetative form and/or to disperse to colonise
more favourable environments for growth. However, a case of bacterial sporulation falling outside
the paradigm described above has been described in a symbiotic context. Actinobacteria related to
Frankia genus are able to associate with so-called “actinorhizal” plants such as Alnus spp. This
symbiotic association results in the formation of a new root organ, the nodule, where trophic
exchanges between plant and bacteria take place: bacteria fix atmospheric nitrogen in dedicated
structures, named vesicles or diazovesicles, and in turn the host plant provides photosynthetic
carbon substrates. Most isolated Frankia strains have been described as sporulating in liquid
culture medium [20] and to form non-motile spores [21]. These will be referred as “Sp-“. Yet,
certain strains, called “Sp+", have the ability to form numerous and massive sporangia inside host
cells (unlike “Sp-" strains that do sporulate in-vitro but are unable of in-planta sporulation) [22, 23]
wherein non-motile spores are found [24]. The expression of sporulation by Sp+ strains in plant
cells thus remains undescribed in a symbiotic context where Frankia benefits from a highly
favourable habitat for its development and trophic interactions with its host. In the absence of Sp+
strains available in pure culture and since no Sp+ genome has been sequenced to date, our
understanding of the molecular mechanisms of Frankia sporulation in plant cells remains very
limited. Unlike Streptomyces, environmental signals triggering Frankia sporulation, including
sporulation in culture media, and the cellular system(s) involved have been poorly studied, and
only with a few isolates in pure culture. Furthermore, depending of the strains used contradictory
results were obtained. For instance, depletion in nitrogen and phosphorus of the culture medium

has been described as significantly increasing in-vitro sporulation on some strains, but without any
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effects on others [25]. Cultivating strain at 33°C can inhibit sporulation [25], while Dewedar and
Mansour [26] reported that some other Frankia strains showed maximum spore formation at 35°C.
Thus, to date, environmental factors involved in Frankia sporulation are poorly described and seem
to vary according to the Frankia strains. In addition, genetic determinants controlling the
expression of Frankia sporulation are still unknown. A rapid search for protein functional
annotations related to sporulation in F. alni ACN14a strain genome suggested the presence of whi
(whiA and whiB) and ssgA genes previously described in S. coelicolor genome [27]. However,
such an approach based on gene annotation can be incomplete and miss the genetic sporulation
determinants specific to Frankia genus.

The aim of the present study was therefore to identify the molecular determinants involved in
Frankia sporulation using two complementary approaches: (i) a comparison of protein contents
between Frankia spores and hyphae (in-vivo proteogenomic approach ) and (i) a comparative
genomic analysis of Frankia proteomes and genomes with sporulating and non-sporulating
Actinobacteria data (in-silico approach ). In addition, since a correlation between sporulation and
secondary metabolite production may exist [10, 11], we also investigated genes potentially
involved in secondary metabolism. These complementary approaches allowed us to retrieve for
the first time a large number of proteins up-regulated in spores and to identify new genes

potentially involved in Frankia sporulation.

2. Material and methods

2.1. Frankia culture conditions for spore isolation and hyphae preparation

All cultures of Frankia alni strain ACN14a [28] were prepared in liquid BAP+ medium
supplemented with 5 mM ammonium in order to repress differentiation of diazovesicles as
described previously [29].

For spore isolation, cultures were prepared in 250 mL medium and used after 3- to 5-months
incubation (28°C, without agitation). The cells were sedimented (1,500 x g for 10 min) to obtain 5

mL pellets that were then syringed 3 times with 21G needles. The syringed cells were filtered on
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compacted cotton in order to recover spores that flowed through the cotton while hyphal fragments
were retained in the plug. A total of 3 spore suspension replicates were obtained, with fresh
biomass yield between 16 mg and 22 mg.

For hyphae sample preparation, 10-day old cultures were used. This incubation period was
chosen to recover hyphae at the beginning of the stationary phase, just before sporulation onset
and absence of spores in cultures was confirmed under the microscope before analyses. The cells
were sedimented (1,500 x g for 5 minutes) and the resulting pellets frozen until proteomics
analysis. A total of 3 hyphal sample replicates were obtained, with biomass between 350 mg and

500 mg.

2.2. Proteomic sample preparation and nanoscale liquid chromatography coupled to tandem mass
spectrometry (nano LC-MS/MS) analysis of tryptic peptides

Proteins were extracted from hyphae as follows: each replicate sample was dissolved in LDS
1X (Invitrogen, Carlsbad, Ca) with 100 pL of LDS 1X per 30 mg of pellet. The samples were then
heated at 99°C for 5 min, subjected to sonication in an ultrasonic bath for 5 min, and bead-beated
with a Precellys instrument (Bertin Technologies, Montigny-le-Bretonneux, France). Samples were
centrifuged for 40 sec at 16,000 g and the resulting supernatants were heated for 10 min at 99°C.
Proteins were extracted from spores with a recently optimized protocol consisting in a dilution with
milliQ water into 1 mL final volume and bead-beating by means of a Precellys instrument (Bertin
technologies) [30]. The sample was then centrifuged, and the resulting supernatant was
precipitated with trichloroacetic acid (10% wi/vol final). After centrifugation, the pellet was dissolved
into 50 uL of LDS1X (Invitrogen), subjected to sonication in an ultrasonic bath for 5 min, and then
heated for 10 min at 99°C. Hyphae and spore proteins were subjected to a short SDS-PAGE
migration. The whole proteome from a single polyacrylamide band was treated and proteolyzed by
trypsin, as previously described [31]. Tryptic peptides were analysed with a Q-Exactive HF high
resolution tandem mass spectrometer (ThermoFisher Scientific, Waltham, Ma) incorporating an
ultra-high-field orbitrap analyser as previously described [32]. MS/MS spectra were assigned with a
protein sequence database derived from Frankia alni ACN14a strain genome with standard

parameters.



157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

2.3. Analyses of differentially expressed proteins: Homology-based functional analysis, Clusters of
Orthologous Groups of proteins (COGSs) prediction and genome mapping

Proteins were quantified based on their spectral counts. Proteome comparison between hyphae
and spores was done taking into account the six replicates with the TFold module from the
PatternLab software, as previously described [31]. Differentially detected proteins between spores
and hyphae were categorized into 4 classes: i) Blue class proteins for which identifications
satisfied both, the fold change (i.e. ratio of protein quantities) between spores and hyphae (= 1.5)
and Tfold statistical criteria (t-test, p-value < 0.05); i) Orange class proteins for which
identifications did not meet the fold criterion but have low p-values; iii) Green class proteins for
which identifications satisfied the fold change criterion but not the statistical criterion; iv) and finally
Red class for which identifications did not meet the fold and p-value criteria.

The sequences of the 1,385 proteins of F. alni belonging to the blue class (for which
identifications satisfied both the fold >1.5 and p-value < 0.05) were uploaded in the STRING
database with F. alni chosen as a query microorganism, in order to access sequence identity.
These sequences were also assigned to COGs using MicroScope (Microbial Genome Annotation
& Analysis) Platform from Genoscope
(http://www.genoscope.cns.fr/fagc/microscope/home/index.php).

A circular genome map of the genome sequence F. alni was drawn using GenVision software

from DNAStar (DNASTAR, Madison, WI).

2.4. Construction of actinobacterial predicted proteome databases and identification of candidate
genes involved in Frankia sporulation by comparative proteome analysis

Three databases were constructed from actinobacterial predicted proteomes downloaded from
NCBI website (http://www.ncbi.nih.gov). A first database, named “14 Frankia.db”, included the
protein sequences of 14 Frankia strains described as sporulating in pure culture (Table 1), among
which only four had complete genomes (Frankia alni ACN14a, F. casuarinae Ccl3, Frankia
EANlpec and F. inefficax Eullc). These four proteomes were used to construct a second

database referred as “actino_sporange.db” together with six other sporulating actinobacteria out of
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the Frankia genus, chosen for their ability to sporulate by producing sporangia: four Actinoplanes
strains, one Geodermatophilus strain and one Streptosporangium strain (Table 1). The third
database (“actino_non_spor.db”) grouped the predicted proteomes of seven Actinobacteria unable
to differentiate spores, related to Bifidobacterium, Rhodococcus and Micrococcus genera (Table
1).

All-against-all blasts of protein sequences were performed for each database “14 Frankia.db”
and “actino_sporange.db” using the BLASTP software (version 2.2.26, with default parameters,
[33]). Protein families gathering homologous sequences were assembled using the SiLiX software
(version 1.2.9) [34], based on 45% identity over 80% of the length of the shortest sequence.
Several identity thresholds ranging from 35 to 95% were tested and 45% was found to be the best
compromise between false positives and false negatives within protein families (supplementary
data 1).

Based on the assumption that sporangia formation relied on similar (homologous) mechanisms
in sporangia-forming Actinobacteria, we searched for protein families largely distributed in Frankia
or sporangia-producing strains and absent in non-sporulating Actinobacteria. To do so, we
selected for each database homologous protein families represented in at least 80% of genomes
included in the respective database. The longest protein sequence of each protein family was then
used to query the “actino_non_spor.db” database using BLASTP (45% identity, e-value < 10, in
order to select groups without homologous protein sequences encoded in the genomes of non-

sporulating Actinobacteria.

2.5. Phyloprofile analysis of Frankia alni ACN14a gene content

In-silico analyses based on proteome comparisons of several Frankia strains with sporulating
and non-sporulating Actinobacteria were completed with analyses based this time on gene
contents using the “Gene phyloprofile” functionality of the MicroScope Platform from Genoscope
(http://www.genoscope.cns.fr/agc/microscope/home/index.php). This functionality (using pre-
computed homologies and synteny groups) allowed to find genes in the query genome of Frankia
alni ACN14a (i) with homologues in the genomes of 12 other sporangia-forming strains previously

used (Frankia Eullc, Ccl3, QA3, EUN1f, EAN1pec and CN3 strains, the 4 Actinoplanes, the
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Geodermatophilus and the Streptosporangium strains cited in Table 1), and (i) without
homologues in the genomes of 7 non-sporulating actinobacterial strains (3 Bifidobacterium strains,
3 Rhodococcus strains and one Micrococcus strain cited in Table 1), using an identity threshold

>45% over 70% of the length of the shortest sequence.

2.6. Search for secondary metabolite gene clusters in Frankia genome

A total of 27 gene clusters encoding enzymes involved in production of secondary metabolites
have been identified in Frankia ACN14a genome (accession number NC_008278) using
AntiSMASH [35] running on the MicroScope Platform [36], including a total of 1,000 genes. These
clusters were searched for among (i) protein sequences differentially detected between Frankia
ACN14a spores and hyphae proteomes and (ii) families of interest selected from the comparative

genomic analyses (using AntiSMASH).

2.7. Proteomics data repository
The mass spectrometry raw files and interpreted proteomic data were deposited at the
ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE

partner repository with the data set identifier PXD011620.

3. Results

3.1. Differentially expressed proteins between Frankia alni ACN14a spores and hyphae
High-throughput shotgun proteomic analyses were performed to compare protein contents
between Frankia alni ACN14a spores and hyphae. Proteins were quantified based on their spectral
counts in 3 biological replicates of spores and 3 biological replicates of hyphae. A total of 2,193
and 2,070 proteins were detected in hyphae and spores, respectively, when compiling the
replicates. When merging both spores and hyphae datasets, a total of 2,336 proteins was detected
(1,927 proteins were detected in both conditions). Using a Fold Change (FC) threshold of 1.5 and

a p-value below 0.05, 1,385 (59%) differentially detected proteins were identified (Blue class),
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including 432 proteins more abundant in spores compared to hyphae and 953 up-regulated in
hyphae (supplementary data 2).

The genes corresponding to up-regulated proteins in spores and hyphae were scattered
throughout the genome of Frankia ACN14a and did not form gene clusters or genomic islands
(Fig. 1). Similarly, no correlation between protein abundances in spores versus hyphae and gene
location could be established (Fig. 1). Finally, these genes did not cluster with symbiotic genes
previously described: clockwise from the top squalene and phytoene biosynthesis genes in green,
the two hydrogenase uptake clusters in black, the iron-sulfur biosynthesis cluster in orange, the
nitrogenase cluster in red [29] and the cellulase-cellulose synthase cluster in blue [45].

The COG distribution of up-regulated proteins in spores compared to hyphae revealed (i) the
importance of COG related to “information storage and processing” (29% of proteins against 17%
in hyphae), and (ii) a decreased number of COG related to “cellular processes and signalling” and
“metabolism” (19% and 49% of proteins against 28% and 55% in hyphae, respectively). The
detailed distribution of proteins into COG functional categories is illustrated in Fig. 2. The most
overabundant proteins in spores compared to hyphae included COG-J “Translation, ribosomal
structure and biogenesis (17.5% against 5.4% in hyphae), COG-C “Energy production and
conversion” (15.4% against 9.3% in hyphae) and COG-K “Transcription” (10.5% against 6.0% in
hyphae). In contrast, the most overdetected proteins in hyphae were categorized into COG-E
“Amino acid transport and metabolism” (12.9% against 6.6% in spores), COG-M “Cell
wall/membrane/envelope biogenesis” (8.0% against 3.8% in spores) and COG-O “Posttranslational
modification, protein turnover, chaperones” (7.4% against 4.5% in spores).

Table 2 lists the most 30 up- and down-regulated proteins in Frankia ACN14a spores compared
to hyphae, respectively. Among the top proteins enriched in spores, 9 proteins were at least 10
times more abundant compared to hyphae (Table 2), including a putative phytase (FRAAL1518,
FC = 30.167) and a tyrosinase (FRAALO531, FC = 20.333). Several transcriptional regulators were
also observed as PadR-like (FRAAL2570, FC = 15,571), GntR-like (FRAAL1728, FC = 11.571)
and TetR/AcrR-like (FRAAL2521, FC = 11.071).

Conversely, the 30 top proteins over-detected in hyphae were at least 10 times more abundant

compared to spores (Table 2). They included among others: (i) some wall-related proteins and cell
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division determinants (e.g. FRAAL1858 aminopeptidase N, FC = 46.380 and FRAAL2205 cell
division protein DivIVA 5, FC = 16.900), (i) proteins involved in glucose metabolism (e.qg.
FRAALOO52 glucose-6-phosphate isomerase, FC = 22.710; FRAAL1567 6-phosphogluconate
dehydrogenase, FC = 17.75; FRAAL4578 6-phosphogluconolactonase, FC = 10.670; FRAAL5091
glucokinase, FC = 10.080), (iii) proteins involved in glutamine metabolism (e.g. FRAAL4683
carbamoyl phosphate synthase, FC = 20.000; FRAAL5855 glutamyl-tRNA amidotransferase, FC =
10.250; FRAAL5165 glutamine synthetase, FC = 10.000), and (iv) proteins involved in oxidative
stress response (e.g. FRAAL5116 rubrerythrin, FC = 29.286 and FRAAL1783 glutathione
peroxidase, FC = 12.353).

Proteins involved in glycogen metabolism were also found overabundant in hyphae compared
to spores such as FRAAL2118 glycogen debranching enzyme (FC = 10.375) (Table 2) or
FRAAL2116 malto-oligosyltrehalose trehalohydrolase (FC = 4.060), FRAAL2117 trehalose
synthase (FC = 2.030) and FRAAL5902 glycogen branching enzyme (FC = 1.850) (supplementary

data 2).

3.2. Selection of genes potentially involved in the Frankia sporulation by comparative proteome
analysis

This approach was based on the hypotheses that proteins involved in Frankia sporangia
differentiation would be part of a core proteome shared between sporulating Frankia strains and
other phylogenetically close Actinobacteria able to differentiate sporangia, and that they would be
encoded by homologous genes (hypothesis 1), and would not have homologues in Actinobacteria
unable to sporulate (hypothesis 2).

Under these hypotheses, two different databases were constructed from the predicted
proteomes of Frankia and other actinobacterial strains selected for their ability to differentiate
sporangia (Table 1). The first database included only Frankia proteins (named “14 Frankia.db”,
81,518 protein sequences). This database could be queried to identify core protein families in
Frankia. The second (named “actino_sporange.db”, 72,406 protein sequences) could be used to
identify proteins families shared between Frankia and sporangia-forming Actinobacteria. It

gathered the four Frankia predicted proteomes annotated as complete and six other sporangia-
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forming actinobacterial predicted proteomes outside genus Frankia. For each database,
homologous protein families were delineated using SILIX program: a total of 1,037 and 1,641
protein families were obtained for the “actino_sporange.db” and the “14 Frankia.db” databases,
respectively.

These 1,037 and 1,641 protein families reflected the core proteome shared between Frankia
closely related sporangia-forming Actinobacteria proteomes, and between Frankia proteomes,
respectively. They were compared to a third proteomic database (named “actino_non_spor.db”)
gathering the protein sequences of seven Actinobacteria unable to sporulate (Table 1). Sequence
similarity-based comparisons allowed identifying 39 and 221 protein families from
“actino_sporange.db” and “14 Frankia.db” databases, respectively, without homologues in the
“actino_non_spor.db” database and were considered as strong candidates potentially involved in
Frankia sporulation (supplementary data 3). Among them, 25 and 139 (from “actino_sporange.db”
and “14 Frankia.db” databases, respectively) presented functional annotations in ACN14a or Ccl3
Frankia genomes (not “hypothetical proteins”).

Fourteen protein families with functional annotations were found in common from both
“actino_sporange.db” and “14_Frankia.db” databases (Table 3). Two of them included sequences
with functional annotations undoubtedly related to bacterial sporulation. The protein family #7
contained sequences annotated "Sporulation and cell division protein SsgA" (e.g. FRAAL2127,
FRAAL4594), with SsgA-like proteins (SALPSs) previously described to control spore differentiation
in S. coelicolor [15]. The protein family #8 included "Stage 0 sporulation protein YaaT" annotated
proteins, YaaT protein being involved in the phosphorelay cascade allowing the activation of the
DNA binding protein regulator SpoOA in B. subtilis [37]. It is worth noting that these sequences
were annotated "hypothetical protein” in all Frankia proteomes used in this study and could only be
identified as YaaT protein sequences based on Actinoplanes and Streptosporangium protein
annotations. The other 12 groups of homologous proteins corresponded to enzyme categories with
very broad cell functions (e.g. decarboxylase, phosphatase, phosphotransacetylase,

metallophosphoesterase ...) and without evident or specific involvement in sporulation.

3.3. Common genes identified from both comparative proteome and proteogenomic analyses
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Six proteins present in Frankia ACN14a proteome were found to be potentially involved in
sporulation based on both comparative genomic and proteogenomic approaches (Table 4). Among
them, 3 proteins were 1.7 to 4.6 times overabundant in spores compared to hyphae, including:
FRAAL1006 3-polyprenyl-4-hydroxybenzoate decarboxylase (UbiD), FRAAL6577 pyrophosphate-
energized proton pump (H+-PPase) and FRAAL6045 hypothetical protein. Three genes were 1.8
to 4.6 times under-expressed in spores: FRAAL2019 glycyl-tRNA synthetase, FRAAL3803 putative

sulfotransferase and FRAAL1171 putative secreted protein phosphodiesterase domain.

3.4. Additional analyses of Frankia alni ACN14a gene content using “Gene Phyloprofile”
functionality

In the present study, two alternative methods were performed to identify genes potentially
involved in Frankia sporulation (i.e. well distributed in Frankia and other sporulating actinobacterial
strains and absent in non-sporulating Actinobacteria). In parallel to the in-silico analyses based on
proteome comparisons, additional and rapid analyses (using “Gene phyloprofile” functionality of
the MicroScope Platform) were also conducted based this time on Frankia alni ACN14a gene
contents, with respect to the genomes of other sporangia-forming (including Frankia strains Eullc,
Ccl3, QA3, EUN1f, EAN1pec and CN3, 4 Actinoplanes strains, one Geodermatophilus and one
Streptosporangium strains) and non-sporulating Actinobacteria (Table 1).

The results showed that 57 genes in Frankia ACN14 sequenced genome (Table 5) had
homologues in the 12 genomes of other sporangia-forming actinobacterial (Table 1), but not in the
genomes of seven actinobacterial strains unable to sporulate. Among them, we found four genes
that were also recovered following our previous comparative genomic analyses: FRAAL3803
annotated “putative sulfotransferase”, FRAAL5155 annotated “peptidase S51-dipeptidase E”,
FRAAL6080 annotated “putative Phosphotransacetylase” and FRAAL6577 annotated
“pyrophosphate-energized proton pump (H+-PPase)”. We also noticed the presence of
FRAAL5240 annotated “transcriptional regulator BldD”, which was described as a master regulator
able, when bound to tetrameric cyclic-di-GMP, to repress the transcription of genes involved in

Streptomyces sporulation [2, 38].
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It's worth to note that when the genome of S. coelicolor A3 strain was included in the
phyloprofile analysis as the most studied model of sporulating Actinobacteria, 10 genes among the
57 were not recovered (Table 5), suggesting that the differentiation of sporangia in Frankia,
Actinoplanes and Geodermatophilus strains would involve slightly different genetic mechanisms

from those controlling production of spores in Streptomyces.

3.5. Further investigation of the FRAAL6577 pyrophosphate-energized proton pump (H*-PPase) as
a potentially Frankia sporulation involved protein

One protein systematically emerged as a strong candidate for Frankia sporulation from all in-
vivo and in-silico performed analyses (proteogenomics, comparative genomics and phyloprofile
analyses): the FRAAL6577 pyrophosphate-energized proton pump (H*-PPase).

We systematically examined the genomic environment of the candidate genes, looking in
particular for syntons or groups of neighbouring genes co-inherited across large evolutionary
distances that presumably are involved in a related function. In particular, FRAAL6577 forms a
synton comprising among others a putative septum site determining protein (FRAAL6565) and a
DNA topoisomerase | (FRAAL6579). The protein encoded by FRAL6577 gene is downregulated
when ACN14a Frankia strain is in symbiosis with actinorhizal host plant (FC=0.04), while those of
the other ones are not modified [29], and downregulated in early steps of contact after 64h

(FC=0.28; unpublished), while the other ones are not significantly modified.

3.6. Secondary metabolite gene clusters and Frankia sporulation

Twenty-seven secondary metabolite clusters, encompassing 1,000 genes, have been predicted
in the Frankia ACN14a genome. None of these genes were found in the 14 protein families of
interest identified through the comparative proteome analysis (Table 3). In contrast, 50 proteins
(11.6%) belonging to predicted secondary metabolites clusters were found among the 432
upregulated proteins in spores, and 119 (12.5%) among the 953 upregulated proteins in hyphae
(supplementary data 4). Furthermore, some of the most upregulated proteins in both spores and
hyphae were found related to secondary metabolite biosynthesis, such as the third and fourth most

upregulated proteins in spores FRAAL2348 (hypothetical protein) and FRAAL2570 (Putative PadR
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family transcriptional regulator), respectively, or the first and the third most upregulated proteins in
hyphae, FRAAL1858 (aminopeptidase N) and FRAAL 6507 (Terpene cyclase), respectively.

Of all the 27 secondary metabolite clusters predicted in Frankia ACN14a genome, only cluster
#17, involved in bacteriocin biosynthesis, was not represented among upregulated proteins in
spores or hyphae. Proteins included in the 26 other clusters were found overdetected in spores or
hyphae. The most represented secondary metabolite clusters were involved in the biosynthesis of
terpene (41% of the specified proteins were overdetected in spores or hyphae): cluster #27, with 4
and 3 upregulated proteins in spores and hyphae, respectively, and cluster #4, with 1 and 8
upregulated proteins in spores and hyphae, respectively.

Proteins related to Type | Polyketide synthase (t1pks) biosynthesis (cluster #13) were seen only
in spores, while proteins involved in other terpene biosynthesis (secondary metabolite clusters #3
and #10), tlpks (secondary metabolite clusters #1 and #14), lantipeptide (secondary metabolite

cluster #12) and other pks (secondary metabolite clusters #6 and #15) were found only in hyphae.

4. Discussion

Sporulation is a microbial adaptive trait that is widespread in Actinobacteria, that live for the
most part in soils where they are subject to cycles of desiccation and wetness, and abundance and
scarcity of nutrients. Different patterns and molecular mechanisms of sporulation are distributed
among the various Actinobacteria genera [1], revealing a wide diversity among this phylum.
Although sporulation morphogenesis and genetics have been largely investigated in Streptomyces,
sporulation in other filamentous Actinobacteria remained overlooked, even though some of them
show original ability to sporulate in unusual environmental contexts, such as Frankia strains [39]. In
the case of Frankia, studies on sporulation mainly aimed at understanding environmental factors
influencing in-vitro sporulation, spore germination, and spore ability to infect actinorhizal plants [25,
26]. But the molecular mechanisms and genetic determinants controlling Frankia sporulation
remain largely misunderstood, in large part due to the lack of a genetic transformation system [40].
In the present study, we investigated this issue by coupling comparative genomic and

proteogenomic approaches.
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4.1. Hypothetical pattern of Frankia sporulation early stages

Frankia hyphae analysed through proteogenomics were recovered from 10-days old cultures at
the beginning of the stationary phase. This time point just before sporulation onset (the absence of
spores in cultures was confirmed under the microscope before analyses) was chosen in order to
understand which mechanisms could play during the slowing down of vegetative growth,
eventually followed by the initiation of sporogenic structure formation.

A large number of proteins involved in cell division and glucose and glutamine metabolisms
were more abundant in hyphae compared to spores, suggesting that even at the beginning of the
stationary phase, hyphae would still be growing and metabolically active. However, several
observations also suggested that cells would be getting ready to sporulate. Regarding glucose
metabolism, glycogen deposition has previously been detected in several Streptomyces spp. (S.
antibioticus, S. fluorescens, S. griseus and S. viridochromogenes: [41], and S. venezuelae: [42]),
localized in two particular cell-types: (i) in the hyphal region from which aerial branches emerge (up
to 20% of total cellular dry weight, [41] and (ii) in the tips of aerial hyphae undergoing sporulation.
More precisely, sections of S. coelicolor aerial hyphae including the junction between sporulating
and non-sporulating parts showed that glycogen was present only in the sporulating parts [43]. The
abundance of proteins involved in glycogen-metabolism in hyphae suggests that glycogen
accumulation and degradation play an important part in morphological differentiation of Frankia
spores as previously observed for Streptomyces. Second, several proteins involved in oxidative
stress response (e.g. rubrerythrin, the second most overabundant protein in hyphae, and
glutathione peroxidase) or associated to protease activities (e.g. FRAAL1858 “aminopeptidase” or
FRAAL5033 “serine protease”) were more abundant in hyphae. Genes with peptidase-related
annotation were also highlighted in Frankia proteomes as potentially involved in sporulation, based
on comparative genomic analyses of sporulating and non-sporulating Actinobacteria (e.qg.
FRAAL5155 “peptidase S51-dipeptidase E” corresponding to the protein family #16). All these
proteins related to oxidative stress and protease activities recall the lytic process and the
extracellular protease cascade linked to starvation that allow Streptomyces cells to acquire the

building blocks needed to erect aerial hyphae [1, 2]. In Frankia strains, oxidative stress response
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and protease activities occurring in the dying zones of the hyphal network could trigger, similarly to
Streptomyces, the sporogenic process, although aerial hyphae have never been observed in
Frankia. It is worth to note that the rodlin and chaplin determinants associated in Streptomyces
with the formation of aerial hyphae have not been found in the Frankia genome. However, the
cellulose synthase also associated with aerial hyphae formation [44] has been identified in the
Frankia alni genome and upregulated by plants exudates [45] but it is not overabundant in the
fractions. Up to now, only few studies have been focused on Frankia sporulation [25, 26], none of
them have been focussed on the early stages of this process and the sporogenic structures still
need to be investigated.

Interestingly, a conserved gene cluster (FRAAL2190-2212) comprising murEFXCDG-ftsIWZ-
sepF-diviVA-ispA that has 8 proteins identified, all of which overabundant in hyphae. This is
confirmatory for the proteogenomic approach since all these determinants are important for polar
growth of hyphal tips, which is a hallmark of hyphae [46]. Two distant homologues of polar growth
determinants known in Streptomyces (Scy, FilP) have also been identified as more abundant in
hyphae than in spores (Scy, FRAAL3687; FilP, FRAAL5914 - supplementary data 2). Conversely,
the mreBCD region associated with lateral wall formation in rod-shaped bacteria but with
sporulation in Streptomyces [47] was found to be overabundant in spores (FRAAL1917) as well as
several neighbouring genes that form a highly conserved synton in sporulating actinobacteria
(FRAAL1910-1921).

In parallel to the proteomic analyses of Frankia spores and hyphae, in-silico comparisons of
Frankia proteomes and genomes with sporulating and non-sporulating Actinobacteria data allowed
us to highlight several genes potentially involved in the early stages of Frankia sporangia
differentiation. For instance, phyloprofile analyses revealed the presence of the transcriptional
regulator BIdD in Frankia genomes. This regulator was described in Streptomyces as a master
regulator able, when bound to tetrameric cyclic-di-GMP, to repress the transcription of genes for
many key developmental regulatory proteins, including early stage sporulation genes whiB, whiG,
ssgA and ssgB that were also present in Frankia genomes [2, 48, 49]. In Streptomyces, BldD-

cyclic di-GMP therefore functions as a ‘brake’ to prevent sporulation. This regulator was also

described as involved in sporangia differentiation in Actinoplanes: a bldD mutant formed
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morphologically abnormal sporangia and earlier than in the wild type (supporting the role of BldD
as a repressor) [50]. In our experiments, BldD was not detected in Frankia spores or hyphae
through proteomic analyses (it could be absent in hyphae at the beginning of the stationary phase
and in mature spores). Another gene also highlighted as potentially involved in early stages of
Frankia sporangia differentiation was the gene encoded “sporulation and cell division SsgA
protein” (FRAAL2127 and FRAAL4594). SsgA-like proteins (SALPs) were largely described in
Streptomyces to control formation of sporulation septa, chromosome segregation and spore
maturation processes [8, 15]. Since the presence of several ssgA genes was previously described
in F. alni ACN14a genome [27, 51], its detection was expected in our study, proving the relevance

of both comparative genomic and proteogenomic approaches.

4.2. Potential role of phosphorelay in Frankia sporulation

One of the main results in this study is the potential role of a Frankia gene annotated
“pyrophosphate-energized proton pump” (H*-PPase, FRAAL6577, gene name hppa), highlighted
by both comparative genomic and proteomic analyses. H-PPase has been described in
Streptomyces to convert energy from pyrophosphate hydrolysis into active H+ transport across the
plasma membrane [52]. The energy of phosphate hydrolysis used as a driving force for proton
movement across cell membrane could play an important role in Frankia sporulation. In addition to
FRAAL6G577, the most abundant protein in spores compared to hyphae was described as a
putative phytase (FRAAL1518, FC = 30.167), a subgroup of phosphatases that catalyse the
hydrolysis of phytate through a series of myo-inositol phosphate intermediates. In parallel, kinase-
and phosphate transporter- related proteins were significantly overdetected in spores compared to
hyphae, such as FRAALO753 “serine/threonine kinase” (FC = 7.667) and FRAAL4942 “phosphate
ABC transporter substrate-binding protein” (FC = 4.440). All these elements could indicate that
phosphorelay-like mechanisms could be involved in Frankia sporulation, as it happens in other
sporulating bacteria. Indeed, entry into sporulation in Bacillus subtilis is governed by a
phosphorelay in which phosphoryl groups from a histidine kinase are successively transferred via
relay proteins to the response regulator SpoOA [53]. The presence of yaaT-like gene (FRAAL6582)

in Frankia genome (absent in non-sporulating Actinobacteria), described as involved in the
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phosphorelay cascade allowing the activation of SpoOA in B. subtilis [37], supports this hypothesis
(although no homologue of spoA was found in Frankia genomes). Under this hypothesis, it is also
interesting to point out that FRAAL6577 forms a synton comprising a putative septum site
determining protein (FRAAL6565) and a DNA topoisomerase | (FRAAL6579), two types of proteins
which could be involved in spore differentiation and whose regulation could be depending on
FRAALG577. This discovery calls for new proteomics experiments devoted to a comprehensive
characterization of the phosphoproteome dynamics during sporulation, a study requiring

enrichment of phosphopeptides and their precise quantitation.

4.3. Frankia mature spores: metabolic activity and secondary metabolites

Overabundant proteins in Frankia spores compared to hyphae were examined to understand
molecular mechanisms occurring in the later stages of Frankia sporulation (well after the septation
of the sporogenic structures to form sporangia containing mature spores). It is worth to note that
proteins categorized in COG-C "metabolism" were detected among the most overabundant
proteins in Frankia mature spores, suggesting that these spores were not totally dormant (although
less active than hyphae). This result is consistent with previous descriptions of Frankia spores
exhibiting low levels of endogenous respiration at least ten-fold lower than the endogenous
respiration rate of vegetative cells [54].

A GntR family regulator was observed among the most overexpressed proteins in spores
(FRAAL1728, FC = 11.571). GntR family regulator is a poorly characterized transcriptional
regulator. GntR-like whiH gene of S. coelicolor has been described to play a crucial role in the
septation of aerial hyphae during sporulation [55]. In Frankia alni ACN14a genome, the GntR
family regulator was homologous to a FtsK/SpolllE-like protein from Bacillus involved in protein
secretion [56] and was found in a plasmid replication synton. This GntR family regulator, which is
overabundant in spores, could play in Frankia an important role, either (i) in mature spore
metabolism, although its exact function would need to be investigated, or (ii) in earlier stages of
sporangia differentiation (for instance to permit protein provision to spore wall) and then it would

persist in mature spores for specific reasons that should be investigated.
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In many Actinobacteria, among them Streptomyces, antibiotics and a wide range of other
secondary metabolites can be produced alongside spore production. Some of the regulators of
morphological differentiation also affect secondary metabolite production, indicating regulatory
links between these processes [10, 11]. In this study, we did not observe clear evidence of a
higher involvement of secondary metabolites in Frankia spores or hyphae (11.6% of upregulated
proteins in spores belonged to predicted secondary metabolites clusters, against 12.5% in
hyphae). However, few elements caught our attention. For instance, the presence of tyrosinase as
the second most overdetected protein in spores (FRAAL0531, FC = 20.333) was quite unexpected.
Indeed, in Streptomyces, tyrosinase is involved in the biosynthesis of melanin by transforming the
tyrosine into L-DOPA (3, 4-dihydroxy phenyl-L-alanine), which is further converted into
dopachrome and spontaneously oxidized to indole-5, 6-quinone. The later polymerizes
spontaneously into DOPA-melanin, a dark brown pigment [57] thought to protect against UV and
free radicals [58]. No black pigment in Frankia alni ACN14a has ever been reported in-vitro,
suggesting no melanin is present. In Frankia spores, tyrosinase could therefore be involved in
other processes such as auxin transformation [59] or reactive quinone derivatives synthesis [60,

61].

4.4. Conclusions

The aim of the present study was to set up a comprehensive and consistent database of
sporulation-associated determinants. It is important to keep in mind that the link between candidate
genes and proteins discussed here and their effective role in Frankia sporulation has to be
confirmed using functional studies, for instance through gene complementation and tracking their
expression during sporulation through RT-gPCR, as functional shifts may have occurred during
Actinobacteria diversification. Indeed, in Streptomyces, the spore production process is initiated by
the production of aerial hyphae with a hardened tip by the action of a cellulose-like synthase [44]
and the synthesis of a lipid-rich envelope comprising an aminated hopanoid to render the spores
mildly hydrophobic and permit them to float [62]. Some of these processes linked to sporulation in
Streptomyces appear to have been diverted in other lineages such as in Frankia where the

cellulose synthase is upregulated in response to contact and the hopanoid machinery is geared to
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formation of nitrogen-fixing vesicles. More precisely, the role of the hopanoid layers surrounding
Frankia vesicles is to provide a barrier to oxygen diffusion that would otherwise destroy the
oxygen-labile nitrogenase [63]. It is thus quite strikingly different from its role in Streptomyces.
Similar molecular determinants can therefore be found in different actinobacterial lineages, but the
fulfilled functions of these genes may have been diverted from their initial role.

It might also be interesting to complete this study with metabolic analyses of Frankia spores and
hyphae (e.g. primary and secondary metabolic extractions followed by HPLC and/or GC analyses),
allowing for instance to detect differences in secondary metabolite contents between both types of
cells. Additional shotgun proteomics and phosphoproteomics analyses performed at different
stages of Frankia development (e.g. including hyphae recovered at stationary phase or young
spores) could also provide a better understanding of molecular mechanisms involved in Frankia
sporulation at different intermediate stages.

Finally, once the role in Frankia sporulation of the different proteins highlighted in this study
will be better understood, it would be interesting to further investigate their expression in a
symbiotic context, when Frankia sporulation occurs inside host plant cells. It would help to
elucidate what molecular factors could suppress the sporulation capacity of Sp- Frankia strains in-

planta and allow in Sp+ strains the expression of sporulation inside nodules.
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Figure legends

Fig. 1. Circular map of the genome of  Frankia alni ACN14a spores and hyphae proteins.

Form the outside in:

1-Scale with ticks at 1,000,000nt.

2-Selected genes that play a role in symbiosis with clockwise from the top squalene and phytoene
biosynthesis genes (green), the two hydrogenase uptake clusters (black), the iron-sulfur
biosynthesis cluster (orange), the cellulase cluster (blue) and the nitrogenase cluster (red).
3-Up-regulated genes (proteins that are more abundant in spores than in hyphae) in light blue.

4-Down-regulated genes (proteins that are more abundant in hyphae than in spores) in pink.

Fig. 2. Distribution into COG functional categorie s of the 432 and 953 up-regulated proteins

in Frankia alni ACN14a spores (grey bars) and hyphae (white bars),  respectively.
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Percentage of up-regulated proteins
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Function Class (COG)
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Energy production and conversion

Cell cycle control, cell division, chromosome partitioning
Amino acid transport and metabolism

Nucleotide transport and metabolism

Carbohydrate transport and metabolism

Coenzyme transport and metabolism

Lipid transport and metabolism

Translation, ribosomal structure and biogenesis
Transcription

Replication, recombination and repair

Cell wall/membrane/envelope biogenesis

Posttranslational modification, protein turnover, chaperones
Inorganic ion transport and metabolism

Secondary metabolites biosynthesis, transport and catabolism
Signal transduction mechanisms

Intracellular trafficking, secretion, and vesicular transport
Defense mechanisms






