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Abstract

We present a framework based on iterative free-energy optimization with

spiking neural networks for modeling the fronto-striatal system (PFC-BG) for

the generation and recall of audio memory sequences. In line with neuroimag-

ing studies carried out in the PFC, we propose a genuine coding strategy using

the gain-modulation mechanism to represent abstract sequences based solely

on the rank and location of items within them. Based on this mechanism, we

show that we can construct a repertoire of neurons sensitive to the temporal

structure in sequences from which we can represent any novel sequences. Free-

energy optimization is then used to explore and to retrieve the missing indices

of the items in the correct order for executive control and compositionality. We

show that the gain-modulation mechanism permits the network to be robust

to variabilities and to have long-term dependencies as it implements a gated

recurrent neural network. This model, called Inferno Gate, is an extension of

the neural architecture Inferno standing for Iterative Free-Energy Optimization

of Recurrent Neural Networks with Gating or Gain-modulation. In experiments

performed with an audio database of ten thousand MFCC vectors, Inferno Gate

is capable of encoding efficiently and retrieving chunks of fifty items length. We
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then discuss the potential of our network to model the features of working mem-

ory in the PFC-BG loop for structural learning, goal-direction and hierarchical

reinforcement learning.

Keywords: Free-energy, Rank-Order Coding, Structural learning,

Compositionality, Gated spiking networks, Predictive Coding, Prefrontal

cortex, Language development

1. Introduction

1.1. Proposal framework for sequence learning

In this paper, we propose to use the neural architecture Inferno, stand-

ing for Iterative Free-Energy Optimization in Recurrent Neural Network, for

the learning of temporal patterns and the serial recall of sequences [1, 2]. We5

originally proposed this neuronal architecture to model the cortico-basal ganglia

loop [1] for retrieving motor and audio primitives using Spike Timing-dependent

Plasticity (STDP) within the framework of predictive coding and free-energy

minimization [3, 4, 5]. Here, we propose to implement a similar free-energy

minimization network but this time in the prefrontal-basal ganglia loop for the10

serial recall of memory sequences and for the learning of temporal pattern prim-

itives, using gain-modulation instead of STDP. Since this working memory uses

gain-modulated or gating cells instead of STDP, we propose to name it Inferno

Gate in order to disambiguate this architecture from our original network.

Gain-modulation will serve to model neurons salient to the temporal order15

of items and their sequential organization. As we will explain further, prefrontal

units depend crucially on this type of coding for serial recall. They support a

gain-modulated mechanism to jointly encode items and rank-order information

in a sequence [6]. This mechanism of gain-modulation is also described as a

gating or conjunctive function in other research [7], placing more emphasis on20

the properties of filtering out or holding on to information.

We will show that Inferno Gate is capable of learning temporal primitives

sensitive to the serial order of items within sequences, coding abstract temporal
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sequences without information about items, and accurately retrieving sequences

of items with respect to the given serial order information only. We think its25

architecture makes it robust for structural learning, model-based reinforcement

learning and compositionality.

Our main contributions are to propose a neuro-computational architecture

of the PFC and a novel mechanism to encode temporal sequences in an efficient

way for language processing. The neuro-computational architecture Inferno30

Gate learns, recognizes and retrieves missing elements in memory sequences

based on an original encoding mechanism that represents sequences with a

distributed neural population of temporal primitives learnt. These temporal

primitives are abstract patterns constructed from information about the rank

order of the items within sequences, without their index per se. This new brain-35

inspired encoding based on spikes makes the representation of sequences more

compact, the learning faster, and the retrieval of missing items more efficient

than the encoding performed in conventional neural networks and possibly deep

networks [8].

The paper is organized as follows. We will present first the developmental40

and neural foundations of our neural architecture and its purpose. In second,

we will present a state of art of prefrontal models and justify how our model is

original in comparison to them.

We will detail then the neural mechanisms used. We explain how an analog

gating can be created with spiking neurons and how gain-modulated neurons can45

represent a compact code for sequences. In comparison to other gain-modulation

architectures that require a one-to-one conversion matrix necessary for multi-

plicative binding –, which consumes neurons for this computation,– we discov-

ered that a rank-order coding algorithm can model gain-modulation in a more

efficient manner with spiking neurons.50

We apply this network for the learning of temporal primitives from audio

sequences. These primitives are then used for representing and recalling these

audio sequences with a length of one second (1000 milliseconds), corresponding

to chunks of 50 items’ length, despite information about the items’ index (their
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content or their identity) being lost.55

We then discuss the originality of our approach and implications in terms

of computation for modeling sequences, extracting temporal tree structure-like

patterns, and compressive coding of grammar-like models, recursive representa-

tion, compositionality and transfer of learning.

1.2. Developmental and neural foundations60

During early development, infants are keen on grasping structure in several

core domains [9, 10], inferring causal models and making hypotheses like little

scientists [11, 12]. They rapidly develop knowledge about numerosity, space,

physics and psychology but it is only at around 8 months that they gain the

aptitude to make complex sequences and to retain structural information in65

their environment.

In language acquisition, this skill is central for word segmentation and for

detecting grammatical and ungrammatical sentences [13, 14]. For instance,

infants are sensitive to the temporal order of events in spoken words and in

music so that they can be surprised if one syllable is changed or if one sound is70

removed, violating their prior expectations [15].

It is at this period, too, that the prefrontal cortex (PFC) develops. The pre-

frontal circuits comprise a working memory for executive control and planning

that evaluates sequences online based on uncertainty [16], and select/unselect

them according to the current context, or create new ones if any are satisfy-75

ing [17, 18, 19].

More than any other brain areas, the PFC can extract abstract rules and

parametric information within structured data in order to carry out a plan [20,

21, 22]. This aspect makes it particularly important for problem-solving tasks,

language and maths [23, 24, 25, 26].80

Experiments carried out on subjects performing hierarchical tasks such as

drawing a geometrical figure [27, 28] or detecting temporal patterns within ac-

tion sequences [29, 30] have permitted identification of some properties of PFC

neurons for binding features and for higher-order sequence planning. In series of
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observations done on PFC neurons, a critical finding was that sequences were en-85

coded through a conjunctive code, which crosses items and serial orders [31, 32].

In similar experiments performed by Inoue and Mikami, some PFC neurons were

found to modulate their amplitude level with respect to the position of items

during the sequential presentation of two visual shape cues [33]. The PFC neu-

rons displayed graded activity with respect to their ordinal position within the90

sequence and to the visual shapes; e.g. first-ranked items, or second-ranked

items. In more complex tasks, PFC neurons were found to fire at particular

moments within the sequence [21]; e.g. the beginning, the middle, the end, or

even throughout the evolution of the sequence.

Despite these findings, the precise role played by conjunctive cells in the PFC95

and the mechanisms behind the process are still under investigation. In contrast,

the conjunctive cells in the Parietal Cortex have been studied more frequently

and many neurocomputational models explain how they contribute to spatial

representation [34, 35], coordinate transformation [36, 37] and numerosity capa-

bilities [38]. In most research, conjunctive cells or gain-modulation neurons in100

parieto-motor neurons are seen as a way of binding different received informa-

tion (e.g. in vision and proprioception) for preparing an action (e.g. reaching

a target). In [39, 37], Pouget proposes that gain-modulated conjunctive cells

in the Parietal Cortex can serve as radial basis functions for constructing any

spatial metric; e.g., a hand-centred relative metric [40, 41], a head-centred rel-105

ative metric [34]. Similar to the role played by conjunctive cells in the spatial

domain in the Parietal Cortex, we suggest that the conjunctive cells in the PFC

play the role of radial basis functions in the temporal domain to decompose and

code sequences. Gain-modulation in the PFC may serve to extract temporal

patterns and to represent them as primitives for encoding existing sequences or110

for generating new ones, see Fig. 1 a-b).

This idea is in line with comparative neuroanatomical studies which attribute

similar functions to the parietal cortex and to the prefrontal cortex, representing

relative metrics or conjunctive representations [42] such as order with relative

duration, and order with relative distance; but only the PFC is in a position to115
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generate goal-based aims in context [43]. This is also suggested by Botvinick

and Watanabe in [6] that these cells in the PFC describe a compressive represen-

tation of sequences without items. Gain-modulated conjunctive cells can give

an insight into how the PFC manages to plan sequences and encode them [25].

For instance, they may be seen as a solution to disentangle the features (items)120

from the sequence (ordinal information) in planning. In line with this idea, they

may gate information at particular moments – i.e., not only predicting which

action to perform but also knowing when to do so within a sequence [44, 45].

Their role may be in line with other frameworks in which neuronal “pointers” or

“fillers” or “timestamp” neurons, are proposed for binding or gating information125

with respect to the current inputs [46, 47, 48, 49].

Furthermore, this mechanism may serve to construct a basis for compos-

ing any sequences, recombining items in different orders and generating novel

sequences with different items, see Fig. 1 b). This capacity for combinatorial

re-use is particularly robust and specific to human behavior, which corresponds130

to the capacity for compositionality, hierarchy and systematicity found in lan-

guages and structured grammars [50, 51, 52, 53, 54, 55, 25].

Since the seminal work of Broca, we know that the circuits in the left corti-

cal hemisphere and in the pre-frontal area implement language with the Broca

area forming a syntax-sensitive system (grammar) for perception and produc-135

tion of semantic and rule-based behaviors. Although the mechanism behind its

functional organization is relatively unknown, we suggest that gain-modulated

conjunctive cells may shed lights on it.

2. State of the art and model justification

2.1. Prefrontal models and gated neural networks140

In prefrontal models for sentence processing, Dominey proposed earlier ver-

sions of echo-state networks to model the associative memory in the corticostri-

atal system for language processing and sequence learning [56, 57, 58].
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Figure 1: Gating operation for feature and structural separation in sequence learning. In a),

we can discriminate the items’ index (rank #) from their position (order) to represent one

sequence. By separating the two, we can extract the temporal pattern and arrange items in a

different order. Hence, the coding of the temporal pattern can make it robust to variability and

can represent many sequences (generalization). This process is operated by a gain-modulation

or gating mechanism explained later. In b), the combination of these temporal patterns can

serve to compose any novel temporal pattern in the same fashion as radial basis functions

would do.

These architectures differ from other types of recurrent neural networks

for serial recall and online activation, which can nonetheless show complex se-145

quences of ordering [59] and error-based predictive coding [49, 60, 61].

Different PFC neural architectures from dynamical systems theory have been

proposed to code and retrieve memory sequences based on phase synchronisa-

tion for feature binding such as the LISA architecture [62], on chaotic networks

as in [63, 64, 65, 66, 67], or on reservoir computing networks [68]. For instance,150

echo-state networks have been utilized for modeling the learning of structure

and the acquisition of a grammar of rules [58, 69, 70, 71]. Despite having many

advantages as a dynamical system to embed attractors, the learning phase is

almost always carried out offline with supervised learning for labelling the pat-

terns. Meanwhile, the process needs to be properly initialized to be effective,155
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and the way structural information (topology) is embedded within these net-

works is also not clearly defined as it is often used as a black box. Furthermore,

it is not clear how they can support other coding strategies such as the gating

mechanism or other learning mechanisms such as reinforcement learning.

Jun Tani proposed neural architectures to manage dynamics with recurrent160

neural networks at multiple temporal scales (MTRNN) and with parametric

bias (RNNPB) for learning the attractors (abstract temporal structures) in se-

quences [51, 72, 54]. In neurorobotic experiments, within the framework of

dynamical systems and chaos theory, he showed how recurrent neural networks

can embed several dynamics as symbolic units (rhythmical and sequential) for165

robot control, imitation and social interaction, giving rise to compositionality.

These networks have some links with the predictive coding framework. For in-

stance, the parameter bias in RNNPB can be seen as a control variable to select

one specific sequence while the hierarchical control done in MTRNN permits to

encode and retrieve sequences at multiple temporal scales. The extension into170

a complete predictive coding framework was proposed recently with the em-

bedding of error prediction signals with the network P-MSTRNN [73]. Similar

ideas on hierarchical reinforcement learning and executive control in PFC can

be found in recent works by [74, 75].

In contrast to these algorithms, another family of PFC models is based on175

a gating or gain-modulation mechanism. In the literature, this corresponds to

the Long-Short Term Memory (LSTM) [76, 77, 22], the gated prefrontal net-

works with stripes by O’Reilly and colleagues [78, 18], the SPAWN architecture

with neuronal pointers by Eliasmith and colleagues [47, 79], or the prefrontal

architectures that explicitly use gain-modulation as in [6] and in [7].180

O’Reilly and colleagues attribute to the PFC neurons the role of variable

binders to identify rules in the sentences (subjects, verbs, complements) and

to process new ones by filling the holes with current values (e.g. binding new

words) [19, 80]. Current models of the PFC show the importance of gating

networks [76, 18, 19, 7, 22, 47]. Gated information is particularly useful to185

maintain contextual variables for several cycles in order to reuse them later
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or to process new memories from them. For some models, such as the long

short-term memory (LSTM) networks [76], these algorithms have proved their

robustness in spite of their lack of accessibility and biological plausibility. In

literature, the gating mechanism is mostly understood as an on/off switch for190

maintaining or shunting memories. In comparison, the gain-modulation mecha-

nism is very similar to a gating mechanism except that it places more emphasis

on the binding of the signals from each other. For instance, this analog gating

can serve to bind the relative order of items within temporal sequences and to

retrieve them as suggested in [30, 6, 25].195

In more general frameworks without close bio-inspiration, we can cite the

works by Kemp, Lake and Tenenbaum who proposed several architectures based

on Bayesian theory for probabilistic encoding and compositional capabilities [52,

12, 81]. Using a Bayesian framework for generating probabilistic models, their

model could extract primitives from motor sequences to construct new symbols200

of the same types, differently combined.

In this line of research, neural networks with attention mechanisms have been

proposed to overcome the limitations of current memory networks by learning

both content and location of the information in the input sequence to decode

later the output sequence. The attention mechanism allows the memory net-205

works to learn where to pay attention in the input sequence for each item in the

output sequence. We can cite the Neural Turing Machine, which is basically a

Turing machine (read and write heads on a memory block) with a LSTM (or

sometimes simple neural networks) based controller [82, 83], and other memory-

augmented neural networks for neural attention [84, 85].210

Novel memory networks under the predictive coding paradigm extend this

attention mechanism to incorporate control and Bayesian inference based on er-

ror prediction at various hierarchical (temporal) levels. We can cite the memory

networks REPRISE [86], P-MSTRNN [73] and DRAW as well [87]. This ability

makes these attentional and predictive networks good candidates for hierarchi-215

cal reinforcement learning, as they are capable of both long-term storage via

slow up-dates of their weights, and short-term storage via an external memory
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module or via an attention buffer (the working memory).

Our neural architecture Inferno Gate embeds similar features found in those

networks namely the gating mechanism, structural learning, compositionality as220

well as a generative and attentional mechanism. To our knowledge it is the first

time that a gated spiking recurrent neural network is proposed with results on

sequence learning comparable with deep recurrent networks. We will develop

hereinafter its neuro-biological foundations.

2.2. Prefrontal functional organization for model-based reinforcement learning225

We justify our neural architecture from the work done on several neural

structures in the PFC identified for serial recall and the temporal organization

of behavior [88, 42, 58, 23, 24].

Functional imaging studies suggest that the PFC provides top-down support

for organizing the orderly activation of lower stages of the executive hierarchy230

in sequences of actions (e.g., goal representations). Koechlin and colleagues

propose that the PFC subserves executive control and decision making in the

service of adaptive behavior [89, 23, 24].

In order to sustain such adaptive behaviors, it has been proposed that the

working memory in the PFC has to embed mechanisms for flexibility [90, 91]235

to maintain memory sequences over a long time range in a hierarchical manner

and to explore new behavioral strategies. Such mechanisms have typically been

proposed within the inferential Bayesian theory [17, 16, 92] and within a rein-

forcement learning framework [88, 93, 23]. Such an approach has been extended

to PFC models based on predictive coding, and to free-energy minimization.240

In line with these studies and the models proposed in [23, 93], we present

a detailed neural architecture in Fig. 2 in which we identify the Broadman

area B45, the lateral PFC (lPFC), the dorsolateral PFC (dlPFC), the Orbito-

Frontal Cortex (OFC) and the Anterior Cingulate Cortex (ACC) to participate

in a model-based RL system for the active inference of memory sequences.245

First, we suggest that the group constituted by B45, the lPFC and the

dlPFC are associated with the representation of the temporal organization of
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sequences. Second, we suggest how the group constituted by the dlPFC, ACC

and OFC interact for decision-making, executive control and problem-solving

tasks.250

We base our assumptions principally on the review papers in [44, 94, 58, 42,

23, 93]. For instance, in our schema, the rostral lateral PFC in both monkeys

and humans (typically Broadman areas 9/46 in [58, 42]) has been identified as

grouping actions for each other, for episodic or temporal control. We therefore

associate the Broadman area B45, part of the Broca area, with the chunking of255

raw memory sequences coming from parietal and striatal areas.

At the second stage, the lateral PFC (lPFC) appears to proactively build

actor task sets from long-term memory that match the context in which the

individual is acting [44, 42]. Neurons in lPFC represent the long-term memory

of behavioral sequences and the plans or schemas of action [44]. These actor260

task sets correspond in our view to temporal patterns or sequence prototypes

as presented in Fig. 1.

At the third stage, the dorsal lateral PFC (dlPFC) appears implicated in the

temporal integration of information for the attainment of prospective behavioral

goals [44, 23]. Reports suggest the involvement of the dlPFC for order memory265

in term of choosing the correct sequence from among several. In our schema,

the dlPFC combines the temporal primitives of the lPFC to have an estimate

of the most suitable sequence.

The group constituted by the dlPFC, ACC and OFC networks appears in-

volved in a model-based RL working memory for which the anterior cingulate270

cortex (ACC) seems to be active in the motivation to perform goal-directed

action (the task context units in the dlPFC), whereas the orbitofrontal cor-

tex is involved in value-based decision-making in novel choices. According to

Fuster, the orbital PFC, which is well connected with the brainstem and limbic

formations, plays a major role in the control of basic drives [44]. The OFC275

might realize the downward trend or cascade of the processing of decided goal-

directed actions (concrete sequences) that have been decided upon, and repre-

sent option-specific state values [42]. The OFC might involve competition for
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Figure 2: Framework for sequence learning based on iterative optimization in Fronto-Striatal

(PFC-BG) loop. Our putative architecture follows the models proposed by [88, 23]. The

Striatum (STR) represents the action/sound units that are assembled into a sequence at the

Broadman area B45, part of the Broca area, in order to form a chunk. This chunk is read by

the lateral PFC layer (lPFC), which learns and recognizes the temporal patterns via a gain-

modulation/gating mechanism. The different temporal patterns in the lPFC are assembled in

the dorso-lateral PFC layer (dlPFC), whose units represent the temporal structure within the

sequence at a higher level. Based on the evaluation of the dlPFC, the Orbito-Frontal layer

(OFC) and the Anterior Cingulate layer (ACC) generate and select sequences that follow the

temporal patterns in the dlPFC in order to retrieve the lost indices of STR units for executive

control. This reinforcement learning stage corresponds to a free-energy minimization process

to reduce error prediction. The framework follows the Inferno architecture proposed in [1, 2]

for the cortico-basal ganglia (CX-BG) loop.

decision-making among multiple choices. The ensemble is organized for the se-

rial order encoding of sequences in the dlPFC and the exploration and recall of280

sequences in the OFC.

3. Methods

In section 3.1, we present the neural architecture INFERNO Gate used for

serial recall in audio sequences associated with the PFC-Basal Ganglia loop.

We then describe in section 3.2 the coding mechanism used for learning the285

serial order of items within sequences using the rank-order coding algorithm

for modeling the gain-modulation mechanism with spiking neurons. Finally
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in section 3.3, we define the experimental setup and the parameters used for

accurate recall of long-range speech sequences.

3.1. The network architecture Inferno Gate290

The neural architecture Inferno Gate reproduces the main configuration of

the original Inferno network [1] with two coupled learning systems that minimize

their mutual prediction error (the free-energy), see Fig. 2. The two networks

both use spiking neurons and the difference between the two comes from the

types of coding employed to represent temporal events: the original Inferno295

network employs the spike timing-dependent plasticity mechanism whereas the

second one uses gain-modulation.

Considering the global architecture in Fig. 2, the two learning systems

(lPFC/dlPFC and dlPFC/OFC) correspond to two associative networks of spik-

ing neurons (SNNs) similar to radial basis functions. Bidirectionally coupled,300

the first SNN (lPFC/dlPFC) implements a forward model of the incoming sig-

nals while the second SNN (dlPFC/OFC) implements an inverse model aimed

at retrieving and controlling those signals. The two learning systems can be

viewed as an inverse-forward controller that can be modeled with the function

Yout = f(I) for the first SNN and with the function I = g(Yout) for the second305

one, in which I is the input vector and Yout are the output dynamics. I is a

sequence of Striatal units over time.

In order to minimize error, the second network (dlPFC/OFC) generates

intrinsic noise Inoise to control the dynamics of the first one (lPFC/dlPFC)

following a reinforcement learning (RL) mechanism. In Fig. 2, this role is de-310

volved to the ACC for error evaluation. The activity level of one unit in dlPFC,

Y = Yout, is compared to its maximum amplitude level Ymax in order to com-

pute the error E between Ymax and Yout. The current input I(t) = Inoise is kept

for the next step I(t+1) = I(t)+Inoise, if and only if it diminishes the gradient

∆E. Over time, I converges to Iopt, its optimum sequence vector, and Yout con-315

verges to Ymax its maximal value. This scheme is in line with predictive coding

algorithms and its organization is similar to novel architectures combining two
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or more competitive neural networks such as auto-encoders or the generative

adversarial networks.

We showed in [1] that this variational process is similar to a stochastic320

descent gradient algorithm performed iteratively. We here add a more sophisti-

cated gradient descent algorithm corresponding to a simulated annealing mech-

anism in order to account for the neuromodulators involved in decision-making

in the PFC for uncertainty and surprise [16, 95].

As proposed by [88], adding temporal structure to RL can ease the scaling325

problem in the exploration process. In the original version of Inferno, we found

that STDP helped to learn and retrieve temporal chains. Thereinafter, we will

show that the gain-modulation can even go further for abstracting temporal

sequences, and can be more robust to variability.

3.2. Gain-modulation mechanism based on Rank-Order Coding330

The rank-order coding (ROC) algorithm has been proposed by Thorpe and

colleagues to model the information processing performed in the Visual Cortex

by feedforward integrate-and-fire neurons [96]. We have expanded their use

to recurrent neural network models in [97, 1] replicating the Spike Timing-

Dependent Plasticity learning mechanism.335

The main assumption of the ROC algorithm is that spiking neurons perform

a quantization of the variable inputs occurring in time discretized with respect

to their temporal delays, see Fig. 3 b). The temporal order of the inputs are

transcribed into a rank code that is translated into weight value and summed

at the neuron level. The more similar the temporal order of the incoming sig-340

nals, the higher the amplitude level of the ROC neurons. Conversely, the less

similar the sequence order of the incoming signals, the lower the amplitude

level of the ROC neurons. Although this mechanism can encode discretized

temporal sequences as shown in our previous work, it does not retranscribe a

gain-modulation mechanism, a sensitivity to a rank-order within a sequence in-345

dependently of the neurons’ index. We suggest here, as a novel coding strategy

using gain-modulation, that we can construct “compressive codes” of tempo-
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ral sequences by removing the index of the neurons (their identity) within the

temporal sequence and keeping just their ranking order, see Fig. 3 c).

STDP coding strategy – If the ROC algorithm computes the neurons activity350

based on the discretized temporal delays of incoming events, the coding strategy

resembles the STDP learning mechanism with ROC neurons becoming sensitive

to the temporal contingency of incoming inputs; see Fig. 3 b). In this coding

scheme, ROC units are thus considered to be contingency detectors inducing

phase synchronization [98].355

Gain-modulation coding strategy – A second coding strategy consists in dis-

cretizing the serial order of units both in time and space, see Fig. 3 c). Here, the

indices of the neurons (or their identities) are no longer preserved and it is their

rank within the sequence that is taken into account; e.g. first, second or n-th

in the sequence. This strategy reduces drastically the amount of information to360

process, which makes possible the discovery of an abstract temporal structure

disregarding the units indices; eg the sequence becomes a template. This coding

mechanism is described as compressive representation by [6]. Hence, since the

units index is no longer present in the temporal code, it is sensitive to any novel

sequences that preserve the global temporal structure.365

For instance, in Fig. 3, the temporal encoding of two sequences following the

same spatio-temporal pattern is constructed successively by first dismissing the

temporal information and then the identity information with the rank-coding

algorithm first on the time axis and then on the index axis.

The problem’s dimensionality for temporal sequences of M elements is re-370

duced from a continuous time × space dimension in IR2M to an intermediate

representation of INM × IRM and then to a compressive representation of IN2M .

Although the reduction of complexity does not appear important when looking

at the dimensionality of the vector quantization, it permits us to represent in

a compact way an infinity of varying spatio-temporal sequences that follow the375

same structure, which corresponds well to the variable binder property found

in PFC neurons.

In comparison to other methods used to code the gain-modulation mech-
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anism as in [6, 61, 99, 100], this one has the advantage of not projecting the

rank code and the position code into an intermediate 2D matrix of complexity380

O(M2). It does not need to also separate the ranking information into separate

modules or stripe codes as proposed in [19, 80].

This property of identity masking appears similar to the idea of variable

binding in [80], of timestamp neurons in [101, 60] or of neuronal pointers in [47]

as these neurons can fill out any new variables in the correct rank in the se-385

quence. This coding strategy thus requires two types of units, one for maintain-

ing the input information (variable values) and one for recalling the sequential

order. Both are found in the prefrontal cortex for the maintenance of the units

activity and for the learning of a task-related activity. The ensemble constitutes

the behavior of one Working Memory.390

One advantage of the gating strategy compared with the STDP one is that

the temporal information is learned separately from the inputs, which enables

the network to learn long-range dependencies at an abstract level and to prevent

it losing information more rapidly within a temporal horizon; this corresponds

to the so-called vanishing gradient effect in deep networks. As a remark, feed-395

forward (deep) networks, standard recurrent neural networks (with/out STDP)

or hidden Markov models will easily lose accuracy after several iterations due

to the accumulated errors because any errors, noise or, delays within a sequence

and sensitivity to duration, will disrupt the sequence. One explanation for why

any error introduced into the network will make conventional neural networks400

brittle is that the state and the temporal information are coded together. This

is not the case in neural models with a gating mechanism like PBWMs [80],

SPAWN [47] or LSTMs because the temporal information of a sequence can be

learned in memory cells separately from the variable values that can be retrieved

online or maintained dynamically over an indefinite amount of time.405

The equations of the rank-order coding algorithm that we used are as follows.

The neurons’ output Y is computed by forming the dot product between the

function rank() sensitive to a specific rank ordering within the input signal

vector I and the synaptic weights w; w ∈ [0, 1]. For a vector signal of dimension
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M and for a population of N neurons (M afferent synapses), we have:410

Yn =

M∑
m

rank(Im)wnm,∀n ∈ N (1)

We implement the rank function rank() as a power law of the argsort()

function normalized between [0, 1] for modeling the gain-modulation mechanism

applied twice on the time axis and on the rank axis. This guarantees that the

density distribution is limited and that the weight matrix is sparse, which makes

the rank-order coding neurons similar to radial basis functions. This attribute415

permits us to use them as receptive fields so that the more distant the input

signal is to the receptive field, the lower is its activity level. The updating rule of

the weights is similar to the winner-takes-all strategy in Kohonen networks [102]

with an adaptive learning rate αn,∀n ∈ N . For the best neuron Yb, we have:

∆wbm = αb(rank(Im)− wbm),∀m ∈M (2)

αb = 0.9αb (3)

3.3. Experimental Setup420

We give the implementation details about the striatum-prefrontal working

memory modeled by the Inferno Gate architecture. We ascribe to it the role

of learning temporal patterns and representing audio memory sequences, see

Fig. 2. The audio database used as input consists of a small audio dataset of

2 minutes length with a native French woman speaker repeating five sentences425

three times. The audio .wav file is translated into MFCC vectors (dimension

12) sampled at 25ms each and tested with a stride of 10ms. The whole sequence

represents 14.000 MFCC vectors, the number of units in the Striatum layer not

encoded in the temporal order.

The Inferno Gate architecture is based on the same principle of the Inferno430

architecture –, the use of noise and reinforcement learning to control a spiking

network,– except that the coding strategy now exploits compressive ranks (the
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Figure 3: Rank-order algorithm for compressive rank representation. We describe the two-

step process carried out with the rank-order coding algorithm to model the Spike Timing-

dependent Plasticity rule and the Gating mechanism. In a), two sequences in cyan and

magenta are represented with different neuron indices (idx), different timing but the same

temporal structure (up-down-up-down). In b), the rank-order coding algorithm is used to

quantify any sequence in the temporal domain with discrete timing; e.g. first ranked, second

ranked. This is a rough approximation of the STDP rule. The indices of the neurons are kept

and only the temporal information is lost. In c), we can for a second time use the rank-order

coding algorithm to now suppress the neurons’ indices (their identity) within the sequence in

order to keep only their rank (#) within the sequence. This second process makes possible a

temporal pattern, a compressive representation of the two sequences in which only the rank

order is kept. This second process reduces drastically the amount of information to encode

any sequence, irrespective of the neurons’ index and their precise timing. For any sequence of

length M , the problem dimensionality is reduced to IR2M → IN2M .

unit’s index is not preserved) and temporal order (sensitivity to the position

in the sequence). Here, the B45 area is modeled as a buffer of 50 units length

receiving the indices ordered in time of the Striatum layer consisting of 14000435

units; the number of coded MFCC in STR. Therefore, each chunk in B45 rep-

resents a sequence of 50 MFCCs, corresponding to a chunk of 1250 ms length.

Then, the lPFC layer encodes the ordinal information from the B45 buffer.

The lPFC layer consists of 5000 units for which each unit encodes a specific

temporal pattern through gain-modulation. Each lPFC unit learns the temporal440

pattern that follows the serial order within the sequence of 50 units in B45,

independent of their true index.

At the next stage, the dlPFC layer combines together the lPFC units to rep-

resent abstract sequences. The dlPFC layer consists of 300 contextual neurons.
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Each unit encodes a compositional representation from the 5000 basis functions445

in the lPFC. The strong dimensionality reduction in the lPFC as explained in

section 3.2 and in Fig. 3 makes it possible to learn and rapidly generalize tempo-

ral patterns within sequences in the dlPFC and to rapidly explore new sequence

solutions at high speed.

Finally, the dlPFC units are evaluated by the ACC and a prediction error450

signal is processed to search for and retrieve the optimal sequence in the OFC.

The OFC layer consists of 300 vectors of 50 iterations’ length, one vector for each

unit in the dlPFC. Each vector is generated to retrieve back the corresponding

sequence of 50 iterations’ length with the retrieved STR index values. The OFC

vectors are used for the executive control of the Striatal units.455

4. Results

This section explains the two different experiments carried out to model the

striatum-prefrontal working memory for learning abstract temporal patterns

and for retrieving audio sequences through an exploration process.

In the first experiment presented in section 4.1, we explain the control carried460

out from the striatum on the prefrontal layers to learn temporal patterns and to

represent abstract sequences with information flow STR→B45→lPFC→dlPFC.

In the second experiment presented in section 4.2, we explain the exploration

process carried out to generate audio memory sequences using evaluation of

prediction error from the encoded abstract sequences previously learned; the465

information flow goes this time from dlPFC→OFC→B45→lPFC→dlPFC.

In the third experiment presented in section 4.3, we explain the integration

of the two process into the complete Inferno Gate neural network for generating

structured sequences in a self-supervised manner. In the fourth experiment

presented in section 4.4, we compare the performances between Inferno Gate470

and the standard LSTM recurrent neural network in classification and sequences

retrieving on our data.
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4.1. Experiment 1 –Learning temporal patterns and encoding abstract sequences

4.1.1. Model-based gated control in striatum-prefrontal loops

Experiment 1 explains the information flow STR→B45→lPFC→dlPFC in475

order to learn the temporal patterns in the lPFC layer and the abstract se-

quences in the dlPFC layer respectively.

We present in Fig. 4 a) the dynamics of lPFC and dlPFC layers during the

learning stage. The activity level of each neuron indicates their sensitivity to

the temporal pattern found in the sequence. The neurons in the lPFC present480

a compressive code of the B45 input sequences, which are then combined in the

dlPFC layer at a more abstract level. In Fig. 4 b) in the top chart, we plot

the snapshot of the lPFC population activity taken at one time step and sorted

(black line) and in the bottom chart the temporal pattern of the most active

neuron in the lPFC (red line) and the rank order at the population level (blue485

line).

The activity level of the lPFC units indicate their saliency to one specific

rank order within input sequences. The sorted activity in the black line indicates

that the coding representation at the population level is not sparse but many

neurons are necessary to code the sequences. For instance, because each lPFC490

unit encodes one temporal pattern at the unit level, the decomposition of one

sequence can only be partial as seen in Fig. 4 b) bottom chart, whereas at the

population level, the sequence can be represented and discriminated.

4.1.2. Analysis of the sequence encoding in the lPFC network

After the learning stage of the lPFC and dlPFC units, we can analyze how495

the ranking information is encoded in the weight matrices. We plot in Fig. 5 a)

the weights of the lPFC units (5000 units in the Y axis) reordered with respect to

their sensitivity to specific positions within B45 sequences (50 iterations length

in the X axis). The amplitude level of the synaptic weights in the diagonal

indicates that each lPFC neuron is sensitive to different positions within the500

sequences. For instance, neurons with high weight values in the beginning of

the sequence will be more sensitive to forthcoming events occuring within the
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sequence, and will serve as a prospective template. Conversely, neurons with

high weight values in the ending of the sequence will be more sensitive to the

past events in the sequence, they will serve as a retrospective template. This505

behavior has been observed in PFC neurons for sequence retrieval [103, 30] as

well as in the prefrontal-hippocampal loop in T-Maze tasks [104, 105].

As an example, we plot in Fig. 5 b) the weight distribution of two lPFC units.

We select them because these two units have their highest weight value for the

position located at the middle of the sequence (position #24), and the other510

weights located at other positions within the sequence have a lower value. The

two circles indicate two positions where the lPFC units have the same weights

value: at positions #4 and #24. Based on these weight distributions, we can

reconstruct back the temporal patterns for which the lPFC units are the most

sensitive, as each weight’s value corresponds to one rank within the sequence.515

We plot in Fig. 5 c) the two reconstructed temporal patterns. Since the two

lPFC units have the same weights at the circle positions, the reconstructed

sequences code the same neuron’s rank at those positions within the sequence.

This is how in our framework the lPFC neurons retranscribe the gain-

modulation mechanism: with respect to the position of one item within a se-520

quence, the lPFC activity level will be modulated with respect to a weight’s

value depending where the corresponding item (the neuron’s rank) within the

sequence is located.

Depending on the activity level of the different lPFC units for a specific

sequence, a decomposition in the lPFC space is represented at the dlPFC level,525

as in see Fig. 1 b). The decomposition in the lPFC layer permits us to represent

at a more abstract level, and in a more compact fashion, the compressive rank

of the sequence at the dlPFC layer.

4.2. dlPFC-OFC Iterative free-energy exploration-optimization

4.2.1. Retrieving memory sequences from incomplete information530

We present in this section the iterative optimization process carried out

at the dlPFC level for retrieving memory sequences at the OFC level with
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a) b)

Figure 4: Encoding of temporal patterns in lPFC/dlPFC layers. In a), each lPFC unit

encodes a temporal pattern from the incoming sequences in B45 (bottom chart, during 1400

iterations). The decomposition at the lPFC layer is a representation of the temporal structure

in the sequences that is then learned at the dlPFC layer (top chart). In b) we give a snapshot

of the lPFC layer at one particular timing (top chart). The black line indicates the sorted

activity of the lPFC units. The red sequence in the bottom chart indicates the temporal

pattern for which the most active lPFC neuron is the most sensitive; in this example, the

neuron nearby the index number 2800. The blue sequence indicates the temporal pattern

coded at the population level (for all lPFC neurons combined). This graph indicates that

only one unit is not discriminative enough to represent any input sequence and that the

coding at the population level is more robust and precise.

the error rate computed at the ACC. The information flow corresponds to

dlPFC→OFC→B45→lPFC→dlPFC, see Fig. 2.

In order to understand better the global process, we display in Fig. 6 a-c) and535

in d-f) the iterative optimization process carried out during 10.000 iterations

for two dlPFC units, the dynamics of the lPFC layer and of the ACC unit are

showed in a) and d), the final retrieved sequence in the OFC with respect to the

one represented by the dlPFC units is displayed in b) and e), the raster plot of

the iterative search of exact sequences in OFC and B45 is shown resp. c) and540

f).

In Fig. 6 a) and d) the ACC unit in the top chart represents the error rate,

which is the inverse of the activity level of the dlPFC units. The raster plot of

the lPFC dynamics is displayed in the bottom chart. The desired sequences we

want to reconstruct in the OFC are presented at Fig 6 b) and e) in the top chart.545
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lPFC Analysis

a) b)

c)

Figure 5: lPFC coding analysis. In a), raster plot of the weights of the lPFC units (Y axis)

reordered with respect to their sensitivity to the location (e.g., rank order) within the sequence

(X axis). Each neuron within the lPFC network has learned a weight distribution centered at

one position within the sequence; e.g. the beginning, middle or end of the sequence. Neurons

that code well the beginning of the sequence can help to predict the rest of the sequence

(prospective memory). Neurons that code well the end of the sequence are salient to the

elements during the whole sequence (retrospective memory). In b), weight distribution for

two lPFC units centered at location #24 within the sequence is shown. The circles indicate the

locations where the weight values overlap. In c), as the weight index indicates the location

within the sequence and the weight value indicates the neuron’s rank at that position, it

is possible to reconstruct the temporal pattern for which the lPFC neurons are the most

sensitive. The circles indicate weights with the same index and the same value encoding a

temporal pattern with the same location and the same rank. The two temporal patterns cross

at these locations.

The raster plot of the reconstructed OFC/B45 dynamics is shown in Fig 6 c)

and f).

The exploration search is performed after the learning stage done in the

previous section 4.2. Over time, a sequence in the OFC is explored iteratively
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using noise so that the dlPFC activity is at maximal activity level and the ACC550

reaches a minimal value.

We display in Fig 6 b) and e), in red, the retrieved OFC sequence in the top

chart and the serial order for which the two different dlPFC neurons are the

most sensitive in the bottom chart.

In the top chart, we can observe that the reconstructed OFC sequences in red555

follow a similar pattern to the ones in blue although the index of the neurons is

not completely preserved. Nonetheless, we can see that the ordinal information

in the bottom chart is matched, which means that the proposed sequence in the

top chart follows the temporal pattern encoded in the lPFC and in the dlPFC

layers.560

Hence, despite the indices in the sequence being lost in the encoding pro-

cess, the system is capable of retrieving the memory sequences from incomplete

information (due to compressive rank) with small error.

4.2.2. Performance analysis from incomplete information

In order to analyze the accuracy of the Inferno Gate network, we plot in Fig. 7565

the Euclidean error normalized between [0, 1] made by the network during recall

with respect to the number of items given as input vector resp. a) and with

respect to the position within the sequence, resp. b). The exploration stage

was limited to 10.000 iterations for each experiment and we plot the retrieved

sequences from 0 to 40 items given out of 50 items to retrieve, resp. in Fig. 8570

a-e). The grey areas indicate the part of the sequence given to the system to

restitute the missing part.

The fewer units there are to search, the more accurate is the recall, this can

be seen if we provide 20% of the items in the sequence or 80%. In this later

case, the error on the items to retrieve is particularly small and almost error575

free. Moreover, the error made is not related to the temporal position of the

items to retrieve but to the amount of missing information.

For 0% of information given, which corresponds to the previous situation in

which the system has to retrieve the whole sequence from scratch, the root error
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is 0.08 corresponding to 8% error with large variance, see Fig. 8 a).580

For 20% of information given, which corresponds to ten items given out of

fifty as displayed in Fig. 8 b), the accuracy is not necessarily higher, as we would

expect, and the error rate reaches 0.07 with a higher variance in comparison

with the previous case. We analyse this result as the difficulty the system has

in starting out from local minima with such small constraints added, which is585

different from the previous situation in which Inferno could freely search for

solutions.

For 40% of information given, which corresponds to twenty items given out

of fifty as displayed in Fig. 8 c), we can observe a strong decrease in both the

error rate of around 0.02 and the variance. This means that the network can590

retrieve 60% of the missing information with good accuracy.

Error rate continues to diminish below 0.01 if we provide 60% of the informa-

tion (30 units), see Fig. 8 d), and serial recall is almost error-free if the network

has to retrieve the index of ten units out of fifty (80% of the information given).

We can observe that the order position, to which the PFC neurons are sensitive,595

are all retrieved in the bottom chart although there is some slight errors in the

reconstruction.

To resume, Fig. 8 shows that the more information is given to the system,

the easier is the explorative search to retrieve the missing units index. Although

the rank order in the temporal patterns of the units in the lPFC is respected,600

this does not guarrantee that the units index is retrieved correctly in the OFC

sequences.

From additional studies that we did not present here, we observed that it was

possible to complete the serial recall for all the cases with an error rate below

0.01 if we continue the exploration search for 50.000 to 100.000 iterations. These605

results indicate the generalization capabilities of Inferno separating linearly the

input dynamics as we can achieve error-free retrieval.
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4.3. Integrated Inferno Gate network, generating ongoing sequences autonomously

The two processes presented in sections 4.1 and 4.2 correspond to the two-

step mechanism of the complete Inferno Gate network for learning and gener-610

ating ongoing sequences autonomously in a self-supervised manner. On the one

hand, the first circuit categorizes the incoming input sequences within a reper-

toire of learnt sequences in the dlPFC layer. On the other hand, the second

circuit generates novel sequences of items on the fly that follow the temporal

structure found by the first circuit using the reinforcement learning mechanism615

in the ACC and the OFC layers.

We present in Fig. 9 a-b) the raster plots of the network dynamics at the

beginning and at the end of this error minimization process during ten thousand

iterations and in Fig. 9 c) the sorted error rate in the dlPFC layer at different

periods of time, which represents several million of iterations. At the beginning620

of the self-organization process in Fig. 9 a), the error prediction in the ACC layer

takes long time-steps to reach small values and Inferno Gate converges slowly

both to learn the structure within the sequences and to generate new sequences

that follow these structures; the sorted error rate in ACC in Fig. 9 c) is high.

At the end of the self-organization process in Fig. 9 b), the error prediction625

in the ACC layer takes shorter time-steps to switch to different sequences and

Inferno Gate generates coherent and structured sequences faster in a model-

based manner; the sorted error rate in ACC in Fig. 9 c) reaches a limit in the

optimization process.

Through time, Inferno Gate self-supervises its learning and the discovery of630

novel sequences. This stage corresponds to the free-energy minimization of the

error prediction within the two sub-systems. The whole process may be thought

as a developmental stage in which the global network self-organizes its dynamics

following a model-based RL approach; achieving plasticity and stability within

the memory network in order to cumulate information while not diverging.635
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4.4. Performance comparison with LSTM networks

In order to assess the performances of the Inferno Gate network, we propose

to compare the results in prediction with the state of art LSTM network used on

our database. In comparison with standard time series, ours is difficult for deep

learning networks because there is no or few redundancy within the data: the640

instances in the dataset are seen few times and the dataset is large. We remind

from section 3.3 that our time series are constituted of 1350 sequences of 50

iterations length each, for a corpus of 13.598 MFCCs. There is a fundamental

trade-off in deep learning approach between the number of trials necessary to

learn one model and the number of samples to generalize correctly.645

We present in table 4.4 the performances of the LSTM network in five ex-

periments for various size of our time series, computing either the items index

as input data or their rank-within the sequence. Experiment #1 indicates the

performance of the LSTM network with 512 units to retrieve an input vector of

ten items length; the length of the time series is of 132 iterations, with the same650

number of units. We remark that for a prediction problem of small dimension

with respect to the number of hidden units, the LSTM network learns perfectly

the time series with 100% accuracy.

If we augment the size of the time series ten time over with a dataset of

1359 units (experiment #2) or one hundred time over with a dataset of 13598655

units (experiment #3), then the network is not capable anymore to sustain

the learning and the accuracy drops to 0. These results show that the LSTM

network was overfitting its learning stage in experiment #1.

This contrasts with the results found with Inferno Gate in section 4.2 and

summarized in experiment #4 in table 4.4. In our model, the accuracy level660

varies from 92% to 99% depending on the number of items to retrieve and for a

number of iterations fixed to ten thousand, precisely 13.598 items. Furthermore,

because our network is an instance of a model-based RL algorithm, it required

less units to encode sequences and less time also to retrieve missing elements

(results not shown here). In comparison, the number of parameters to optimize665

within the LSTM deep network makes the learning slow and proportional to the
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size of the database.

Instead, if we give as input data the rank order of the items within the

sequences to the LSTM network as in experiment #5, then the accuracy jumps

back to 99% accuracy as it is with Inferno Gate in experiment #4. In this670

experiment, the LSTM network is now sensitive to the data temporal structure

but information about the content (item’s index) is lost.

For both Inferno Gate and LSTM networks in experiments #4 and #5, the

encoding space using the rank-order information between [0, 50] is now smaller

than the dimension of the input space between [0, 13498], which makes the675

encoding simpler. However, because the LSTM network does not have any

attention mechanism as Inferno Gate does, it cannot retrieve back the items

index within the sequence; ie, the MFCC index. At reverse, Inferno Gate pos-

sesses such mechanism with the ACC and OFC components, which permits it

to recover back the hidden content.680

5. Discussion

We have presented a novel neural architecture Inferno Gate based on free-

energy minimization and model-based RL using recurrent spiking neural net-

works for learning and retrieving temporal sequences and modeling the fronto-

striatal (PFC-BG) loop. This network extends our original neural architecture685

Inferno in [1], which exploits model-free RL, aiming at modeling the cortico-

basal ganglia (CX-BG) loop for learning motor primitives. In [2], we have shown

its effectiveness in the more challenging tasks of speech recognition and produc-

tion. Although the two networks are similar in their functional organization, the

encoding type is different. The Inferno network uses a model-free approach with690

the STDP mechanism for learning temporal correlations between spiking events

whereas Inferno Gate uses a model-based approach with a gating mechanism

for binding the item’s rank and its position within a sequence. This separa-

tion of functions between lexicon and grammar by the two networks follows the

declarative/procedural model on language proposed by Ullman [94, 106] with695
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similar memory circuits: the cortical layer for the lexicon memory system and

the prefrontal-basal ganglia layer for the grammar memory system.

By discriminating content (i.e. which sound to play) and contextual infor-

mation (i.e. when to play it in the sequence), we have shown that Inferno Gate

is capable of robustly learning the temporal structure within sequences and re-700

trieving the items’ index in the correct order. In a complementary paper, we

have described the architecture Inferno for modeling the CX-BG structure for

retrieving the sound primitives [2]. The BG network explored and retrieved

sound vectors by testing them stochastically through the CX layer. The more

the Striatal units recognize and predict the CX output, the stronger they re-705

inforce their link with the sound vectors encoded in the Globus Pallidus layer,

which constitutes one sound repertoire at the end of the optimization process.

Although a stable activity can be retrieved in a self-organized manner within

the CX-BG network, the top-down control of a precise temporal sequence is de-

voted to another structure, the PFC-BG loop, which selects and influences the710

first system. In order to model the PFC-BG loop, we reuse the same neural ar-

chitecture Inferno but with a different temporal coding to assess the property of

the PFC neurons. In contrast to STDP, PFC neurons employ a gain-modulation

mechanism to bind multiple information at once; e.g. the relative position of an

item within a sequence for instance.715

Gain modulation – gain-modulated units learn the order and the rank of

one item within a sequence so that any misplacement of it will reduce its activity

level. Furthermore, the capacity to encode the items’ localization follows an

inverse power-law scale due to the rank-order coding algorithm: therefore the

precision of encoding is nonlinear. From a computational viewpoint, this inverse720

power-law scale is one important property in order to construct radial basis

functions and to have orthogonal (discriminative) representations coded at the

population level. Such coding is apparent to a nonlinear gating as the activity

of these representations is modulated by the occurrence of multiple information.

In return, the population coding permits us to have a compressive code that725

can help the exploration search in a reinforcement learning framework.
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This property permits to use the lPFC units as “fillers” or “pointers”, which

adds some variability in the encoding, but in a structured way. Thus, we think

that this property of gain-modulation is interesting in order to learn abstract

and temporal information about structures within sequences such as AAB or730

ABA patterns to which infants are sensitive to at a very early age. Because the

activity level of lPFC units in our system is modulated by multiple information,

the item’s rank and time order, we suggest that it can be used for representing

other relative metrics as proposed in [30, 42] and that gain-modulation can

be assimilated to the nonlinear-mixed selectivity mechanism proposed by [107].735

For instance, the conjunctive cells in the parietal cortex are found to encode

relative metrics based on multimodal binding to infer non-trivial information

about space and numerosity [108, 6, 109].

In previous neurorobotic researches, we have modeled these parietal gain-

modulated neurons for visuomotor coordination and for body representation740

using a more standard coding strategy based on multiplication [110, 61, 99,

100, 111]. However, the number of units necessary to process gain-modulation

evolves quadratically with respect to the problem’s dimensionality. We think

spiking neural networks along with the gain-modulation learning mechanism

have the potential to represent multimodal information in a more compact man-745

ner, perhaps even more efficiently than do conventional multi-layer feedforward

networks, as there is no loss of structural information in the encoding, which is

not the case in deep networks due to the max-pooling operation. Therefore, we

can envisage some tasks in multimodal integration, which are still difficult to

realize with spiking neural networks.750

Retrospective and prospective encoding – The temporal coding carried

out in Inferno Gate extends the STDP mechanism with extra information, the

position of an item within a sequence, making it more nonlinear and abstract in

the sense that the neurons’ receptive field encodes structural information about

the sequence and not the sequence itself. In our experiments, lPFC neurons755

code for a position in the sequence either at the beginning, middle or end of it.

They are nevertheless sensitive to other positions but with less strength.
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As some lPFC neurons are sensitive to items at the beginning of a sequence

or at the end, this behavior reflects well the PFC’s behavior, firing in line with

retrospective or anticipatory events. Retrospective neurons are firing depend-760

ing on the previous events. Conversely, prospective neuronal firing depends on

future events. These properties were showed in the hippocampal cells of rats in

W-shaped tracks with alternate trajectories [105] or in a T-Maze with return

arms [104]. These results and many others mainly refer to hippocampal activ-

ities. However, it has been shown that these activities may be modulated by765

prefrontal information [112, 103]. We here make the prediction that some lPFC

neurons exhibit these kinds of activities, and that this information is used as a

global context for driving neuronal firing in the hippocampus [113]; e.g., during

the replay of memory sequences [114] and during the pre-play of trajectories

toward future events [115].770

Compositionality– the dlPFC units combine the lPFC temporal patterns

in a similar way to a radial basis function network: as this layer embeds a va-

riety of temporal primitives, it can rapidly encode any novel sequences. Hence,

we suggest that this mechanism of gain-modulation is potentially important in

infants for fast inference and for learning abstract patterns with few samples;775

the capability of learning-to-learn [52, 12]. The learning and error minimization

processing of lPFC/dlPFC temporal rules may be viewed as an inference mech-

anism, which attempts to catch up with rules in one domain. As these temporal

rules are abstracted (no information about the content), they may be applied to

other domains for grasping other observations; for instance, learning the tempo-780

ral patterns during motion sequences, like planning, drawing or solving a task.

As a beneficial effect, learning higher-order hypotheses may massively accelerate

learning in other domains [12, 81]. It may help to learn abstract or contextual

words, which is still a challenge that AI architectures have yet to meet.

To summarize, we suggest that this system presents some capabilities suited785

for learning linguistic systems (e.g., a grammar of rules) and timely ordered be-

haviors. Since Inferno Gate encodes temporal patterns in an abstract manner,

like AAB or ABA patterns, we can expect that by adding another layer to the

32



model, presumably the Polar Frontal Cortex as proposed in [26], it may be pos-

sible to create sequences of sequences such as ((AAB)B(AAB)) with A=(AAB)790

and the ABA pattern, mixing two or more temporal patterns in an iterative

fashion. In this way, our network may be extended to fractal-coding to have a

hierarchical representation of sequences at any depth.

Long-term dependencies – In experiment 2 in section 4.2, we have shown

that it was possible to retrieve accurately in the OFC layer the index of units795

and their order in long-range sequences (fifty iterations length) although this

information (the neuron’s index) was not encoded in the dlPFC units. With

no external information, the system requires a long period of time, above ten

thousand iterations, to search for the items’ index as well as their position. All

generated sentences display the same temporal pattern as the one we want to800

retrieve, although there is some variability present in them.

This exploration process may be seen as a babbling period in infant develop-

ment. The explorative search is based on a free-energy minimization process of

the OFC vectors and on the evaluation of the dlPFC units computed at the ACC

level. We have showed that error minimization is fast and that it requires only805

several hundred iterations to retrieve the missing items within the sequence. If

items are furnished and imposed on the sequence to be retrieved (a sequence ’à

trous’ [with holes]), the search is even faster and accurate with respect to the

number of items given, below two hundred iterations.

The generative property of the system shows that it incorporates computa-810

tional capabilities of robustness to noise and can retain long-term dependencies

for sequences of fifty iterations length as no or little information is required

to retrieve which item has to be performed and when. This property is ad-

vantageous in comparison to standard recurrent neural networks. For instance,

Inferno Gate behaves differently from classical recurrent networks, including the815

gated ones, which are directed graphes that attempt to predict the next items

depending on the past ones in a Markovian fashion. Our network may extend

the idea of vector codes or of vector symbolic architectures by [116] or of neural

pointers by [47, 46] or of the “merge” function proposed by Chomsky for en-
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coding nested structures in language [53, 25]. Furthermore, we have tested the820

performances and computational power of the Inferno Gate network in compar-

ison to the popular LSTM gated networks. We have shown that only Inferno

Gate could retrieve back items’ in sequences, even from a dataset of rarely ob-

served items. This is an advantage over statistical methods and deep networks

that require many observations to learn correlations between the items.825

Developmental learning – Infants skill at learning event sequences ex-

tends to different stimulus types in different modalities speech, tones, or pic-

tures [117]. According to Saffran, young children are equiped with a statistical

learning device for syntactical acquisition [13, 14]. In a series of experiments,

Saffran and colleagues observed that after exposure to the speech streams for830

two minutes, infants reacted differently to hearing pseudowords as opposed to

nonwords from the speech stream, where nonwords were composed of the same

syllables that the infants had been exposed to, but in a different order. They

suggest that infants are able to learn statistical relationships between syllables

even with very limited exposure to a language.835

Baillargeon and colleagues discovered similar behaviors in the visual do-

main [118, 119] and proposed also that infants may possess a Physical Reasoning

System to endow them with a grasp of intuitive physics about objects. Impor-

tantly, they discovered that young infants reason at an abstract level about

objects categories (inanimated, animated), physics (occlusion, shadows, rigid840

3D objects dont distort or disappear) and properties (soft, round) to simulate

what will happen next. Similar to grammar in language, this Physical Reason-

ing System may allow infants to reason about causal and physical events and

to detect several physical violations occuring in the visual scene. For instance,

infants were surprised when an object placed behind a screen disappeared and845

a different object reappeared after. Young infants possess therefore some ex-

pectations about physical knowledge, such as object permanence and object

occlusion.

Although they don’t identify any neural correlates of these processings, we

suggest that the PFC is involved in extracting the structure within sound and850
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visual sequences.

We propose also that our model may provide a computational basis to these

results. Because the content (the items’ index) has been removed from the

temporal information within the sequence, Inferno Gate can learn temporal

patterns. The learning and error minimization processing of these rules may be855

similar to an inference process that attempts to capture the rules in one domain.

As these temporal rules are abstracted, amodal, they may be applied to other

domains as well or to other modalities; for instance, during action observation

for grasping other observations.

In this line, brain theorists such as Arbib and Fadiga suggested that the860

Broca area in PFC plays a more general role, beyond language, as being a supra-

modal Syntax Engine in the broaden sense, to encode hierarchical structures and

grammars in other core domains and modalities [120, 121, 122, 123]; for instance,

in music and in action representation. They propose that motor articulation in

speech is deeply rooten to the syntactic and structural organization of actions.865

They suggest that the neural pathways for syntactic representation in speech

and action are located in the sample places, respectively in the Broca area in

human and in the Mirror Neurons System (F5 motor area) in monkeys, the two

presenting potentially similar functional organization and similar mechanisms

for the acquisition of conceptual knowledge and hierarchical representation [124].870

We propose that our architecture may account for the modeling of syntactic

represention found in those structures.

Transfer of learning – As the content of the data is not encoded within the

PFC neurons, we can expect that they are more robust to variability within the

inputs such as distorted voices or voices with different tones (high and low pitch).875

In this line, we can expect Inferno Gate to find the same temporal patterns

between different modalities, visual and auditory, for instance as during lip-

reading accentuating the pronounced sound with the visual input. This gating

mechanism may make it possible to express another way of solving the binding

problem across modalities and to perform transfer learning. For instance, some880

experiments performed with babies have found how at an early age they bind
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the tactile texture of a protruder and its visual shape although they have not

seen it before [125]. Other experiments have shown such a binding effect being

created between sound and vision in which babies correlated an ascending sound

with a more intense light following the same temporal pattern.885

Advantages and disadvantages of the proposed architecture – In

comparison to model-free RL and deep neural-based approaches that require

some redundancy within the signals for learning correlations, the learning and

discovery stage of a structure with model-based RL such as Inferno Gate is

extremely fast with few examples seen in one or few-shot learning [75, 74].890

On the one hand, deep networks require thousands of iterations during the

offline learning stage to converge, they classify almost instantaneously any data

afterwards. On the other hand, neural networks with an attention mechanism

and/or a working memory like Inferno Gate learn a structure extremely fast

with few examples only [82, 84], while they recognize and retrieve online one895

given sequence in few hundred iterations using a read/write address memory.

As a result, model-free algorithms like Inferno have difficulty to generalize

and infer from unseen data or rare events. The compositionality of Inferno Gate

instead permits to accelerate the learning stage and to discover a sequence even

with elements not seen before. Therefore, in our case the dimensionality of the900

input space of 14.000 MFCC index is not seen as a major problem in the retrieval

stage. For instance, we have shown that it was possible to retrieve sentences

of 50 iterations length and to create new ones on the fly. Furthermore, there

is not a great sensitivity of the sequences’ length on the retrieval stage as long

as a certain number of entries are given for discriminating the sentences from905

each other. Therefore, there is no vanishing gradient effect as seen in other deep

or gated networks such as the LSTMs. This is because the index of the input

(their identity) is not learned.

Our next steps will be to combine the networks Inferno and Inferno Gate

in order to obtain a meta-learning architecture [74]. The dual working-memory910

will integrate both model-free RL and model-based RL to design the interaction

between the cortico-basal loop and the striatal-prefrontal loop [74, 95, 75] under
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frameworks of free-energy, predictive coding [3, 126, 127] and intrinsic motiva-

tion [128, 129]. This will follow the declarative/procedural model proposed by

Ullman for language [106]. We will study how our model will achieve structural915

learning in core domains with robots.
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Reconstructed OFC Dynamics for two dlPFC units

dlPFC unit #1 dlPFC unit #2

a) d)

b) e)

c) f)

Figure 6: Free-energy optimization for retrieving sequences in OFC layer for two dlPFC

units. In a) and d), we show error minimization in ACC unit (top chart) and optimization of

dlPFC activity through exploration in OFC and observed in lPFC layer (bottom chart). The

desired sequences we want to reconstruct in the OFC are presented in b) and e). We show

the final sequence retrieved in red in the OFC layer with the neurons index of the STR layer

between [0, 14.000] with respect to a goal sequence in blue (top chart). In c) and f), we show

the raster plot of the reconstructed OFC/B45 dynamics. The OFC layer manages to retrieve

a temporal sequence with some uncertainty but the global structure of the sequence and the

rank orders are mostly respected.
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a) b)

c)

Figure 7: Performance analysis of the Inferno gate architecture for retrieving sequences with

respect to the amount of information given. In a), we show the error rate computed from

the goal sequence encoded in lPFC/dlPFC and retrieved sequences in the OFC layer with

respect to the amount of items given from 0 to 80% of the sequence given at the B45 level.

The fewer units there are to search, the more accurate is the recall. If we provide 40% of the

items of the sequence we want to retrieve, the error on the neurons’ index is particularly small

and almost error free if 80% of the neurons are given. In b), we show the distribution of the

error rate with respect to the position within the sequence and the amount of information

provided. The error made by the network in retrieving the sequences is not related to the

temporal position within the sequence but to the amount of information furnished to it. In

c), we show the convergence rate of the network with respect to the amount of information

provided. The blue color corresponds to 0% of items given, the green corresponds to 20%

of items given, the red corresponds to 40% of items given, cian corresponds to 60% of items

given and purple corresponds to 80% of items given.
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Serial Recall in OFC from incomplete information

a) d)

b) e)

c)

Figure 8: Serial recall in OFC layer from incomplete information. Retrieved goal sequence

when 0%, 20%, 40%, 60%, 80% information is furnished to the system, respectively a-e). In

the top charts, the generated sequences in the OFC layer with index of the STR neurons are

displayed in red with the goal sequences to be retrieved in blue. The more information is

given to the system, the easier is the explorative search to retrieve the missing units’ index.

In the bottom chart, although the rank order in the temporal patterns of the units in the

lPFC is respected, this does not guarrantee that the units’ index is retrieved correctly in the

OFC sequences.
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a) b)

c)

Figure 9: Raster plots during self-supervising at two different learning period. In a) and

b), the bottom chart represents the lPFC dynamics, the middle chart represents the dlPFC

dynamics and the top chart represents the ACC error rate. The lPFC dynamics Inferno Gate

at period #0 learns to categorize ongoing sequences with respect to their structure. In a),

error rate in the ACC layer is slow to converge as Inferno Gate generates novel sequences

that have to conform to the corresponding temporal order of the selected dlPFC neuron. In

b), over time, Inferno Gate has minimized error prediction within the different networks to

recognize and retrieve structured sequences online. In c), the graph shows the sorted Acc error

presented over different learning periods corresponding to several million of iterations. This

graph shows that Inferno Gate achieves to combine stability and plasticity within the network

dynamics with stable convergence rate to a minimal error probability density distribution and

variability with constrained dynamics.
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