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We present a framework based on iterative free-energy optimization with spiking neural networks for modeling the fronto-striatal system (PFC-BG) for the generation and recall of audio memory sequences. In line with neuroimaging studies carried out in the PFC, we propose a genuine coding strategy using the gain-modulation mechanism to represent abstract sequences based solely on the rank and location of items within them. Based on this mechanism, we show that we can construct a repertoire of neurons sensitive to the temporal structure in sequences from which we can represent any novel sequences. Freeenergy optimization is then used to explore and to retrieve the missing indices of the items in the correct order for executive control and compositionality. We show that the gain-modulation mechanism permits the network to be robust to variabilities and to have long-term dependencies as it implements a gated recurrent neural network. This model, called Inferno Gate, is an extension of the neural architecture Inferno standing for Iterative Free-Energy Optimization of Recurrent Neural Networks with Gating or Gain-modulation. In experiments performed with an audio database of ten thousand MFCC vectors, Inferno Gate is capable of encoding efficiently and retrieving chunks of fifty items length. We

Introduction

Proposal framework for sequence learning

In this paper, we propose to use the neural architecture Inferno, standing for Iterative Free-Energy Optimization in Recurrent Neural Network, for the learning of temporal patterns and the serial recall of sequences [START_REF] Pitti | Iterative free-energy optimization for recurrent neural networks (inferno)[END_REF][START_REF] Pitti | Feature and structural learning of memory sequences with recurrent and gated spiking neural networks using free-energy: application to speech perception and production i, under review[END_REF]. We originally proposed this neuronal architecture to model the cortico-basal ganglia loop [START_REF] Pitti | Iterative free-energy optimization for recurrent neural networks (inferno)[END_REF] for retrieving motor and audio primitives using Spike Timing-dependent Plasticity (STDP) within the framework of predictive coding and free-energy minimization [START_REF] Friston | Learning and inference in the brain[END_REF][START_REF] Friston | A free energy principle for the brain[END_REF][START_REF] Keller | Predictive processing: A canonical cortical computation[END_REF]. Here, we propose to implement a similar free-energy minimization network but this time in the prefrontal-basal ganglia loop for the serial recall of memory sequences and for the learning of temporal pattern primitives, using gain-modulation instead of STDP. Since this working memory uses gain-modulated or gating cells instead of STDP, we propose to name it Inferno Gate in order to disambiguate this architecture from our original network.

Gain-modulation will serve to model neurons salient to the temporal order of items and their sequential organization. As we will explain further, prefrontal units depend crucially on this type of coding for serial recall. They support a gain-modulated mechanism to jointly encode items and rank-order information in a sequence [START_REF] Botvinick | From numerosity to ordinal rank a gainfield model of serial order representation in cortical working memory[END_REF]. This mechanism of gain-modulation is also described as a gating or conjunctive function in other research [START_REF] Hasselmo | A network model of behavioural performance in a rule learning task[END_REF], placing more emphasis on the properties of filtering out or holding on to information.

We will show that Inferno Gate is capable of learning temporal primitives sensitive to the serial order of items within sequences, coding abstract temporal sequences without information about items, and accurately retrieving sequences of items with respect to the given serial order information only. We think its architecture makes it robust for structural learning, model-based reinforcement learning and compositionality.

Our main contributions are to propose a neuro-computational architecture of the PFC and a novel mechanism to encode temporal sequences in an efficient way for language processing. The neuro-computational architecture Inferno Gate learns, recognizes and retrieves missing elements in memory sequences based on an original encoding mechanism that represents sequences with a distributed neural population of temporal primitives learnt. These temporal primitives are abstract patterns constructed from information about the rank order of the items within sequences, without their index per se. This new braininspired encoding based on spikes makes the representation of sequences more compact, the learning faster, and the retrieval of missing items more efficient than the encoding performed in conventional neural networks and possibly deep networks [START_REF] Kasabov | Time-space, spiking neural networks and brain-inspired artificial intelligence[END_REF].

The paper is organized as follows. We will present first the developmental and neural foundations of our neural architecture and its purpose. In second, we will present a state of art of prefrontal models and justify how our model is original in comparison to them.

We will detail then the neural mechanisms used. We explain how an analog gating can be created with spiking neurons and how gain-modulated neurons can represent a compact code for sequences. In comparison to other gain-modulation architectures that require a one-to-one conversion matrix necessary for multiplicative binding -, which consumes neurons for this computation,-we discovered that a rank-order coding algorithm can model gain-modulation in a more efficient manner with spiking neurons.

We apply this network for the learning of temporal primitives from audio sequences. These primitives are then used for representing and recalling these audio sequences with a length of one second (1000 milliseconds), corresponding to chunks of 50 items' length, despite information about the items' index (their content or their identity) being lost.

We then discuss the originality of our approach and implications in terms of computation for modeling sequences, extracting temporal tree structure-like patterns, and compressive coding of grammar-like models, recursive representation, compositionality and transfer of learning.

Developmental and neural foundations

During early development, infants are keen on grasping structure in several core domains [START_REF] Spelke | What makes us smart? core knowledge and natural language[END_REF][START_REF] Spelke | Core knowledge[END_REF], inferring causal models and making hypotheses like little scientists [START_REF] Gopnik | The scientist in the crib what early learning tells us about the mind[END_REF][START_REF] Tenenbaum | How to grow a mind statistics, structure, and abstraction[END_REF]. They rapidly develop knowledge about numerosity, space, physics and psychology but it is only at around 8 months that they gain the aptitude to make complex sequences and to retain structural information in their environment.

In language acquisition, this skill is central for word segmentation and for detecting grammatical and ungrammatical sentences [START_REF] Saffran | Statistical learning by 8-month-old infants[END_REF][START_REF] Saffran | From syllables to syntax: Multilevel statis-tical learning by 12-month-old infants[END_REF]. For instance, infants are sensitive to the temporal order of events in spoken words and in music so that they can be surprised if one syllable is changed or if one sound is removed, violating their prior expectations [START_REF] Basirat | A hierarchy of cortical responses to sequence violations in three-month-old infants[END_REF].

It is at this period, too, that the prefrontal cortex (PFC) develops. The prefrontal circuits comprise a working memory for executive control and planning that evaluates sequences online based on uncertainty [START_REF] Yu | Uncertainty, neuromodulation, and attention[END_REF], and select/unselect them according to the current context, or create new ones if any are satisfying [START_REF] Daw | Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control[END_REF][START_REF] Rougier | Learning representations in a gated prefrontal cortex model of dynamic task switching[END_REF][START_REF] Oreilly | Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia[END_REF].

More than any other brain areas, the PFC can extract abstract rules and parametric information within structured data in order to carry out a plan [START_REF] Romo | Neuronal correlates of parametric working memory in the prefrontal cortex[END_REF][START_REF] Tanji | Behavioral planning in the prefrontal cortex[END_REF][START_REF] Wang | Prefrontal cortex as a metareinforcement learning system[END_REF]. This aspect makes it particularly important for problem-solving tasks, language and maths [START_REF] Koechlin | An evolutionary computational theory of prefrontal executive function in decision-making[END_REF][START_REF] Koechlin | Prefrontal executive function and adaptive behavior in complex environments[END_REF][START_REF] Dehaene | The neural representation of sequences from transition probabilities to algebraic patterns and linguistic trees[END_REF][START_REF] Rouault | Prefrontal function and cognitive control: from action to language[END_REF].

Experiments carried out on subjects performing hierarchical tasks such as drawing a geometrical figure [START_REF] Averbeck | Neural activity in prefrontal cortex during copying geometrical shapes. i. single cells encode shape, sequence, and metric parameters[END_REF][START_REF] Averbeck | Neural activity in prefrontal cortex during copying geometrical shapes. ii. decoding shape segments from neural ensembles[END_REF] or detecting temporal patterns within action sequences [START_REF] Shima | Categorization of behavioural sequences in the prefrontal cortex[END_REF][START_REF] Tanji | Concept-based behavioral planning and the lateral prefrontal cortex[END_REF] have permitted identification of some properties of PFC neurons for binding features and for higher-order sequence planning. In series of observations done on PFC neurons, a critical finding was that sequences were encoded through a conjunctive code, which crosses items and serial orders [START_REF] Barone | Prefrontal cortex and spatial sequencing in macaque monkey[END_REF][START_REF] Ninokura | Integration of temporal order and object information in the monkey lateral prefrontal cortex[END_REF].

In similar experiments performed by Inoue and Mikami, some PFC neurons were found to modulate their amplitude level with respect to the position of items during the sequential presentation of two visual shape cues [START_REF] Inoue | Prefrontal activity during serial probe reproduction task: encoding, mnemonic and retrieval processes[END_REF]. The PFC neurons displayed graded activity with respect to their ordinal position within the sequence and to the visual shapes; e.g. first-ranked items, or second-ranked items. In more complex tasks, PFC neurons were found to fire at particular moments within the sequence [START_REF] Tanji | Behavioral planning in the prefrontal cortex[END_REF]; e.g. the beginning, the middle, the end, or even throughout the evolution of the sequence. Despite these findings, the precise role played by conjunctive cells in the PFC and the mechanisms behind the process are still under investigation. In contrast, the conjunctive cells in the Parietal Cortex have been studied more frequently and many neurocomputational models explain how they contribute to spatial representation [START_REF] Andersen | The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex[END_REF][START_REF] Andersen | Encoding of spatial location by posterior parietal neurons[END_REF], coordinate transformation [START_REF] Andersen | Multimodal integration for the representation of space in the posterior parietal cortex[END_REF][START_REF] Pouget | Computational approaches to sensorimotor transformations[END_REF] and numerosity capabilities [START_REF] Hubbard | Interactions between number and space in parietal cortex[END_REF]. In most research, conjunctive cells or gain-modulation neurons in parieto-motor neurons are seen as a way of binding different received information (e.g. in vision and proprioception) for preparing an action (e.g. reaching a target). In [START_REF] Pouget | Spatial transformations in the parietal cortex using basis functions[END_REF][START_REF] Pouget | Computational approaches to sensorimotor transformations[END_REF], Pouget proposes that gain-modulated conjunctive cells in the Parietal Cortex can serve as radial basis functions for constructing any spatial metric; e.g., a hand-centred relative metric [START_REF] Georgopoulos | Mapping of the preferred direction in the motor cortex[END_REF][START_REF] Kakei | Sensorimotor transformations in cortical motor areas[END_REF], a head-centred relative metric [START_REF] Andersen | The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex[END_REF]. Similar to the role played by conjunctive cells in the spatial domain in the Parietal Cortex, we suggest that the conjunctive cells in the PFC play the role of radial basis functions in the temporal domain to decompose and code sequences. Gain-modulation in the PFC may serve to extract temporal patterns and to represent them as primitives for encoding existing sequences or for generating new ones, see Fig. 1 a-b). This idea is in line with comparative neuroanatomical studies which attribute similar functions to the parietal cortex and to the prefrontal cortex, representing relative metrics or conjunctive representations [START_REF] Genovesio | Prefrontalparietal function: from foraging to foresight[END_REF] such as order with relative duration, and order with relative distance; but only the PFC is in a position to generate goal-based aims in context [START_REF] Genovesio | Feature-and order-based timing representations in the frontal cortex[END_REF]. This is also suggested by Botvinick and Watanabe in [START_REF] Botvinick | From numerosity to ordinal rank a gainfield model of serial order representation in cortical working memory[END_REF] that these cells in the PFC describe a compressive representation of sequences without items. Gain-modulated conjunctive cells can give an insight into how the PFC manages to plan sequences and encode them [START_REF] Dehaene | The neural representation of sequences from transition probabilities to algebraic patterns and linguistic trees[END_REF].

For instance, they may be seen as a solution to disentangle the features (items) from the sequence (ordinal information) in planning. In line with this idea, they may gate information at particular moments -i.e., not only predicting which action to perform but also knowing when to do so within a sequence [START_REF] Fuster | The prefrontal cortexan update time is of the essence[END_REF][START_REF] Paton | The neural basis of timing: Distributed mechanisms for diverse functions[END_REF].

Their role may be in line with other frameworks in which neuronal "pointers" or "fillers" or "timestamp" neurons, are proposed for binding or gating information with respect to the current inputs [START_REF] Zylberberg | The human turing machine a neural framework for mental programs[END_REF][START_REF] Eliasmith | A large-scale model of the functioning brain[END_REF][START_REF] Zylberberg | A neuronal device for the control of multi-step computations[END_REF][START_REF] Wacongne | Evidence for a hierarchy of predictions and prediction errors in human cortex[END_REF].

Furthermore, this mechanism may serve to construct a basis for composing any sequences, recombining items in different orders and generating novel sequences with different items, see Fig. 1 b). This capacity for combinatorial re-use is particularly robust and specific to human behavior, which corresponds to the capacity for compositionality, hierarchy and systematicity found in languages and structured grammars [START_REF] Chomsky | Three models for the description of language[END_REF][START_REF] Sugita | Learning semantic combinatoriality from the interaction between linguistic and behavioral processes[END_REF][START_REF] Griffiths | Probabilistic models of cognition exploring representations and inductive biases[END_REF][START_REF] Chomsky | Problems of projection[END_REF][START_REF] Tani | Self-organization and compositionality in cognitive brains: A neurorobotics study[END_REF][START_REF] Lake | One-shot learning of generative speech concepts[END_REF][START_REF] Dehaene | The neural representation of sequences from transition probabilities to algebraic patterns and linguistic trees[END_REF].

Since the seminal work of Broca, we know that the circuits in the left cortical hemisphere and in the pre-frontal area implement language with the Broca area forming a syntax-sensitive system (grammar) for perception and production of semantic and rule-based behaviors. Although the mechanism behind its functional organization is relatively unknown, we suggest that gain-modulated conjunctive cells may shed lights on it.

State of the art and model justification

Prefrontal models and gated neural networks

In prefrontal models for sentence processing, Dominey proposed earlier versions of echo-state networks to model the associative memory in the corticostriatal system for language processing and sequence learning [START_REF] Dominey | Complex sensory-motor sequence learning based on recurrent state representation and reinforcement learning[END_REF][START_REF] Dominey | A model of corticostriatal plasticity for learning oculomotor associations and sequences[END_REF][START_REF] Dominey | Recurrent temporal networks and language acquisitionfrom corticostriatal neurophysiology to reservoir computing[END_REF]. These architectures differ from other types of recurrent neural networks for serial recall and online activation, which can nonetheless show complex sequences of ordering [START_REF] Botvinick | Short-term memory for serial order: A recurrent neural network model[END_REF] and error-based predictive coding [START_REF] Wacongne | Evidence for a hierarchy of predictions and prediction errors in human cortex[END_REF][START_REF] Wacongne | A neuronal model of predictive coding accounting for the mismatch negativity[END_REF][START_REF] Pitti | Neural model for learning-to-learn of novel task sets in the motor domain[END_REF].

Different PFC neural architectures from dynamical systems theory have been proposed to code and retrieve memory sequences based on phase synchronisation for feature binding such as the LISA architecture [START_REF] Knowlton | A neurocomputational system for relational reasoning[END_REF], on chaotic networks as in [START_REF] Laje | Robust timing and motor patterns by taming chaos in recurrent neural networks[END_REF][START_REF] Sussillo | Neural circuits as computational dynamical systems[END_REF][START_REF] Tsuda | Chaotic itinerancy and its roles in cognitive neurodynamics[END_REF][START_REF] Daucé | Self-organization and pattern-induced reduction of dynamics in recurrent networks[END_REF][START_REF] Daucé | Resonant spatio-temporal learning in large random neural networks[END_REF], or on reservoir computing networks [START_REF] Mannella | Goal-directed behavior and instrumental devaluation: A neural system-level computational model[END_REF]. For instance, echo-state networks have been utilized for modeling the learning of structure and the acquisition of a grammar of rules [START_REF] Dominey | Recurrent temporal networks and language acquisitionfrom corticostriatal neurophysiology to reservoir computing[END_REF][START_REF] Hinaut | Real-time parallel processing of grammatical structure in the fronto-striatal system a recurrent network simulation study using reservoir computing[END_REF][START_REF] Hinaut | Exploring the acquisition and production of grammatical constructions through human-robot interaction with echo state networks[END_REF][START_REF] Mannella | Selection of cortical dynamics for motor behaviour by the basal ganglia[END_REF]. Despite having many advantages as a dynamical system to embed attractors, the learning phase is almost always carried out offline with supervised learning for labelling the patterns. Meanwhile, the process needs to be properly initialized to be effective, and the way structural information (topology) is embedded within these networks is also not clearly defined as it is often used as a black box. Furthermore, it is not clear how they can support other coding strategies such as the gating mechanism or other learning mechanisms such as reinforcement learning.

Jun Tani proposed neural architectures to manage dynamics with recurrent neural networks at multiple temporal scales (MTRNN) and with parametric bias (RNNPB) for learning the attractors (abstract temporal structures) in sequences [START_REF] Sugita | Learning semantic combinatoriality from the interaction between linguistic and behavioral processes[END_REF][START_REF] Yamashita | Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment[END_REF][START_REF] Tani | Self-organization and compositionality in cognitive brains: A neurorobotics study[END_REF]. In neurorobotic experiments, within the framework of dynamical systems and chaos theory, he showed how recurrent neural networks can embed several dynamics as symbolic units (rhythmical and sequential) for robot control, imitation and social interaction, giving rise to compositionality.

These networks have some links with the predictive coding framework. For instance, the parameter bias in RNNPB can be seen as a control variable to select one specific sequence while the hierarchical control done in MTRNN permits to encode and retrieve sequences at multiple temporal scales. The extension into a complete predictive coding framework was proposed recently with the embedding of error prediction signals with the network P-MSTRNN [START_REF] Ahmadi | How can a recurrent neurodynamic predictive coding model cope with fluctuation in temporal patterns? robotic experiments on imitative interaction[END_REF]. Similar ideas on hierarchical reinforcement learning and executive control in PFC can be found in recent works by [START_REF] Botvinick | Reinforcement learning, fast and slow[END_REF][START_REF] Neftci | Reinforcement learning in artificial and biological systems[END_REF].

In contrast to these algorithms, another family of PFC models is based on a gating or gain-modulation mechanism. In the literature, this corresponds to the Long-Short Term Memory (LSTM) [START_REF] Hochreiter | Long short-term memory[END_REF][START_REF] Gers | Learning to forget: Continual prediction with lstm[END_REF][START_REF] Wang | Prefrontal cortex as a metareinforcement learning system[END_REF], the gated prefrontal networks with stripes by O'Reilly and colleagues [START_REF] Frank | Interactions between the frontal cortex and basal ganglia in working memory: a computational model[END_REF][START_REF] Rougier | Learning representations in a gated prefrontal cortex model of dynamic task switching[END_REF], the SPAWN architecture with neuronal pointers by Eliasmith and colleagues [START_REF] Eliasmith | A large-scale model of the functioning brain[END_REF][START_REF] Eliasmith | How to build a brain A neural architecture for biological cognition[END_REF], or the prefrontal architectures that explicitly use gain-modulation as in [START_REF] Botvinick | From numerosity to ordinal rank a gainfield model of serial order representation in cortical working memory[END_REF] and in [START_REF] Hasselmo | A network model of behavioural performance in a rule learning task[END_REF].

O'Reilly and colleagues attribute to the PFC neurons the role of variable binders to identify rules in the sentences (subjects, verbs, complements) and to process new ones by filling the holes with current values (e.g. binding new words) [START_REF] Oreilly | Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia[END_REF][START_REF] Kriete | Indirection and symbol-like processing in the prefrontal cortex and basal ganglia[END_REF]. Current models of the PFC show the importance of gating networks [START_REF] Hochreiter | Long short-term memory[END_REF][START_REF] Rougier | Learning representations in a gated prefrontal cortex model of dynamic task switching[END_REF][START_REF] Oreilly | Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia[END_REF][START_REF] Hasselmo | A network model of behavioural performance in a rule learning task[END_REF][START_REF] Wang | Prefrontal cortex as a metareinforcement learning system[END_REF][START_REF] Eliasmith | A large-scale model of the functioning brain[END_REF]. Gated information is particularly useful to maintain contextual variables for several cycles in order to reuse them later or to process new memories from them. For some models, such as the long short-term memory (LSTM) networks [START_REF] Hochreiter | Long short-term memory[END_REF], these algorithms have proved their robustness in spite of their lack of accessibility and biological plausibility. In literature, the gating mechanism is mostly understood as an on/off switch for maintaining or shunting memories. In comparison, the gain-modulation mechanism is very similar to a gating mechanism except that it places more emphasis on the binding of the signals from each other. For instance, this analog gating can serve to bind the relative order of items within temporal sequences and to retrieve them as suggested in [START_REF] Tanji | Concept-based behavioral planning and the lateral prefrontal cortex[END_REF][START_REF] Botvinick | From numerosity to ordinal rank a gainfield model of serial order representation in cortical working memory[END_REF][START_REF] Dehaene | The neural representation of sequences from transition probabilities to algebraic patterns and linguistic trees[END_REF].

In more general frameworks without close bio-inspiration, we can cite the works by Kemp, Lake and Tenenbaum who proposed several architectures based on Bayesian theory for probabilistic encoding and compositional capabilities [START_REF] Griffiths | Probabilistic models of cognition exploring representations and inductive biases[END_REF][START_REF] Tenenbaum | How to grow a mind statistics, structure, and abstraction[END_REF][START_REF] Lake | Building machines that learn and think like people[END_REF]. Using a Bayesian framework for generating probabilistic models, their model could extract primitives from motor sequences to construct new symbols of the same types, differently combined.

In this line of research, neural networks with attention mechanisms have been proposed to overcome the limitations of current memory networks by learning both content and location of the information in the input sequence to decode later the output sequence. The attention mechanism allows the memory networks to learn where to pay attention in the input sequence for each item in the output sequence. We can cite the Neural Turing Machine, which is basically a Turing machine (read and write heads on a memory block) with a LSTM (or sometimes simple neural networks) based controller [START_REF] Graves | Neural Turing Machines[END_REF][START_REF] Graves | Hybrid Computing Using a Neural Network with Dynamic External Memory[END_REF], and other memoryaugmented neural networks for neural attention [START_REF] Santoro | One-shot learning with memory-augmented neural networks[END_REF][START_REF] Rocktschel | Reasoning about entailment with neural attention[END_REF].

Novel memory networks under the predictive coding paradigm extend this attention mechanism to incorporate control and Bayesian inference based on error prediction at various hierarchical (temporal) levels. We can cite the memory networks REPRISE [START_REF] Butz | Learning, planning, and control in a monolithic neural event inference architecture[END_REF], P-MSTRNN [START_REF] Ahmadi | How can a recurrent neurodynamic predictive coding model cope with fluctuation in temporal patterns? robotic experiments on imitative interaction[END_REF] and DRAW as well [START_REF] Gregor | Draw: A recurrent neural network for image generation[END_REF]. This ability makes these attentional and predictive networks good candidates for hierarchical reinforcement learning, as they are capable of both long-term storage via slow up-dates of their weights, and short-term storage via an external memory module or via an attention buffer (the working memory).

Our neural architecture Inferno Gate embeds similar features found in those networks namely the gating mechanism, structural learning, compositionality as well as a generative and attentional mechanism. To our knowledge it is the first time that a gated spiking recurrent neural network is proposed with results on sequence learning comparable with deep recurrent networks. We will develop hereinafter its neuro-biological foundations.

Prefrontal functional organization for model-based reinforcement learning

We justify our neural architecture from the work done on several neural structures in the PFC identified for serial recall and the temporal organization of behavior [START_REF] Botvinick | Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective[END_REF][START_REF] Genovesio | Prefrontalparietal function: from foraging to foresight[END_REF][START_REF] Dominey | Recurrent temporal networks and language acquisitionfrom corticostriatal neurophysiology to reservoir computing[END_REF][START_REF] Koechlin | An evolutionary computational theory of prefrontal executive function in decision-making[END_REF][START_REF] Koechlin | Prefrontal executive function and adaptive behavior in complex environments[END_REF].

Functional imaging studies suggest that the PFC provides top-down support for organizing the orderly activation of lower stages of the executive hierarchy in sequences of actions (e.g., goal representations). Koechlin and colleagues propose that the PFC subserves executive control and decision making in the service of adaptive behavior [START_REF] Koechlin | The architecture of cognitive control in the human prefrontal cortex[END_REF][START_REF] Koechlin | An evolutionary computational theory of prefrontal executive function in decision-making[END_REF][START_REF] Koechlin | Prefrontal executive function and adaptive behavior in complex environments[END_REF].

In order to sustain such adaptive behaviors, it has been proposed that the working memory in the PFC has to embed mechanisms for flexibility [START_REF] Buschman | Goal-direction and top-down control[END_REF][START_REF] Miller | The "working" of working memory[END_REF] to maintain memory sequences over a long time range in a hierarchical manner and to explore new behavioral strategies. Such mechanisms have typically been proposed within the inferential Bayesian theory [START_REF] Daw | Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control[END_REF][START_REF] Yu | Uncertainty, neuromodulation, and attention[END_REF][START_REF] Ma | Bayesian inference with probabilistic population codes[END_REF] and within a reinforcement learning framework [START_REF] Botvinick | Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective[END_REF][START_REF] Botvinick | Model-based hierarchical reinforcement learning and human action control[END_REF][START_REF] Koechlin | An evolutionary computational theory of prefrontal executive function in decision-making[END_REF]. Such an approach has been extended to PFC models based on predictive coding, and to free-energy minimization.

In line with these studies and the models proposed in [START_REF] Koechlin | An evolutionary computational theory of prefrontal executive function in decision-making[END_REF][START_REF] Botvinick | Model-based hierarchical reinforcement learning and human action control[END_REF], we present a detailed neural architecture in Fig. 2 in which we identify the Broadman area B45, the lateral PFC (lPFC), the dorsolateral PFC (dlPFC), the Orbito-Frontal Cortex (OFC) and the Anterior Cingulate Cortex (ACC) to participate in a model-based RL system for the active inference of memory sequences.

First, we suggest that the group constituted by B45, the lPFC and the dlPFC are associated with the representation of the temporal organization of sequences. Second, we suggest how the group constituted by the dlPFC, ACC and OFC interact for decision-making, executive control and problem-solving tasks.

We base our assumptions principally on the review papers in [START_REF] Fuster | The prefrontal cortexan update time is of the essence[END_REF][START_REF] Ullman | A neurocognitive perspective on language: the declarative/procedural model[END_REF][START_REF] Dominey | Recurrent temporal networks and language acquisitionfrom corticostriatal neurophysiology to reservoir computing[END_REF][START_REF] Genovesio | Prefrontalparietal function: from foraging to foresight[END_REF][START_REF] Koechlin | An evolutionary computational theory of prefrontal executive function in decision-making[END_REF][START_REF] Botvinick | Model-based hierarchical reinforcement learning and human action control[END_REF]. For instance, in our schema, the rostral lateral PFC in both monkeys and humans (typically Broadman areas 9/46 in [START_REF] Dominey | Recurrent temporal networks and language acquisitionfrom corticostriatal neurophysiology to reservoir computing[END_REF][START_REF] Genovesio | Prefrontalparietal function: from foraging to foresight[END_REF]) has been identified as grouping actions for each other, for episodic or temporal control. We therefore associate the Broadman area B45, part of the Broca area, with the chunking of raw memory sequences coming from parietal and striatal areas.

At the second stage, the lateral PFC (lPFC) appears to proactively build actor task sets from long-term memory that match the context in which the individual is acting [START_REF] Fuster | The prefrontal cortexan update time is of the essence[END_REF][START_REF] Genovesio | Prefrontalparietal function: from foraging to foresight[END_REF]. Neurons in lPFC represent the long-term memory of behavioral sequences and the plans or schemas of action [START_REF] Fuster | The prefrontal cortexan update time is of the essence[END_REF]. These actor task sets correspond in our view to temporal patterns or sequence prototypes as presented in Fig. 1.

At the third stage, the dorsal lateral PFC (dlPFC) appears implicated in the temporal integration of information for the attainment of prospective behavioral goals [START_REF] Fuster | The prefrontal cortexan update time is of the essence[END_REF][START_REF] Koechlin | An evolutionary computational theory of prefrontal executive function in decision-making[END_REF]. Reports suggest the involvement of the dlPFC for order memory in term of choosing the correct sequence from among several. In our schema, the dlPFC combines the temporal primitives of the lPFC to have an estimate of the most suitable sequence.

The group constituted by the dlPFC, ACC and OFC networks appears involved in a model-based RL working memory for which the anterior cingulate cortex (ACC) seems to be active in the motivation to perform goal-directed action (the task context units in the dlPFC), whereas the orbitofrontal cortex is involved in value-based decision-making in novel choices. According to Fuster, the orbital PFC, which is well connected with the brainstem and limbic formations, plays a major role in the control of basic drives [START_REF] Fuster | The prefrontal cortexan update time is of the essence[END_REF]. The OFC might realize the downward trend or cascade of the processing of decided goaldirected actions (concrete sequences) that have been decided upon, and represent option-specific state values [START_REF] Genovesio | Prefrontalparietal function: from foraging to foresight[END_REF]. The OFC might involve competition for the dorso-lateral PFC layer (dlPFC), whose units represent the temporal structure within the sequence at a higher level. Based on the evaluation of the dlPFC, the Orbito-Frontal layer (OFC) and the Anterior Cingulate layer (ACC) generate and select sequences that follow the temporal patterns in the dlPFC in order to retrieve the lost indices of STR units for executive control. This reinforcement learning stage corresponds to a free-energy minimization process to reduce error prediction. The framework follows the Inferno architecture proposed in [START_REF] Pitti | Iterative free-energy optimization for recurrent neural networks (inferno)[END_REF][START_REF] Pitti | Feature and structural learning of memory sequences with recurrent and gated spiking neural networks using free-energy: application to speech perception and production i, under review[END_REF] for the cortico-basal ganglia (CX-BG) loop.

decision-making among multiple choices. The ensemble is organized for the serial order encoding of sequences in the dlPFC and the exploration and recall of 280 sequences in the OFC.

Methods

In section 3.1, we present the neural architecture INFERNO Gate used for serial recall in audio sequences associated with the PFC-Basal Ganglia loop.

We then describe in section 3.2 the coding mechanism used for learning the 285 serial order of items within sequences using the rank-order coding algorithm for modeling the gain-modulation mechanism with spiking neurons. Finally in section 3.3, we define the experimental setup and the parameters used for accurate recall of long-range speech sequences.

The network architecture Inferno Gate

The neural architecture Inferno Gate reproduces the main configuration of the original Inferno network [START_REF] Pitti | Iterative free-energy optimization for recurrent neural networks (inferno)[END_REF] with two coupled learning systems that minimize their mutual prediction error (the free-energy), see Fig. In order to minimize error, the second network (dlPFC/OFC) generates intrinsic noise I noise to control the dynamics of the first one (lPFC/dlPFC) following a reinforcement learning (RL) mechanism. In Fig. 2, this role is devolved to the ACC for error evaluation. The activity level of one unit in dlPFC, Y = Y out , is compared to its maximum amplitude level Y max in order to compute the error E between Y max and Y out . The current input I(t) = I noise is kept for the next step I(t + 1) = I(t) + I noise , if and only if it diminishes the gradient ∆E. Over time, I converges to I opt , its optimum sequence vector, and Y out converges to Y max its maximal value. This scheme is in line with predictive coding algorithms and its organization is similar to novel architectures combining two or more competitive neural networks such as auto-encoders or the generative adversarial networks.

We showed in [START_REF] Pitti | Iterative free-energy optimization for recurrent neural networks (inferno)[END_REF] that this variational process is similar to a stochastic descent gradient algorithm performed iteratively. We here add a more sophisticated gradient descent algorithm corresponding to a simulated annealing mechanism in order to account for the neuromodulators involved in decision-making in the PFC for uncertainty and surprise [START_REF] Yu | Uncertainty, neuromodulation, and attention[END_REF][START_REF] Cortese | The neural and cognitive architecture for learning from a small sample[END_REF].

As proposed by [START_REF] Botvinick | Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective[END_REF], adding temporal structure to RL can ease the scaling problem in the exploration process. In the original version of Inferno, we found that STDP helped to learn and retrieve temporal chains. Thereinafter, we will show that the gain-modulation can even go further for abstracting temporal sequences, and can be more robust to variability.

Gain-modulation mechanism based on Rank-Order Coding

The rank-order coding (ROC) algorithm has been proposed by Thorpe and colleagues to model the information processing performed in the Visual Cortex by feedforward integrate-and-fire neurons [START_REF] Thorpe | Spike-based strategies for rapid processing[END_REF]. We have expanded their use to recurrent neural network models in [START_REF] Pitti | Neural model for learning-to-learn of novel task sets in the motor domain[END_REF][START_REF] Pitti | Iterative free-energy optimization for recurrent neural networks (inferno)[END_REF] replicating the Spike Timing-Dependent Plasticity learning mechanism.

The main assumption of the ROC algorithm is that spiking neurons perform a quantization of the variable inputs occurring in time discretized with respect to their temporal delays, see Fig. 3 b). The temporal order of the inputs are transcribed into a rank code that is translated into weight value and summed at the neuron level. The more similar the temporal order of the incoming signals, the higher the amplitude level of the ROC neurons. Conversely, the less similar the sequence order of the incoming signals, the lower the amplitude level of the ROC neurons. Although this mechanism can encode discretized temporal sequences as shown in our previous work, it does not retranscribe a gain-modulation mechanism, a sensitivity to a rank-order within a sequence independently of the neurons' index. We suggest here, as a novel coding strategy using gain-modulation, that we can construct "compressive codes" of tempo-ral sequences by removing the index of the neurons (their identity) within the temporal sequence and keeping just their ranking order, see Fig. 3 c).

STDP coding strategy -If the ROC algorithm computes the neurons activity based on the discretized temporal delays of incoming events, the coding strategy resembles the STDP learning mechanism with ROC neurons becoming sensitive to the temporal contingency of incoming inputs; see Fig. 3 b). In this coding scheme, ROC units are thus considered to be contingency detectors inducing phase synchronization [START_REF] Izhikevich | Polychronization computation with spikes[END_REF].

Gain-modulation coding strategy -A second coding strategy consists in discretizing the serial order of units both in time and space, see Fig. 3 c). Here, the indices of the neurons (or their identities) are no longer preserved and it is their rank within the sequence that is taken into account; e.g. first, second or n-th in the sequence. This strategy reduces drastically the amount of information to process, which makes possible the discovery of an abstract temporal structure disregarding the units indices; eg the sequence becomes a template. This coding mechanism is described as compressive representation by [START_REF] Botvinick | From numerosity to ordinal rank a gainfield model of serial order representation in cortical working memory[END_REF]. Hence, since the units index is no longer present in the temporal code, it is sensitive to any novel sequences that preserve the global temporal structure.

For instance, in Fig. 3, the temporal encoding of two sequences following the same spatio-temporal pattern is constructed successively by first dismissing the temporal information and then the identity information with the rank-coding algorithm first on the time axis and then on the index axis. Although the reduction of complexity does not appear important when looking at the dimensionality of the vector quantization, it permits us to represent in a compact way an infinity of varying spatio-temporal sequences that follow the same structure, which corresponds well to the variable binder property found in PFC neurons.

In comparison to other methods used to code the gain-modulation mech-anism as in [START_REF] Botvinick | From numerosity to ordinal rank a gainfield model of serial order representation in cortical working memory[END_REF][START_REF] Pitti | Neural model for learning-to-learn of novel task sets in the motor domain[END_REF][START_REF] Mahé | Exploiting the gainmodulation mechanism in parieto-motor neurons application to visuomotor transformations and embodied simulation[END_REF][START_REF] Abrossimoff | Visual learning for reaching and body-schema with gain-field networks[END_REF], this one has the advantage of not projecting the rank code and the position code into an intermediate 2D matrix of complexity O(M 2 ). It does not need to also separate the ranking information into separate modules or stripe codes as proposed in [START_REF] Oreilly | Making working memory work: A computational model of learning in the prefrontal cortex and basal ganglia[END_REF][START_REF] Kriete | Indirection and symbol-like processing in the prefrontal cortex and basal ganglia[END_REF]. This property of identity masking appears similar to the idea of variable binding in [START_REF] Kriete | Indirection and symbol-like processing in the prefrontal cortex and basal ganglia[END_REF], of timestamp neurons in [START_REF] Jin | Neural representation of time in cortico-basal ganglia circuits[END_REF][START_REF] Wacongne | A neuronal model of predictive coding accounting for the mismatch negativity[END_REF] or of neuronal pointers in [START_REF] Eliasmith | A large-scale model of the functioning brain[END_REF] as these neurons can fill out any new variables in the correct rank in the sequence. This coding strategy thus requires two types of units, one for maintaining the input information (variable values) and one for recalling the sequential order. Both are found in the prefrontal cortex for the maintenance of the units activity and for the learning of a task-related activity. The ensemble constitutes the behavior of one Working Memory.

One advantage of the gating strategy compared with the STDP one is that the temporal information is learned separately from the inputs, which enables the network to learn long-range dependencies at an abstract level and to prevent it losing information more rapidly within a temporal horizon; this corresponds to the so-called vanishing gradient effect in deep networks. As a remark, feedforward (deep) networks, standard recurrent neural networks (with/out STDP) or hidden Markov models will easily lose accuracy after several iterations due to the accumulated errors because any errors, noise or, delays within a sequence and sensitivity to duration, will disrupt the sequence. One explanation for why any error introduced into the network will make conventional neural networks brittle is that the state and the temporal information are coded together. This is not the case in neural models with a gating mechanism like PBWMs [START_REF] Kriete | Indirection and symbol-like processing in the prefrontal cortex and basal ganglia[END_REF], SPAWN [START_REF] Eliasmith | A large-scale model of the functioning brain[END_REF] or LSTMs because the temporal information of a sequence can be learned in memory cells separately from the variable values that can be retrieved online or maintained dynamically over an indefinite amount of time.

The equations of the rank-order coding algorithm that we used are as follows.

The neurons' output Y is computed by forming the dot product between the function rank() sensitive to a specific rank ordering within the input signal vector I and the synaptic weights w; w ∈ [0, 1]. For a vector signal of dimension M and for a population of N neurons (M afferent synapses), we have:

Y n = M m rank(I m ) w nm , ∀n ∈ N (1) 
We implement the rank function rank() as a power law of the argsort() function normalized between [0, 1] for modeling the gain-modulation mechanism applied twice on the time axis and on the rank axis. This guarantees that the density distribution is limited and that the weight matrix is sparse, which makes the rank-order coding neurons similar to radial basis functions. This attribute permits us to use them as receptive fields so that the more distant the input signal is to the receptive field, the lower is its activity level. The updating rule of the weights is similar to the winner-takes-all strategy in Kohonen networks [START_REF] Kohonen | Self-organized formation of topologically correct feature maps[END_REF] with an adaptive learning rate α n , ∀n ∈ N . For the best neuron Y b , we have:

∆w bm = α b (rank(I m ) -w bm ), ∀m ∈ M (2) 
α b = 0.9 α b (3)

Experimental Setup

We give the implementation details about the striatum-prefrontal working memory modeled by the Inferno Gate architecture. We ascribe to it the role of learning temporal patterns and representing audio memory sequences, see The Inferno Gate architecture is based on the same principle of the Inferno architecture -, the use of noise and reinforcement learning to control a spiking network,-except that the coding strategy now exploits compressive ranks (the unit's index is not preserved) and temporal order (sensitivity to the position in the sequence). Here, the B45 area is modeled as a buffer of 50 units length receiving the indices ordered in time of the Striatum layer consisting of 14000 435 units; the number of coded MFCC in STR. Therefore, each chunk in B45 represents a sequence of 50 MFCCs, corresponding to a chunk of 1250 ms length.

Then, the lPFC layer encodes the ordinal information from the B45 buffer.

The lPFC layer consists of 5000 units for which each unit encodes a specific temporal pattern through gain-modulation. Each lPFC unit learns the temporal 440 pattern that follows the serial order within the sequence of 50 units in B45, independent of their true index.

At the next stage, the dlPFC layer combines together the lPFC units to represent abstract sequences. The dlPFC layer consists of 300 contextual neurons.

Each unit encodes a compositional representation from the 5000 basis functions in the lPFC. The strong dimensionality reduction in the lPFC as explained in section 3.2 and in Fig. 3 makes it possible to learn and rapidly generalize temporal patterns within sequences in the dlPFC and to rapidly explore new sequence solutions at high speed.

Finally, the dlPFC units are evaluated by the ACC and a prediction error signal is processed to search for and retrieve the optimal sequence in the OFC.

The OFC layer consists of 300 vectors of 50 iterations' length, one vector for each unit in the dlPFC. Each vector is generated to retrieve back the corresponding sequence of 50 iterations' length with the retrieved STR index values. The OFC vectors are used for the executive control of the Striatal units.

Results

This section explains the two different experiments carried out to model the striatum-prefrontal working memory for learning abstract temporal patterns and for retrieving audio sequences through an exploration process.

In the first experiment presented in section 4.1, we explain the control carried out from the striatum on the prefrontal layers to learn temporal patterns and to represent abstract sequences with information flow STR→B45→lPFC→dlPFC.

In the second experiment presented in section 4.2, we explain the exploration process carried out to generate audio memory sequences using evaluation of prediction error from the encoded abstract sequences previously learned; the information flow goes this time from dlPFC→OFC→B45→lPFC→dlPFC.

In the third experiment presented in section 4.3, we explain the integration of the two process into the complete Inferno Gate neural network for generating structured sequences in a self-supervised manner. In the fourth experiment presented in section 4.4, we compare the performances between Inferno Gate and the standard LSTM recurrent neural network in classification and sequences retrieving on our data. The activity level of the lPFC units indicate their saliency to one specific rank order within input sequences. The sorted activity in the black line indicates that the coding representation at the population level is not sparse but many neurons are necessary to code the sequences. For instance, because each lPFC unit encodes one temporal pattern at the unit level, the decomposition of one sequence can only be partial as seen in Fig. 4 b) bottom chart, whereas at the population level, the sequence can be represented and discriminated.

Analysis of the sequence encoding in the lPFC network

After the learning stage of the lPFC and dlPFC units, we can analyze how the ranking information is encoded in the weight matrices. We plot in Fig. 5 a)

the weights of the lPFC units (5000 units in the Y axis) reordered with respect to their sensitivity to specific positions within B45 sequences (50 iterations length in the X axis). The amplitude level of the synaptic weights in the diagonal indicates that each lPFC neuron is sensitive to different positions within the sequences. For instance, neurons with high weight values in the beginning of the sequence will be more sensitive to forthcoming events occuring within the sequence, and will serve as a prospective template. Conversely, neurons with high weight values in the ending of the sequence will be more sensitive to the past events in the sequence, they will serve as a retrospective template. This behavior has been observed in PFC neurons for sequence retrieval [START_REF] Funahashi | Prefrontal cortex and working memory processes[END_REF][START_REF] Tanji | Concept-based behavioral planning and the lateral prefrontal cortex[END_REF] as well as in the prefrontal-hippocampal loop in T-Maze tasks [START_REF] Wood | Hippocampal neurons encode information about different types of memory episodes occurring in the same location[END_REF][START_REF] Frank | Trajectory encoding in the hippocampus and entorhinal cortex[END_REF].

As an example, we plot in Fig. 5 b) the weight distribution of two lPFC units.

We select them because these two units have their highest weight value for the position located at the middle of the sequence (position #24), and the other weights located at other positions within the sequence have a lower value. The two circles indicate two positions where the lPFC units have the same weights value: at positions #4 and #24. Based on these weight distributions, we can reconstruct back the temporal patterns for which the lPFC units are the most sensitive, as each weight's value corresponds to one rank within the sequence.

We plot in Fig. 5 c) the two reconstructed temporal patterns. Since the two lPFC units have the same weights at the circle positions, the reconstructed sequences code the same neuron's rank at those positions within the sequence. This is how in our framework the lPFC neurons retranscribe the gainmodulation mechanism: with respect to the position of one item within a sequence, the lPFC activity level will be modulated with respect to a weight's value depending where the corresponding item (the neuron's rank) within the sequence is located.

Depending on the activity level of the different lPFC units for a specific sequence, a decomposition in the lPFC space is represented at the dlPFC level, as in see Fig. 1 b). The decomposition in the lPFC layer permits us to represent at a more abstract level, and in a more compact fashion, the compressive rank of the sequence at the dlPFC layer.

dlPFC-OFC Iterative free-energy exploration-optimization

Retrieving memory sequences from incomplete information

We present in this section the iterative optimization process carried out at the dlPFC level for retrieving memory sequences at the OFC level with a)

b) the error rate computed at the ACC. The information flow corresponds to dlPFC→OFC→B45→lPFC→dlPFC, see Fig. 2.

In order to understand better the global process, we display in Fig. 6 a-c The raster plot of the reconstructed OFC/B45 dynamics is shown in Fig 6 c) and f).

The exploration search is performed after the learning stage done in the previous section 4.2. Over time, a sequence in the OFC is explored iteratively using noise so that the dlPFC activity is at maximal activity level and the ACC reaches a minimal value.

We display in Fig 6 b) and e), in red, the retrieved OFC sequence in the top chart and the serial order for which the two different dlPFC neurons are the most sensitive in the bottom chart.

In the top chart, we can observe that the reconstructed OFC sequences in red follow a similar pattern to the ones in blue although the index of the neurons is not completely preserved. Nonetheless, we can see that the ordinal information in the bottom chart is matched, which means that the proposed sequence in the top chart follows the temporal pattern encoded in the lPFC and in the dlPFC layers.

Hence, despite the indices in the sequence being lost in the encoding process, the system is capable of retrieving the memory sequences from incomplete information (due to compressive rank) with small error.

Performance analysis from incomplete information

In order to analyze the accuracy of the Inferno Gate network, we plot in Fig. 7 the Euclidean error normalized between [0, 1] made by the network during recall with respect to the number of items given as input vector resp. a) and with respect to the position within the sequence, resp. b). The exploration stage was limited to 10.000 iterations for each experiment and we plot the retrieved sequences from 0 to 40 items given out of 50 items to retrieve, resp. in Fig. 8 a-e). The grey areas indicate the part of the sequence given to the system to restitute the missing part.

The fewer units there are to search, the more accurate is the recall, this can be seen if we provide 20% of the items in the sequence or 80%. In this later case, the error on the items to retrieve is particularly small and almost error free. Moreover, the error made is not related to the temporal position of the items to retrieve but to the amount of missing information.

For 0% of information given, which corresponds to the previous situation in which the system has to retrieve the whole sequence from scratch, the root error is 0.08 corresponding to 8% error with large variance, see Fig. 8 a).

For 20% of information given, which corresponds to ten items given out of fifty as displayed in Fig. 8 b), the accuracy is not necessarily higher, as we would expect, and the error rate reaches 0.07 with a higher variance in comparison with the previous case. We analyse this result as the difficulty the system has in starting out from local minima with such small constraints added, which is different from the previous situation in which Inferno could freely search for solutions.

For 40% of information given, which corresponds to twenty items given out of fifty as displayed in Fig. 8 c), we can observe a strong decrease in both the error rate of around 0.02 and the variance. This means that the network can retrieve 60% of the missing information with good accuracy.

Error rate continues to diminish below 0.01 if we provide 60% of the information (30 units), see Fig. 8 d), and serial recall is almost error-free if the network has to retrieve the index of ten units out of fifty (80% of the information given).

We can observe that the order position, to which the PFC neurons are sensitive, are all retrieved in the bottom chart although there is some slight errors in the reconstruction.

To resume, Fig. 8 shows that the more information is given to the system, the easier is the explorative search to retrieve the missing units index. Although the rank order in the temporal patterns of the units in the lPFC is respected, this does not guarrantee that the units index is retrieved correctly in the OFC sequences.

From additional studies that we did not present here, we observed that it was possible to complete the serial recall for all the cases with an error rate below 0.01 if we continue the exploration search for 50.000 to 100.000 iterations. These results indicate the generalization capabilities of Inferno separating linearly the input dynamics as we can achieve error-free retrieval.

Integrated Inferno Gate network, generating ongoing sequences autonomously

The two processes presented in sections 4.1 and 4.2 correspond to the twostep mechanism of the complete Inferno Gate network for learning and generating ongoing sequences autonomously in a self-supervised manner. On the one hand, the first circuit categorizes the incoming input sequences within a repertoire of learnt sequences in the dlPFC layer. On the other hand, the second circuit generates novel sequences of items on the fly that follow the temporal structure found by the first circuit using the reinforcement learning mechanism in the ACC and the OFC layers.

We present in Fig. 9 a-b) the raster plots of the network dynamics at the beginning and at the end of this error minimization process during ten thousand iterations and in Fig. 9 c) the sorted error rate in the dlPFC layer at different periods of time, which represents several million of iterations. At the beginning of the self-organization process in Fig. 9 a), the error prediction in the ACC layer takes long time-steps to reach small values and Inferno Gate converges slowly both to learn the structure within the sequences and to generate new sequences that follow these structures; the sorted error rate in ACC in Fig. 9 c) is high.

At the end of the self-organization process in Fig. 9 b), the error prediction in the ACC layer takes shorter time-steps to switch to different sequences and Inferno Gate generates coherent and structured sequences faster in a modelbased manner; the sorted error rate in ACC in Fig. 9 c) reaches a limit in the optimization process.

Through time, Inferno Gate self-supervises its learning and the discovery of novel sequences. This stage corresponds to the free-energy minimization of the error prediction within the two sub-systems. The whole process may be thought as a developmental stage in which the global network self-organizes its dynamics following a model-based RL approach; achieving plasticity and stability within the memory network in order to cumulate information while not diverging.

Performance comparison with LSTM networks

In order to assess the performances of the Inferno Gate network, we propose to compare the results in prediction with the state of art LSTM network used on our database. In comparison with standard time series, ours is difficult for deep learning networks because there is no or few redundancy within the data: the instances in the dataset are seen few times and the dataset is large. We remind from section 3.3 that our time series are constituted of 1350 sequences of 50 iterations length each, for a corpus of 13.598 MFCCs. There is a fundamental trade-off in deep learning approach between the number of trials necessary to learn one model and the number of samples to generalize correctly.

We present in table 4.4 the performances of the LSTM network in five experiments for various size of our time series, computing either the items index as input data or their rank-within the sequence. Experiment #1 indicates the performance of the LSTM network with 512 units to retrieve an input vector of ten items length; the length of the time series is of 132 iterations, with the same number of units. We remark that for a prediction problem of small dimension with respect to the number of hidden units, the LSTM network learns perfectly the time series with 100% accuracy.

If we augment the size of the time series ten time over with a dataset of 1359 units (experiment #2) or one hundred time over with a dataset of 13598 units (experiment #3), then the network is not capable anymore to sustain the learning and the accuracy drops to 0. These results show that the LSTM network was overfitting its learning stage in experiment #1.

This contrasts with the results found with Inferno Gate in section 4.2 and summarized in experiment #4 in table 4.4. In our model, the accuracy level varies from 92% to 99% depending on the number of items to retrieve and for a number of iterations fixed to ten thousand, precisely 13.598 items. Furthermore, because our network is an instance of a model-based RL algorithm, it required less units to encode sequences and less time also to retrieve missing elements (results not shown here). In comparison, the number of parameters to optimize within the LSTM deep network makes the learning slow and proportional to the size of the database.

Instead, if we give as input data the rank order of the items within the sequences to the LSTM network as in experiment #5, then the accuracy jumps back to 99% accuracy as it is with Inferno Gate in experiment #4. In this experiment, the LSTM network is now sensitive to the data temporal structure but information about the content (item's index) is lost.

For both Inferno Gate and LSTM networks in experiments #4 and #5, the encoding space using the rank-order information between [0, 50] is now smaller than the dimension of the input space between [0, 13498], which makes the encoding simpler. However, because the LSTM network does not have any attention mechanism as Inferno Gate does, it cannot retrieve back the items index within the sequence; ie, the MFCC index. At reverse, Inferno Gate possesses such mechanism with the ACC and OFC components, which permits it to recover back the hidden content.

Discussion

We have presented a novel neural architecture Inferno Gate based on freeenergy minimization and model-based RL using recurrent spiking neural networks for learning and retrieving temporal sequences and modeling the frontostriatal (PFC-BG) loop. This network extends our original neural architecture

Inferno in [START_REF] Pitti | Iterative free-energy optimization for recurrent neural networks (inferno)[END_REF], which exploits model-free RL, aiming at modeling the corticobasal ganglia (CX-BG) loop for learning motor primitives. In [START_REF] Pitti | Feature and structural learning of memory sequences with recurrent and gated spiking neural networks using free-energy: application to speech perception and production i, under review[END_REF], we have shown its effectiveness in the more challenging tasks of speech recognition and production. Although the two networks are similar in their functional organization, the encoding type is different. The Inferno network uses a model-free approach with the STDP mechanism for learning temporal correlations between spiking events whereas Inferno Gate uses a model-based approach with a gating mechanism for binding the item's rank and its position within a sequence. This separation of functions between lexicon and grammar by the two networks follows the declarative/procedural model on language proposed by Ullman [START_REF] Ullman | A neurocognitive perspective on language: the declarative/procedural model[END_REF][START_REF] Ullman | Contributions of memory circuits to language: the declarative/procedural model[END_REF] / 99 This property permits to use the lPFC units as "fillers" or "pointers", which adds some variability in the encoding, but in a structured way. Thus, we think that this property of gain-modulation is interesting in order to learn abstract and temporal information about structures within sequences such as AAB or ABA patterns to which infants are sensitive to at a very early age. Because the activity level of lPFC units in our system is modulated by multiple information, the item's rank and time order, we suggest that it can be used for representing other relative metrics as proposed in [START_REF] Tanji | Concept-based behavioral planning and the lateral prefrontal cortex[END_REF][START_REF] Genovesio | Prefrontalparietal function: from foraging to foresight[END_REF] and that gain-modulation can be assimilated to the nonlinear-mixed selectivity mechanism proposed by [START_REF] Rigotti | The importance of mixed selectivity in complex cognitive tasks[END_REF].

For instance, the conjunctive cells in the parietal cortex are found to encode relative metrics based on multimodal binding to infer non-trivial information about space and numerosity [START_REF] Salinas | Gain modulation a major computational principle of the central nervous system[END_REF][START_REF] Botvinick | From numerosity to ordinal rank a gainfield model of serial order representation in cortical working memory[END_REF][START_REF] Blohm | Fields of gain in the brain[END_REF].

In previous neurorobotic researches, we have modeled these parietal gainmodulated neurons for visuomotor coordination and for body representation using a more standard coding strategy based on multiplication [START_REF] Pitti | 111Brain-inspired coding of robot body schema through visuo-motor integration of touched events[END_REF][START_REF] Pitti | Neural model for learning-to-learn of novel task sets in the motor domain[END_REF][START_REF] Mahé | Exploiting the gainmodulation mechanism in parieto-motor neurons application to visuomotor transformations and embodied simulation[END_REF][START_REF] Abrossimoff | Visual learning for reaching and body-schema with gain-field networks[END_REF]111]. However, the number of units necessary to process gain-modulation evolves quadratically with respect to the problem's dimensionality. We think spiking neural networks along with the gain-modulation learning mechanism have the potential to represent multimodal information in a more compact manner, perhaps even more efficiently than do conventional multi-layer feedforward networks, as there is no loss of structural information in the encoding, which is not the case in deep networks due to the max-pooling operation. Therefore, we can envisage some tasks in multimodal integration, which are still difficult to realize with spiking neural networks.

Retrospective and prospective encoding -The temporal coding carried out in Inferno Gate extends the STDP mechanism with extra information, the position of an item within a sequence, making it more nonlinear and abstract in the sense that the neurons' receptive field encodes structural information about the sequence and not the sequence itself. In our experiments, lPFC neurons code for a position in the sequence either at the beginning, middle or end of it.

They are nevertheless sensitive to other positions but with less strength.

As some lPFC neurons are sensitive to items at the beginning of a sequence or at the end, this behavior reflects well the PFC's behavior, firing in line with retrospective or anticipatory events. Retrospective neurons are firing depending on the previous events. Conversely, prospective neuronal firing depends on future events. These properties were showed in the hippocampal cells of rats in W-shaped tracks with alternate trajectories [START_REF] Frank | Trajectory encoding in the hippocampus and entorhinal cortex[END_REF] or in a T-Maze with return arms [START_REF] Wood | Hippocampal neurons encode information about different types of memory episodes occurring in the same location[END_REF]. These results and many others mainly refer to hippocampal activities. However, it has been shown that these activities may be modulated by prefrontal information [START_REF] Fujisawa | Behaviordependent short-term assembly dynamics in the medial prefrontal cortex[END_REF][START_REF] Funahashi | Prefrontal cortex and working memory processes[END_REF]. We here make the prediction that some lPFC neurons exhibit these kinds of activities, and that this information is used as a global context for driving neuronal firing in the hippocampus [START_REF] Ainge | Exploring the role of context-dependent hippocampal activity in spatial alternation behaviour[END_REF]; e.g., during the replay of memory sequences [START_REF] Wilson | Reactivation of hippocampal ensemble memories during sleep[END_REF] and during the pre-play of trajectories toward future events [START_REF] Dragoi | Preplay of future place cell sequences by hippocampal cellular assemblies[END_REF].

Compositionalitythe dlPFC units combine the lPFC temporal patterns in a similar way to a radial basis function network: as this layer embeds a variety of temporal primitives, it can rapidly encode any novel sequences. Hence, we suggest that this mechanism of gain-modulation is potentially important in infants for fast inference and for learning abstract patterns with few samples;

the capability of learning-to-learn [START_REF] Griffiths | Probabilistic models of cognition exploring representations and inductive biases[END_REF][START_REF] Tenenbaum | How to grow a mind statistics, structure, and abstraction[END_REF]. The learning and error minimization processing of lPFC/dlPFC temporal rules may be viewed as an inference mechanism, which attempts to catch up with rules in one domain. As these temporal rules are abstracted (no information about the content), they may be applied to other domains for grasping other observations; for instance, learning the temporal patterns during motion sequences, like planning, drawing or solving a task.

As a beneficial effect, learning higher-order hypotheses may massively accelerate learning in other domains [START_REF] Tenenbaum | How to grow a mind statistics, structure, and abstraction[END_REF][START_REF] Lake | Building machines that learn and think like people[END_REF]. It may help to learn abstract or contextual words, which is still a challenge that AI architectures have yet to meet.

To summarize, we suggest that this system presents some capabilities suited for learning linguistic systems (e.g., a grammar of rules) and timely ordered behaviors. Since Inferno Gate encodes temporal patterns in an abstract manner, like AAB or ABA patterns, we can expect that by adding another layer to the model, presumably the Polar Frontal Cortex as proposed in [START_REF] Rouault | Prefrontal function and cognitive control: from action to language[END_REF], it may be possible to create sequences of sequences such as ((AAB)B(AAB)) with A=(AAB) and the ABA pattern, mixing two or more temporal patterns in an iterative fashion. In this way, our network may be extended to fractal-coding to have a hierarchical representation of sequences at any depth.

Long-term dependencies -In experiment 2 in section 4.2, we have shown that it was possible to retrieve accurately in the OFC layer the index of units and their order in long-range sequences (fifty iterations length) although this information (the neuron's index) was not encoded in the dlPFC units. With no external information, the system requires a long period of time, above ten thousand iterations, to search for the items' index as well as their position. All generated sentences display the same temporal pattern as the one we want to retrieve, although there is some variability present in them.

This exploration process may be seen as a babbling period in infant development. The explorative search is based on a free-energy minimization process of the OFC vectors and on the evaluation of the dlPFC units computed at the ACC level. We have showed that error minimization is fast and that it requires only several hundred iterations to retrieve the missing items within the sequence. If items are furnished and imposed on the sequence to be retrieved (a sequence 'à trous' [with holes]), the search is even faster and accurate with respect to the number of items given, below two hundred iterations.

The generative property of the system shows that it incorporates computational capabilities of robustness to noise and can retain long-term dependencies for sequences of fifty iterations length as no or little information is required to retrieve which item has to be performed and when. This property is advantageous in comparison to standard recurrent neural networks. For instance, Inferno Gate behaves differently from classical recurrent networks, including the gated ones, which are directed graphes that attempt to predict the next items depending on the past ones in a Markovian fashion. Our network may extend the idea of vector codes or of vector symbolic architectures by [START_REF] Smolensky | Tensor product variable binding and the representation of symbolic structures in connectionist systems[END_REF] or of neural pointers by [START_REF] Eliasmith | A large-scale model of the functioning brain[END_REF][START_REF] Zylberberg | The human turing machine a neural framework for mental programs[END_REF] or of the "merge" function proposed by Chomsky for en-coding nested structures in language [START_REF] Chomsky | Problems of projection[END_REF][START_REF] Dehaene | The neural representation of sequences from transition probabilities to algebraic patterns and linguistic trees[END_REF]. Furthermore, we have tested the performances and computational power of the Inferno Gate network in comparison to the popular LSTM gated networks. We have shown that only Inferno Gate could retrieve back items' in sequences, even from a dataset of rarely observed items. This is an advantage over statistical methods and deep networks that require many observations to learn correlations between the items.

Developmental learning -Infants skill at learning event sequences extends to different stimulus types in different modalities speech, tones, or pictures [START_REF] Ellis | Visual prediction in infancy: What is the association with later vocabulary?[END_REF]. According to Saffran, young children are equiped with a statistical learning device for syntactical acquisition [START_REF] Saffran | Statistical learning by 8-month-old infants[END_REF][START_REF] Saffran | From syllables to syntax: Multilevel statis-tical learning by 12-month-old infants[END_REF]. In a series of experiments, Saffran and colleagues observed that after exposure to the speech streams for two minutes, infants reacted differently to hearing pseudowords as opposed to nonwords from the speech stream, where nonwords were composed of the same syllables that the infants had been exposed to, but in a different order. They suggest that infants are able to learn statistical relationships between syllables even with very limited exposure to a language.

Baillargeon and colleagues discovered similar behaviors in the visual domain [START_REF] Baillargeon | Physical reasoning in young infants: Seeking explanations for unexpected events[END_REF][START_REF] Baillargeon | An account of infants physical reasoning[END_REF] and proposed also that infants may possess a Physical Reasoning System to endow them with a grasp of intuitive physics about objects. Importantly, they discovered that young infants reason at an abstract level about objects categories (inanimated, animated), physics (occlusion, shadows, rigid 3D objects dont distort or disappear) and properties (soft, round) to simulate what will happen next. Similar to grammar in language, this Physical Reasoning System may allow infants to reason about causal and physical events and to detect several physical violations occuring in the visual scene. For instance, infants were surprised when an object placed behind a screen disappeared and a different object reappeared after. Young infants possess therefore some expectations about physical knowledge, such as object permanence and object occlusion.

Although they don't identify any neural correlates of these processings, we suggest that the PFC is involved in extracting the structure within sound and visual sequences.

We propose also that our model may provide a computational basis to these results. Because the content (the items' index) has been removed from the temporal information within the sequence, Inferno Gate can learn temporal patterns. The learning and error minimization processing of these rules may be similar to an inference process that attempts to capture the rules in one domain.

As these temporal rules are abstracted, amodal, they may be applied to other domains as well or to other modalities; for instance, during action observation for grasping other observations.

In this line, brain theorists such as Arbib and Fadiga suggested that the Broca area in PFC plays a more general role, beyond language, as being a supramodal Syntax Engine in the broaden sense, to encode hierarchical structures and grammars in other core domains and modalities [START_REF] Rizzolatti | Language within our grasp[END_REF][START_REF] Arbib | From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics[END_REF][START_REF] Schwartz | The common language of speech perception and action: a neurocognitive perspective[END_REF][START_REF] Fadiga | Brocas area in language, action, and music[END_REF]; for instance, in music and in action representation. They propose that motor articulation in speech is deeply rooten to the syntactic and structural organization of actions.

They suggest that the neural pathways for syntactic representation in speech and action are located in the sample places, respectively in the Broca area in human and in the Mirror Neurons System (F5 motor area) in monkeys, the two presenting potentially similar functional organization and similar mechanisms for the acquisition of conceptual knowledge and hierarchical representation [START_REF] Gallese | The brains concepts: The role of the sensory-motor system in concpetual knowlegde[END_REF].

We propose that our architecture may account for the modeling of syntactic represention found in those structures.

Transfer of learning -As the content of the data is not encoded within the PFC neurons, we can expect that they are more robust to variability within the inputs such as distorted voices or voices with different tones (high and low pitch).

In this line, we can expect Inferno Gate to find the same temporal patterns between different modalities, visual and auditory, for instance as during lipreading accentuating the pronounced sound with the visual input. This gating mechanism may make it possible to express another way of solving the binding problem across modalities and to perform transfer learning. For instance, some experiments performed with babies have found how at an early age they bind the tactile texture of a protruder and its visual shape although they have not seen it before [START_REF] Meltzoff | Intermodal matching by human neonates[END_REF]. Other experiments have shown such a binding effect being created between sound and vision in which babies correlated an ascending sound with a more intense light following the same temporal pattern. with few examples only [START_REF] Graves | Neural Turing Machines[END_REF][START_REF] Santoro | One-shot learning with memory-augmented neural networks[END_REF], while they recognize and retrieve online one given sequence in few hundred iterations using a read/write address memory.

As a result, model-free algorithms like Inferno have difficulty to generalize and infer from unseen data or rare events. The compositionality of Inferno Gate instead permits to accelerate the learning stage and to discover a sequence even with elements not seen before. Therefore, in our case the dimensionality of the input space of 14.000 MFCC index is not seen as a major problem in the retrieval stage. For instance, we have shown that it was possible to retrieve sentences of 50 iterations length and to create new ones on the fly. Furthermore, there is not a great sensitivity of the sequences' length on the retrieval stage as long as a certain number of entries are given for discriminating the sentences from each other. Therefore, there is no vanishing gradient effect as seen in other deep or gated networks such as the LSTMs. This is because the index of the input (their identity) is not learned.

Our next steps will be to combine the networks Inferno and Inferno Gate in order to obtain a meta-learning architecture [START_REF] Botvinick | Reinforcement learning, fast and slow[END_REF]. The dual working-memory will integrate both model-free RL and model-based RL to design the interaction between the cortico-basal loop and the striatal-prefrontal loop [START_REF] Botvinick | Reinforcement learning, fast and slow[END_REF][START_REF] Cortese | The neural and cognitive architecture for learning from a small sample[END_REF][START_REF] Neftci | Reinforcement learning in artificial and biological systems[END_REF] under frameworks of free-energy, predictive coding [START_REF] Friston | Learning and inference in the brain[END_REF][START_REF] Pezzulo | Internally generated sequences in learning and executing goal-directed behavior[END_REF][START_REF] Pezzulo | Hierarchical active inference: a theory of motivated control[END_REF] and intrinsic motivation [START_REF] Kaplan | In search of the neural circuits of intrinsic motivation[END_REF][START_REF] Singh | Intrinsically motivated reinforcement learning an evolutionary perspective[END_REF]. This will follow the declarative/procedural model proposed by Ullman for language [START_REF] Ullman | Contributions of memory circuits to language: the declarative/procedural model[END_REF]. We will study how our model will achieve structural learning in core domains with robots.

Reconstructed OFC Dynamics for two dlPFC units The fewer units there are to search, the more accurate is the recall. If we provide 40% of the items of the sequence we want to retrieve, the error on the neurons' index is particularly small and almost error free if 80% of the neurons are given. In b), we show the distribution of the error rate with respect to the position within the sequence and the amount of information provided. The error made by the network in retrieving the sequences is not related to the temporal position within the sequence but to the amount of information furnished to it. In c), we show the convergence rate of the network with respect to the amount of information provided. The blue color corresponds to 0% of items given, the green corresponds to 20% of items given, the red corresponds to 40% of items given, cian corresponds to 60% of items given and purple corresponds to 80% of items given.

Figure 1 :

 1 Figure 1: Gating operation for feature and structural separation in sequence learning. In a), we can discriminate the items' index (rank #) from their position (order) to represent one sequence. By separating the two, we can extract the temporal pattern and arrange items in a different order. Hence, the coding of the temporal pattern can make it robust to variability and can represent many sequences (generalization). This process is operated by a gain-modulation or gating mechanism explained later. In b), the combination of these temporal patterns can serve to compose any novel temporal pattern in the same fashion as radial basis functions would do.

Figure 2 :

 2 Figure 2: Framework for sequence learning based on iterative optimization in Fronto-Striatal (PFC-BG) loop. Our putative architecture follows the models proposed by [88, 23]. The Striatum (STR) represents the action/sound units that are assembled into a sequence at the Broadman area B45, part of the Broca area, in order to form a chunk. This chunk is read by the lateral PFC layer (lPFC), which learns and recognizes the temporal patterns via a gainmodulation/gating mechanism. The different temporal patterns in the lPFC are assembled in

2 .

 2 The two networks both use spiking neurons and the difference between the two comes from the types of coding employed to represent temporal events: the original Inferno network employs the spike timing-dependent plasticity mechanism whereas the second one uses gain-modulation. Considering the global architecture in Fig. 2, the two learning systems (lPFC/dlPFC and dlPFC/OFC) correspond to two associative networks of spiking neurons (SNNs) similar to radial basis functions. Bidirectionally coupled, the first SNN (lPFC/dlPFC) implements a forward model of the incoming signals while the second SNN (dlPFC/OFC) implements an inverse model aimed at retrieving and controlling those signals. The two learning systems can be viewed as an inverse-forward controller that can be modeled with the function Y out = f (I) for the first SNN and with the function I = g(Y out ) for the second one, in which I is the input vector and Y out are the output dynamics. I is a sequence of Striatal units over time.

  The problem's dimensionality for temporal sequences of M elements is reduced from a continuous time × space dimension in IR 2M to an intermediate representation of IN M × IR M and then to a compressive representation of IN 2M .

Fig. 2 .

 2 Fig. 2. The audio database used as input consists of a small audio dataset of 2 minutes length with a native French woman speaker repeating five sentences three times. The audio .wav file is translated into MFCC vectors (dimension 12) sampled at 25ms each and tested with a stride of 10ms. The whole sequence represents 14.000 MFCC vectors, the number of units in the Striatum layer not encoded in the temporal order.

Figure 3 :

 3 Figure 3: Rank-order algorithm for compressive rank representation. We describe the twostep process carried out with the rank-order coding algorithm to model the Spike Timingdependent Plasticity rule and the Gating mechanism. In a), two sequences in cyan and magenta are represented with different neuron indices (idx), different timing but the same temporal structure (up-down-up-down). In b), the rank-order coding algorithm is used to quantify any sequence in the temporal domain with discrete timing; e.g. first ranked, second ranked. This is a rough approximation of the STDP rule. The indices of the neurons are kept and only the temporal information is lost. In c), we can for a second time use the rank-order coding algorithm to now suppress the neurons' indices (their identity) within the sequence in order to keep only their rank (#) within the sequence. This second process makes possible a temporal pattern, a compressive representation of the two sequences in which only the rank order is kept. This second process reduces drastically the amount of information to encode any sequence, irrespective of the neurons' index and their precise timing. For any sequence of length M , the problem dimensionality is reduced to IR 2M → IN 2M .

4. 1 .

 1 Experiment 1 -Learning temporal patterns and encoding abstract sequences 4.1.1. Model-based gated control in striatum-prefrontal loops Experiment 1 explains the information flow STR→B45→lPFC→dlPFC in order to learn the temporal patterns in the lPFC layer and the abstract sequences in the dlPFC layer respectively. We present in Fig. 4 a) the dynamics of lPFC and dlPFC layers during the learning stage. The activity level of each neuron indicates their sensitivity to the temporal pattern found in the sequence. The neurons in the lPFC present a compressive code of the B45 input sequences, which are then combined in the dlPFC layer at a more abstract level. In Fig. 4 b) in the top chart, we plot the snapshot of the lPFC population activity taken at one time step and sorted (black line) and in the bottom chart the temporal pattern of the most active neuron in the lPFC (red line) and the rank order at the population level (blue line).

Figure 4 :

 4 Figure 4: Encoding of temporal patterns in lPFC/dlPFC layers. In a), each lPFC unit encodes a temporal pattern from the incoming sequences in B45 (bottom chart, during 1400 iterations). The decomposition at the lPFC layer is a representation of the temporal structure in the sequences that is then learned at the dlPFC layer (top chart). In b) we give a snapshot of the lPFC layer at one particular timing (top chart). The black line indicates the sorted activity of the lPFC units. The red sequence in the bottom chart indicates the temporal pattern for which the most active lPFC neuron is the most sensitive; in this example, the neuron nearby the index number 2800. The blue sequence indicates the temporal patterncoded at the population level (for all lPFC neurons combined). This graph indicates that only one unit is not discriminative enough to represent any input sequence and that the coding at the population level is more robust and precise.

  ) and in d-f) the iterative optimization process carried out during 10.000 iterations for two dlPFC units, the dynamics of the lPFC layer and of the ACC unit are showed in a) and d), the final retrieved sequence in the OFC with respect to the one represented by the dlPFC units is displayed in b) and e), the raster plot of the iterative search of exact sequences in OFC and B45 is shown resp. c) and f).In Fig.6a) and d) the ACC unit in the top chart represents the error rate, which is the inverse of the activity level of the dlPFC units. The raster plot of the lPFC dynamics is displayed in the bottom chart. The desired sequences we want to reconstruct in the OFC are presented at Fig 6 b) and e) in the top chart.

Figure 5 :

 5 Figure 5: lPFC coding analysis. In a), raster plot of the weights of the lPFC units (Y axis) reordered with respect to their sensitivity to the location (e.g., rank order) within the sequence (X axis). Each neuron within the lPFC network has learned a weight distribution centered at one position within the sequence; e.g. the beginning, middle or end of the sequence. Neurons that code well the beginning of the sequence can help to predict the rest of the sequence (prospective memory). Neurons that code well the end of the sequence are salient to the elements during the whole sequence (retrospective memory). In b), weight distribution for two lPFC units centered at location #24 within the sequence is shown. The circles indicate the locations where the weight values overlap. In c), as the weight index indicates the location within the sequence and the weight value indicates the neuron's rank at that position, it is possible to reconstruct the temporal pattern for which the lPFC neurons are the most sensitive. The circles indicate weights with the same index and the same value encoding a temporal pattern with the same location and the same rank. The two temporal patterns cross at these locations.

  Advantages and disadvantages of the proposed architecture -In comparison to model-free RL and deep neural-based approaches that require some redundancy within the signals for learning correlations, the learning and discovery stage of a structure with model-based RL such as Inferno Gate is extremely fast with few examples seen in one or few-shot learning [75, 74]. On the one hand, deep networks require thousands of iterations during the offline learning stage to converge, they classify almost instantaneously any data afterwards. On the other hand, neural networks with an attention mechanism and/or a working memory like Inferno Gate learn a structure extremely fast

Figure 6 :

 6 Figure 6: Free-energy optimization for retrieving sequences in OFC layer for two dlPFC units. In a) and d), we show error minimization in ACC unit (top chart) and optimization of dlPFC activity through exploration in OFC and observed in lPFC layer (bottom chart). The desired sequences we want to reconstruct in the OFC are presented in b)and e). We show the final sequence retrieved in red in the OFC layer with the neurons index of the STR layer between [0, 14.000] with respect to a goal sequence in blue (top chart). In c) and f), we show the raster plot of the reconstructed OFC/B45 dynamics. The OFC layer manages to retrieve a temporal sequence with some uncertainty but the global structure of the sequence and the rank orders are mostly respected.

Figure 7 :

 7 Figure 7: Performance analysis of the Inferno gate architecture for retrieving sequences with respect to the amount of information given. In a), we show the error rate computed from the goal sequence encoded in lPFC/dlPFC and retrieved sequences in the OFC layer with respect to the amount of items given from 0 to 80% of the sequence given at the B45 level.

Table 1 :

 1 Performances table between LSTM and Inferno Gate on sequence retrieving on a time series of rare and few redundant events. The first three experiments present the results of the LSTM network for various lengths of the our time series depending on its length for different size of the network. Because the time series possess rare and few redundant events within it, it is complex for the LSTM to generalize from it. Conversely, it is easier to learn the structure within it when the content is removed and replaced by the location of the items' indices within the sequence (their rank-order) as it it the case in experiment #4 for Inferno Gate and experiment #5 for LSTM. But only Inferno Gate can retrieve the items' indices because of the attentional mechanism it possesses.
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similar memory circuits: the cortical layer for the lexicon memory system and the prefrontal-basal ganglia layer for the grammar memory system. By discriminating content (i.e. which sound to play) and contextual information (i.e. when to play it in the sequence), we have shown that Inferno Gate is capable of robustly learning the temporal structure within sequences and retrieving the items' index in the correct order. In a complementary paper, we have described the architecture Inferno for modeling the CX-BG structure for retrieving the sound primitives [START_REF] Pitti | Feature and structural learning of memory sequences with recurrent and gated spiking neural networks using free-energy: application to speech perception and production i, under review[END_REF]. The BG network explored and retrieved sound vectors by testing them stochastically through the CX layer. The more the Striatal units recognize and predict the CX output, the stronger they reinforce their link with the sound vectors encoded in the Globus Pallidus layer, which constitutes one sound repertoire at the end of the optimization process.

Although a stable activity can be retrieved in a self-organized manner within the CX-BG network, the top-down control of a precise temporal sequence is devoted to another structure, the PFC-BG loop, which selects and influences the first system. In order to model the PFC-BG loop, we reuse the same neural architecture Inferno but with a different temporal coding to assess the property of the PFC neurons. In contrast to STDP, PFC neurons employ a gain-modulation mechanism to bind multiple information at once; e.g. the relative position of an item within a sequence for instance.

Gain modulation -gain-modulated units learn the order and the rank of one item within a sequence so that any misplacement of it will reduce its activity level. Furthermore, the capacity to encode the items' localization follows an inverse power-law scale due to the rank-order coding algorithm: therefore the precision of encoding is nonlinear. From a computational viewpoint, this inverse power-law scale is one important property in order to construct radial basis functions and to have orthogonal (discriminative) representations coded at the population level. Such coding is apparent to a nonlinear gating as the activity of these representations is modulated by the occurrence of multiple information.

In return, the population coding permits us to have a compressive code that can help the exploration search in a reinforcement learning framework. when 0%, 20%, 40%, 60%, 80% information is furnished to the system, respectively a-e). In the top charts, the generated sequences in the OFC layer with index of the STR neurons are displayed in red with the goal sequences to be retrieved in blue. The more information is given to the system, the easier is the explorative search to retrieve the missing units' index.

In the bottom chart, although the rank order in the temporal patterns of the units in the lPFC is respected, this does not guarrantee that the units' index is retrieved correctly in the OFC sequences.