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Abstract

We consider Hausdorff discretization from a metric space E to a dis-
crete subspace D, which associates to a closed subset F of E any subset S
of D minimizing the Hausdorff distance between F and S; this minimum
distance, called the Hausdorff radius of F and written rH(F ), is bounded
by the resolution of D.

We call a closed set F separated if it can be partitioned into two non-
empty closed subsets F1 and F2 whose mutual distances have a strictly
positive lower bound. Assuming some minimal topological properties of
E and D (satisfied in R

n and Z
n), we show that given a non-separated

closed subset F of E, for any r > rH(F ), every Hausdorff discretization
of F is connected for the graph with edges linking pairs of points of D at
distance at most 2r. When F is connected, this holds for r = rH(F ), and
its greatest Hausdorff discretization belongs to the partial connection gen-
erated by the traces on D of the balls of radius rH(F ). However when the
closed set F is separated, the Hausdorff discretizations are disconnected
whenever the resolution of D is small enough.

In the particular case where E = R
n and D = Z

n with norm-based dis-
tances, we generalize our previous results for n = 2. For a norm invariant
under changes of signs of coordinates, the greatest Hausdorff discretization
of a connected closed set is axially connected. For the so-called coordinate-

homogeneous norms, which include the Lp norms, we give an adjacency
graph for which all Hausdorff discretizations of a connected closed set are
connected.
Keywords: metric space, topological connectivity, adjacency graph, par-
tial connection, closed set, Hausdorff discretization.

1 Introduction

Hausdorff discretization is a metric approach to the problem of discretizing
Euclidean sets. It was introduced in [12, 13] in the general setting of an arbitrary
metric space (E, d) and a subspace D of E which is “discrete” in the sense that
every bounded subset of D is finite (we say then that D is boundedly finite).

A Hausdorff discretization of a non-empty compact subsetK of E, is a subset
S of the discrete space D that minimizes the Hausdorff distance between K and
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any subset of D. This minimum Hausdorff distance is given by the Hausdorff
radius of K: rH(K) = maxx∈K d(x,D). See Figures 1 and 2.

Figure 1: Here E = R
2, D is a discrete set of irregularly spaced points, and

we take the Euclidean distance d2. A compact set K (in grey), and its greatest
Hausdorff discretization (shown with filled dots), which consists of all points of
D whose distance to K is at most rH(K).
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Figure 2: Here E = R
2, D = Z

2, and we take the Euclidean distance d2. Left:
A compact set K = A ∪B ∪C overlayed with discrete points p, q, r, s and their
digital cells. Right: We show the balls of Hausdorff radius rH(K) centered about
p, q, r, s; since these balls are all those that intersect K, the greatest Hausdorff
discretization of K is {p, q, r, s}; now since the balls centered about p, q, s cover
K, {p, q, s} is also a Hausdorff discretization of K, and there is no other one
than {p, q, r, s} and {p, q, s}.

In our framework, the role played by the grid step h in the common dis-
cretization pair E = R

n, D = (hZ)n, is held by the covering radius rc: the least
r > 0 such that E is covered by the union of all balls Br(p) = {q ∈ E | d(p, q) ≤
r} with p ∈ D. Equivalently, rc = supx∈E d(x,D). Then, we have rH(K) ≤ rc,
so the Hausdorff distance between K and its Hausdorff discretizations is always
bounded by the resolution of D.

The set MH(K) of Hausdorff discretizations of K is non-empty, finite and
closed under non-empty unions. It has thus a greatest element, called the great-
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est Hausdorff discretization ofK and written ∆H(K). Actually, ∆H(K) consists
of all points of D whose distance to K is at most rH(K), see Figures 1 and 2
again.

Both MH(K) and ∆H(K) were characterized in [12], and their relation with
other types of discretization was analysed in [13]. For instance, we showed that
when digital cells constitute the Voronoi diagram ofD, every cover discretization
is a Hausdorff discretization. On the other hand, in morphological discretization
by dilation, provided that the dilation of D is E (every point of E belongs to the
structuring element associated to a point of D), the Hausdorff distance between
a compact and its discretization is bounded by the radius of the structuring
element.

In [14, 15] we extended our theoretical framework to the discretization of
non-empty closed subsets of E instead of compact ones.

In Section 5 of [22], we analysed the preservation of connectivity by Hausdorff
discretization in the case where E = R

2, D = Z
2 and the metric d is induced

by a norm N such that for (x1, x2) ∈ R
2 and ε1, ε2 = ±1, N(ε1x1, ε2x2) =

N(x1, x2) = N(x2, x1), for example the Lp norm (1 ≤ p ≤ ∞), see (1) next
page. We showed then that for a non-empty connected closed subset F of E,

1. for N 6= L1, every Hausdorff discretization of F is 8-connected;

2. the greatest Hausdorff discretization of F is 4-connected.

There was an error in [22]: we overlooked the condition N 6= L1 in item 1; it
was later pointed out by D. Wagner (private communication), and indeed for
N = L1 we show a counterexample in Section 4 (Figure 8).

Since Section 5 of [22] gives the starting point of the present paper, we can
look closely at the proof of the above result: it depends only on the properties
of closed balls. Indeed, items 1 and 2 follow from the corresponding two facts:

1. when N 6= L1, for any x, y ∈ D such that Brc(x) ∩ Brc(y) 6= ∅, x is
8-adjacent to y;

2. for any x ∈ E and r > 0, Br(x) ∩D is 4-connected.

The goal of this paper is to extend these connectivity preservation proper-
ties of Hausdorff discretization to the most general situation: we consider the
discretizations of any closed subset of a space E into a “discrete” subspace D
of “bounded resolution”, in other words D is boundedly finite and 0 < rc <∞.
The space E will be assumed to be “continuous” in some sense, in other words
some results may require additional conditions, such as E being boundedly com-
pact (that is, every bounded and closed subset of D is compact) and having
the middle point property (for any p, q ∈ E, there is some x ∈ E such that
d(p, x) = d(x, q) = 1

2d(p, q)). Note that all conditions considered here are satis-
fied by R

n and Z
n with a norm-based metric.

This extension of connectivity preservation has been made possible by the
development of a very broad framework for the notion of connectivity, namely
the concept of connection [10, 18] and its recent generalization to that of partial
connection [11].

We will obtain several general results. Let F be a non-empty closed subset of
the boundedly compact space (E, d). For any s ≥ 0, we say that F is s-separated
if F can be partitioned into two non-empty closed subsets F1 and F2 such that

3



d(x1, x2) > s for all x1 ∈ F1 and x2 ∈ F2. Then we say that F is separated if F is
s-separated for some s > 0 or, equivalently, F can be partitioned into two non-
empty closed subsets F1 and F2 such that inf{d(x1, x2) | x1 ∈ F1, x2 ∈ F2} > 0.
Finally, F is non-separated if it is not separated, that is, for every s > 0, F is not
s-separated. If F is connected, then it is non-separated but the converse is false,
see for instance Example 2 (in Subsection 3.1) and Figure 5 (in Subsection 3.2).
With this definition, we get the following:

• If F is connected, then (see Theorem 18 in Subsection 3.2):

1. every Hausdorff discretization of F is connected in the graph on D
where we join by an edge any two points whose distance apart is at
most 2rH(F ) (twice the Hausdorff radius);

2. the greatest Hausdorff discretization ∆H(F ) of F belongs to the par-
tial connection generated by all BrH(F )(x) ∩D, x ∈ F .

• If F is disconnected but non-separated, then (see Theorem 19 in Subsec-
tion 3.2), for any r > rH(F ):

1. every Hausdorff discretization of F is connected in the graph on D
where we join by an edge any two points whose distance apart is at
most 2r;

2. the greatest Hausdorff discretization ∆H(F ) of F belongs to the par-
tial connection generated by all Br(x) ∩∆H(F ), x ∈ F .

• If F is s-separated for some s > 0, then (see Proposition 21 in Subsec-
tion 3.3), for any r ≤ s/4, every Hausdorff discretization of F will be
disconnected in the graph on D where we join by an edge any two points
whose distance apart is at most 2r. In particular, if rc < s/4, this will be
the case for some r > rH(F ).

We can interpret the above results in the framework of discretizations in multiple
resolutions: the Hausdorff discretizations of a non empty closed subset F of the
boundedly compact space E remain connected when the resolution of D tends
to zero iff F is non-separated. See Theorem 23 in Subsection 3.3.

In the second part of our paper, we consider the particular case where E =
R

n, D = Z
n and d is induced by a norm invariant under any change of sign or

permutation of the basis vectors of Rn, for example the Lp norm (1 ≤ p ≤ ∞):

‖(x1, . . . , xn)‖p =
(

n
∑

i=1

|xi|p
)1/p

(p <∞) ,

‖(x1, . . . , xn)‖∞ = max(|x1|, . . . , |xn|) .
(1)

We will then see that every Hausdorff discretization of F will be connected
according to an adjacency graph depending on the norm, while the greatest
Hausdorff discretization of F will be connected for the 2n-adjacency relation,
linking any two points of Zn that differ by 1 in exactly one coordinate. For
n = 2, this will give the result of [22] mentioned above.

The paper is organized as follows. Our notation is summarized in Table 1.
Section 2 recalls the theoretical background: first partial connections and con-
nections [11], then some special families of closed sets [14, 15], and finally Haus-
dorff discretization [12, 13]. It also discusses related works by other authors.
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Table 1: Notation and terminology used in this paper: Notation for the mathe-
matical notation, Name for the designation, Reference for where it is defined
(subsection, then property, definition or equation).

Notation Name Reference
‖x‖p Lp norm of x § 1, Eq. (1)

Con(B) / Con
∗(B) connection /partial connection § 2.1, Prop. 1

generated by B and 2

Br(x) / B
◦
r (x) closed / open ball of § 2.2, Eq. (3)

radius r centered about x

Fbc(E) family of boundedly compact, § 2.2, after
Fbf(E) of boundedly finite and Def. 3
Fp(E) of proximinal subsets of E

δr / δ◦r / δ+r dilation / open dilation / § 2.2, Eq. (4),
upper extension of radius r (5) and (6)

hd oriented Hausdorff distance § 2.3, Eq. (10)

Hd Hausdorff distance § 2.3, Eq. (9)

rc covering radius § 2.3, Eq. (11)

rH(F ) Hausdorff radius of F § 2.3, Eq. (12)

∆r / ∆+
r discretization / upper § 2.3, Eq. (13)

discretization of radius r and (14)

MH(F ) set of all Hausdorff § 2.3, after
discretizations of F Prop. 8

∆H(F ) greatest Hausdorff § 2.3, after
discretization of F Prop. 9

Gr(S) / G
Z
r (S) § 3.2, Def. 7

rc(ρ) covering radius for ρ § 3.3, Eq. (15)

Section 3 gives our general results about the connectivity of discretizations of
connected, non-separated or separated sets. Then Section 4 considers the par-
ticular case of E = R

n and D = Z
n with a coordinate-homogeneous norm.

Finally Section 5 concludes.
Throughout our paper, the statement of a well-known or published fact

will be designated “Property”, while the words “Lemma”, “Proposition” and
“Theorem” will be reserved for new results.

2 Theoretical Background

We will recall some known concepts and results, first about connections and
partial connections [11], then about some families of closed subsets in a metric
space [14, 15], and finally in the theory of Hausdorff discretization [12, 13]. We
also summarize related works.
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Let E be any non-empty set. We write P(E) for the family of all subsets of
E. Given three sets X,Y, Z, we say that X is partitioned into Y and Z if {Y,Z}
is a partition of X, that is, Y ⊆ X, Z ⊆ X, Y 6= ∅, Z 6= ∅, Y ∩ Z = ∅ and
X = Y ∪ Z; then we say that X is partitioned by Y and Z if X is partitioned
into X ∩ Y and X ∩ Z, that is, X ∩ Y 6= ∅, X ∩ Z 6= ∅, X ∩ Y ∩ Z = ∅ and
X ⊆ Y ∪ Z.

2.1 Connections and Partial Connections

Connections were defined by Serra [18] and further analysed by Ronse [10], who
then generalized them to partial connections [11]:

Definition 1 A partial connection on P(E) is a family C ⊆ P(E) such that

1. ∅ ∈ C, and
2. for any B ⊆ C such that

⋂B 6= ∅, we have
⋃B ∈ C.

We call the partial connection C a connection on P(E) if it satisfies the following
third condition:

3. for all p ∈ E, {p} ∈ C.
Note that condition 2 remains valid for B = ∅. Indeed,

⋂B = E 6= ∅ and
⋃B = ∅ ∈ C thanks to condition 1. Elements of a partial connection C are said
to be connected ; those of P(E)\C are said to be disconnected. For X ∈ P(E), a
connected component of X is any element of P(X)∩C \ {∅} that is maximal for
inclusion. When C is a connection, the connected components of X constitute
a partition of X; when C is a partial connection, they constitute a partition of
the subset

⋃
(

P(X) ∩ C
)

, the union of all connected subsets of X.
The above expressions “connected set” and “connected component” must

always be understood in the context of a given (partial) connection. Let us
give three well-known examples of connections. In a topological space E, a
subset X is connected if it cannot be partitioned by two open sets G1 and G2;
equivalently, it cannot be partitioned by two closed sets F1 and F2. Then the
set of connected subsets of E constitutes a connection [18]. It is easily seen that
the closure of a connected set is connected, hence the connected components
of a closed set are closed. Another connection is made of path-connected sets,
that is, sets X such that for any x, y ∈ X, there is a path joining x to y, i.e.,
a continuous map f : [0, 1] → X with f(0) = x and f(1) = y. This second
connection contains the first one, since any path-connected set is connected. A
third example is given by connectivity in a graph; we will describe it precisely
after Property 2. Other examples of connections and partial connections can be
found in [10, 11, 20].

Property 1 An intersection of connections on P(E) is a connection on P(E),
an intersection of partial connections on P(E) is a partial connection on P(E),
and P(E) is the greatest (partial) connection on P(E). Thus for any family
B of subsets of E, there is a least partial connection including B and a least
connection including B.

The least partial connection (resp., connection) including B is called the
partial connection (resp., connection) generated by B and it is written Con

∗(B)
(resp., Con(B)).
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Definition 2 Let B be a family of non-empty subsets of E.

1. For p, q ∈ E, p and q are said to be chained by B if there are B0, . . . , Bn ∈
B (n ≥ 0) such that p ∈ B0, q ∈ Bn and Bt−1∩Bt 6= ∅ for all t = 1, . . . , n.
Such a sequence B0, . . . , Bn is called a chain, and its length is n+ 1.

2. For A ∈ P(E), we say that A is chained by B if B ⊆ P(A) and any two
points of A are chained by B.

Obviously ∅ (as set of points of E) is chained by ∅ (as set of non-empty
subsets of E). In a non-empty subset A of E, a chain between two points has
always a strictly positive length. A point x is chained to itself if x ∈ B for some
B ∈ B; thus, the binary relation on E linking two points when they are chained
by B, is generally not reflexive. However, it is symmetrical and transitive; hence
this relation induces an equivalence relation on

⋃B (not on E).

Property 2 Given a family B of non-empty subsets of E, Con∗(B) is the set
of all X ∈ P(E) chained by P(X)∩B; thus X ∈ Con

∗(B) if and only if for any
y, z ∈ X, there are B0, . . . , Bn ∈ B (n ≥ 0) such that y ∈ B0, z ∈ Bn, Bi ⊆ X
for 0 ≤ i ≤ n and Bi ∩ Bi+1 6= ∅ for 0 ≤ i < n. Now, Con(B) is obtained by
adding to Con

∗(B) all singletons {x}, x ∈ E.

For example, in a graph with vertex set V , let B be the set of pairs of distinct
vertices that are linked by an edge. Then Con(B) is the set of all parts X of
V such that the graph induced on X is connected [10]. On the other hand,
Con

∗(B) consists of such parts X of size at least 2, or singletons X = {p} with a
loop on p; in other words, isolated vertices are excluded from Con

∗(B). Indeed,
graph connectivity is based on chains of edges, which can possibly be of length
0 (isolated vertices), while Con

∗(B) is based on chains of length at least 1.
When X /∈ Con

∗(B), let Y =
⋃
(

P(X) ∩ B
)

; in other words, Y is the set
of all points in X that are covered by some B ∈ B such that B ⊆ X. Then
Y ⊆ X, and the binary relation on Y linking x, y ∈ Y iff x and y are chained by
P(X)∩B, is an equivalence relation, whose equivalence classes are the connected
components of X according to the partial connection Con

∗(B); thus for x ∈ Y ,
the connected component of X containing x is the set of all y ∈ Y such that x
and y are chained by P(X)∩B, while for x ∈ X \Y , x belongs to no connected
component; in particular, when Y = ∅, X has no connected component. Now,
the connected components of X according to Con(B) are those according to
Con

∗(B), plus the singletons of X \ Y .
Let A and B be two non-empty sets. For any map ψ : P(A) → P(B) and

x ∈ A, write ψ(x) for ψ({x}). When B = A, the map ψ is said “on P(A)”. A
map δ : P(A) → P(B) such that for any Z ∈ P(A) we have δ(Z) =

⋃

z∈Z δ(z)
is called a dilation. We finally recall what is called a connection by dilation
[10, 11, 18]:

Property 3 Let C be a partial connection on P(E) and let δ be a dilation on
P(E) such that for any x ∈ E, δ(x) 6= ∅. Then Cδ = {X ∈ P(E) | δ(X) ∈ C}
is a partial connection on P(E). Furthermore, if for any x ∈ E, x ∈ δ(x) and
δ(x) ∈ C, then Cδ is a connection and C ⊆ Cδ.
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2.2 Some families of closed sets in a metric space

The reader is assumed to be familiar with basic topological and metric notions,
such as a metric (or distance function), a metric space, a bounded set, an open
set, a closed set, the relative topology on a subset, a compact space and a
compact set, see [6]. We recall some more advanced definitions and results
[14, 15].

Let (E, d) be a metric space, where E 6= ∅ and d is a metric on E. For
X ⊆ E and p ∈ E we define the distance between p and X as

d(p,X) = inf{d(p, x) | x ∈ X} . (2)

Note that |d(p,X)− d(q,X)| ≤ d(p, q), thus the function E → R : p 7→ d(p,X)
is continuous.

For r ≥ 0 and x ∈ E we define the closed ball Br(x) and the open ball B◦
r (x)

of radius r centered about x, by

Br(x) = {y ∈ E | d(x, y) ≤ r} and B◦
r (x) = {y ∈ E | d(x, y) < r} . (3)

Note that for r = 0 we have B0(x) = {x} and B◦
0(x) = ∅. The open balls of

radius > 0 constitute the basis of the metric topology on E.
Given X ⊆ E, (X, d) is a metric space, and the metric topology of (X, d)

coincides with the relative topology on X induced by the metric topology of
(E, d). We will consider several topological or metric properties on a metric
space (E, d) (compact, boundedly compact, boundedly finite, ...), and we will
speak of such a property for a subset X of E to mean that the metric space
(X, d) has that property.

Given a family S(E) (defined from some property) of subsets of the space E,
we will write S ′(E) for S(E) \ {∅}, the family of non-empty elements of S(E).
For any X ⊆ E, we will write S(X) (resp., S ′(X)) for the corresponding family
in the relative topology or metric of X.

Let us write: F(E) for the family of closed subsets of E, K(E) for that of
compact subsets of E, and Fin(E) for that of finite subsets of E; then P ′(E),
F ′(E), K′(E) and Fin

′(E) will designate the restrictions of these families to
non-empty subsets of E.

Note that for X ⊆ E, K(X) = K(E) ∩ P(X) and for X ∈ K(E), K(X) =
F(X). For X ∈ F(E), F(X) = F(E) ∩ P(X) .

The following definition and property were given in [14, 15]:

Definition 3 A metric space (E, d) is called

• boundedly compact if every bounded and closed subset of E is compact,
equivalently, for every p ∈ E and r > 0, Br(p) is compact;

• boundedly finite if every bounded subset of E is finite, equivalently, for
every p ∈ E and r > 0, Br(p) is finite.

A subset X of E is called proximinal if either X = ∅, or for every y /∈ X, there
is some x ∈ X minimizing the distance to y, that is, d(y, x) = d(y,X).

For instance, for the metrics induced by Lp norms, Rn is boundedly compact
and Z

n is boundedly finite. Write Fbc(E), Fbf(E) and Fp(E) respectively, for
the family of boundedly compact subsets of E, of boundedly finite subsets of E,
and proximinal subsets of E.
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Property 4 In any metric space (E, d):

1. K(E)∪Fbf(E) ⊆ Fbc(E) ⊆ Fp(E) ⊆ F(E) and K(E)∩Fbf(E) = Fin(E).

2. If E is boundedly compact, then every closed subset of E is boundedly
compact, that is Fbc(E) = Fp(E) = F(E).

3. If E is boundedly finite, then every subset of E is boundedly finite, that is
Fbf(E) = Fbc(E) = Fp(E) = F(E) = P(E).

We will now see the relation of these properties with dilations by balls. For
r ≥ 0 we define three operators P(E) → P(E), two of which are dilations: first
δr, the dilation of radius r, given by

δr(X) =
⋃

x∈X

Br(x) , (4)

then δ◦r , the open dilation of radius r, given by

δ◦r (X) =
⋃

x∈X

B◦
r (x) , (5)

and finally δ+r , the upper extension of radius r (which is generally not a dilation),
given by

δ+r (X) =
⋂

s>r

δ◦s (X) =
⋂

s>r

δs(X) . (6)

We have
δr(X) = {p ∈ E | Br(p) ∩X 6= ∅} ,

δ◦r (X) = {p ∈ E | d(p,X) < r} ,

δ+r (X) = {p ∈ E | d(p,X) ≤ r} .

(7)

Note that δ◦r (X), being a union of open balls, is open. On the other hand,
δ+r (X), being the inverse image of the closed interval [0, r] by the continuous
function x 7→ d(x,X), is closed.

For r = 0 we have δ0(X) = X, δ◦0(X) = ∅ and δ+0 (X) = X. Now, δr(X),
δ◦r (X) and δ+r (X) increase with r, and they satisfy the inclusions

δ◦r (X) ⊆ δr(X) ⊆ δ+r (X) ⊆ δ◦s (X) for s > r .

In [14] we characterized proximinal sets and boundedly compact spaces in
terms of properties of δr:

Property 5 In a metric space (E, d), a set X is proximinal if and only if for
every r ≥ 0 we have δr(X) = δ+r (X). In particular, when X is proximinal,
δr(X) is closed.

Property 6 The following properties are equivalent in a metric space (E, d):

1. E is boundedly compact.

2. For every non-empty compact K and r > 0, δr(K) is compact.

3. For every non-empty closed F and r > 0, δr(F ) is boundedly compact.
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2.3 Hausdorff Discretization

Let us first recall from [12, 14, 15] some basic concepts and facts about the
Hausdorff metric. We start with non-empty compact sets. We remind first that
for any K ∈ K′(E), every continuous function K → R has a compact image, in
particular it attains a maximum and a minimum.

Given K ∈ K′(E) and p ∈ E, there exists yp ∈ K such that d(p, yp) =
d(p,K), so d(p,K) = min{d(p, x) | x ∈ K}. For X,Y ∈ K′(E), the set of
d(x, Y ) for x ∈ X attains a maximum, so we define

hd(X,Y ) = max{d(x, Y ) | x ∈ X} , (8)

which we call the oriented Hausdorff distance from X to Y ; thus there exist
x∗ ∈ X and y∗ ∈ Y such that d(x∗, y∗) = d(x∗, Y ) = hd(X,Y ). We define then
the Hausdorff distance between X and Y as

Hd(X,Y ) = max
(

hd(X,Y ), hd(Y,X)
)

. (9)

Now, Hd is a metric on the space K′(E), it is thus called the Hausdorff metric.
For X,Y ∈ K′(E) and r ≥ 0, we have hd(X,Y ) ≤ r iff X ⊆ δr(Y ), while
Hd(X,Y ) ≤ r iff both X ⊆ δr(Y ) and Y ⊆ δr(X). Thus hd(X,Y ) is the least
r ≥ 0 such that X ⊆ δr(Y ), while Hd(X,Y ) is the least r ≥ 0 such that both
X ⊆ δr(Y ) and Y ⊆ δr(X).

One can extend the Hausdorff metric from K′(E) to F ′(E). Given two non-
empty closed sets X and Y , we set

hd(X,Y ) = sup{d(x, Y ) | x ∈ X} ; (10)

now we define the Hausdorff distance Hd(X,Y ) as in (9). Then Hd is a gener-
alized metric on F ; by this we mean that Hd satisfies the axioms of a metric,
with the only difference that it can take infinite values.

Using (6,7), and the convention that the infimum (in R
+) of an empty set is

equal to ∞, we get:

Property 7 For every X,Y ∈ F ′(E) and for every r ≥ 0, hd(X,Y ) ≤ r if
and only if X ⊆ δ+r (Y ), while Hd(X,Y ) ≤ r if and only if both X ⊆ δ+r (Y )and
Y ⊆ δ+r (X). In particular:

• hd(X,Y ) = inf{r > 0 | X ⊆ δr(Y )}.

• If hd(X,Y ) <∞, then it is the least r ≥ 0 such that X ⊆ δ+r (Y ).

• Hd(X,Y ) = inf{r > 0 | X ⊆ δr(Y ) and Y ⊆ δr(X)}.

• If Hd(X,Y ) <∞, then it is the least r ≥ 0 such that both X ⊆ δ+r (Y ) and
Y ⊆ δ+r (X).

As in R
+ the supremum and infimum of an empty set are equal to 0 and ∞

respectively, we can extend hd and Hd to the empty set. We get then

hd(∅, ∅) = Hd(∅, ∅) = 0 ;
∀F ∈ F ′, hd(∅, F ) = 0 and hd(F, ∅) = Hd(F, ∅) = ∞ .

We can now recall the theory of Hausdorff discretization [12, 14, 15]. We have
a metric space (E, d), and let D ⊂ E, D 6= ∅. Here E will be the “continuous”
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space and D will be the “discrete” space. We define the covering radius (of D
for the metric d) as the positive number

rc = sup
x∈E

d(x,D) = hd(E,D) . (11)

The covering radius rc is in some way a measure of the resolution of D. We
assume the following:

Axiom 1 [12] ∅ ⊂ D ⊂ E, D is boundedly finite and rc <∞.

By Property 4, for every x ∈ E, there exists yx ∈ D such that d(x,D) =
d(x, yx), thus for r ≥ 0 we have d(x,D) ≤ r iff x ∈ δr(D), cf. Property 5 and
(7). Hence rc > 0 and rc is the least r > 0 such that δr(D) = E. Note that
every subset of D is closed and that a subset of D is compact iff it is finite; thus,
by analogy with the corresponding subsets in E, we will write F ′(D) for the
family of all non-empty subsets of D, and K′(D) for the family of all non-empty
finite subsets of D.

Example 1 With Axiom 1, E is not necessarily boundedly compact. Take
E = R × [−1/2,+1/2]N and D = Z × {0}N. Thus E consists of all infinite
sequences of reals (r, sn)n∈N = (r, s0, . . . , sn, . . .), where r ∈ R and −1/2 ≤
sn ≤ 1/2 for all n ∈ N, while D consists of all integer sequences in E, namely
(m, 0, . . . , 0, . . .) with m ∈ N. We take the distance induced by the L∞ norm:
for all (r, sn)n∈N, (r

′, s′n)n∈N ∈ E,

d
(

(r, sn)n∈N, (r
′, s′n)n∈N

)

= sup
{

|r − r′|, |sn − s′n|
∣

∣ n ∈ N
}

.

Then D is boundedly finite, rc = 1/2, but E is not boundedly compact, because
it has infinite dimension: covering a ball of radius 1/2 requires an infinity of
balls of radius 1/4.

For any F ∈ F ′(E), define the Hausdorff radius of F :

rH(F ) = sup
x∈F

d(x,D) = hd(F,D) . (12)

Then rH(F ) ≤ rc, and rH(F ) is the least r ≥ 0 such that F ⊆ δr(D). The
particular case F = E gives rH(E) = rc. For K ∈ K′(E), the above supremum
is attained, thus rH(K) = maxx∈K d(x,D).

For r ≥ 0, the discretization of radius r is the map ∆r : P(E) → P(D)
defined by setting ∀X ⊆ E:

∆r(X) = δr(X) ∩D = {p ∈ D | Br(p) ∩X 6= ∅} . (13)

Then ∆r is a dilation P(E) → P(D), and ∆r(X) is finite for every bounded X.
For x ∈ E, we write ∆r(x) for ∆r({x}). Next, the upper discretization of radius
r is the map ∆+

r : P(E) → P(D) given by setting ∀X ⊆ E:

∆+
r (X) =

⋂

s>r

∆s(X) = δ+r (X) ∩D = {p ∈ D | d(p,X) ≤ r} . (14)

The last two equalities follow from (6) and (7). In general, ∆+
r is not a dilation.

By Property 5, when F is proximinal, we have ∆+
r (F ) = ∆r(F ).
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We will now examine the Hausdorff distance between non-empty closed sub-
sets of E and non-empty subsets ofD, and between non-empty compacts subsets
of E and non-empty finite subsets of D. Indeed, for K ∈ K′(E) and S ∈ F ′(D),
since K is bounded, if Hd(K,S) is finite, then S will be bounded, hence finite:
S ∈ K′(D).

Property 8 For any F ∈ F ′(E) and S ∈ F ′(D), Hd(F, S) ≥ rH(F ). For
any r ≥ rH(F ), Hd(F, S) ≤ r if and only if both S ⊆ ∆+

r (F ) and F ⊆ δr(S).
In particular F ⊆ δr(∆

+
r (F )), thus ∆+

r (F ) is the greatest S ∈ F ′(D) with
Hd(K,S) ≤ r. When F ∈ F ′

p(E), ∆+
r (F ) = ∆r(F ). When F ∈ K′(E), we have

S ∈ K′(D).

Given F ∈ F ′(E), we call a Hausdorff discretization of F any S ∈ F ′(D)
which minimizes the Hausdorff distance to F :

∀T ∈ F ′(D), Hd(F, S) ≤ Hd(F, T ) .

In [12, 13], we said a Hausdorff discretizing set of K. The family of Hausdorff
discretizations of F is written MH(F ).

Property 9 For F ∈ F ′(E), rH(F ) minimizes the Hausdorff distance between
F and elements of F ′(D):

rH(F ) = min{Hd(F, T ) | T ∈ F ′(D)} .

Thus MH(F ) is non-empty and Hd(F, S) = rH(F ) for every S ∈ MH(F ). For
any S ∈ F ′(D), S ∈ MH(F ) if and only if both S ⊆ ∆+

rH(F )(F ) and F ⊆
δrH(F )(S). Moreover, F ⊆ δrH(F )

(

∆+
rH(F )(F )

)

, so ∆+
rH(F )(F ) is the greatest

element of MH(F ).

Again, when F ∈ F ′
p(E), ∆+

rH(F )(F ) = ∆rH(F )(F ), and when F ∈ K′(E),

we have MH(F ) ⊆ K′(D): every Hausdorff discretization of a compact set is
finite. It is easily seen that MH(F ) is closed under non-empty unions, and in
[14] we showed that it is down-continuous : for a decreasing sequence (Sn)n∈N

of elements of MH(K),
⋂

n∈N
Sn ∈ MH(K).

The greatest element of MH(F ) is called the greatest Hausdorff discretiza-
tion of F , and we write it ∆H(F ); thus ∆H(F ) = ∆+

rH(F )(F ). In [12, 13], we

called it the maximal Hausdorff discretization of K.
Following the above remark that Hd(∅, ∅) = 0 and Hd(F, ∅) = ∞ for F ∈

F ′(E), we deduce that the only Hausdorff discretization of the empty set (in
E) is the empty set (in D).

2.4 Related Works

Though Hausdorff discretization is a broad discretization scheme [12, 13, 22],
several other approaches are described in the literature, primarily for the space
E = R

n and the discrete subspace D = Z
n. Many of them were investigated

from the topological point of view, specially about the connectedness preserva-
tion property. Write o for the origin of Rn and Z

n, and for any p ∈ Z
n, let

C(p) = B∞
1/2(p), the ball of radius 1/2 for the L∞ norm (see Figure 3 (c) for

n = 2); then, C(p) is the digital cell around p.
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Let us first clarify the terminology concerning digital adjacency and connec-
tivity. There are essentially two notations. On the one hand, from a combinato-
rial point of view, k-adjacency designates the one where each digital point has
k neighbours, for instance the 4- and 8-adjacencies in Z

2, then the 6-, 18- and
26-adjacencies in Z

3. On the other hand, in a coordinate-based approach, for
0 ≤ k ≤ n− 1, two points of Zn are said to be k-adjacent if they differ by 1 in
at least 1 and at most n− k coordinates, the other coordinates being equal; to
avoid confusion with the combinatorial notation, we will say that they are k/n-
adjacent. Two particular adjacencies stand out, the axial and diametral ones.
Two digital points p and q are axially adjacent if ‖p− q‖1 = 1, that is, p and q
are (n − 1)/n-adjacent (or 2n-adjacent in the combinatorial notation). Now p
and q are diametrally adjacent if ‖p−q‖∞ = 1, that is, p and q are 0/n-adjacent
(or (2n − 1)-adjacent in the combinatorial notation). The graph-theoretical
connectivity corresponding to the k-adjacency is called k-connectivity.

In discretization by dilation [12], one chooses a structuring element A ⊂ R
n,

then the discretization of a subset X of Rn is ∆A
⊕(X) = {p ∈ Z

n | Ap ∩X 6= ∅},
where Ap is the translate of A positioned on p. Taking A = C(o) = B∞

1/2(o),
one obtains the supercover discretization, made of all digital points whose cell
intersects the Euclidean set. It is well-known that the supercover discretization
of a connected subset of Rn is axially connected.

For n = 2, another example is the Freeman/Bresenham grid-intersect dis-
cretization, which uses the unit cross structuring element of Figure 3 (a). Then
the discretization of a connected set will be diametrally connected. Sekiya and
Sugimoto [16] considered the discretization by dilation of connected curves in
R

2, using the two structuring elements of Figure 3 (b) and (c); the latter gives
the supercover, which is axially connected. On the other hand the former (b)
gives a discretization which is intermediate between the grid-intersect and the
supercover; they showed that the discretization of a path-connected curve will
be diametrally connected, and it is easy to check that the result also holds for
any connected subset of R2. Note that both structuring elements (a) and (b)
are not covering [12] (i.e., the union of translates of the structuring element by
points of D does not cover E), so a non-empty subset of R2 can have an empty
discretization.

Given the high computational cost of discretization by dilation, Sekiya and
Sugimoto suggest an approximation that leads to a slightly smaller discretiza-
tion. Assuming that a curve C is given by an analytical equation f(x) = 0
(x ∈ R

2), where f is a continuous function R
2 → R, the approximated dis-

cretization will consist of all digital points p such that Ap has two corners
x, y ∈ R

2 with f(x) > 0 and f(y) < 0; by continuity, there will be some z ∈ Ap

with f(z) = 0, so this discretization is included in the one by dilation by A.
They showed that with the structuring elements of Figure 3 (b) and (c), the ap-
proximated discretization will still be diametrally connected for (b) and axially
connected for (c).

A particular case of discretization by dilation is the Gauss discretization,
where the structuring element is reduced to the singleton made of the origin:
A = {o}; in other words, a set X ⊂ R

n is discretized as X ∩ Z
n. Pavlidis [9]

and Serra [17] give local geometric conditions (see Figure 4) on the boundary
points of X ⊂ R

2 that ensure a homeomorphic reconstruction of X from its
discretization (the set X is reconstructed as the union of the unit squares cen-
terered in X ∩Z

2). In particular, under these conditions, the discretization of a
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(a) (b) (c)

(d) (e) (f)

Figure 3: Here n = 2. Top: 3 structuring elements used in morphological
discretization: (a) the unit cross for the grid-intersect discretization; (b)B1

1/2(o),

the ball of radius 1/2 for the L1 norm [16]; (c) C(o) = B∞
1/2(o), the unit cell or

ball of radius 1/2 for the L∞ norm. Bottom: the discretization by dilation of a
curve, for each of the 3 structuring elements, will be diametrally connected; for
the supercover discretization (f), it will be axially connected.

subset X of R2 yields an axially connected graph iff X is connected. This result
was later extended by Gross et al. in [5, 8] to threshold area discretizations
where an integer point p of Z2 belongs to the dicretization set if the area of the
intersection between X and the unit square centered in p is above some fixed
threshold.

×2r

×
×

×

×

×

×

×
×

1

Figure 4: A geometric local property of the boundary that ensures connectedness
preservation at a given scale: at each point p of the boundary B, there exist
two balls on both sides whose intersection with B is exactly {p}.

The minimal cover of a set X ⊂ R
n was studied by Brimkov et al. in [3].

It is the smallest union of unit cells of R
n, centered on integer points, that

includes X. The integer points of the minimal cover of a simply connected n-
dimensional manifold of Rn form an axially connected graph [3]. When X is
an h-dimensional surface (the image of Rh into R

n by a continous function),
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another kind of minimal cover, the k-discretization (where 0 ≤ k ≤ n − 1), is
described in the same article. It is a subset of the supercover that is minimal
in the sense that the deletion of any of its unit cells will change the topology
of the k/n-adjacency graph. Moreover, it is required that this cover includes
some h-dimensional surface, not necessarily X itself. In the paper, there is
another requirement but it not used in the proof of the following theorem: this
k-discretization is (h− 1)/n-connected.

Later, Brimkov et al. [4] showed that the discretization by dilation by an
Euclidean ball of radius r (there called r-offset discretization) of a bounded
path-connected subset of Rn is axially connected if r ≥ √

n/2 and is diametrally
connected if r ≥

√
n− 1/2. Furthermore, the values

√
n/2 and

√
n− 1/2 are

minimal for such a statement. This result is first extended to connected sets
in [2] provided, for the first claim, that r is greater than or equal to the Hausdorff
radius of the set. Then, in [1] it is extended to disconnected sets whose closure
is connected provided the conditions on the radius r are strict inequalities.

Incidentally, Brimkov et al. [2] obtain the following result about Hausdorff
discretizations (for the Euclidean distance): for any connected subset of Rn, its
greatest Hausdorff discretization is axially connected, while any other Hausdorff
discretization is diametrally connected if the Hausdorff radius is less than 1 and
may be diametrally disconnected otherwise.

In [21], the authors consider the Euclidean space E = R
2, the discrete

space D(ρ) = ρZ2 of grid step ρ > 0, and a metric based on a norm N such
that N(±x1,±x2) = N(±x2,±x1) = N(x1, x2) and the only point at distance
N(1/2, 1/2) from both (0, 0) and (1, 1) is (1/2, 1/2) (this excludes in particu-
lar the L1 norm). For X ⊆ D(ρ), let Rρ(X) be its Euclidean reconstruction
given by the union of closed digital cells (relatively to D(ρ)) of points of X:
Rρ(X) =

⋃

p∈X B∞
ρ/2(p). For r > 0, we say that F is r-convex if for any point

x /∈ F at distance at most r from F , this distance is attained by a unique point
in F , and for any r′ ≤ r, the closed ball of radius r′ centered about x has a
connected intersection with F .

Given a non-empty closed subset F of E and a Hausdorff discretization Mρ

of F in D(ρ), several topological relations between F and the reconstruction
Rρ(M

ρ) are announced (without proof), which hold when ρ is sufficiently small.
First, any r-convex non-empty closed subset F of E is homotopically equivalent
to Rρ(M

ρ) for any Hausdorff discretization Mρ of F . Next, when both F and
the closure of its complement are r-convex and form a union of closed balls
of radius r, a Hausdorff discretization Mρ of F will not contain a singular
configuration [7] (a 2× 2 digital square with one diagonal in the figure and the
other in the complement), and Rρ(M

ρ) will be a bordered 2D manifold (that is,
locally homeomorphic to a closed half-plane); in particular, if F is a compact
bordered 2D manifold, then F and Rρ(M

ρ) will be homeomorphic.

3 General Results

Our goal is to show that every Hausdorff discretization of a non-empty “con-
nected” closed subset of E is “connected”, and that conversely every Hausdorff
discretization of a non-empty “disconnected” set will be “disconnected” when
the resolution of the discrete space D is small enough. Here the connectivity in
D will be in the graph with edges linking points distant by at most twice the
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Hausdorff radius. The “connectedness” of a closed subset F of E is more com-
plicated. When F is compact, it is ordinary topological connectivity. However,
a disconnected non-compact closed set can have a connected discretization when
its connected components are asymptotic to each other (cf. Example 2). We will
thus introduce the notion of a s-separated closed set, which is partitioned into
two closed sets with mutual distances always > s. Then a non-empty closed set
F will have its Hausdorff discretizations connected at all resolutions if and only
if F is not s-separated for any s > 0. Such sets, called non-separated, constitute
a connection on F(E), which contains topologically connected sets.

Our method of proof is similar to the one used in Section 5 of [22] to show
the reciprocal link between discrete and continuous connectivities for compact
sets, in the particular case where E = R

2, D = Z
2 and the distance is based on

a homogeneous norm.
Subsection 3.1 introduces some needed notions: the middle point and in-

terval properties in a metric space, and s-separated closed sets. Subsection 3.2
shows how, under some general conditions, the Hausdorff discretization of a
non-empty non-separated closed set F gives a discrete set which is connected in
the graph with edges linking points of D that are “close enough” (see Defini-
tion 7). Conversely, Subsection 3.3 shows how this fails for s-separated closed
sets; in particular it considers discretization in a sequence of discrete spaces
whose resolution tends to zero, and conditions under which the discretizations
are connected at all resolutions.

3.1 Further Continuity Properties in a Metric Space

Let (E, d) be a metric space. For r, s ≥ 0, the triangular inequality implies
that for any X ∈ P(E), δr(δs(X)) ⊆ δr+s(X). The equality holds if for any
p, q ∈ E such that d(p, q) = r + s, there exists x ∈ E such that d(p, x) = r and
d(x, q) = s. We will in fact consider two conditions, a first one weaker and a
second one stronger; they will be equivalent in a boundedly compact space.

Definition 4 We say that the metric space (E, d):

1. has the middle point property if for any p, q ∈ E, there is some x ∈ E
such that d(p, x) = d(x, q) = 1

2d(p, q).

2. has the interval property if for any p, q ∈ E, there is a map f : [0, 1] →
E such that f(0) = p, f(1) = q and for 0 ≤ α < β ≤ 1 we have
d
(

f(α), f(β)
)

= (β − α)d(p, q).

Every metric induced by a norm on a vector space satisfies the interval
property. When d has the interval property, we obtain δr(δs(X)) = δr+s(X) for
any r, s ≥ 0 and X ∈ P(E).

Lemma 10 1. If (E, d) has the middle point property and for every p, q ∈ E
there is a compact subset Kp,q of E containing all x ∈ E with d(p, x) +
d(x, q) = d(p, q), then d has the interval property.

2. If (E, d) has the interval property, then it has the middle point property
and for any p ∈ E and r ≥ 0, Br(p) is path-connected.
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Proof 1. Assume the middle point property. Let U = { k
2n | k, n ∈ N, 0 ≤

k ≤ 2n}. We construct f : U → E by induction on the exponent n. For n = 0,
f(0) = p and f(1) = q; for n ≥ 0 and 0 ≤ k ≤ 2n − 1, given x = f

(

k
2n

)

and y =

f
(

k+1
2n

)

, we choose for f
(

2k+1
2n+1

)

any z ∈ E such that d(x, z) = d(z, y) = 1
2d(x, y).

By induction, we get that for 0 ≤ k ≤ 2n − 1, d
(

f
(

k
2n

)

, f
(

k+1
2n

))

= 1
2n d(p, q).

Let α, β ∈ U such that α < β; then there are a, b, n ∈ N with 0 ≤ a < b ≤ 2n

such that α = a
2n and β = b

2n . We get then:

d
(

f(α), f(β)
)

= d

(

f
( a

2n

)

, f
( b

2n

)

)

≤
b−1
∑

k=a

d

(

f
( k

2n

)

, f
(k + 1

2n

)

)

=
b− a

2n
d(p, q) = (β − α)d(p, q) .

Similarly, d
(

f(0), f(α)
)

≤ αd(p, q) and d
(

f(β), f(1)
)

≤ (1− β)d(p, q). Hence

d(p, q) = d
(

f(0), f(1)
)

≤ d
(

f(0), f(α)
)

+ d
(

f(α), f(β)
)

+ d
(

f(β), f(1)
)

≤ αd(p, q) + d
(

f(α), f(β)
)

+ (1− β)d(p, q) ,

thus (β − α)d(p, q) ≤ d
(

f(α), f(β)
)

. From the double inequality, the equality

d
(

f(α), f(β)
)

= (β−α)d(p, q) follows. In particular, f(α) ∈ Kp,q for all α ∈ U .
Since f is a continuous function U → Kp,q and the compact metric space Kp,q

is complete, there is a continuous extension of f to a function [0, 1] → Kp,q.
More precisely, given α ∈ [0, 1], for any n ∈ N we set αn = ⌊2nα⌋/2n; then
αn ≤ α < αn + 1

2n , so limn→∞ αn = α; then the f(αn), n ∈ N constitute a
Cauchy sequence in Kp,q, which converges in Kp,q to some point that we define
as f(α). For 0 ≤ α < β ≤ 1, by continuity we have

d
(

f(α), f(β)
)

= lim
n→∞

d
(

f(αn), f(βn)
)

= lim
n→∞

(βn−αn)d(p, q) = (β−α)d(p, q) .

Therefore (E, d) has the interval property.
2. Assume the interval property. The middle point property follows from

taking x = f
(

1
2

)

. Given r ≥ 0, for any q ∈ Br(p), we have a continuous map

f : [0, 1] → E with f(0) = p, f(1) = q and for α ∈ [0, 1], d
(

p, f(α)) = αd(p, q) ≤
r, that is, f(α) ∈ Br(p); then f is a path [0, 1] → Br(p) joining p to q; hence
Br(p) is path-connected. ⊓⊔

Corollary 11 Let E be boundedly compact. Then (E, d) has the middle point
property if and only if it has the interval property; then for any p ∈ E and r ≥ 0,
Br(p) is path-connected.

Proof For p, q ∈ E, let r = d(p, q); then for any x ∈ E with d(p, x) + d(x, q) =
d(p, q) = r, we have x ∈ Br(p), which is compact; we can thus apply Lemma 10
with Kp,q = Br(p). ⊓⊔

The connectedness of closed balls is useful in relation to Property 3: if all
Br(p) are connected, then for a connected set X, δr(X) will be connected.

Definition 5 Let F ∈ F ′(E) and s ≥ 0. We says that F is s-separated if F
can be partitioned into F1, F2 ∈ F ′(E) such that for any x1 ∈ F1 and x2 ∈ F2,
d(x1, x2) > s. We say that F is separated if for some s > 0, F is s-separated,
and that F is non-separated if for every s > 0, F is not s-separated.
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Note that F is separated iff it can be partitioned into two non-empty closed
subsets F1 and F2 such that inf{d(x1, x2) | x1 ∈ F1, x2 ∈ F2} > 0. For s >
s′ ≥ 0, if F is s-separated, then it is s′-separated. Moreover, F is 0-separated
iff it is disconnected, that is, partitioned into two non-empty closed sets. Thus
a connected set is not 0-separated, hence it is non-separated.

Lemma 12 A non-empty compact set K is non-separated if and only if it is
connected.

Proof If K is connected, it is not 0-separated, thus it is not s-separated for
any s > 0. If K is disconnected, then it is partitioned by two closed sets F1 and
F2, so it is partitioned into two compact sets K1 and K2. By the compactness
of K1,K2 and the continuity of the distance function, the set of all d(x1, x2)
for x1 ∈ K1 and x2 ∈ K2 reaches a minimum a; since K1 and K2 are disjoint,
a > 0, so K is s-separated for any s > 0 such that s < a. ⊓⊔

Example 2 A non-compact closed set can be both disconnected (0-separated)
and non-separated. For instance (cf. Section 5 of [22]), in R

2 with the Euclidean
distance, the closed set F =

{

(±x, 1/x) | x ∈]0, 1]
}

is partitioned into the two

closed sets F1 =
{

(−x, 1/x) | x ∈]0, 1]
}

and F2 =
{

(+x, 1/x) | x ∈]0, 1]
}

(which

are its connected components), with d
(

(−x, 1/x), (+x, 1/x)
)

= 2x, tending to 0
for x→ 0. Note that δr(F ) is connected for any r > 0.

Proposition 13 Let (E, d) be boundedly compact and satisfying the middle
point property. Then for any F ∈ F ′(E) and s > 0, F is s-separated if and
only if δs/2(F ) is disconnected. In particular, F is non-separated if and only if
for any r > 0, δr(F ) is connected.

Proof Every closed set X is proximinal by Property 4, so δs/2(X) is closed by
Property 5.

If F is s-separated, then it is partitioned into two closed sets F1, F2 such that
for any x1 ∈ F1 and x2 ∈ F2, d(x1, x2) > s. If we had p ∈ Bs/2(x1) ∩Bs/2(x2),
then we would get d(x1, x2) ≤ d(x1, p) + d(p, x2) ≤ s, a contradiction. Thus
Bs/2(x1) ∩ Bs/2(x2) = ∅ for all x1 ∈ F1 and x2 ∈ F2, hence δs/2(F1) and
δs/2(F2) are disjoint. As for i = 1, 2, δs/2(Fi) is closed and δs/2(Fi) ⊇ Fi 6= ∅,
and δs/2(F1) ∪ δs/2(F2) = δs/2(F1 ∪ F2) = δs/2(F ), δs/2(F ) is disconnected.

If δs/2(F ) is disconnected, it is partitioned into A1, A2 ∈ F ′(E). As F ⊆
δs/2(F ), F is the disjoint union of the two closed sets F1 = A1∩F and F2 = A1∩
F . For i = 1, 2 and xi ∈ Fi, Bs/2(xi) is connected by Corollary 11, so it cannot
be partitioned by A1 and A2; we deduce that Bs/2(xi) ⊆ Ai. If we had F = Fi,
we would get Bs/2(x) ⊆ Ai for all x ∈ F , so δs/2(F ) ⊆ Ai, a contradiction;
therefore {F1, F2} is a partition of F . If we had x1 ∈ F1 and x2 ∈ F2 with
d(x1, x2) ≤ s, then by the middle point property there would be p ∈ E such
that d(x1, p) = d(x2, p) = d(x1, x2)/2 ≤ s/2, so p ∈ Bs/2(x1) ∩ Bs/2(x2); but
Bs/2(xi) ⊆ Ai (i = 1, 2), so we would have p ∈ A1 ∩ A2, a contradiction.
Therefore for all x1 ∈ F1 and x2 ∈ F2 we have d(x1, x2) > s, thus F is s-
separated.

Now F is non-separated iff for all r > 0 it is not 2r-separated, that is, δr(F )
is connected for any r > 0. ⊓⊔
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Serra [19] generalized connections from P(E) to complete lattices. Now
F(E) is a complete lattice, where the infimum and supremum of a family are
respectively its intersection and the closure of its union, and it comprises all
singletons (as closed balls of radius 0); thus Serra’s definition takes here the
following form:

Definition 6 A partial connection on F(E) is a family C ⊆ F(E) such that

1. ∅ ∈ C, and

2. for any B ⊆ C such that
⋂B 6= ∅, we have

⋃B ∈ C.

The partial connection C is a connection on F(E) if it satisfies the following
third condition:

3. for all p ∈ E, {p} ∈ C.

Then Property 1 is also valid with F(E) instead of P(E): an intersection of
connections (resp., partial connections) on F(E) is a connection (resp., partial
connection) on F(E).

Proposition 14 For any s ≥ 0, the family of closed sets that are not s-
separated constitutes a connection on F(E). The family of non-separated closed
sets is also a connection on F(E).

Proof Obviously the empty set and the singletons are closed and cannot be
partitioned by two sets, so they are not s-separated. Let B be a family of closed
sets that are not s-separated, such that

⋂B 6= ∅; let F =
⋃B and let z ∈ ⋂B.

Suppose that F is s-separated: F is partitioned into F1, F2 ∈ F ′(E) such that
for any x1 ∈ F1 and x2 ∈ F2, d(x1, x2) > s. As z ∈ F , for some i = 1, 2 we
have z ∈ Fi. For any B ∈ B, as z ∈ B, B ∩ Fi 6= ∅; as B is not s-separated, it
cannot be partitioned by F1 and F2, so we must have B ⊆ Fi. We deduce that
⋃B ⊆ Fi, and as Fi is closed, F =

⋃B ⊆ Fi, which contradicts the partitioning
of F . Therefore F is not s-separated.

The family of non-separated closed sets is the intersection, for all s > 0, of
the families of closed sets that are not s-separated. It is thus an intersection of
connections, hence it is a connection on F(E). ⊓⊔

3.2 Discretizing Non-Separated Sets

Let (E, d) be a metric space and D ⊂ E, D 6= ∅, satisfying Axiom 1.

Definition 7 Let r > 0, S ∈ F ′(D) and Z ∈ P ′(E). Then write Gr(S) and
GZ

r (S) for the two graphs both with vertex set S, and with an edge joining any
two distinct p, q ∈ S such that respectively:

• Br(p) ∩Br(q) 6= ∅ for Gr(S);

• Br(p) ∩Br(q) ∩ Z 6= ∅ for GZ
r (S).
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Note that the all edges of GZ
r (S) are edges of Gr(S), and that when r grows,

the sets of edges of Gr(S) and GZ
r (S) will be growing. Thus connectedness

extends from GZ
r (S) to Gr(S), and for r′ > r, from Gr(S) to Gr′(S) and from

GZ
r (S) to G

Z
r′(S).

For p, q ∈ E, Br(p) ∩ Br(q) 6= ∅ implies that d(p, q) ≤ 2r. If (E, d) has
the middle point property, then for p, q ∈ E, we have Br(p) ∩ Br(q) 6= ∅ ⇔
d(p, q) ≤ 2r, which simplifies the definition of Gr(S). This fact intervenes in
the following result, which will be used below.

Lemma 15 Consider the following three conditions:

(A) E is a vector space, D is an additive subgroup of E and the metric d is
based on a norm N on E.

(B) (E, d) satisfies the middle point property and the set {d(p, q) | p, q ∈ D} is
boundedly finite.

(C) For any R > 0, there exists r > R such that for all S ⊆ D, Gr(S) =
GR(S).

Then, (A) implies (B) and (B) implies (C).

Proof Let X = {d(p, q) | p, q ∈ D}. If (A) holds, then for p, q ∈ D, d(p, q) =
N(p − q), so X = {N(x) | x ∈ D}. Given the origin o in E, for any r > 0,
Br(o) = {x ∈ D | N(x) ≤ r} is finite by Axiom 1; thus X ∩ [0, r] is finite. Hence
X is boundedly finite. Now for any p, q ∈ D, x = 1

2 (p+ q) satisfies

d(p, x) = d(x, q) = N

(

p− q

2

)

=
1

2
N(p− q) =

1

2
d(p, q) ,

so (E, d) has the middle point property. Therefore (B) follows.
If (B) holds, then for any R > 0, X∩]2R, 2R+1] is finite; thus there is some

r > R such that X∩]2R, 2r] = ∅. Thus for any p, q ∈ D, d(p, q) ≤ 2R ⇔
d(p, q) ≤ 2r; as (E, d) has the middle point property, we get BR(p) ∩ BR(q) 6=
∅ ⇔ Br(p) ∩ Br(q) 6= ∅. Hence Gr(S) has the same edges as GR(S), so the
two graphs are equal. Therefore (C) holds. ⊓⊔

We give below a relation between graph connectivity and chaining by sets,
which will be used in our main results:

Proposition 16 Let A be a non-empty subset of E and let B be a non-empty
family of non-empty subsets of A. Let G be the undirected graph with vertex
set A and with edges joining all pairs {x, y} of distinct elements of A such that
there is B ∈ B with x, y ∈ B. Then G is connected if and only if A is chained
by B.

Proof If |A| = 1, we have A = {p}, G is connected, and we must have
B = {A}, so A is chained by B. Suppose now that |A| ≥ 2 and consider two
distinct p, q ∈ A.

Now, p and q are chained in B iff there are n ≥ 0 and B0, . . . , Bn ∈ B
such p ∈ B0, q ∈ Bn and for t = 1, . . . , n, Bt−1 ∩ Bt 6= ∅. Writing p = u0
and q = un+1, and choosing any ut ∈ Bt−1 ∩ Bt (t = 1, . . . , n), the statement
becomes: there are the two sequences p = u0, . . . , un+1 = q in A and B0, . . . , Bn
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in B such that for t = 0, . . . , n, we have ut, ut+1 ∈ Bt. In other words, we have
the sequence p = u0, . . . , un+1 = q in A such that for t = 0, . . . , n, ut and ut+1

are joined by an edge. Hence it is equivalent to: p and q are joined by a chain
of edges of G.

We have shown that two distinct vertices p, q ∈ A are joined by a chain of
edges in G iff they are chained in B. Assuming this property, p is chained to q
and q is chained back to p (both for edges and for B), so p is chained to itself.
⊓⊔

In the above proof, we had to distinguish the case where |A| = 1 and the
chaining of a point p to itself. Indeed, as said in Subsection 2.1, Con∗(B), the
partial connection generated by B, is obtained through chaining by B, with
chains of length at least 1, and excluding isolated points (that is, not belonging
to any element of B); on the other hand, in a graph we take the connection
generated by edges, based on chains of edges of length at least 0, including thus
isolated vertices (that is, not incident to any edge).

We can now analyse the connectedness of Hausdorff discretizations of non-
separated closed sets:

Lemma 17 Let r > 0, s, t ≥ 0, X ∈ P ′(E), Y ∈ F ′(E) and S ∈ F ′(D), such
that Y is not t-separated, X ⊆ Y ⊆ δs(X), S ⊆ ∆r+s(X) and X ⊆ δr(S).
Then GY

r+s+t(S), G
X
r+2s+t(S) and Gr+s+t(S) are connected, and S is chained

by {Br+s+t(y) ∩ S | y ∈ Y } and by {Br+2s+t(x) ∩ S | x ∈ X}.
Proof AsX ⊆ δr(S) and Y ⊆ δs(X), we get Y ⊆ δs(X) ⊆ δs(δr(S)) ⊆ δr+s(S);
hence for any y ∈ Y we have Br+s(y) ∩ S 6= ∅. As S ⊆ ∆r+s(X), for any p ∈ S
we have Br+s(p) ∩X 6= ∅ by (13).

Consider a partition S into S1 and S2. Now Y ⊆ δr+s(S) = δr+s(S1 ∪S2) =
δr+s(S1) ∪ δr+s(S2). For i = 1, 2, every p ∈ Si satisfies Br+s(p) ∩X 6= ∅, hence
δr+s(Si) ∩ X 6= ∅; as X ⊆ Y , δr+s(Si) ∩ Y 6= ∅. Next, Si is proximinal by
Property 4, so δr+s(Si) is closed by Property 5. Thus Y is the union of the
two non-empty closed sets δr+s(Si) ∩ Y for i = 1, 2. If d(y1, y2) > t for all
yi ∈ δr+s(Si)∩Y (i = 1, 2), then Y is t-separated, a contradiction. Hence there
are yi ∈ δr+s(Si) ∩ Y (i = 1, 2) such that d(y1, y2) ≤ t; now yi ∈ Br+s(pi) for
some pi ∈ Si; then y2 ∈ Br+s+t(p1), so y2 ∈ Br+s+t(p1) ∩ Br+s+t(p2) ∩ Y ; in
particular, y2 ∈ Br+s+t(p1) ∩ Br+s+t(p2). As y2 ∈ Y ⊆ δs(X), there is some
x ∈ X with d(x, y2) ≤ s, so x ∈ Br+2s+t(p1) ∩ Br+2s+t(p2) ∩X. Thus for any
partition {S1, S2} of S, there are p1 ∈ S1 and p2 ∈ S2 joined by an edge in
each of the graphs GY

r+s+t(S), G
X
r+2s+t(S) and Gr+s+t(S), therefore these three

graphs are connected.
For two distinct p, q ∈ S, p and q are joined by an edge of GY

r+s+t(S)
iff Br+s+t(p) ∩ Br+s+t(q) ∩ Y 6= ∅, that is, there is some y ∈ Y such that
y ∈ Br+s+t(p)∩Br+s+t(q), in other words p, q ∈ Br+s+t(y). Hence: two distinct
p, q ∈ S are joined by an edge of GY

r+s+t(S) iff there is some y ∈ Y such that
p, q ∈ Br+s+t(y) ∩ S. As Br+s+t(y) ∩ S 6= ∅ for all y ∈ Y , we can apply
Proposition 16: S is chained by {Br+s+t(y) ∩ S | y ∈ Y }. The same argument
with GX

r+2s+t(S) gives that S is chained by {Br+2s+t(x) ∩ S | x ∈ X}. ⊓⊔

Our first application of this result is for the Hausdorff discretization of non-
empty connected proximinal sets:

Theorem 18 Let F ∈ F ′
p(E) be connected and let r ≥ rH(F ). Then:
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1. For any S ⊆ ∆r(F ) such that F ⊆ δr(S), the two graphs GF
r (S) and

Gr(S) are connected and S is chained by {Br(x) ∩ S | x ∈ F}.

2. ∆r(F ) is chained by {∆r(x) | x ∈ F}.

In particular, for any S ∈ MH(F ), GrH(F )(S) and GF
rH(F )(S) are both con-

nected, and ∆H(F ) is chained by {∆rH(F )(x) | x ∈ F}.

Proof We apply Lemma 17 with s = t = 0 and X = Y = F , and combine it
with Property 8, where ∆+

r (F ) = ∆r(F ) because F is proximinal. Then GF
r (S)

and Gr(S) are connected and S is chained by {Br(x)∩S | x ∈ F}. Thus item 1
holds.

Now F ⊆ δr(∆r(F )), so we apply item 1 with S = ∆r(F ). For x ∈ F ,
Br(x) ⊆ δr(F ), so (13) gives

Br(x) ∩∆r(F ) = Br(x) ∩ δr(F ) ∩D = Br(x) ∩D = ∆r(x) .

We get thus item 2.
By Property 9, for any S ∈ MH(F ), S ⊆ ∆+

rH(F )(F ) and F ⊆ δrH(F )(S);

since ∆H(F ) = ∆+
rH(F )(F ) = ∆rH(F )(F ), the last sentence of the above state-

ment follows. ⊓⊔

In view of Property 2, we can write:

∆H(F ) ∈ Con
∗
(

{∆rH(F )(x) | x ∈ F}
)

⊆ Con
∗
(

{∆rH(F )(x) | x ∈ E}
)

.

For any r > 0, the set of all S ⊆ D such that Gr(S) is connected, that is,
such that S spans a connected subgraph of Gr(D), is a connection. Thus, all
Hausdorff discretizations of all connected proximinal subsets of E (including ∅),
belong to the connection of all connected subsets of the graph Grc(D).

Remark 1 For an arbitrary S ∈ MH(F ), the above result is optimal: in gen-
eral we cannot get connectivity for a graph GF

r (S) with r < rH(F ). As we will
see in Section 4 (see in particular Property 24), for E = R

n, D = Z
n and a

distance induced by a coordinate-symmetrical norm, such as the Lp norms (1),
for p = ( 12 , . . . ,

1
2

)

, we have rc = rH({p}) = N(p). Thus for o = (0, . . . , 0) and
q = (1, . . . , 1), we have d(o, p) = d(q, p) = rH({p}), so {o, q} ∈ MH({p}), with
d(o, q) = 2rH({p}).

We now consider the discretization of non-separated sets. The result will be
slightly weaker than for connected ones:

Theorem 19 Let F ∈ F ′(E) such that one of the following holds:

(a) F is proximinal and for any s > 0, δs(F ) is connected.

(b) F is non-separated.

Then for all r > rH(F ):

1. For any S ∈ MH(F ), the two graphs GF
r (S) and Gr(S) are connected.

2. ∆H(F ) is chained by {∆r(x) ∩∆H(F ) | x ∈ F}.
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Proof We first prove that in both cases (a) and (b), for any S ∈ MH(F ) and
r > rH(F ), GF

r (S) and Gr(S) are connected and S is chained by {Br(x) ∩ S |
x ∈ F}. In particular item 1 holds.

(a) Take any s > 0. By Property 5, δs(F ) is closed and ∆+
rH(F )(F ) =

∆rH(F )(F ). Thus Property 9 gives F ⊆ δrH(F )(S) and S ⊆ ∆rH(F )(F ) ⊆
∆rH(F )+s(F ). We apply Lemma 17 with r = rH(F ), t = 0, X = F and
Y = δs(F ): thenG

F
rH(F )+2s(S) andGrH(F )+s(S) are connected, and S is chained

by {BrH(F )+2s(x)∩S | x ∈ F}; then GrH(F )+2s(S) is also connected. The result
follows by taking r = rH(F ) + 2s.

(b) Take any s > 0. By Property 9, F ⊆ δrH(F )(S) and S ⊆ ∆+
rH(F )(F ) ⊆

∆rH(F )+s(F ) (the last inclusion follows from (14)). Now F is not s-separated.
We apply Lemma 17 with r = rH(F ), t = s, and X = Y = F : then with
F = Y , GF

rH(F )+2s(S) and GrH(F )+2s(S) are connected, and S is chained by

{BrH(F )+2s(x) ∩ S | x ∈ F}. The result follows by taking r = rH(F ) + 2s.
Now take S = ∆H(F ). Then ∆H(F ) is chained by the {Br(x) ∩ ∆H(F ) |

x ∈ F}; since ∆H(F ) ⊆ D, we have

Br(x) ∩∆H(F ) = Br(x) ∩D ∩∆H(F ) = ∆r(x) ∩∆H(F ) .

Item 2 follows. ⊓⊔

Thus, for al r > rc, every Hausdorff discretization of any closed subset of
E (including ∅) satisfying condition (a) or (b), belongs to the connection of
all connected subsets of the graph Gr(D). In other words, it belongs to the
connection which is the intersection of all connections of Gr(D), r > rc.

The fact that Gr(S) is connected for all r > rH(F ) does not necessarily
mean that GrH(F )(S) is connected, as shows the following example:

Example 3 Let E = R
2, D =

{(

z,±(2n + 1 + 2−|z|)
)

| z ∈ Z, n ∈ N
}

, and

F = {(y,±2−|y|) | y ∈ R}. We take the distance induced by the L∞ norm (1).
See Figure 5 (a). Each point of F is at distance at most 1 from the closest
point in D; for instance in the top right quadrant, for y ∈ N, (y, 2−y) is at
distance 1 from (y, 1 + 2−y) and (y + 1, 1 + 2−(y+1)), while for y /∈ N, y > 0,
(y, 2−y) is at distance at most 1 from (⌈y⌉, 1 + 2−⌈y⌉). Thus rH(F ) = 1 and
∆H(F ) =

{(

z,±(1 + 2−|z|)
)

| z ∈ Z}. Now GrH(F )(∆H(F )) has two connected

components,
{(

z, (1 + 2−|z|)
)

| z ∈ Z} and
{(

z,−(1 + 2−|z|)
)

| z ∈ Z}. For any

s > 0 and z ∈ N large enough (in absolute value) to have 2−|z| ≤ s, the distance
between

(

z, 1 + 2−|z|
)

and
(

z,−(1 + 2−|z|)
)

is 2(1 + 2−|z|)) ≤ 2(rH(F ) + s), so
GrH(F )+s(∆H(F )) is connected.

However, GrH(F )(S) will be connected in the “usual” cases where E = R
n,

D = Z
n and the metric d is based on a norm:

Corollary 20 Assume the hypothesis of Theorem 19. If (E, d) satisfies one
of the conditions (A), (B) or (C) of Lemma 15, then for any S ∈ MH(F ),
GrH(F )(S) is connected.

Indeed, there is then some r > rH(F ) such that Gr(S) = GrH(F )(S). Such
an argument does not apply to GF

r (S), nor to ∆r(x) in the chaining by the
∆r(x)∩∆H(F ), soGF

rH(F )(S) can be disconnected, and ∆H(F ) is not necessarily

chained by the ∆rH(F )(x) ∩∆H(F ) for x ∈ F , even when E = R
n and D = Z

n

with a metric based on a norm:
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(a)

(b)

Figure 5: Let E = R
2 with d is induced by the L∞ norm. In both cases

(a,b), the elements of ∆H(F ) are shown as filled disks, and those of D \∆H(F )
as hollow disks. (a) Here D =

{(

z,±(2n + 1 + 2−|z|)
)

| z ∈ Z, n ∈ N
}

,

F = {(y,±2−|y|) | y ∈ R}, and rH(F ) = 1. For all s > 0, GrH(F )+s(∆H(F ))
is connected, but GrH(F )(∆H(F )) is not connected. (b) Here D = Z

2, F =

{(y, 12 ± 2−|y|) | y ∈ R}, and rH(F ) = rc = 1/2. Then GrH(F )(∆H(F )) is
connected, but GF

rH(F )(∆H(F )) is not connected, and ∆H(F ) is not chained by

the ∆rH(F )(x) ∩∆H(F ) for x ∈ F .

Example 4 Let E = R
2, D = Z

2, and F = {(y, 12 ± 2−|y|) | y ∈ R}. We take
again the distance induced by the L∞ norm (1). See Figure 5 (b). Each point of
F is at distance at most 1/2 from the closest point in D (to whose digital cell it
belongs). Thus rH(F ) = rc = 1/2 and ∆H(F ) =

(

Z×{0, 1}
)

∪ {(0,−1), (0, 2)}.
Now for x = (y, 12 + 2−|y|) (y ∈ R), ∆rH(F )(x) ∈

(

Z × {1}
)

∪ {(0, 2)} = S1,

while for x = (y, 12 − 2−|y|) (y ∈ R), ∆rH(F )(x) ∈
(

Z × {0}
)

∪ {(0,−1)} = S2.
Thus GF

rH(F )(∆H(F )) has two connected components, S1 and S2, and the same

connected components are obtained in the chaining by the ∆rH(F )(x) ∩∆H(F )
for x ∈ F . For any s > 0 and y ∈ N large enough (in absolute value) to
have 2−|y| ≤ s, the distance between each

(

y, 12 ± 2−|y|
)

and each of (y, 0) and

(y, 1) is ≤ 1
2 + 2−|y| ≤ rH(F ) + s, so (y, 0) and (y, 1) will be joined together by

an edge of GF
rH(F )+s(∆H(F )), and be in a block ∆rH(F )+s(x) ∩ ∆H(F ) of the

chaining. Hence GF
rH(F )+s(∆H(F )) is connected and ∆H(F ) is chained by the

∆rH(F )+s(x) ∩∆H(F ) for x ∈ F .

3.3 Discretizing Separated Sets in Multiple Resolutions

We will now give in some way the converse of the results of the previous sub-
section, namely that every Hausdorff discretization of a s-separated closed set
(s > 0) is disconnected (for the graphs in Definition 7) when the Hausdforff
radius rc is small compared to s. Next, we will consider discretization at vary-
ing resolutions, and we will see that a non-empty closed set has its Hausdorff
discretizations connected at all resolutions if and only if it is non-separated.
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Proposition 21 Consider a s-separated F ∈ F ′(E), where s > 0, and let
S ∈ MH(F ).

1. If GF
r (S) is connected for some r > rH(F ), then s < 2r; if it is for all

r > rH(F ), then s ≤ 2rc.

2. If Gr(S) is connected for some r > rH(F ), then s < 4r; if it is for all
r > rH(F ), then s ≤ 4rc.

Proof Take any r > rH(F ). By Properties 8 and 9, F ⊆ δrH(F )(S) ⊆ δr(S) and

S ⊆ ∆+
rH(F )(F ) ⊆ ∆r(F ). The s-separated set F is partitioned into F1, F2 ∈

F ′(E) such that for all x1 ∈ F1 and x2 ∈ F2, d(x1, x2) > s. For i = 1, 2, let Si

be the set of all p ∈ S such that Br(p) ∩ Fi 6= ∅; as S ⊆ ∆r(F ), for every p ∈ S
we have Br(p) ∩ F 6= ∅, hence S = S1 ∪ S2. As F ⊆ δr(S), for every x ∈ F ,
there is some p ∈ S such that x ∈ Br(p); in particular, taking x ∈ Fi (i = 1, 2),
we get Si 6= ∅.

If one of the graphs GF
r (S) or Gr(S) is connected, then S1 ∩ S2 6= ∅ or that

connected graph has an edge with extremities p1 ∈ S1 and p2 ∈ S2.
If S1∩S2 6= ∅, then for p ∈ S1∩S2 and i = 1, 2 we have some xi ∈ Br(p)∩Fi,

so d(p, xi) ≤ r. Then

s < d(x1, x2) ≤ d(x1, p) + d(p, x2) ≤ 2r .

If GF
r (S) is connected, then it has an edge with extremities pi ∈ Si (i = 1, 2),

so Br(p1) ∩ Br(p2) ∩ F 6= ∅; now for x ∈ Br(p1) ∩ Br(p2) ∩ F , either x ∈ F1

and then p2 ∈ S1, or x ∈ F2 and then p1 ∈ S2. Thus one of p1, p2 belongs to
both S1 and S2, hence S1 ∩ S2 6= ∅, and s < 2r. If this inequality holds for any
r > rH(F ), we get then s ≤ 2rH(F ) ≤ 2rc. Thus item 1 holds.

If Gr(S) is connected, then it has an edge with extremities pi ∈ Si (i = 1, 2),
so Br(p1) ∩ Br(p2) 6= ∅, thus d(p1, p2) ≤ 2r. Now for i = 1, 2, Br(pi) ∩ Fi 6= ∅,
so we have some xi ∈ Br(p)∩ ∈ Fi, thus d(pi, xi) ≤ r. It follows that

s < d(x1, x2) ≤ d(x1, p1) + d(p1, p2) + d(p2, x2) ≤ 4r .

If this inequality s < 4r holds for any r > rH(F ), we get then s ≤ 4rH(F ) ≤ 4rc.
Thus item 2 holds. ⊓⊔

We will now consider Hausdorff discretization at multiple resolutions. We
suppose a set R of arbitrarily small “grid steps” ρ > 0, and for each ρ ∈ R, a
subset D(ρ) of E, where ∅ 6= D(ρ) 6= E, for which we define the covering radius
for ρ:

rc(ρ) = sup
x∈E

d(x,D(ρ)) = hd(E,D(ρ)) . (15)

We extend then Axiom 1 as follows:

Axiom 2 There is a set R ⊂ {r ∈ R | r > 0} such that infR = 0 and:

1. for every ρ ∈ R, there exists D(ρ) such that ∅ ⊂ D(ρ) ⊂ E, D(ρ) is
boundedly finite and rc(ρ) <∞;

2. rc(ρ) is an increasing function of ρ and lim
ρ→0

rc(ρ) = 0.
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Then, given ρ ∈ R, for every F ∈ F ′(E), the definitions and notations given
for D in Subsection 2.3 extend to D(ρ): the Hausdorff radius rH(F, ρ), the dis-
cretization and upper discretization of radius r ≥ 0, ∆r(F, ρ) and ∆+

r (F, ρ), the
family MH(F, ρ) of Hausdorff discretizations of F , and the greatest Hausdorff
discretization of F , ∆H(F, ρ).

From now on, we will assume that (E, d) is boundedly compact and it has the
middle point property. Then (E, d) has the interval property, every closed ball
Br(p) is connected (Corollary 11), every closed set F is proximinal (Property 4),
then for all r > 0, δr(F ) = δ+r (F ), which is closed (Property 5), and for any
s > 0, F is s-separated if and only if δs/2(F ) is disconnected (Proposition 13).

We first show that these assumptions guarantee the existence ofD(ρ), ρ ∈ R,
satisfying Axiom 2. We define the diameter of E as diam(E) = sup{d(x, y) |
x, y ∈ E}.

Proposition 22 Let (E, d) be boundedly compact and having the middle point
property. For any ρ ∈ R such that 0 < ρ < diam(E), there exists D(ρ) ⊆
E satisfying Axiom 1 with covering radius rc(ρ) such that ρ/2 ≤ rc(ρ) ≤ ρ.
Furthermore, there is some n0 ∈ N such that R = {2−n | n ∈ N, n ≥ n0} and
the family of sets D(ρ), ρ ∈ R, satisfy Axiom 2.

Proof For 0 < ρ < diam(E) there exist p, q ∈ E such that d(p, q) > ρ. By
the interval property, there exists p0 ∈ E such that d(p, p0) = ρ. Choose σ ∈ R

such that 0 < σ < ρ. For every n ∈ N we define the two sets

Cn = {x ∈ E | d(p, x) = ρ+ nσ} and

Rn = {x ∈ E | ρ+ nσ ≤ d(p, x) ≤ ρ+ (n+ 1)σ} .

Then p0 ∈ C0 and Cn ⊆ Rn for all n ∈ N; hence R0 6= ∅. For any x ∈ E, either
d(p, x) ≤ ρ and x ∈ Bρ(p), or d(p, x) > ρ and there is some n ∈ N such that
nσ < d(p, x)− ρ ≤ (n+ 1)σ, hence x ∈ Rn. Thus E = Bρ(p) ∪

⋃

n∈N
Rn.

Since Rn is the inverse image by the continuous function d(p, ·) of the closed
interval [ρ + nσ, ρ + (n + 1)σ], it is closed; now Rn is bounded, and as E is
boundedly compact, Rn is compact. For any x ∈ Rn, by the interval property
there exists y ∈ E such that d(p, y) = ρ + nσ and d(y, x) = d(p, x) − d(p, y) ≤
σ < ρ; in other words, y ∈ Cn and x ∈ B◦

ρ(y). Hence the union of open balls
B◦

ρ(y), y ∈ Cn, covers Rn, and as Rn is compact, there is a finite subset Gn of
Cn such that the union of B◦

ρ(y), y ∈ Gn, covers Rn; hence Rn ⊆ δρ(Gn). Since
R0 6= ∅, G0 6= ∅.

Let D(ρ) = {p} ∪⋃

n∈N
Gn; thus, D(ρ) 6= ∅. Every bounded subset of D(ρ)

is included in some Br(p), r > 0, and we have r ≤ ρ+mσ for somem ∈ N, hence
it is included in {p} ∪⋃m

n=0Gn, which is finite; thus D(ρ) is boundedly finite.
Since E = Bρ(p)∪

⋃

n∈N
Rn, with δρ(p) = Bρ(p) and Rn ⊆ δρ(Gn) for all n, we

have δρ(D(ρ)) = E, hence rc(ρ) ≤ ρ. As d(p, p0) = ρ, by the interval property,
there exists p1 ∈ E such that d(p, p1) = ρ/2; then p1 /∈ D(ρ), so D(ρ) 6= E. For
x ∈ Gn, d(p1, x) ≥ d(p, x)− d(p, p1) = ρ/2 + nσ ≥ ρ/2; now, d(p1, p) = ρ/2; as
D(ρ) = {p} ∪⋃

n∈N
Gn, we deduce that d(p1, D(ρ)) = ρ/2, hence rc(ρ) ≥ ρ/2.

Therefore Axiom 1 is satisfied and ρ/2 ≤ rc(ρ) ≤ ρ.
For some n0 ∈ N we have 2−n0 < diam(E). Let R = {2−n | n ∈ N, n ≥

n0}. For each n ≥ n0, we have 2−n < diam(E), and we construct D(ρ) for
ρ = 2−n, giving 2−n−1 ≤ rc(2

−n) ≤ 2−n. It follows that for n < m, rc(2
−m) ≤
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2−m ≤ 2−n−1 ≤ rc(2
−n), thus rc(ρ) is an increasing function of ρ. Obviously

lim
ρ→0

rc(ρ) = 0. Therefore Axiom 2 is satisfied. ⊓⊔

We can now summarize Theorems 18 and 19 and Proposition 21 in the
multi-resolution framework of Axiom 2:

Theorem 23 Let (E, d) be boundedly compact and having the middle point
property. Let R and the family of sets D(ρ), ρ ∈ R, satisfy Axiom 2. Let
F ∈ F ′(E).

1. If F is connected, then for all ρ ∈ R, ∆H(F, ρ) is chained by {∆rH(F,ρ)(x) |
x ∈ F} and for every S ∈ MH(F, ρ), the two graphs GrH(F,ρ)(S) and
GF

rH(F,ρ)(S) are connected.

2. If F is disconnected but non-separated, then for all ρ ∈ R, for any r >
rH(F, ρ), ∆H(F, ρ) is chained by {∆r(x) ∩ ∆H(F, ρ) | x ∈ F} and for
every S ∈ MH(F, ρ), the two graphs GF

r (S) and Gr(S) are connected.

3. If F is s-separated for some s > 0, then there is some ρ0 ∈ R such that
for every ρ ∈ R with ρ ≤ ρ0, there is some r > rH(F, ρ) such that for
every S ∈ MH(F, ρ) and every r′ ≤ r, the two graphs GF

r′(S) and Gr′(S)
are disconnected.

Let us now briefly consider the convergence to the original closed set of the
discretization in resolution ρ when ρ tends to 0. If for every ρ ∈ R we choose
some Sρ ∈ MH(F, ρ), as Hd(F, Sρ) = rH(F, ρ) ≤ rc(ρ), then we will have
lim
ρ→0

Hd(F, Sρ) = 0, in other words lim
ρ→0

Sρ = F for the generalized Hausdorff

metric Hd. Thus the Hausdorff discretizations tend to the original closed set
when the resolution tends to 0.

Moreover, the argument of Proposition 21 can be extended to show that if
we take a constant c > 1 and for every ρ ∈ R we choose some Sρ ⊆ D(ρ) (not
necessarily a discretization of F ) such that Gc·rc(ρ)(Sρ) is connected, if we have
lim
ρ→0

Hd(F, Sρ) = 0, then F must be non-separated.

4 Coordinate-Homogeneous Norms in R
n and Z

n

From now on, we assume that E = R
n, D = Z

n and the metric d is induced by
a norm N : for x, y ∈ E, d(x, y) = N(x− y). Write o for the origin (0, . . . , 0) of
R

n. Then B1(o) is a symmetrical convex compact subset of E with non-empty
interior, and for x ∈ E and r > 0, we have Br(x) = {x + ry | y ∈ B1(o)}. In
particular, the metric d is topologically equivalent to the Euclidean metric d2,
in other words, there exist β > α > 0 such that for any x, y ∈ E, αd2(x, y) ≤
d(x, y) ≤ βd2(x, y).

Clearly, (E, d) is boundedly compact and satisfies the interval property, see
Definition 4: in item 2 we take f(α) = (1−α)p+αq, then we get f(β)−f(α) =
(β − α)(q − p). Moreover, D is boundedly finite. Note also that condition (A)
of Lemma 15 is satisfied.

Everything that we will say here can easily be extended to the case where
D = ρZn for a resolution ρ > 0; in fact, for S ∈ F ′(ρZn) and F ∈ F ′(E), we
have ρ−1S ∈ F ′(Zn), ρ−1F ∈ F ′(E) and Hd(F, S) = ρHd(ρ

−1F, ρ−1S).
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For p = (p1, . . . , pn) ∈ D, let C(p) be the square/cubic/hypercubic unit
cell centered about p, that is, is the set of all x = (x1, . . . , xn) ∈ E such that
‖x−p‖∞ ≤ 1/2, that is, |xi−pi| ≤ 1/2 for each i = 1, . . . , n. For any x ∈ E, there
is some p ∈ D such that x ∈ C(p); we have then d(x,D) ≤ d(x, p) = N(x− p),
with x− p ∈ C(o), from which we deduce that rc ≤ supx∈C(o)N(x). Therefore
Axiom 1 is satisfied.

We say that the norm N is coordinate-symmetrical [13] if for any i = 1, . . . , n
and (x1, . . . , xn) ∈ E we have

N(x1, . . . , xi, . . . , xn) = N(x1, . . . ,−xi, . . . , xn) .

Equivalently, for any (x1, . . . , xn) ∈ E we have

N(x1, . . . , xn) = N(|x1|, . . . , |xn|) .

For 1 ≤ p ≤ ∞, the Lp norm ‖ ‖p, see (1), is coordinate-symmetrical. In the case
of the Lp norm, we will write Bp

r (x) for the closed ball of radius r centered about
x, cf. (3), and rc[p] for the covering radius, cf. (11); we have then rc[p] =

1
2n

1/p

for p <∞, and rc[∞] = 1
2 . We will require the following result:

Property 24 [13] If N is coordinate-symmetrical, then N(x1, . . . , xn) is in-
creasing in each of |x1|, . . . , |xn|: ∀ (x1, . . . , xn), (y1, . . . , yn) ∈ E,



∀ i = 1, . . . , n, |yi| ≥ |xi|


 =⇒


N(y1, . . . , yn) ≥ N(x1, . . . , xn)


 .

Furthermore, for each p ∈ D and x ∈ C(p), d(x,D) = N(x − p), and rc =
N
(

1
2 , . . . ,

1
2

)

.

It follows then that a coordinate-symmetrical norm N satisfies

∀x ∈ E, N(x) ≤ N(1, . . . , 1) · ‖x‖∞ . (16)

We refer the reader to the beginning of Subsection 2.4 for the terminology
on digital adjacency and connectivity, in particular the axial adjacency and
connectivity.

Proposition 25 If N is coordinate-symmetrical, then for any x ∈ E and r > 0,
Br(x) ∩D is axially connected.

Proof Write x = (x1, . . . , xn). Let p = (p1, . . . , pn) and q = (q1, . . . , qn) two
points of Br(x) ∩ D. We show that they are joined in Br(x) ∩ D by a path
for the axial adjacency. We use induction on the number k of coordinates on
which p and q differ, that is, the number of i ∈ {1, . . . , n} such that pi 6= qi.
For k = 0, p = q and the result is obvious. Suppose now that the result is true
for k, and let p and q differ on k + 1 coordinates. Take i such that pi 6= qi;
without loss of generality, we can assume that |pi − xi| ≤ |qi − xi|, otherwise
we exchange p and q in the following argument. Consider the sequence of
integers m between pi and qi: m = pi, pi + 1, . . . , qi − 1, qi if pi < qi, while
m = qi, qi + 1, . . . , pi − 1, pi if qi < pi; then |m − xi| ≤ |qi − xi|. For each
such m, let z(m) = (q1, . . . , qi−1,m, qi+1, . . . , qn) be the point in D whose i-th
coordinate is m, and whose j-th coordinate is qj for j 6= i; by Property 24,
N(z(m)− x) ≤ N(q− x), thus z(m) ∈ Br(x)∩D. Hence the z(m) constitute a
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path for the axial adjacency joining z(pi) to z(qi) = q inside Br(x) ∩D; on the
other hand, z(pi) and p differ in k coordinates, so by induction hypothesis they
are joined inside Br(x) ∩ D by a path for the axial adjacency. It follows thus
that p and q are joined by such a path, and the result is thus satisfied for k+1.
⊓⊔

Combining this result with Theorem 18 (item 2), we deduce the following:

Corollary 26 Let N be coordinate-symmetrical, let F ∈ F ′(E) be connected
and let r ≥ rH(F ). Then ∆r(F ) is axially connected. In particular, ∆H(F ) is
axially connected.

Indeed, F will be chained by the axially connected sets ∆r(x) = Br(x) ∩D
for x ∈ F . For n = 2 (E = R

2 and D = Z
2) we obtain the result of [22]:

for a connected F ∈ F ′(E), the greatest Hausdorff discretization ∆H(F ) is
4-connected.

We say that the norm N is coordinate-homogeneous [13] if it is coordinate-
symmetrical and there is a transitive group G of permutations of {1, . . . , n} such
that for any (x1, . . . , xn) ∈ E and π ∈ G we have

N(x1, . . . , xn) = N(xπ(1), . . . , xπ(n)) .

In other words there is a group of permutations of the coordinates, that acts
transitively on them, under which the norm N is invariant. For example a
coordinate-symmetrical norm N satisfying N(x1, . . . , xn) = N(x2, . . . , xn, x1)
is coordinate-homogeneous, because the permutation i 7→ i + 1 (i < n), n 7→ 1
generates the cyclic permutation group on {1, . . . , n}.

In [22] we said that the norm N is homogeneous if it is coordinate-symmetri-
cal and invariant under any permutation of coordinates; this corresponds to the
case where the group G is the symmetrical group consisting of all permutations
of {1, . . . , n}. For instance, the Lp norm (1 ≤ p ≤ ∞) is homogeneous, so it is
coordinate-homogeneous.

In [13] we showed that a coordinate-homogeneous norm N satisfies the fol-
lowing counterpart of (16):

∀x ∈ E, N(x) ≥ N(1, . . . , 1) · ‖x‖1
n

. (17)

Since ‖(1, . . . , 1)‖1 = n and ‖(1, . . . , 1)‖∞ = 1, while the covering radius is
given by the norm of ( 12 , . . . ,

1
2

)

, we get:

Property 27 [13] If N is coordinate-homogeneous, then for any x ∈ E,

‖x‖1
‖(1, . . . , 1)‖1

=
‖x‖1
n

≤ N(x)

N(1, . . . , 1)
≤ ‖x‖∞ =

‖x‖∞
‖(1, . . . , 1)‖∞

. (18)

Then for any x ∈ E and r > 0,

B∞
r/2rc

(x) ⊆ Br(x) ⊆ B1
nr/2rc

(x) ; (19)

in particular for r = rc,

B∞
rc[∞](x) = B∞

1/2(x) ⊆ Brc(x) ⊆ B1
n/2(x) = B1

rc[1]
(x) . (20)
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(a)

p p qx

(b)

Figure 6: Let n = 2 (a) Property 27 for the Euclidean distance: B∞
rc[∞](p) ⊆

B2
rc[2]

(p) ⊆ B1
rc[1]

(p). (b) Let x be the midpoint between two axially adjacent

p, q ∈ Z
2; for any coordinate-homogeneous norm, as B∞

rc[∞](x) ⊆ Brc(x) ⊆
B1

rc[1]
(x) and B∞

rc[∞](x)∩Z
2 = B1

rc[1]
(x)∩Z

2 = {p, q}, we deduce that ∆rc(x) =

Brc(x) ∩ Z
2 = {p, q}.

In other words, the closed ball of radius rc for d is intermediate between the
one of radius rc[∞] = 1

2 for the L∞ norm and the one of radius rc[1] =
n
2 for

the L1 norm. We illustrate this in Figure 6 (a) for n = 2 and the Euclidean
distance (based on the L2 norm).

We see then in Figure 6 (b) that for n = 2, the midpoint x between two
axially adjacent pixels p, q ∈ D must satisfy ∆rc(x) = {p, q}. This means that
the discrete traces ∆rH(F )(x) of balls BrH(F )(x) will not necessarily be thick, so
in view of Corollary 26, for a connected F ∈ F ′(E), ∆H(F ) will not necessarily
be thick.

In the case of the L1 norm, since rH(F ) ≤ rc[1] =
n
2 , Corollary 20 gives the

following:

Corollary 28 Let N be the L1 norm. Let F ∈ F ′(E) be non-separated and let
r ≥ rH(F ). Then any Hausdorff discretization of F is connected for the graph
with vertex set D and with an edge linking any two distinct p, q ∈ D such that
‖q − p‖1 ≤ 2r. In particular, it is connected for the graph with r = rc[1] =

n
2 ,

that is, with an edge linking two distinct p, q ∈ D when ‖q − p‖1 ≤ n.

In order to deal with the case when the norm N is not proportional to the
L1 norm, we need the following:

Lemma 29 Let N be a coordinate-homogeneous norm. For each i = 1, . . . , n,
let ei be the i-th canonical basis vector (with i-th coordinate equal to 1, and
every other coordinate equal to 0). If for some j ∈ {1, . . . , n} we have N(ej) ≤
N(1,...,1)

n , then N is proportional to the L1 norm: ∀x ∈ E, N(x) = N(1,...,1)
n ‖x‖1.

Proof For every i = 1, . . . , n, ei can be obtained from ej by a permutation
of coordinates, and as N is coordinate-homogeneous, we get N(ei) = N(ej) ≤
N(1,...,1)

n . Let x = (x1, . . . , xn) ∈ E. Then x =
∑n

i=1 xie
i and the norm N gives:

N(x) = N
(

n
∑

i=1

xie
i
)

≤
n
∑

i=1

|xi|N(ei) ≤
(

n
∑

i=1

|xi|
)N(1, . . . , 1)

n
,
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that is, N(x) ≤ N(1,...,1)
n ‖x‖1. But (17) gives the opposite inequality, therefore

the equality N(x) = N(1,...,1)
n ‖x‖1 holds for any x ∈ E. ⊓⊔

We can now state the counterpart of Corollary 28 in the case of a coordinate-
homogeneous norm that is not proportional to the L1 norm:

Proposition 30 Let N be a coordinate-homogeneous norm that is not propor-
tional to the L1 norm. Let F ∈ F ′(E) be non-separated and let r ≥ rH(F ).
Then any Hausdorff discretization of F is connected for the graph with vertex
set D and with an edge linking any two distinct p, q ∈ D such that either p and q
differ in at least two coordinates and ‖q− p‖1 ≤ nr

rc
, or p and q differ in exactly

one coordinate and ‖q − p‖1 < nr
rc
. In particular, it is connected for the graph

with r = rc, that is, with an edge linking two distinct p, q ∈ D when either p
and q differ in at least two coordinates and ‖q − p‖1 ≤ n, or p and q differ in
exactly one coordinate and ‖q − p‖1 < n.

Proof Recall that N(1, . . . , 1) = 2rc. Take two distinct p, q ∈ D such that
Br(p) ∩ Br(q) 6= ∅; then N(q − p) ≤ 2r. Suppose first that p and q differ in at
least two coordinates; by (18) we have

‖q − p‖1 ≤ nN(q − p)

N(1, . . . , 1)
=
nN(q − p)

2rc
≤ nr

rc
,

so p and q are joined by an edge in the graph. Suppose next that p and q differ
in exactly one coordinate; thus there is some j ∈ {1, . . . , n} and some x ∈ R

such that q − p = xej . By Lemma 29, we have N(ej) > N(1,...,1)
n = 2rc

n , hence

‖q − p‖1 = |x| < |x|N(ej)
n

2rc
= N(xej)

n

2rc
= N(q − p)

n

2rc
≤ nr

rc
;

thus ‖q − p‖1 < nr
rc
, so p and q are joined by an edge in the graph. Hence any

two distinct p, q ∈ D such that Br(p) ∩ Br(q) 6= ∅ are joined by an edge in the
graph; thus by Corollary 20 S is connected in that graph. Since rH(F ) ≤ rc,
we have the result with r = rc. ⊓⊔

Note that for p, q ∈ D we have ‖q − p‖∞ < ‖q − p‖1 when p and q differ
in at least two coordinates, but ‖q − p‖∞ = ‖q − p‖1 when p and q differ in
exactly one coordinate. Thus the condition “either p and q differ in at least two
coordinates and ‖q − p‖1 ≤ nr

rc
, or p and q differ in exactly one coordinate and

‖q − p‖1 < nr
rc
” can be written as the conjunction:

‖q − p‖1 ≤ nr

rc
and ‖q − p‖∞ <

nr

rc
. (21)

Let us apply the results of this section to the case where n = 2. We as-
sume a coordinate-homogeneous norm N on R

2, which means that for any
(x1, x2) ∈ R

2, N(±x1,±x2) = N(±x2,±x1) = N(x1, x2). Let F be a non-
empty connected closed subset of R2. By Corollary 26, the greatest Hausdorff
discretization ∆H(F ) will be 4-connected, as shown in [22]. Consider now an
arbitrary Hausdorff discretization S of F . We have two cases:

1. N is not proportional to the L1 norm. By Proposition 30, S will be
connected for the graph linking any two distinct p, q ∈ D such that ‖q −
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(a) (b)

p p

Figure 7: Here E = R
2 and D = Z

2. We show two neighbourhoods of a pixel
p ∈ D identified by a cross. (a) The neighbourhood consists of all q ∈ D such
that ‖q − p‖1 ≤ 2. (b) Restricting this neighbourhood (a) to ‖q − p‖∞ < 2, we
remove the 4 endpoints, so we get the 8-neighbourhood made of all q ∈ D such
that ‖q − p‖∞ ≤ 1.

p‖1 ≤ 2 and ‖q − p‖∞ < 2; this is simply the 8-adjacency graph, see
Figure 7 (b), thus S will be 8-connected. We obtain thus the result of
[22], namely that all Hausdorff discretizations of F are 8-connected.

2. N is the L1 norm. By Corollary 28, S will be connected for the graph with
vertex set D and with an edge linking any two distinct p, q ∈ D such that
‖q − p‖1 ≤ 2, see Figure 7 (a). As shown in Figure 8, S will not always
be 8-connected, since we require the adjacency to include the case of two
pixels that differ by 2 in exactly one coordinate. This case was overlooked
in [22].

x
KK

p q
K

Figure 8: Here E = R
2, D = Z

2 and d is the metric induced by the L1 norm.
Left: the connected compact K ⊆ E and the 5 pixels in D whose square cells
intersect K. Middle: the endpoint x of K satisfies d(x,D) = 1 = rc, hence
rH(K) = 1; now Hd(K, {p, q}) = 1, so {p, q} is a 8-disconnected Hausdorff
discretization of K. Right: the greatest Hausdorff discretization ∆H(K) =
δ1(K) ∩D is 4-connected.

5 Conclusion

This paper is part of a series on Hausdorff discretization, the approach to dis-
cretization which associates to a closed set F in a “continuous” metric space E
any subset S of a “discrete” subspace D which minimizes the Hausdorff distance
between S and F [12, 13, 14, 15, 22]. Here we investigated the relation between
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the topological connectivity of that closed set F and the “discrete” connectivity
of its discretization S.

As in our previous papers, we have presented our theory in the most general
framework possible: E is an arbitrary metric space and D is a boundedly finite
subset of E with finite covering radius rc, see (11) and Axiom 1. Then the
Hausdorff distance between a closed set F and any of its Hausforff discretizations
is equal to its Hausdorff radius rH(F ), see (12). We have rH(F ) ≤ rc.

For some results we required that E is boundedly compact and that it satisfies
the middle point property, so that it satisfies the interval property, see Defini-
tion 4 and Corollary 11. Of course, all these properties are indeed satisfied for
E = R

n, D = Z
n and a distance based on a norm.

For connectivity, we have not restricted ourselves to the topological one (in
E) and the graph-theoretical one (in D). We rather based ourselves on the
theory of connections and partial connections [10, 11, 18].

We first consider a connected proximinal set F (when E is boundedly com-
pact, every closed set is proximinal). The greatest Hausdorff discretization of F
belongs to the partial connection generated by the traces of all balls with radius
equal to rH(F ). On the other hand, any Hausdorff discretization S of F will
be connected in the graph GrH(F )(F ) where two distinct points of D are joined
by an edge if their closed balls of radius rH(F ) intersect. In particular, it will
be connected in the graph where two distinct points of D at distance ≤ 2rc are
joined by an edge.

We next generalize topological connectivity by considering non-separated
closed sets, see Definition 5. They include all connected sets, but also non-
compact disconnected sets where the connected components are “asymptotic”
to each other, see Example 2. The family of non-separated closed sets constitutes
a connection on the lattice of closed sets. Given a non-separated closed set F ,
for all r > rH(F ), any Hausdorff discretization S of F will be connected in the
graph Gr(S) where two distinct points of D are joined by an edge if their closed
balls of radius r intersect.

When the closed set F is separated, connectivity is not preserved when rc is
small enough. More precisely, if F is s-separated for some s > 0, and rc < s/4,
then there exists r > rc such that the graph Gr(S) will be disconnected.

We consider then discretization in multiple subspaces D(ρ) with resolution
ρ tending to zero, see Axiom 2; then Hausdorff discretizations of F will be
connected at all resolutions if and only F is non-separated.

In a second part of the paper, we consider the case where E = R
n, D =

Z
n and the metric is induced by a coordinate-symmetrical norm (for instance,

the Lp norm, 1 ≤ p ≤ ∞). Then the greatest Hausdorff discretization of a
connected closed subset of E will be axially connected. Note that this result,
see Corollary 26, relies on the theory of partial connections and chainings, and it
could not be obtained by more conventional methods based on adjacency graphs
or Voronoi tesselations.

When the norm is coordinate-homogeneous (again, this property holds for
the Lp norm) the Hausdorff discretization of a non-separated closed set will be
connected for a particular adjacency graph onD. When the norm is proportional
to the L1 norm, two distinct p, q ∈ D will be adjacent when ‖q−p‖1 ≤ n. When
it is not proportional to the L1 norm, p and q will be adjacent when either p and
q differ in at least two coordinates and ‖q− p‖1 ≤ n, or p and q differ in exactly
one coordinate and ‖q − p‖1 < n; an equivalent condition is that ‖q − p‖1 ≤ n
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and ‖q − p‖∞ < n.
For n = 2, this gives the result of [22]: the greatest Hausdorff discretization

of a connected closed subset F of R
2 is 4-connected, and when the norm is

coordinate-homogeneous but not proportional to the L1 norm, every Hausdorff
discretization of F will be 8-connected.

For n > 2, this graph based on the L1 norm relies on neighbourhoods that are
generally too large, so it is better to use the general theory, giving connectivity
for the digital graph with an edge between two digital points p, q such that
d(p, q) ≤ 2rc.

Our study shows the interest of the recent notion of a partial connection [11].
In particular, for E = R

n, D = Z
n and a coordinate-symmetrical norm, it would

be interesting to investigate the partial connection generated by digital traces
of balls of a given Hausdorff radius. Indeed, for n > 2 it might well be more
restricted than the set of all axially connected digital sets, in other words, such
sets may have some “thickness” (this is not the case for n = 2, see Figure 6 (b)).

It would be interesting to extend our results to related forms of discretization,
such as the discretization by dilation considered in [12, 13, 15].

Another possible approach would be to associate to every digital set S ⊆
Z
n its Euclidean representation as the union of cells of its points, C(S) =

⋃

p∈S C(p), and to associate to a closed set F ⊆ R
n a discretization S ⊆ Z

n

such that F can be homotopically deformed into C(S).
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