These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product
has not been planned. The colour figures will appear in colour in all electronic versions of this book.

== A multitrophic perspective
on biodiversity—-ecosystem
functioning research

Nico Eisenhauer®®*, Holger Schielzeth®, Andrew D. Barnes™"
Kathryn Barry®“, Aletta Bonn"*"?, Ulrich Brose™, Helge Bruelheide®",
Nina Buchmann?, Francois Buscot™?, Anne Ebeling’, Olga Ferlian®®,
Grégoire T. Freschet!, Darren P. Giling®"*, Stephan Hattenschwiler’,
Helmut Hillebrand®", Jes Hines*", Forest Isbell™, Eva Koller-France",
Birgitta Konig-Ries™, Hans de Kroon®, Sebastian T. Meyer?,
Alexandru Milcu™, Jorg Miller*®, Charles A. Nock"",

Jana S. Petermann", Christiane Roscher®*, Christoph Scherber’,
Michael Scherer-Lorenzen", Bernhard Schmid?, Stefan A. Schnitzer®®
Andreas Schuldt®®, Teja Tscharntke®“*°, Manfred Tiirke®"?¢,

Nicole M. van Dam®*', Fons van der Plas®, Anja Vogel®*"*,

Cameron Wagg®?“", David A. Wardle®, Alexandra Weigelt*“,
Wolfgang W. Weisser?, Christian Wirth®¢, Malte Jochum®°?

*German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
PInstitute of Biology, Leipzig University, Leipzig, Germany

“Department of Population Ecology, Institute of Ecology and Evolution, Friedrich Schiller University Jena,
Jena, Germany

Institute of Biology, Leipzig University, Leipzig, Germany

“EcoNetLab, Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany

‘Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle
(Saale), Germany

®Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland

"UFZ—Helmholtz Centre for Environmental Research, Soil Ecology Department, Halle (Saale), Germany
"Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
JCentre d’Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS—Université de Montpellier—Université
Paul-Valéry Montpellier—EPHE), Montpellier, France

Mnstitute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany

'Institute for Chemistry and Biology of Marine Environments [ICBM], Carl-von-Ossietzky University
Oldenburg, Wilhelmshaven, Germany

"Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
"Karlsruher Institut fiir Technologie (KIT), Institut fiir Geographie und Geodkologie, Karlsruhe, Germany
“Institute of Computer Science, Friedrich Schiller Universitat Jena, Jena, Germany

PRadboud University, Institute for Water and Wetland Research, Animal Ecology and Physiology &
Experimental Plant Ecology, Nijmegen, The Netherlands

ITerrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences
Weihenstephan, Freising, Germany

"Ecotron Européen de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montferrier-sur-
Lez, France

*Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University
of Wiirzburg, Rauhenebrach, Germany

Advances in Ecological Research © 2019 Elsevier Ltd 1
ISSN 0065-2504 All rights reserved.
https://doi.org/10.1016/bs.aecr.2019.06.001

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s),
editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of
the publisher and is confidential until formal publication.



https://doi.org/10.1016/bs.aecr.2019.06.001

These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product
has not been planned. The colour figures will appear in colour in all electronic versions of this book.

2 Nico Eisenhauer et al.

‘Bavarian Forest National Park, Grafenau, Germany

"Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany

"Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada

“Department of Biosciences, University of Salzburg, Salzburg, Austria

*UFZ—Helmholtz Centre for Environmental Research, Department Physiological Diversity, Leipzig,
Germany

YInstitute of Landscape Ecology, University of Miinster, Miinster, Germany

“Department of Geography, University of Ziirich, Ziirich, Switzerland

“Department of Biology, Marquette University, Milwaukee, W1, United States

*®Forest Nature Conservation, Faculty of Forest Sciences and Forest Ecology, University of Gottingen,
Gottingen, Germany

*Department of Crop Sciences, Division of Agroecology, University of Gottingen, Gottingen, Germany
*Centre of Biodiversity and Sustainable Land Use (CBL), University of Gottingen, Gottingen, Germany
*“Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Miinchen (HMGU)—German
Research Center for Environmental Health, Neuherberg, Germany

Mnstitute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany

*SFredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB,
Canada

**Department of Evolutionary Biology and Environmental Studies, University of Ziirich, Ziirich, Switzerland
%Asian School of the Environment, Nanyang Technological University, Singapore, Singapore

Ynstitute of Plant Sciences, University of Bern, Bern, Switzerland

**Helmholtz-Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB),
Oldenburg, Germany

*Corresponding author: e-mail address: nico.eisenhauer@idiv.de

Contents
1. What are the key achievements of BEF research? 3
1.1 A short history of BEF research 5
1.2 A new BEF era provides novel insights 8
1.3 Identification of BEF mechanisms 9
1.4 BEF in multitrophic communities 10
1.5 BEF implications for ecosystem services 1
2. What are the key challenges of future BEF research? 12
2.1 Non-random biodiversity change across trophic levels 13
2.2 Predicting the strength of BEF relationships across environmental contexts 19
2.3 Spatial scaling of BEF relationships 23
2.4 Eco-evolutionary implications of multitrophic BEF 26
2.5 FAIR data and beyond 29
2.6 Operationalizing BEF insights for ecosystem management, society, and
decision making 31
3. Concluding remarks 33
Acknowledgements 34
References 34
Abstract

Concern about the functional consequences of unprecedented loss in biodiversity has
prompted biodiversity-ecosystem functioning (BEF) research to become one of the
most active fields of ecological research in the past 25 years. Hundreds of experiments
have manipulated biodiversity as an independent variable and found compelling
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A multitrophic perspective on BEF research 3

support that the functioning of ecosystems increases with the diversity of their ecolog-
ical communities. This research has also identified some of the mechanisms underlying
BEF relationships, some context-dependencies of the strength of relationships, as well
as implications for various ecosystem services that mankind depends upon. In this
chapter, we argue that a multitrophic perspective of biotic interactions in random
and non-random biodiversity change scenarios is key to advance future BEF research
and to address some of its most important remaining challenges. We discuss that
the study and the quantification of multitrophic interactions in space and time facilitates
scaling up from small-scale biodiversity manipulations and ecosystem function assess-
ments to management-relevant spatial scales across ecosystem boundaries. We specif-
ically consider multitrophic conceptual frameworks to understand and predict the
context-dependency of BEF relationships. Moreover, we highlight the importance of
the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that
FAIR data (meeting the standards of findability, accessibility, interoperability, and reus-
ability) and reproducible processing will be key to advance this field of research by mak-
ing it more integrative. Finally, we show how these BEF insights may be implemented
for ecosystem management, society, and policy. Given that human well-being critically
depends on the multiple services provided by diverse, multitrophic communities, inte-
grating the approaches of evolutionary ecology, community ecology, and ecosystem
ecology in future BEF research will be key to refine conservation targets and develop
sustainable management strategies.

s0010 1. What are the key achievements of BEF research?

“The community is indeed the hierarchical level where the basic characteristics of
life—its diversity, complexity, and historical nature—are perhaps the most daunt-
ing and challenging. [...] however, most of the theoretical insights that have been
gained about the effects of ‘biodiversity on ecosystem functioning come from
approaches developed.in.community ecology.”

Loreau (2010)

po015 Human activities influence virtually all ecosystems around the globe through a
large variety of environmental alterations (MEA, 2005). Habitat destruction
(Maxwell et al., 2016), changing and intensified land use (Gossner et al.,
2016; Newbold etal., 2015), climate change (Urban etal., 2016), and invasion
of exotic species (Murphy and Romanuk, 2014; van Kleunen et al., 2015;
Vitousek et al., 1997; Wardle et al., 2011) are some of the most significant
drivers of biodiversity change (Maxwell et al., 2016). Subsequent changes
in ecological communities raise substantial ethical and aesthetic concerns as
well as questions regarding the functioning of altered ecosystems (Hooper
et al., 2005; Isbell et al., 2017a; Naeem et al., 2012). Biodiversity—ecosystem
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functioning (BEF) research has revealed strong positive effects of biodiversity
on various ecosystem functions, and has linked these effects to underlying
mechanisms. Positive BEF relationships can be observed at different spatial
(Cardinale et al., 2012; Hautier et al., 2018; Isbell et al., 2011; Roscher
etal., 2005; Thompson et al., 2018; van der Plas et al., 2016a,b) and temporal
scales (Guerrero-Ramirez et al., 2017; Reich etal., 2012; Zavaleta et al., 2010),
and can be multi-dimensional on both the predictor (i.e., multidiversity) and
response side (multifunctionality) (e.g., Hector and Bagchi, 2007; Meyer et al.,
2018; Schuldt et al., 2018; Soliveres et al., 2016a). Accordingly, one of the
most important conclusions of BEF research is that the strength of BEF rela-
tionships is strongly context-dependent. BEF relationships have been shown to
depend on climatic conditions (Maestre et al., 2012; Ratcliffe et al., 2017), local
site conditions (Allan et al., 2015; Eisenhauer et al., 2018; Fridley, 2002; Reich
et al., 2001), and disturbance and management regimes (Guerrero-Ramirez
etal., 2017; Kardol et al., 2018; Weigelt et al., 2009), which interact with bio-
diversity (Guerrero-Ramirez and Eisenhauer, 2017; but see Craven et al.,
2016). Accordingly, mechanisms underlying biodiversity effects have been
found to differ from one community to the next. Before discussing how
the status quo can inspire future research to address some of the most important
challenges in BEF research and ecology in general, we provide an overview of
key achievements of past BEF work.

p0020 This chapter is based on a survey among researchers in the Jena Exper-
iment, of a workshop on the “Future of BEF research” organized in the
framework of the Jena Experiment, and of the German Centre for Integra-
tive Biodiversity Research (iDiv) and thus has a bias towards BEF research in
terrestrial ecosystems andin controlled experiments. Rather than proving a
comprehensive picture of all important research directions in BEF and how
these directions may have developed since past reviews (e.g., Cardinale etal.,
2012; Hillebrand and-Matthiessen, 2009; Hooper et al., 2005; Loreau et al.,
2001; Naeem et al., 2012; Scherer-Lorenzen, 2014; Tilman et al., 2014; van
der Plas, 2019; Weisser et al., 2017), we focus on the key aspects that mate-
rialized from the survey. In December 2016, all researchers were asked to
send comments to the following two questions:

w0010 *  What are the key achievements of past BEF research?

w015 *  What are the key challenges/topics of future BEF research? Where

should the field move?

poo3s Contributions were synthesized by N.E. and discussed at the “Future of BEF
research”-workshop in Jena, Germany in February 2017. As an outcome,
we highlight six priority areas of future BEF research, namely non-random
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biodiversity change across trophic levels; predicting the strength of BEF rela-
tionships across environmental contexts; spatial scaling of BEF relationships;
eco-evolutionary implications of multitrophic BEF; FAIR data and and
reproducible processing; and operationalizing BEF insights for ecosystem
management, society, and decision making.

s0015 1.1 A short history of BEF research

po040 Prior to the era of BEF research, nature conservation efforts targeted biodi-
versity separately from ecosystem functioning. On the one hand, the goal
of conservation was to prevent species extinctions (Mace, 2014). On the
other hand, ecosystems were protected and managed to conserve and max-
imize their functions and services (such as forests for groundwater recharge,
erosion control, or recreation), but without explicit-consideration of their
diversity (Costanza et al., 1997). Conservation-had mostly been ethically
motivated, while BEF research moved the argument to take a utilitarian
view of biodiversity to convince target groups like politicians and land
managers. Although, there was a consensus that it was important to protect
different species and certain functions, theseaims were, and still are in many
places of the world, regarded as poorly connected, as well as insufficiently
linked to ecological theory. BEF research helped to provide an empirical
underpinning for these inherently related objects, thus adding an important
justification for conserving biodiversity that went beyond ethical and
aesthetic motivations (Dallimer et al., 2012; Potthast, 2014).

poo45  Early observations of natural communities inspired the notion that
biodiversity may be a key determinant of the functioning of ecosystems
(Darwin and Wallace, 1858; Elton, 1958; McNaughton, 1977; Schulze
and Mooney, 1994). This idea was supported by theoretical models
(Loreau, 1998; Tilman et.al., 1997a; Yachi and Loreau, 1999) and experi-
ments (Hooper et al., 2005; O’Connor et al., 2017). In fact, over the past
25 years, BEF research has led us to recognize that the identity and combi-
nations of species are powerful drivers of ecosystem processes (Hooper et al.,
2005; Isbell et al., 2017a; Schulze and Mooney, 1994; Tilman et al., 2014;
Weisser et al., 2017).

p0050 More specifically, prior to the mid-1990s, ecologists focused more on
abiotic factors driving variation in biodiversity, such as geology and climate,
than biotic factors, such as species diversity and species interactions
(Hobbie, 1992). Early topical questions were related to the environmental
determinants of biodiversity (Fig. 1; van der Plas, 2019). The search for
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f0010 Fig.1 The evolution of biodiversity research. Main foci of biodiversity—ecosystem func-
tioning research over time (Chapin et al., 2000; De Laender et al., 2016; Eisenhauer et al.,
2016; Isbell et al., 2013; van der Plas, 2019). While studying example environmental
drivers of different facets of biodiversity and ecosystem functioning has been an impor-
tant subdiscipline in ecological research for many decades (i.e., community ecology) (A),
in the mid-1990s, researchers started to manipulate biodiversity (mostly at the producer
level; mostly random biodiversity loss scenarios) as an independent variable (functional
biodiversity research or BEF research) (B). More recently, ecologists started focusing on
the complex interplay between anthropogenically driven environmental gradients, non-
random biodiversity change across trophic levels in food webs (C) (see also Fig. 2), and
the consequences for ecosystem function (e.g. Barnes et al.,, 2018; De Laender et al.,
2016; Hines et al., 2019; Mori et al., 2013; Sobral et al., 2017; Soliveres et al., 2016a) (C).
Figure modified after van der Plas, F., 2019. Biodiversity and ecosystem functioning in
naturally assembled communities. Biol. Rev. https://doi.org/10.1111/brv.12499.

answers to these fundamental questions in biodiversity yielded major
scientific achievements, such as Darwin’s theory of evolution (Darwin,
1859), Hutchinson’s concept.of the ecological niche (Hutchinson, 1957),
and MacArthur and Wilson’s theory of island biogeography (MacArthur
and Wilson, 1967; summarized in Craven et al., 2019). Still today, the
exploration of the determinants of biodiversity is a crucial field in ecology
(e.g., Adler et al., 2011), which is important to some of the most pressing
challenges of mankind, particularly given the unprecedented rate of
anthropogenic environmental change.
pO055 ‘While the importance of species diversity to ecosystem functioning was
recognized more than 150 years ago; e.g., Darwin and Wallace (1858) stated
. it has been experimentally shown that a plot of land will yield a greater
weight if sown with several species and genera of grasses, than if sown with
only two or three species”, this recognition of the importance of biodiversity
took a back seat (Hector and Hooper, 2002). In fact, one of the first exper-
iments of the 20th century reporting on BEF relationships was originally
designed to study how different concentrations of nitrogen drive plant
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diversity (Tilman and Downing, 1994). However, when these plant
communities were unexpectedly hit by an extreme drought, it became
evident that the response to the extreme event and the stability of the eco-
system function “plant productivity” depended on the species richness of
the community (Tilman and Downing, 1994). This study showed a positive
biodiversity-stability relationship, but was criticized because it did not
manipulate biodiversity as an independent factor, meaning that stability
of plant biomass production was likely (co-)determined by the nitrogen
treatment (Givnish, 1994; Huston, 1997). After the first “wave” of scientific
debate, Grime (1997) concluded that “...neither evolutionary theory nor
empirical studies have presented convincing evidence that species diversity
and ecosystem function are consistently and causally connected.”

pO060 This debate stimulated a series of controlled experiments that directly
manipulated biodiversity aiming to quantify the eftectof plant species rich-
ness on ecosystem functioning under controlled environmental conditions
(e.g., Diaz et al., 2003; Ebeling et al., 20145 Hector et al., 1999; Hooper
et al., 2005; Naeem et al., 1994; Niklaus et al.; 2001; O’Connor et al.,
2017; Roscher et al., 2004; Tilman et al., 1997b; Wardle and Zackrisson,
2005; Fig. 1). The results were surprisingly clear: community biomass
production, in particular, increased ‘with an increasing number of plant
species (Hooper et al., 2005). Subsequent debates (e.g., Eisenhauer et al.,
2016; Wardle, 2016) and adjustments of experimental designs stimulated
the collection of evidence that BEF relationships could occur irrespective
of the inclusion of certain species, functional groups, or combinations of
species (Eisenhauer et al., 2016; Huang et al., 2018; van Ruijven and
Berendse, 2003; Wilsey and Polley, 2004).

p0065 The focus on the manipulation of plant diversity and productivity, how-
ever, led to calls, and actions, to study a wider range of taxa and functions.
Subsequently, BEF research became more integrative in terms of scien-
tific disciplines by realizing that a whole-ecosystem perspective, includ-
ing, e.g., multitrophic interactions and element cycles, is required to
explore the mechanistic underpinnings and implications of biodiversity
change (Roscher et al., 2004; Schuldt et al., 2018). Nonetheless, these
experiments have also provoked debate over their realism. Randomly-
assembled communities may not mirror real-world assembly and disassem-
bly (Leps, 2004; Wardle, 2016), which are determined by the simultaneous
interplay of abiotic and biotic filters in time and space (Gotzenberger et al.,
2012). Some recent experiments thus shifted their focus from the number
of species to the functional and phylogenetic dissimilarity of species
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assemblages (Cadotte, 2013; Dias et al., 2013; Ebeling et al., 2014; Ferlian
et al.,, 2018; Scherer-Lorenzen et al., 2007) or have implemented non-
random biodiversity loss scenarios (e.g., Bracken et al., 2008; Bruelheide
et al., 2014; Schlapfer et al., 2005).

p0070 Non-random changes in biodiversity and the notion that the strength
of BEF relationships is context-dependent (Baert et al., 2018; Guerrero-
Ramirez et al., 2017; Ratclifte et al., 2017) have led contemporary BEF
research to re-introduce non-random and indirect manipulations of biodi-
versity using environmental change drivers, such as various climate variables,
management intensity, chemical pollutants, and nutrient enrichment, as well
as observations along environmental gradients (De Laender et al., 2016;
Everwand et al., 2014; Grace et al., 2016; Isbell'et al., 2013; Fig. 1).
Although empirical evidence is limited to date, the findings of, e.g.,
Dufty etal. (2017) and Isbell et al. (2013) substantiate the general predictions
from BEF experiments by demonstrating that the repeatedly-reported dis-
crepancies in results between experimental and real-world BEF studies
may, in fact, be due to multiple interacting or unrecognized drivers typically
operating in real-world systems (De Laender et al., 2016; Eisenhauer et al.,
2016; Loreau, 1998).

s0020 1.2 A new BEF era provides novel insights

poo75 In the last ~10 years, multiple review papers on BEF relationships have
comprehensively summarized the major achievements and novel insights
by BEF research (e.g., Balvanera et al., 2006; Cardinale et al., 2012; Dirzo
et al., 2014; Hooper et al., 2005; Isbell et al., 2017a; Loreau et al., 2001;
Naeem et al., 2012; Scherer-Lorenzen, 2014; Tilman et al., 2014; van der
Plas, 2019; Weisser et al:;72017). Briefly, this research has shown the
importance of biodiversity (from microorganisms to trees, but mostly of
primary producers) in driving the functioning of ecosystems, with func-
tions ranging from very specific ones, such as the molecular transforma-
tion of organic compounds, to highly integrated ones, such as primary
productivity. Positive BEF relationships arise from phenotypically- and
genetically-based differences or trade-offs in species characteristics that
drive the evolutionary diversification of niches (and the niches created
by other species) through selective pressures, such that there is no single
species or few species that perform(s) the different functions in exactly
the same way or contribute(s) to all of the different functions (Turnbull
et al., 2016). Consequently, it has been shown that the conservation of
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species diversity is necessary to sustain long-term functioning (Guerrero-
Ramirez et al., 2017; Meyer et al., 2016; Reich et al., 2012) and multi-
functionality of ecosystems (Allan et al., 2013; Hector and Bagchi,
2007; Isbell et al., 2011; Lefcheck et al., 2015; Meyer et al., 2018;
Schuldt et al., 2018).

pooso  While BEF research has mostly focused on uncovering the links between
species richness and ecosystem function, showing that some particular spe-
cies or functional groups have a disproportionately strong contribution to
BEF relationships, variation at different levels of ecological organization
(genetic diversity, phylogenetic species diversity, functional diversity) can
have comparable effects on ecosystem functioning (e.g., Hughes et al.,
2008). In contrast to earlier assumptions (Cardinale et al., 2011), there seems
to be low functional redundancy of coexisting species (Reich et al., 2012),
particularly so across environmental contexts (Isbell etal., 2011), and there-
fore, at larger spatial scales that may cover more different environmental
conditions (Isbell et al., 2017a). Thus, there‘is increasing awareness of the
mechanistic links between traits involved in coexistence and resource use
and traits affecting emerging properties and processes in ecosystems
(Bannar-Martin et al., 2018; Chesson etwal., 2001; Mori et al., 2018;
Mougquet et al., 2002; Turnbull et al.; 2013, 2016); although empirical evi-
dence for the role of response and effect traits in ecosystem functioning still is
limited (e.g., Beugnon et al., 2019; Paine et al., 2015; Yang et al., 2018).

s0025 1.3 ldentification of BEF mechanisms

poos5s BEF research has identified a list of (non-mutually exclusive) mechanisms
that contribute to enhancing ecosystem functioning with increasing bio-
diversity (e.g., increased biotope space describing the number of different
ecological niches, more efficient resource use, multitrophic interactions,
facilitation; Hooper et al., 2005; Weisser et al., 2017; reviewed by Barry
et al., 2019a). Mathematical approaches and experimental treatments were
established to disentangle difterent facets of biodiversity eftects (e.g., com-
plementarity effect, selection effect, and species asynchrony; Fox, 2005; de
Mazancourt et al., 2013; Isbell et al., 2018; Loreau and Hector, 2001). More
recent research has provided insights into the niche dynamics. This means
that species’ realized niches change over time according to their competitive
environment and their interaction network that are both dynamic in time
and space (Hofstetter et al., 2007). As a consequence, this might lead to
increasing biodiversity effects on certain ecosystem functions over time
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(Allan et al., 2011; Huang et al., 2018; Isbell et al., 2011; Lange et al., 2019;
Meyer et al., 2016; Reich et al., 2012; Zuppinger-Dingley et al., 2014).

p0090 Previous studies, particularly short-term studies, may have under-
estimated the strength of biodiversity—ecosystem functioning relationships
by missing these longer-term effects (Eisenhauer et al., 2012; Finn et al.,
2013; Schmid et al.,, 2008). Among those is the important finding of
strengthening complementarity effects (calculated based on Loreau and
Hector, 2001) of species-rich communities over time (Cardinale et al.,
2007; Huang et al., 2018; Reich et al., 2012; but see Kardel et al., 2018).
These complementarity effects may be driven by several underlying mech-
anisms. For example, at low biodiversity, negative density-dependent eftects
of pests and pathogens may contribute to the deterioration of community
functions in comparison to more diverse communities (Eisenhauer et al.,
2012; Guerrero-Ramirez et al., 2017; Maron et al., 2011; Schnitzer et al.,
2011; Schuldt et al., 2017b; Weisser et al., 2017). In contrast, species-rich
communities may support more mutualistic interactions (e.g., Schuldt
et al., 2017b; Wright et al., 2014), which may increase ecosystem function-
ing over time (Eisenhauer et al., 2012). These two mechanisms are not
mutually exclusive (Guerrero-Ramirezet al.; 2017), and different ecosystem
functions show varying relative importance of the two mechanisms at the
same time (Mevyer et al., 2016). Despite these first promising insights into
potential explanations of complementarity effects, the underlying ecological
and evolutionary mechanisms remain elusive.

s0030 1.4 BEF in multitrophic communities

po095 BEF research has demonstrated that biodiversity change at one trophic
level cascades to other trophic levels. For example, plant diversity increases
the diversity of above- and belowground consumer communities (“biodi-
versity begets biodiversity”; e.g., Ebeling et al., 2018; Eisenhauer et al.,
2013; Haddad et al.; 2009; Hines et al., 2019; Scherber et al., 2010;
Thebault and Dereau, 2003), and independent biodiversity changes at more
than one trophic level interactively aftect ecosystem functions (e.g., Coulis
etal., 2015; Eisenhauer et al., 2012; Gessner et al., 2010; Handa et al., 2014).
Relatedly, it has been shown that complex, multitrophic communities affect
the relationship between biodiversity and multiple ecosystem functions
(Nacem et al., 1994; Schuldt et al., 2018; Soliveres et al., 2016a; van der
Heijden et al., 1998; Wang et al., 2019). For instance, across a land-use
intensity gradient in German grasslands, the diversity of primary producers,
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herbivorous insects, and microbial decomposers were particularly important
predictors of plant biomass and forage quality (Soliveres et al., 2016a). For
Chinese subtropical forests, it was shown that individual ecosystem functions
central to energy and nutrient flows across trophic levels are more strongly
related to the diversity of heterotrophs promoting decomposition and nutri-
ent cycling, and by plant functional-trait diversity and composition, than
by tree species richness (Schuldt et al., 2018). In managed Inner Mongolian
grasslands, diversifying livestock by mixing both sheep and cattle promoted
multidiversity (including the diversity of plants, insects, soil microbes,
and nematodes) and multifunctionality (including plant biomass, insect
abundance, nutrient cycling, and soil carbon) (Wang etal., 2019).

p0100 Perspectives papers have suggested to integrate BEF- and food-web
theory to advance the understanding of causal relationships between com-
plex communities and multiple ecosystem functions (Barnes et al., 2018;
Dufty et al., 2007; Hines et al., 2015b, 2019; Thompson et al., 2012).
Moreover, multitrophic interactions may play a decisive role in shaping
BEF relationships via diversity-induced species plasticity in physiology,
morphology, and micro-evolutionary < processes (Mraja et al., 2011;
Zuppinger-Dingley et al., 2014). However, even though one of the first
biodiversity experiments manipulated multitrophic biodiversity in terrestrial
ecotrons (Naecem et al., 1994), multitrophic BEF research in terrestrial
ecosystems is still in its infancy, and the majority of existing studies focus
on aquatic systems (Lefcheck et al., 2015; O’Connor et al., 2017; Seibold
et al., 2018; Stachowicz et ali; 2007, 2008a).

so035 1.5 BEF implications for ecosystem services

p0105 Beyond its focus on ecosystem functioning, BEF research has also shown that
biodiversity is important for a wide range of potential ecosystem services
(Allan et al., 2015; Balvanera et al., 2006, 2014; Cardinale et al., 2012;
Isbell et al., 2017a,b). These include provisioning, regulating, and also cul-
tural services, underpinned by supporting services and includes, e.g., forage
production (Binder et al., 2018; Finn et al., 2013), wood production (Isbell
etal., 2017b), soil carbon storage for climate regulation (Fornara and Tilman,
2008; Lange et al., 2015), soil erosion control (Berendse et al., 2015; Péres
etal., 2013), water quality regulation (Scherer-Lorenzen et al., 2003), natural
attenuation of pollutants in soil (Bandowe et al., 2019), pollination (Ebeling
et al., 2008), and pest control (Hertzog et al., 2017) or herbivory reduction
(Civitello et al., 2015; Schuldt et al., 2017b).
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po110 Moreover, BEF research has stressed the role of multifunctionality,
including the simultaneous provisioning of many functions at one location
(e.g., Lefcheck et al., 2015; Schuldt et al., 2018) and across environmental
contexts (Eisenhauer et al., 2018; Isbell et al., 2015a), as well as single func-
tions in different settings (Isbell et al., 2011). However, this research has
also highlighted that biodiversity does not necessarily enhance all ecosystem
functions at the same time (Cardinale et al., 2012; van der Plas et al., 2016a,b),
and trade-offs have been observed among different functions (Allan et al.,
2015; Meyer etal., 2018). Moreover, studies simultaneously exploring a range
of functions remain scarce, poorly represent the whole range of services pro-
vided by ecosystems, and are often disconnected from the utilitarian value of
the (agro-)ecosystem (Manning et al., 2018; Swift et al., 2004; van der Plas
et al., 2018). Nonetheless, these assessments of multifunctional ecosystems
represent first important steps towards operationalizing BEF insights for soci-
ety and policy makers (Manning et al., 2018) and-will help to incorporate the
importance of biodiversity for ecosystem-service provision in political discus-
sions around the globe (including, e.g., halting biodiversity loss is included
among sustainable development goals, changes to the European Common
Agricultural Policy; IPBES reports, https:/www.ipbes.net/).

50040 2. What are the key challenges of future BEF research?

“The central problem in understanding and measuring biological diversity is that
we still have a lot of work to do. And while we are taking inventory, the shelves are
already being cleared.”

Christian Wirth (2013)

p0120 Congruent to the statement above, biodiversity research is a field under
time pressure. Biodiversity change can alter the functioning of ecosystems
in dramatic ways and-at an unprecedented pace, which will have important
consequences for the provision of ecosystem services (Balvanera et al., 2006;
Cardinale et al.;2012) and human health (Civitello et al., 2015; Lozupone
et al., 2012; Wall et al., 2015). Some of the related key challenges of BEF
research have been described in previous review papers (e.g., Cardinale
et al., 2012; Hooper et al., 2005; Isbell et al., 2017a), and the plethora of
(meta-)studies and mechanistic insights that were derived in the last years
has helped to refine existing and ask novel questions in BEF research. Here,
we argue that taking a multitrophic (Eisenhauer, 2017; Seibold et al., 2018)
and eco-evolutionary perspective (Tilman and Snell-Rood, 2014,
Zuppinger-Dingley et al., 2014) of biotic interactions will advance this field
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of research by identifying previously unknown mechanisms. Despite the
broad consensus on the significance of BEF relationships, the underlying
ecological and evolutionary mechanisms are not well understood, which
impedes the transition from a description of patterns to a predictive science.
Importantly, the focus should now not only be on generalizable patterns, but
more on the context-dependency of BEF relationships (Baert et al., 2018;
Craven et al.,, 2016; Eisenhauer et al., 2018; Fridley, 2002; Guerrero-
Ramirez et al., 2017; Jousset et al., 2011; Kardol et al., 2018; Ratcliffe
etal., 2017; Schuldt et al., 2017a). Understanding why and how the strength
of biodiversity eftects varies with environmental conditions and at which
spatial scales different mechanisms operate will be key to operationalizing
BEF insights for ecosystem management, society, and decision making.
We will discuss these research frontiers in the following sections.

s0045 2.1 Non-random biodiversity change across trophic levels

“What escapes the eye... is a much more insidious kind of extinction: the extinction
of ecological interactions.”
Janzen (1974)

p0130 Real-world biodiversity change (both invasions and extinctions) can be
highly non-random (Haddad et al.; 2008; Wardle, 2016). Thus, future
BEF research has to investigate how non-random biodiversity loss affects
ecosystem functioning in real-world ecosystems (Isbell et al., 2017a,b).
Addressing this question is particularly important in order to facilitate the
application of BEF results to agriculture, forestry, and biodiversity conser-
vation. At the same time, thisisa very challenging task as biodiversity change
and species turnover may be hard to predict due to multiple co-occurring
and interacting global-change drivers (Scherber, 2015; Tylianakis et al.,
2008) and their context-dependent effects on species and their interactions
(Bowler et al., 2018;-Schmid and Hector, 2004). Global change experi-
ments, particularly those that manipulate multiple global change drivers,
may be particularly valuable to study biodiversity changes and subsequent
ecosystem responses (Giling et al., 2019; Vogel et al., 2019a). Furthermore,
it might be promising to look more closely into the many published studies
using random extinction scenarios, as some of them might by chance resem-
ble extinction patterns that are actually observed in nature and provide
opportunities for re-analysis (Manning et al., 2019). At the same time, the
existing literature needs to be synthesized to derive a better understanding
of trait-specific extinction risks of different taxonomic groups (Cardillo
et al., 2005; Kotiaho et al., 2005; Seibold et al., 2015).
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po135 Another aspect of non-random species loss that has attracted increasing
scientific attention over the last years is the role of rare species for commu-
nity functioning. Across ecosystems, the large majority of species are rare
and thus prone to extinction (Jousset et al., 2017; Soliveres et al., 2016b;
Suding et al., 2005). In contrast to the mass-ratio hypothesis, which assumes
that locally abundant species drive ecosystem functioning (Grime, 1998),
many studies have shown that rare species can have disproportionately
strong impacts on ecosystems (Allan et al., 2013; Connolly et al., 2013;
Klein et al., 2003; Lyons et al., 2005; Mouillot et al.,”2013; Soliveres
et al., 2016b). Future experiments thus need to investigate the role of rare
species and their interactions with common species, and compare “real-
world,” non-random extinction scenarios with random extinction scenar-
i0s. Such an experiment was, for example, established in the subtropical
BEF-China experiment, where two non-random extinction scenarios were
included: one is based on local rarity and one-on specific leaf area (SLA)
of tree species, mimicking habitat loss through fragmentation and climate
change, two current and likely future key drivers of change in Chinese
subtropical forest communities (Bruelheide et al., 2014).

po140  Both high trophic level and high body mass have been associated with vul-
nerability to extinction (with many related traits; Fig. 2; e.g., Dirzo et al,,
2014; Voigt et al., 2003), but vulnerability to environmental change occurs
at all trophic levels according to_species’ life history traits. Thus, the focus
of previous terrestrial BEF experiments on manipulating the primary pro-
ducer level does not necessarily reflect that this is the most vulnerable trophic
level to environmental change. Although early BEF research already consid-
ered multiple trophic levels (e.g., Nacem and Li, 1997; Naeem et al., 1994),
the understanding of how multitrophic communities change their diversity
and how this affects their functioning in terrestrial ecosystems remains limited
(Eisenhauer et al., 2013; Haddad et al., 2009; Scherber et al., 2010). More-
over, terrestrial BEF research so far has virtually neglected the fact that primary
producers do net function in isolation, but in a complex network of multi-
trophic, and also non-trophic interactions (Fig. 2; Duffy, 2002; Hines et al.,
2015b; Seabloom et al., 2017; Sobral et al., 2017; Tiede et al., 2016).

p0145 In complex food webs, the magnitude or rates of different ecosystem
functions is tightly coupled to the community size structure describing
how the body masses of species and individuals are distributed across trophic
levels (Brose et al., 2017; Dossena et al., 2012). For instance, subtle shifts in
the body mass structure of top consumer populations can induce strong
trophic cascades with pronounced effects on primary production
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Trophic position
Mobility

f0015 Fig. 2 A multitrophic perspective on biodiversity—ecosystem functioning research.
Mobility tends to increase with increasing trophic position in ecological networks,
and some work suggests that the vulnerability to environmental change does, too
(Hines et al., 2015a; Voigt et al., 2003), although species at all trophic levels may be vul-
nerable to changing environments based on their specific life-history traits. This means
that the previous focus of BEF experiments on the primary producer level does not nec-
essarily reflect that this is the most vulnerable trophic level to environmental change.
This simple aboveground food web serves as the basis for other figures in this chapter. It
illustrates that species within complex communities are connected by trophic links that
can represent ecosystem functions and services (see also Fig. 3); although not shown
here, the same concept applies to belowground food webs and ecosystem functions.

(Jochum et al., 2012). Consistently, analyses of complex food-web models
demonstrated that primary production may be more tightly coupled to the
trophic level and body mass of the top consumer than to total or plant diver-
sity (Wang and Brose, 2018). Thus, ecological networks are an important
tool that can be used to evaluate links that drive trade-ofts between multiple
ecosystem functions (Fig. 3; Brose et al., 2017; Hines et al., 2015b).

p0150 In fact, there 1s strong empirical evidence that, across ecosystems, the
diversity at higher trophic levels is important for providing multiple ecosys-
tem functions and services (Barnes et al., 2018; Bruno et al., 2006, 2008;
Gessner et al., 2010; Hines et al., 2015b; Lefcheck et al., 2015; Schneider
et al., 2012, 2016; Schuldt et al., 2018; Soliveres et al., 2016a; Wang et al.,
2019). This was, for example, shown by manipulating stream-living
macroinvertebrates and investigating their effect on decomposition
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Biodiversity and Ecosystem Functioning
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land use ‘x land use
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Ecosystem Services
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0020 Fig. 3 Multitrophic communities drive ecosystem multifunctionality. This scheme
depicts relationships between the diversity of species in aboveground-belowground
networks and the management of multiple ecosystem services across adjacent agricul-
tural ecosystems. Management decisions, such as intensifying agricultural practices
(right part of the figure), that focus on locally maximizing one ecosystem service, such
as crop yield, can limit the other ecosystem services provided in complex food webs in a
given area (e.g., pest control is reduced, indicated by higher biomass of aphid and vole).
Note that the stability of delivering the focal service decreases in this example (larger
error bar in crop yield) at high land-use intensity (Isbell et al., 2017b). Socio-political
context related to human population density and stakeholder interests can influence
feedbacks between ecosystem services and the management of complex ecosystems.
Importantly, ecosystem services are not solely provided by single nodes in the food web
and at a single location, but by the interaction among multiple nodes (colours of exam-
ple links between nodes in upper part, correspond to ecosystem service bar colours in
lower part) across adjacent ecosystems. Redrawn after Hines, J., van der Putten, W.H., De
Deyn, G.B,, Wagg, C, Voigt, W., Mulder, C,, Weisser, W.W., Engel, J., Melian, C, Scheu, S.,
Birkhofer, K., Ebeling, A., et al., 2015. Towards an integration of biodiversity-ecosystem func-
tioning and food web theory to evaluate relationships between multiple ecosystem services.
Adv. Ecol. Res. 53, 161—199.
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(Cardinale etal., 2002; Handa et al., 2014), or by manipulating the diversity of
aphid natural enemies and investigating pest control (Cardinale et al., 2003).
Biodiversity changes at higher trophic levels of aquatic ecosystems have been
shown to exert cascading effects on the biomass production at lower levels
(Dufty et al., 2007; Worm and Dufty, 2003). This finding was generalized
by models of complex food webs, in which increased animal diversity led
not only to higher herbivory but also, counter-intuitively, to higher primary
production by plants (Schneider et al., 2016). This surprising finding is
explained by systematic trait shifts in the plant communities that are induced
by the increased top-down pressure (Schneider et al., 2016). These results
contribute to the general notion that biodiversity changes across trophic levels
can have complex indirect effects, which strongly calls for a multitrophic
whole-ecosystem perspective for mechanistically understanding BEF rela-
tionships (Barnes et al.,, 2018; Brose and Hillebrandy 2016; Eisenhauer,
2017; Hines et al., 2015b; Seibold et al., 2018; Thompson et al., 2012;
Worm and Dutfty, 2003).

po155 Ultimately, the understanding of real-world BEF relationships requires
coupling multitrophic biodiversity change and indirect effects among
species addressed at local habitat scales with spatio-temporal upscaling to
the landscape level. However, research on multitrophic interactions and
quantitative food-web changes in space and time is little developed so far
(but see, e.g., Grass et al., 2018; Tscharntke et al., 2012). Across ecosystems,
the increase in the number of interactions between species is predictably
linked to the simultaneous increase in the number of species (Brose et al.,
2004). This connection between species-area and link-area relationships
facilitates the prediction of food-web complexity at the landscape level,
but upscaling of BEF relationships would also require integrating the iden-
tities or traits of species and their interactions into models. In this vein,
behavior- and trait-based allometric random walk models (Hirt et al.,
2018), as well as extensions of the classic theory of island biogeography that
account for effects of the species’ trophic levels (Gravel et al., 2011), body
masses (Jacquetet al., 2017), and network-area relationships (Galiana et al.,
2018), have great potential to become important cornerstones of novel BEF
upscaling approaches (see also section “Spatial scaling of BEF relationships”).

p0160 In order to account for the finding of substantial species turnover and
biotic homogenization due to human activities (Dornelas et al., 2014;
Gossner et al., 2016), future BEF experiments may also include both species
gains and losses (Mori et al., 2018; Wardle et al., 2011) across different tro-
phic levels. Integrating trophic complexity will be key to account for
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cascading, facilitative, and competitive effects in order to understand how
biodiversity affects whole-ecosystem functioning (Barnes et al., 2018),
regardless of the direction of biodiversity change (loss or gain; Wardle,
2016). Moreover, biotic homogenization across trophic levels may have
important implications for the stable provisioning of multiple ecosystem ser-
vices (Hautier et al., 2018; Pasari et al., 2013; van der Plas et al., 2016a,b) as
synchrony in responses across species may compromise ecosystem function-
ing (Craven et al., 2018; de Mazancourt et al., 2013). Higher synchrony
among species in space and time may be particularly deleterious for ecosys-
tems with ongoing global change as predicted by the temporal and spatial
insurance hypotheses of biodiversity (Loreau et al., 2003a; Yachi and
Loreau, 1999).

p0165 The explicit quantification of fluxes of energy and matter in BEF exper-
iments would greatly facilitate the integration of different trophic levels
(Barnes et al., 2014, 2018; Lindeman, 1942; Stocker et al., 1999; Wilsey
and Polley, 2004). Flux rates may be more sensitive and may show faster
responses to variations in biodiversity than pools (Meyer et al., 2016; but
see Liu et al., 2018 for a counter example). Evidence for this, however, is
scarce (but see Allan et al., 2013; Niklaus et al., 2016), but this deserves
further attention, particularly in long-term (Huang et al., 2018; Meyer
et al., 2016) and multitrophic experiments (Eisenhauer, 2017). An Ecotron
study with intact soil monoliths from the Jena Experiment (Milcu et al.,
2014) under controlled conditions allowed for the quantification of the
effects of plant diversity on ecosystem carbon fluxes and uptake efficiency
of plants. Indeed, it was observed that increasing plant species and functional
diversity led to higher gross and net ecosystem carbon uptake rates, and
effects were partly mediated by the leaf area index and the diversity of leaf
nitrogen concentrations of the plant community (Milcu et al., 2014). While
the consideration of multitrophic interaction partners in such studies is still in
its infancy, new research infrastructures have been established to explore the
role above- and belowground food webs in fluxes of energy and matter
(Eisenhauer and Turke, 2018).

p0170 Assessing energy flux dynamics in ecological networks provides the
mechanistic underpinning of multitrophic BEF relationships, which is
why the quantification of energy fluxes in food webs may be a powerful tool
for studying ecosystem functioning in multitrophic systems ranging from
biodiversity experiments to real-world ecosystems (Barnes et al., 2018).
By combining food-web theory with BEF theory (Hines et al., 2015b),
whole community energy-flux assessment enables investigators to quantify
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many different types of multitrophic ecosystem processes without having to
measure them all separately (Barnes et al., 2018). Energy flux can then be
used as an integrated measure and a common currency to compare certain
types of processes (e.g., herbivory or predation) across difterent ecosystem
types (Barnes et al., 2018); however, energy-flux calculations need to be val-
idated by actual process measurements (e.g., Schwarz et al., 2017), which in
complex ecosystems such as grasslands and forests poses a serious challenge.

so0s0 2.2 Predicting the strength of BEF relationships across
environmental contexts

“The idea that the mechanisms underpinning species coexistence are the same as
those that link biodiversity with ecosystem functioning can be traced all the way
back to Darwin’s principle of divergence...”

Turnbull et al. (2013)

po180 The strength and sign of BEF relationships have been reported to differ among
studies as well as among biotic and environmental contexts (e.g., Baert et al.,
2018; Fridley, 2002; Guerrero-Ramirez et al., 2017; Jousset et al., 2011;
Jucker et al., 2016; Kardol et al., 2018; Ratcliffe et al., 2017; Steudel et al.,
2012; but see Craven et al.,, 2016). We still have scant knowledge about
how and why effects of the diversity and composition of communities on eco-
system functions vary. How context-dependent are BEF relationships, and
what biotic and abiotic factors drive this context-dependency?

po185 There have been several empirical attempts to study BEF relationships
under different environmental contexts, such as the BIODEPTH experi-
ment across eight European countries (Hector et al., 1999), the COST
Agrodiversity experimental network across 31 sites in Europe and Canada
(Finn et al., 2013; Kirwan et al., 2007), the global network of tree diversity
experiments in TreeDivNet (Grossman et al., 2018; Paquette et al., 2018),
the global Nutrient Network (Borer et al., 2014, 2017), the global meta-
analyses in drylands (Maestre et al., 2012) and forests (Guerrero-Ramirez
et al., 2017), the BioCON experiment in Cedar Creek studying effects
of elevated CO, concentrations and N deposition (Reich et al., 2001),
the BAC experiment in Cedar Creek exploring warming effects (Cowles
et al., 2016; Pennekamp et al., 2018; Thakur et al., 2017), the two sites
of the BEF-China experiment (Huang et al., 2018), and the Jena drought
experiment (Vogel et al., 2012). Moreover, in the Jena Experiment
(Roscher et al., 2004), researchers have applied a large number of subplot
treatments to study if plant diversity effects are contingent upon manage-
ment intensity (Weigelt et al., 2009), above- and belowground consumers
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(Eisenhauer et al.,, 2011), and plant invasion (Petermann et al., 2010;
Roscher et al., 2009; Steinauer et al., 2016). Although some studies report
BEF relationships in plant diversity experiments to be consistent across abi-
otic and biotic contexts (e.g., Craven etal., 2016; O’Connor etal., 2017; Thakur
etal., 2015), there is substantial variability within and across studies depending on
the point in time of the measurement (Kardol et al., 2018; Reich et al., 2012;
Wright et al., 2015), the biodiversity facet investigated (Craven et al., 2016),
and the trophic level and complexity of the studied community (Beugnon
etal., 2019; Mulder et al., 1999; O’Connor et al., 2017; Seabloom et al., 2017).

p0190 In response to some of the initial debates regarding the validity of BEF
relationships across environmental contexts (e.g., Givnish, 1994; Tilman
and Downing, 1994), previous BEF research focused heavily on completely
removing any “confounding” effects of abundance, biomass, and environ-
mental gradients, in order to isolate and quantify “true’ biodiversity effects.
It is, however, important to understand biodiversity effects in the context
of other co-varying factors to better predict scenarios of ecosystem function
given species gains or losses (which covary with many other factors; Wardle,
2016). Future research should thus aim at understanding the functional role
of biodiversity in dynamic ecosystems that are not at competitive equilib-
rium (Brose and Hillebrand, 2016; Leibold et al., 2004) as well as in affecting
multiple dimensions of stability under changing environmental conditions
(Donohue et al., 2016; Pennekamp et al., 2018). Such information is, for
instance, urgently needed to inform predictive BEF models and to provide
tailored management recommendations that account for local environmen-
tal conditions (Guerrero-Ramirez et al., 2017).

p0195 Conceptual advances are likely to be achieved by utilizing niche and
coexistence theory to understand the context-dependency of BEF relation-
ships (Barry et al., 2019; Turnbull et al., 2016). Environmental change often
affects the composition ‘of communities by altering the environmental
conditions, modifying available niche space directly (niche destruction;
Harpole et al., 2016) and/or indirectly through altered biotic interactions
(Turnbull et al,, 2016). For instance, the addition of nutrients has been
repeatedly shown to favour the growth of certain plant species with high
nutritional demands and fast uptake strategies (Clark et al., 2007; Harpole
and Tilman, 2007; Harpole et al., 2016; Vogel et al., 2019a). Increased plant
growth of some species, in turn, induces the shading of other species, which
then disappear because their niche requirements are no longer met (Hautier
et al., 2009). The resulting loss of species then undermines ecosystem
functions of the depauperate plant communities (Isbell et al., 2013).
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p0200 The same mechanisms that permit the coexistence of different species,
namely niche difterences, also are the key for the complementary resource
use and resultant overyielding (Barry et al., 2019¢; Loreau, 2004; Tilman
et al., 1997b; Turnbull et al., 2013, 2016; Vandermeer, 1981) and transfer
of energy across trophic levels (Barnes et al., 2014). Niche differentiation
and facilitation within (Cardinale et al., 2007; Reich et al., 2012; Wright
et al., 2017) and across trophic levels (Ferlian et al., 2018; Poisot et al.,
2013) are often found to be the main mechanisms behind positive BEF
relationships. As a consequence, changes of the environmental conditions
that influence the co-existence of species are also likely to affect the strength
of BEF relationships (Barry et al., 2019b). In support of this notion, positive
BEF relationships have been shown to be strongest in complex resource
environments (Fig. 4) and to become non-significant or even negative in
homogenous resource environments (Eisenhauer et-al., 2013; Hodapp
et al.,, 2016; Jousset et al., 2011; Mouquet etwal.;»2002; Norberg et al.,
2001). Hodapp et al. (2016) generalized this to resource supply heterogene-
ity landscapes and showed that strongly positive effects of richness on eco-
system function occur only if (1) species differ in traits, (2) environments
show heterogeneity, and (3) dispersal allows effective species sorting.
Research on algal model communities in relatively structured environments
(flow habitats and disturbance regimes) has shown that communities with
more species take greater advantage of the niche opportunities in a given
environment, and this allows diverse systems to better perform ecosystem
functions (Cardinale, 2011; Stachowicz etal., 2007, 2008a). Taken together,
these results indicate that environmental heterogeneity promotes comple-
mentarity effects (see, e.g:, Wacker et al., 2008) and thus steeper BEF rela-
tionships (Fig. 4), suggesting that habitat homogenization may compromise
positive biodiversity effects on ecosystems.

p0205 To study the context-dependence of BEF relationships, different site-
specific conditions for biodiversity effects, including environmental stress
and resource availability (Fig. 4), will need to be disentangled (Baert
et al., 2018; Guerrero-Ramirez et al., 2017). Global networks of experi-
ments using standardized methods (Grossman et al., 2018; Lefcheck et al.,
2016; Meyer et al., 2015) and syntheses of data are needed and have proven
to be extremely powerful in detecting global biodiversity(-function) patterns
and underlying mechanisms (e.g., Nutrient Network; Borer et al., 2014,
2017; Grace et al., 2016). Notably, such standardized assessments are partic-
ularly important for quantifying multitrophic interactions across environ-
mental gradients (Kambach et al., 2016; Roslin et al., 2017) that are
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f0025 Fig. 4 Context-dependent biodiversity—ecosystem functioning (BEF) relationships;
examples include (A) environmental heterogeneity, (B) environmental stress,
(Q) trophic level, (D) spatial and temporal scale, and (E) resource availability. Although
the proposed relationships are supported by some studies (examples given, no compre-
hensive list of studies), a thorough understanding of the context-dependency of BEF
and the underlying mechanisms is elusive. Thus, the depicted relationships should
be regarded as working hypotheses for future research. See also Bardgett and
Wardle (2010) (Fig. 5.3 and references therein) for a similar conceptualization of the
context-dependency of BEF relationships-that are mostly based on observational stud-
ies and removal experiments, rather than on random biodiversity manipulation exper-
iments, as done here. For panel.(B), we followed the definition by Chase and Leibold
(2003), stating that “stressful niche factors limit the per capita population growth rate
of the focal population, but are not influenced by changes in the population size.” 7:
Stachowicz et al. (2008b), 2: Griffin et al. (2009), 3: Cardinale (2011), 4: Jousset et al.
(2011), 5: Baert et al. (2018), 6: Lefcheck et al. (2015), 7: Cardinale et al. (2007), 8:
Eisenhauer et al. (2010), 9: Cardinale et al. (2011), 10: Isbell et al. (2011), 71: Reich
et al. (2012), 12: Thakur et al. (2015), 13: Meyer et al. (2016), 14: Guerrero-Ramirez
et al. (2017), 15: Kardol et al. (2018), 16: Reich et al. (2001), 17: Fridley (2002), 18:
Craven et al. (2016), 19: Zhang and Zhang (2006).

intimately linked with ecosystem function (Eisenhauer et al., 2019). For
instance, different tree diversity experiments around the globe collaborate
in the framework of TreeDivNet (Paquette et al., 2018; Verheyen et al.,
2016) and allow for countering criticisms related to realism, generality,
and lack of mechanistic explanation in their work (Grossman et al., 2018;
Paquette et al., 2018). However, empirical work and syntheses should
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not be restricted to certain ecosystems, but should span across ecosystem
types (e.g., aquatic and terrestrial; Balvanera et al., 2006; Cardinale et al.,
2011; Handa et al., 2014; Lefcheck et al., 2015; Ruiz-Gonzalez et al.,
2018; Schuldt et al., 2019). Recent modelling (e.g., Baert et al., 2018)
and empirical work (e.g., Guerrero-Ramirez et al., 2017) provide exciting
working hypotheses for future research (Fig. 4).

so0s5 2.3 Spatial scaling of BEF relationships

“Biodiversity loss substantially diminishes several ecosystem services by altering
ecosystem functioning and stability, especially at the large temporal and spatial
scales that are most relevant for policy and conservation.”

Isbell et al. (2017a)

p0215 To date, BEF relationships have mostly been investigated at small scales (e.g.,
in microcosms, mesocosms, or small plots; Cardinale.et al., 2011), raising the
question “How does the BEF relationship change with spatial scale?”
(Barnes et al., 2016; Isbell et al., 2017a; Manning et al., 2019; Thompson
et al., 2018). Accordingly, Mori et al. (2018) recently stressed the need
for unification of beta-diversity and among=patch ecosystem-function the-
ory. The focus on small-scale studies'may also be one reason for described
mismatches between local-scale observational and experimental BEF studies
and conclusions drawn for management-relevant scales in non-experimental
settings (Ochri et al., 2017; van der Plas et al., 2016a,b). Thus, future
research needs to bridge the gap between results from local-scale BEF exper-
iments and real-world relevant scales in order to understand whether and
how biodiversity effects are important at the landscape scale (Cardinale
et al., 2012; Isbell et al., 2017a; Thompson et al., 2018). There is empirical
evidence suggesting that the importance of biodiversity in driving ecosystem
functions increases as.more spatial contexts, i.e., different environmental
conditions, are considered (Grace et al., 2016; Hautier et al., 2018; Isbell
et al., 2011; Mori et al., 2016; Thompson et al., 2018), stressing the role
of environmental heterogeneity in driving the strength and mechanisms
of BEF relationships (Cardinale, 2011; Griffin et al., 2009). One solution
may be the development of spatial upscaling algorithms to relate local
BEF findings to patterns at the landscape scale. Using such an approach,
Barnes et al. (2016), however, showed that the relative importance of bio-
diversity for ecosystem functions decreased with increasing spatial scale.
Such contradicting findings are also observed in fragmentation-biodiversity
studies when focusing on patches or landscapes (Fahrig et al., 2019), and
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integrating the ecosystem function aspect in fragmentation studies may
help bridging this field of research to BEF (Fahrig, 2017). Hence, the
mechanisms dominating biodiversity and functions might differ between
small and large spatial scales (Loreau et al., 2003a,b). This indicates the need
for future research on this topic, particularly if we are to integrate knowledge
from BEF experiments in ecosystem service modelling and other spatial
mapping exercises.

p0220 ‘While BEF experiments have been “stuck” in plots and buckets, meta-
community theory has been dealing with species appearance and disappear-
ance without an explicit link to ecosystem functioning (Bannar-Martin
et al., 2018; Leibold and Chase, 2018; Leibold et al., 2004,/2017; but see
Loreau et al., 2003b). Thus, species pools and their turnover and dynamics
need to be incorporated into BEF research (Bannar-Martin et al., 2018;
Wardle, 2016) to consider the links between community assembly/coexis-
tence mechanisms (e.g., dispersal, demographic stochasticity, niches/traits)
and ecosystem functioning (Hillebrand et al.; 2018). One step towards this
goal may be to identify trade-offs in spatial and temporal scales at which
diversity maximizes single and multiple ecosystem functions. In fact, consid-
ering multitrophic consumer networks that link different landscape patches
and ecosystem compartments through the flux of energy across trophic levels
(Barnes etal., 2014) might be a promising approach to facilitate the upscaling
oflocal processes to landscape-level function (Fig. 5; Barnes et al., 2018). For
instance, future research efforts on land-use change and restoration could
be targeted towards manipulating biodiversity at different spatial scales
and exploring whole-ecosystem consequences within and across difterent
patches and compartments. Another option are disturbances acting at the
landscape scale. They offer excellent options for BEF studies at larger spatial
scales, but research plans-have to be made long before such disturbances
happen (Lindenmayer ctal., 2010).

p0225 Dispersal may' promote the functioning of ecosystems in two ways
(Leibold et al.;72017; Loreau et al., 2003a; Thompson and Gonzalez,
2016). First, species dispersal and community assembly processes may allow
species to track local environmental changes by shifting in space, which may
then preserve biodiversity and ensure high ecosystem functioning (Leibold
et al., 2017; Loreau et al., 2003a; Thompson and Gonzalez, 2016). Second,
source—sink dynamics may allow species to persist in suboptimal environ-
ments, thus increasing local biodiversity over time, although this does not
necessarily promote functioning (Leibold et al., 2017). Species-sorting
dynamics also provide spatial insurance, so that compensatory dynamics
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f0030 Fig.5 Complex communities link different habitats, a consideration that may facilitate
the upscaling of BEF. Conceptual illustration of how multitrophic interactions across
ecosystem boundaries can link different ecosystem types and compartments, including
above- and belowground compartments, forests and grasslands, as well as terrestrial
and aquatic ecosystems. Links between different network modules in these subsystems
provide stability of trophic dynamics, matter and energy flow across system boundaries
as well as stability of ecosystem function and service delivery (Barnes et al., 2018).

stabilize the fluctuations of each function through time at the regional, but
not necessarily at the local scale’ (Loreau et al., 2003a; Thompson and
Gonzalez, 2016). Relatedly, spatial network modularity has a buffering
effect in perturbed experimental metapopulations, protecting some local
subpopulations from the perturbation (Gilarranz et al., 2017) or providing
empty patches for recolonization, ultimately stabilizing the metapopulation
(Fox et al., 2017). Adding to this complex picture, there is experimental
evidence suggesting that also habitat isolation and matrix quality influence
biodiversity and ecosystem functioning (Spiesman et al., 2018). Thus, the
fragmentation and connectivity of habitat patches as well as the mobility
of taxa driving meta-community dynamics are likely to be of great impor-
tance, yet understudied in BEF research (Gonzalez et al., 2017).

p0230 Most terrestrial ecosystems have soft boundaries that are highly perme-
able for many species. Accordingly, different ecosystems should not be
regarded in isolation but in the context of surrounding ecosystems. For
instance, biodiversity effects on adjacent ecosystems should be studied to
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explore the links between ecosystems (e.g., by linking aquatic ecosystems,
forests, agricultural fields, etc.) and the role of “source” and “sink” dynamics
in fluxes of elements, energy, organisms, biomass, and information between
adjacent ecosystems (Gounand et al., 2018; Knight et al., 2005). Here, the
investigation of key organisms linking different ecosystems may be particu-
larly relevant to move from the plot scale to the landscape scale (Barnes et al.,
2018; Fig. 5) as well as to define conservation priorities and corresponding
management practices.

soos0 2.4 Eco-evolutionary implications of multitrophic BEF

“Nothing in evolution or ecology makes sense except in the light of the other.”
Pelletier et al. (2009)

p0240 Ecology and evolution are sometimes thought of as acting at different time-
scales, which might explain why evolutionary processes have rarely been
considered in past BEF research. However, a growing body of literature
shows that evolutionary processes can be rapid and of relevance at what is
commonly considered ecological timescales (Carroll et al., 2007; Hendry,
2016), such that a strict time-scale separation is no longer useful. Further-
more, the study of the molecular basis of adaptation has experienced a
boost due to recent technological developments (Bosse et al., 2017;
Savolainen et al., 2013; Stapley_et al., 2010; Wuest and Niklaus, 2018).
BEF research may greatly benefit from embracing the rich and growing
body of knowledge on micro-evolutionary processes, population genetics,
and the molecular basis of adaptation, because adaptation and evolutionary
processes are likely to contribute to the dynamic nature of BEF relationships
(e.g., Tilman and Snell-Rood, 2014; van Moorsel et al., 2018; Zuppinger-
Dingley et al., 2014). Such-eco-evolutionary processes can ideally be studied
in the few long-term experiments worldwide that have been run for
multiple generations of the organisms studied.

p0245 Undoubtedly, members of an ecological community impose selection
pressures onto each other. For example, changing phenotypes have been
reported in a number of plant species in response to manipulated biodiversity
gradients (Lipowsky et al., 2011, 2012; Schob et al., 2018; Zuppinger-
Dingley et al., 2014, 2016). Phenotypic changes may allow different
coexisting species to use resources in more dissimilar and complementary
ways, thereby reducing competition, maximizing growth, and favouring
stable coexistence (Tilman and Snell-Rood, 2014; Zuppinger-Dingley
et al., 2014). Yet, we know too little about the relative importance of

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s),
editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of
the publisher and is confidential until formal publication.




These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product
has not been planned. The colour figures will appear in colour in all electronic versions of this book.

A multitrophic perspective on BEF research 27

phenotypic plasticity, transgenerational epigenetic processes (Schmid et al.,
2018), and genuine evolutionary adaptation that simultaneously contribute
to phenotypic changes (Hoffmann and Sgro, 2011; Zuppinger-Dingley
et al., 2014). Such knowledge is important, however, in order to estimate
how lasting and/or reversible the effects are.

p0250 There are a number of ways in which micro-evolutionary processes may
help to understand and predict BEF relationships. For example, a significant
role of the comparatively slow process of evolutionary adaptation may
explain the observation of strengthening BEF relationships over time in
grassland experiments (Tilman and Snell-Rood, 2014; Vogel et al., 2019b;
Zuppinger-Dingley et al., 2014). Furthermore, micro-evelutionary dynam-
ics may lead to positive feedback loops that can affect ecosystem functioning.
Natural selection is usually expected to reduce genetic variance, but genetic
variation provides the raw material for future adaptation (Mousseau and
Roft, 1987). Frequent changes in the selective regime may thus jeopardize
populations’ persistence (Hoftmann and Sgro, 2011). Phenotypic plasticity,
in contrast, may buffer populations against changing selection regimes
(Charmantier et al., 2008). Taking into account the relative importance of
phenotypic plasticity and micro-evolutionary adaptation will be essential
for the understanding of how adaptation processes affect BEF relationships.

p0255 Members of a community mutually influence each other during the
selection process (Jousset et al.,~2016; Tilman and Snell-Rood, 2014).
Two aspects seem to be particularly relevant in the context of community
assembly. First, functionally similar and/or related species will be selected
for character displacement and niche differentiation, thereby promoting
specialization, coexistence, and ecosystem processes (Harmon et al., 2009;
Tilman and Snell-Rood, 2014). The genetic and evolutionary mechanisms
of such processes have rarely been studied in BEF research. Second, species
may co-evolve together with their antagonists, e.g., pathogens (Vogel et al.,
2019b). Here, the species involved can differ substantially in generation
time. Pathogens may adapt and change quickly, imposing persistent and
likely fluctuating selection pressure on host species. Indeed, several studies
showed that negative plant-soil feedback effects can induce a decrease in
plant growth in monoculture (e.g., Hendriks et al., 2013; Maron et al.,
2011; Schnitzer et al., 2011). Deteriorating monocultures over time indi-
cates that Janzen-Connell effects, the accumulation of species-specific plant
antagonists, may play an important role in BEF relationships (Petermann
et al., 2008). Zuppinger-Dingley et al. (2014) proposed that a respective
selection pressure should be particularly pronounced in low-diversity plant
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communities (see also van Moorsel et al., 2018). In contrast, accumulation
of such species-specific plant antagonists in high-diversity plant communi-
ties would be impeded because of lower host densities (Civitello et al., 2015;
Hantsch et al., 2013, 2014; Rottstock et al., 2014). On the other hand, pro-
longed time in monocultures in the Jena Experiment has converted negative
into positive net plant-soil feedback eftects (Zuppinger-Dingley et al.,
2016), which could be partly due to evolved resistance of the plants and/or
a slower build-up of communities of mutualists like the accumulation of
plant growth promoting rhizobacteria (Latz et al., 2012) in.comparison to
antagonists. Taken together, these lines of evidence suggest that dissimilar
host-pathogen interactions at low versus high biodiversity may impose
different selection pressures on community members, both at the level of
plant species and genotypes (Roscher et al., 2007).

p0260 Genetic diversity within species offers the raw material for future adap-
tations (Jousset et al., 2016), even if some of the variation may not be utilized
under current conditions (Paaby and Rockman; 2014). Genetic variation,
thus, serves as a genetic insurance for population persistence and ultimately
for sustained ecosystem functioning. It is vital to understand the processes
that affect intra-specific diversity in communities differing in species diver-
sity (Vellend and Geber, 2005). Genetic diversity depends on the effective
population size, which in turn is determined by census size, reproductive
system, spatial structure, and the-intensity and shape of natural selection.
Strong directional and stabilizing selection both tend to reduce genetic
diversity. The potential cascading effects of community diversity on popu-
lation diversity and eventually intra-specific and phylogenetic diversity as
well as consequences for ecosystem functioning are poorly studied (but
see Crutsinger et al., 2006; Hughes et al., 2008; Zeng et al., 2017). In fact,
there has been a recent interest in how populations assemble with respect to
functional diversity, but also phylogenetic diversity, and the underlying
mechanisms are relevantin the BEF context as community assembly and dis-
assembly processes have implications for the long-term functioning of plant
communities (Vogel et al., 2019a). Species difter partly due to divergent
directional selection. Under the premise that phylogenetic distance contains
a signal of divergent selection for (unknown) functional traits, phylogenetic
distance can be used as a proxy for functional diversity (Cadotte et al., 2008;
Vogel et al., 2019a). However, such genetic conservatism may be highly
variable among traits, for instance among leaf and root traits of plants
(e.g., Valverde-Barrantes et al., 2017). Therefore a combination of traits
and stepwise phylogeny has been proposed (Cadotte, 2013) and successfully
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applied in multitaxon studies (Thorn et al., 2016). Translating these chal-
lenges that have mostly been addressed for herbaceous plants to higher tro-
phic levels, it is also relevant to explore how much phylogenetic diversity is
represented within multitrophic communities for applied conservation
aspects (Eisenhauer et al., 2019).

p0265 The field of ecological genetics has seen a great expansion in opportu-
nities by the rapid development of next-generation sequencing tech-
nologies (Savolainen et al., 2013). It is now possible to sequence and
assemble the genome of just about any species at manageable cost, which
allows the study of the genomics of previous non-model organisms in nat-
ural conditions (Ellegren, 2014; Savolainen et al., 2013; Stapley et al.,
2010). Genotyping-by-sequencing techniques allow the study of genetic
polymorphisms without much cost- and labor-intensive development of
genetic markers and gives an unbiased view on population-wide genetic
diversity (Narum et al., 2013). There are manyways how these new tech-
nologies can be employed in a BEF context. ‘A particularly exciting avenue
is the study of co-evolutionary dynamics in multi-species systems up to the
community level. Genomic and transcriptomic methods may allow to
uncover the genetic architecture of functional trait variation (Schielzeth
and Husby, 2014). Moreover, population genomics allows studying the
population structure and inbreeding patterns at high resolution across mul-
tiple species. Ultimately, such knowledge will help to link the diversity at
the genome level to ecosystem-level processes (Wuest and Niklaus, 2018)
and to explore the role of species interactions driving these interlinkages.

sooes 2.5 FAIR data and beyond

“The grand challenge for-biodiversity informatics is to develop an infrastructure to
allow the available data tobe brought into a coordinated coupled modelling envi-
ronment able to address questions relating to our use of the natural environment
that captures the variety, distinctiveness and complexity of all life on Earth.”
Hardisty and Roberts (2013)

p0275 Data plays an increasingly important role for BEF research (Trogisch et al.,
2017). As for other subdisciplines of biodiversity research, this results in a
need for improved biodiversity informatics along all steps of the data life-
cycle from data collection to data analysis and publication (Hardisty and
Roberts, 2013). Due to the availability of novel methods like high-
throughput sequencing, automatic monitoring, and remote sensing, more
and more data are being produced in BEF research. Thus, the resulting data
is likely to play an important role in future BEF research, as high-throughput
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sequencing has the potential to help identifying potential microbial drivers
of BEF relationships (e.g., Laforest-Lapointe et al., 2017), automatic
monitoring may be key to link behavioural ecology of animals to multi-
trophic BEF (e.g., Dell et al., 2014; Eisenhauer and Turke, 2018), and
remote sensing is likely to help scaling up BEF research to the landscape scale
(e.g., Cabello etal., 2012). Often, the amount of such data collected exceeds
available resources for manually processing this data. Recently established
methods in machine learning, in particular deep neural networks, have
the potential to alleviate this problem (see Brust et al., 2018 and Ryo and
Raillig, 2017 for successful examples). Currently, however, the applicability
of these methods is restricted by their need for large sets of labelled training
data. Further development of methods to reduce the need for training data
and/or semi-automatically label data are needed. Additionally, better tools
for data quality assurance and improvement are needed;such as comprehen-
sive data quality frameworks (Morris et al., 2018; Veiga et al., 2017). These
are not yet part of commonly used data management platforms though.

p0280 Answering important questions in BEF research often requires data that
covers large temporal and spatial scales. Few projects run long enough or
cover a wide enough geographical range to.be able to collect all the data
needed themselves. Thus, BEF research relies on data reuse and sharing—
both within and across projects. This necessitates BEF data being preserved
tollowing the FAIR principles (Wilkinson et al., 2016): data should be find-
able, accessible, interoperable, and reusable. This urgent need was described
even before the term FAIR was.coined (Hampton et al., 2013). For data to
be findable, it needs to be described with rich metadata. While suitable
annotation schemes exist for some types of biodiversity data (e.g., ABCD
for collection data or Darwin Core for occurrence data), they are still lacking
for more complex BEF data. The Easy Annotation Scheme for Ecology
(Pfaff” et al., 2017)-or BioSchemas (http://bioschemas.org; Gray et al.,
2017), for instance, aim to alleviate this problem. In addition to better
annotation schemes, better tools to reduce the human effort in creating
these annotations are needed. First examples for such approaches in other
disciplines show the general feasibility (Rodrigo et al., 2018).

p0285 The best described dataset will not be found, if no appropriate search
engines exist. Even though Google recently launched a dataset search, in
general, this topic is not yet well researched and poses a number of funda-
mental challenges (Chapman et al., 2019). Besides finding relevant data,
integrating this data is a challenging and labor-intense task. Both tasks could
be made considerably easier by the usage of semantic web technologies, in
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particular the usage of ontologies (Gruber, 1993) and compliance to the
linked open data principles (Bizer et al., 2008). This is also addressed in
the parts of the FAIR principles related to interoperability and reusability.
Finally, there is growing awareness, that preserving data alone is not suffi-
cient for reproducibility. Rather, analysis tools and workflows need to be
preserved as well (Hardisty et al.,, 2019). Culturally, a shift is needed to
incentivize proper data management and sharing. Although there are warn-
ings stating that a raise in openly available datasets might create the illusion of
“a free lunch for all” and that this system will collapse, if the considerable
effort that goes into providing datasets is not properly incentivized
(Escribano et al., 2018), we believe that open data are absolutely necessary
to facilitate fast scientific progress.

s0070 2.6 Operationalizing BEF insights for ecosystem management,
society, and decision making

"A mix of governance options, policies and management practices is available for
public and private actors in Europe and Central Asia, but further commitment is
needed to adopt and effectively implement them to address the drivers of change,
to safequard biodiversity and to ensure nature's contributions to people for a good
quality of life.”

IPBES (2018)

p0295 With the rising human population size, per capita consumption, and
subsequent ecosystem service demands, there is an increasing need for bring-
ing the ecological, fundamental BEF knowledge into action in order to
develop applications for the sustainable management of ecosystems, such
as agroecosystems (Isbell et al., 2017a,b). Will ecosystems be managed in
an ecologically sustainable way or will increasing demands be temporarily
compensated by higher management intensity only to be followed by
long-term depletionof “agriculturally used soils? Indeed, recent studies
have pinpointed many potential benefits of increased biodiversity in
agroecosystems-and_production forests (Isbell et al., 2017b; Gérard et al.,
2017; Martin-Guay et al., 2018; Pretty, 2018). These conclusions are
supported by a long history of intercropping literature that highlights the
importance of increasing biodiversity in space and time to maintain crop
yields (e.g., Darwin, 1859; Trenbath, 1974; Vandermeer, 1990). In this
context, BEF research has the potential to apply the multifunctionality
concept (Byrnes et al., 2014; Hector and Bagchi, 2007) to move beyond
considering multifunctionality a suite of independent functions, but rather
to consider synergies and trade-offs among different ecosystem services
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(Fig. 3; Allan et al., 2015; Binder et al., 2018; Giling et al., 2019; Hines et al.,
2015b; Manning et al., 2018; Meyer et al., 2018; see also Manning et al.,
2019 for an in-depth discussion of this topic). Biodiversity potentially pro-
vides a partial substitute for many costly and non-sustainable agricultural
management practices, such as the application of fertilizers, pesticides, impo-
rted pollinators, and irrigation (Finger and Buchmann, 2015; Isbell et al.,
2017b; Tilman et al., 2006; Weigelt et al., 2009).

p0300 There is increasing concern that the ongoing loss of biodiversity may
affect and diminish the provision of ecosystem services.in the future
(Cardinale et al.,, 2012; IPBES, 2018; Manning et al., 2018; Ricketts
et al., 2016; Wall et al., 2015). While some key ecological processes may
be well understood, such patterns can be difficult to translate into quantita-
tive relationships suitable for use in an ecosystem service context. There is a
need to derive quantitative “pressure-response functions” linking anthropo-
genic pressures with ecosystem functions that underpin key climate, water-
quality, and food-regulating services. This requires the joint analysis of the
complex, sometimes conflicting or interactive, effects of multiple anthropo-
genic pressures on different ecosystem functions and the role of biodiversity
as a mediating factor determining how anthropogenic pressures translate into
changes in ecosystem services. Challenges relate to the differing spatial scales
and configuration of anthropogenic pressures and ecosystem service bene-
ficiaries, and uncertainties associated with the time lags between anthropo-
genic pressures and ecosystem responses (Isbell et al., 2015b). Accordingly,
future research needs to employ a quantitative, multi-parameter approach
to assess the nature of linkages between biodiversity, ecosystem processes,
and ecosystem services (Giling et al., 2019; Manning et al., 2018) within
and across ecosystem boundaries (Barnes et al., 2018). This involves the
effects of anthropogenic pressures on these linkages, including reversal of
pressures through comservation and restoration management, and likely
threshold or hysteresis functions (Isbell et al., 2013).

p0305 Results from'the last decade of BEF research tend to suggest that we need
to conserve a large proportion of existing species, rather than few selected
species, to maximize ecosystem service provisioning across spatial and
temporal scales (Isbell et al., 2011; Meyer et al., 2018; Reich et al., 2012;
Winfree et al., 2018; but see Kleijn et al., 2015). BEF research has to accept
the challenge to embrace socio-ecological systems with their different
drivers and interaction networks (e.g., including humans; Bohan et al.,
2016; Dee et al., 2017). This means, for instance, building BEF experiments
based on communities realized under (more) realistic land-use regimes
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regarding current and future stakeholder priorities. Here, e.g., disturbances,
restoration projects, and changes in management due to different financial
incentives may offer real-world replicated experiments. Scientists will have
to more deliberately collaborate with national or federal agencies to develop
strategies to become engaged in such projects early enough.

po310 Fully embracing socio-ecological processes can only happen at
larger scales and adds several layers of complexity to research projects
(Thompson et al., 2018). For operationalizing this goal, food web network
theory can meet social network theory to develop combined assessments
(Dee et al., 2017). It will be important to identify vulnerabilities in the
network(s) and critical bottlenecks to perform opportunity and risk assess-
ments. Knowledge about risk factors can then inform where and when to
best employ management interventions. Ultimately, BEF outcomes have
to be translated to show policymakers and the general public the value of
biodiversity, including consequences of biodiversity decline for human
well-being and health, as well as economic aspects, such as jobs, revenues,
and the global climate and economy. Moreover, to date, few biodiversity
studies have expressed the impact of biodiversity loss on the global warming
potential (Isbell et al., 2015b)—a metric accessible to policy makers and
commonly used in the IPCC reports to compare whether the greenhouse
gas balance of ecosystems has a net warming or cooling eftect on climate
(IPCC, 2014). Thus, studies linking biodiversity change with global
warming potential would not only be of great fundamental value, but could
also lead to insights that are of great value for the society at large, and that
could be disseminated through e.g. IPBES discussions and reports.

S0075 3. Concluding remarks

p0315 The BEEF research field faces the critical challenge to simultaneously
develop a more mechanistic understanding of BEF relationships and their
context-dependencies as well as to scale up from the plot-level mechanisms
and processes to management-relevant spatial and temporal scales in order to
operationalize BEF insights for ecosystem management, society, and deci-
sion making. Here, we argue that further exploring trophic (e.g., Barnes
et al., 2018) and non-trophic interactions (e.g., competition, facilitation;
Ferlian et al., 2018) in multitrophic communities will be key to investigate
the consequences of non-random biodiversity change as well as the eco-
evolutionary underpinnings and implications of BEF relationships. As a con-
sequence, the study of biotic interactions needs to consider the interaction
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history of the involved organisms (Zuppinger-Dingley et al., 2014).
Evolutionary history may integrate information about past trophic and
non-trophic interactions and thus determine the functioning of species in
complex communities. As such, this knowledge may not only be essential
to mechanistically understand BEF relationships, but also to develop appli-
cations for sustainable agroecosystems (Isbell et al., 2017a; Wang et al.,
2019), advance ecological restoration to maintain ecosystem functioning
(Kettenring et al., 2014), and sustain the integrity of Earth’s ecosystems.
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