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ABSTRACT 

In the context of geographical database generalisation, this paper deals with a generic process for road 

network selection. It is based on the geographical context that is made explicit and on the characteristic 

structure preservation. It relies on literature work that is adapted and gathered. The first step is to detect 

significant structures and patterns of the road network such as roundabouts or highway interchanges. It 

allows to enrich the initial dataset with explicit geographic structures that were implicit in initial data. It 

helps both to explicit the geographical context and to preserve characteristic structures. Then, this 

enrichment is used as knowledge input for the following step that is the selection of roads in rural areas using 

graph theory techniques. After that, urban roads are selected by means of a block aggregation complex 

algorithm. Continuity between urban and rural areas is guaranteed by modelling continuity using strokes. 

Finally, the previously detected characteristic structures are typified to maintain their properties in the 

selected network. This automated process has been fully implemented on Clarity™ and tested on large 

datasets.  

1. Introduction 

Generalisation is a process that seeks to summarise geographical information from a 

geographic database in order to produce a less detailed database or map. When the goal is 

to derive a new database and not a map, it is called model generalisation and it is not 

constrained by cartographic symbols (Weibel and Dutton, 1999). Selection, that can be 

considered as an operation concerning the abstraction of the database (Mackaness, 2007), is 

a key step to model generalisation. It consists in choosing the relevant information in 

relation to the target map or database specifications. This paper presents a generic road 

network selection process based on data enrichment using spatial analysis.  

Selection seeks to choose the essential and relevant elements of a geographic database 

but also to maintain the main characteristics of geographic information while reducing the 

level of detail. As roads are important features of maps and geographic databases, road 

network selection is a key topic of generalisation that has already been tackled in the past 

(Richardson and Thomson, 1996, Thomson and Richardson, 1999, Ruas, 1999, Jiang and 

Claramunt, 2004). Other papers deal with structure and pattern recognition in order to ease 

road selection (Marshall 2005, Heinzle et al., 2005, Heinzle and Anders, 2007). 

Road network selection for model generalisation raises several problems. First, 

selecting roads requires to infer the usage of the roads that heavily depends on roads 

implicit geographical context: methods have to be found to make the context explicit for an 

automatic process. Then, a hierarchy of roads is necessary in order to select the most 

important ones but road saliency is hard to infer:  it depends on geometry, attributes, 

topology and role in the network i.e. it depends on implicit geographical context. Moreover, 
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road networks in urban or rural areas are clearly different in road density and network 

shape and such differences have to be maintained by selection; road networks contain 

typical complex implicit road structures that a good selection should maintain. Finally, it is 

hardly manageable to precisely quantify the selection reduction level (in objects number? In 

meters? In relation to specifications?).  Because of the diversity of data and generalisation 

problems, all previous work on the topic dealt with a specific part of these problems of road 

network selection. There has not been any attempt yet to develop a generic method that 

would gather this material in order to tackle all the problems globally. Thus, the objective 

of this work is to design an automatic and generic (for different data and resolution 

changes) process that would deal with the global problem of road network selection in 

model generalisation as well as developing solutions for the missing bricks of the process. 

The proposed method enriches data with the proper road structures and selects differently 

rural and urban networks thanks to the enriched data. 

The next part of the paper describes the design constraints and the overall methodology 

for road network selection. The third part deals with data enrichment by structure detection 

in road networks and with the structures typification. The fourth part deals with the 

selection steps of our proposed process. Section five illustrates the process with results 

obtained with a real database. Finally, last section draws some conclusions and discusses 

further work. 

2. Methodology 

2.1. Hypotheses 

Some hypotheses are made on the input vector data in order to use the proposed 

methodology. But the properties required for the data are quite generic and are met by most 

of vector geographic databases that contain roads. The last two requirements are optional as 

they are not necessary for the process but they improve its results. In the parts of the paper 

that describe how the optional data are used, alternative solutions are proposed. Here are 

the seven data requirements: 

 linear road data is required rather than surfacic roads. 

 the road network needs to be correctly topologically connected.  

 only one attribute representing roughly road classes is required. 

 no traffic direction data is required.  

 urban areas are necessary to separate urban and rural roads, or buildings to create the 

urban areas with a method from Boffet (2000). 

 optionally, facility points (airports, train stations, schools, malls...) can improve the 

process quality. 

 optionally, buildings can help in some structure detection algorithms.  

The test data of this work are a large dataset (150 x 100 km) extracted from BD TOPO®, 

the 1m resolution topographic vector database produced at IGN France. The road data 

correspond to our requirements and the optional requirements like facility points and 

buildings are also extracted from this database. The test area is characterised by a large 

heterogeneity of landscapes, which allows to anticipate the work validity on other areas of 

the same database. 
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2.2. Experiments 

The methodology used to design the presented road network selection method was 

based on experiments: in order to have a clear view of the problems raised by road network 

selection, several tests and literature algorithm implementations were carried out on the test 

data. Then the methodology consisted in gathering literature resources that appeared to be 

useful, in adapting them to make them work together: according to the experiments results, 

some algorithms were mixed, chained, some were modified and some were dropped when 

alternative ones proved to be more effective. When no resource was available, new 

algorithms were developed. The last ones, as well as the adaptations, are more focused on 

in this paper. 

2.3. Overall Process 

This methodology led to the design of a complete road selection process composed of five 

important steps (Figure 1). First, the amount of implicit information contained in road 

networks requires a huge enrichment of initial data to provide what Brassel and Weibel 

(1988) called structural knowledge. The enrichment also provides some particular 

structures of the network that rather need to be typified than being simply selected to 

maintain properly the structures during selection. Then, the problems raised by urban 

networks appeared to be very specific: road density is very high and network shape and 

patterns are here the major factor of selection (to be able to still differentiate old European 

cities and modern US ones after selection). In rural areas, the problem is more about 

removing the less significant roads. As a consequence, two different processes have to be 

applied on rural and urban areas immediately followed by a process that guarantees 

continuity between the two types of area. Each step of the process will be described in 

detail in the following sections of the paper. 
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Figure 1.  the overall process of road network selection. In italics, the different inputs and 

outputs of the process steps. 
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3. Data Enrichment  

Brassel and Weibel (1988) recommended data enrichment as a prerequisite for automatic 

generalisation to formalise the structural knowledge contained in geographic information. 

This structural knowledge includes structure and patterns detection whose importance in 

generalisation has been claimed by Mackaness and Edwards (2002). Mackaness and 

Edwards (2002) define patterns as a property (shape, orientation...) within an object or 

between objects that is repeated with sufficient regularity. A structure can be defined as a 

particular distribution of objects representing an implicit geographic entity. It corresponds 

to what Ruas (1999) calls meso objects. We consider road meaningful patterns as structures 

and we will use only this concept from now on. Road networks perfectly illustrate the 

importance of structures as roads form complex man-made networks full of particular 

structures. This section presents the main developed enrichments and the typification of 

some detected structures. 

 

3.1.  Road Structures Detection 

This section presents the road structures that we consider as important to detect for 

selection and the algorithms developed for their automatic detection in a vector database. 

3.1.1.  Crossroads Classification. Road crossroads can be considered as an atomic element 

of road network and it is very useful to better characterise them for selection according to 

Heinzle et al. (2005). For example, y-nodes correspond to slip roads and T-nodes represent 

crossroads between a minor and a major road. A simple taxonomy of crossroads has been 

designed based on Grosso (2004) and Sester (1995). It contains T-shaped nodes (T-nodes), 

Fork nodes, y-nodes (slip road end), Cross-shaped nodes (CRS-nodes), Star nodes and 

Undifferentiated nodes.  

T-node

y-node

Fork node

CRS-node

+

+

 
Figure 2.  Results of the automatic detection of some simple crossroads. 
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The spatial analysis algorithms developed rely on a mixed use geometry and graph 

measures. The road network is seen as a graph thanks to GIS topology tools. T-nodes are 

topologically characterised by a degree 3 node and geometrically characterised by two 

nearly right angle  and a flat angle  between the arcs entering the node. With abstraction, 

it is characterised by a minor road leading to a major road. The tolerance thresholds used 

for  and  in the test case are 20° and 15°. As another example, y-nodes are characterised 

by a flat angle  (5° threshold), a slipping angle  (15° threshold) and an arc shape for the 

slip road. The Fork, CRS and Star nodes are detected and characterised with similar 

methods that are not developed here for briefness reasons. The Undifferentiated nodes are 

the remaining nodes. 

Figure 2 shows the results of the automatic detection of T-nodes, y-nodes, fork-nodes and 

CRS nodes (no Star node in the picture and the Undifferentiated nodes are the unmarked 

ones) : all the nodes are iterated and if the degree and the angles correspond to one of the 

characteristic crossroads, the nodes are properly classified. This enrichment is particularly 

useful for the detection of more complex structures but also for the structure typification 

and rural selection processes. 

3.1.2.  Complex Junctions. Some widespread road patterns like roundabouts or branching 

crossroads can be seen as complex junction in relation to simple crossroads. With 

abstraction, they have the function of a crossroad and can be generalised as simple 

crossroads. In order to detect roundabouts, the faces of the mathematical graph are used 

rather than arcs and nodes (Sheeren et al., 2004).  To keep only the small round faces (that 

clearly correspond to roundabouts (Figure 2)), a measure of polygon compactness is used 

on all the small faces of the graph. Miller's measure of compactness (see definition in 

Figure 4b) is chosen with a threshold of 0.98 determined after experiments. The Miller's 

measure varies from 0 to 1 (for a circle). 

Branching crossroads are a bit more complex to detect as Grosso (2004) distinguishes two 

types. The first type concerns the small triangular faces of the network; the second is 

related to the branching junctions attached to roundabouts (Figure 2, on the left). The 

detection algorithm consists in considering the faces with only three degree 3 nodes. Then, 

a surface distance is computed between the face and the triangle formed by the three nodes. 

If the distance is low, the face is considered as a branching crossroad. In the test data, the 

thresholds are 10000 m² for size and 0.45 for surface distance (that is between 0 et 1). Then 

when a potential face is branched to a roundabout, the surface distance threshold is bigger.  

 

3.1.3.  Road Strokes. The notion of  strokes is based on one of the perceptual grouping 

principles enunciated by the Gestalt Psychologists (Wertheimer, 1938), namely the "good 

continuation" principle. Strokes are groups of roads gathered by continuous curvature 

(Figure 3a). The stroke creation algorithm described in Thomson and Richardson (1999) is 

used taking into account road class continuity:  for each road section, the following sections 

continuity is analysed in relation to curvature and road class continuity. The best continuing 

section is added to the stroke if at least one provides a good continuity and the process 

iterates until all the sections of the network are part of a stroke, possibly being the only 

component of their stroke. In addition, the algorithm is adapted to manage previously 

detected complex junctions such as roundabouts or branching crossroads: the 

characterisation of such junctions allows to know the road segments leading to the junction. 
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When a stroke arrives at such junctions, continuity is only computed with the "outside" 

segments (Figure 3b) whereas the stroke would be stopped without the adaptation. As 

stroke length is a factor used in selection and as such junctions are very common in 

networks, strokes stopping at roundabouts would bias the selection and would correctly 

represent important routes as it intends to. 

300 m300 m300 m

Continuity checking 

with these segments

Continuity checking 

with these segments

 
Figure 3.  (a) A stroke in a road network: a group a roads following the "good continuation" 

principle. (b) strokes pass through roundabouts and branching crossroads. 

3.1.4.  Dual Carriageways. Considering the hypotheses (section 2.1), no traffic direction 

information is available in our data so the dual carriageways detection can not rely only on 

traffic direction as in Thom (2005). Thus, like in the roundabout detection method, the 

algorithm iterates through the network faces but this time, it seeks for very long and thin or 

narrow faces or small faces interlocked in thin faces. Indeed, looking for the parallel roads 

in data appeared to be ineffective. Road faces are classified by three measures, convexity 

(definition in Figure 4c), elongation (Figure 4a) and compactness (Figure 4b) that help to 

determine whether the face is thin (it belongs to a dual carriageway) or not. When the 

polygon is convex, the elongation measure is a correct assessment of the thinness of the 

face and then is used. But when the face is concave, this elongation measure can no longer 

be used because turning dual carriageways would not be detected. Thus, a compactness 

measure is used coupled with an area threshold as long and thin faces are not compact 

because the perimeter is very big compared to area. After long experiments, thresholds are 

set so that a face might belongs to a dual carriageway if:  

 convexity > 0.8 and elongation > 5 

 or convexity < 0.8 and compactness < 0.2 and size < 50000 m² 

 or size <10000 m² and has 2 part of dual carriageways for neighbours 
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²
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Miller's index (Campbell 2000)
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(Regnauld 1998)

Convexity rate (Regnauld 1998)

 
Figure 4.  The 3 measures used to assess the thinness of polygons: (a) elongation. (b) 

compactness by Miller's index. (c) convexity. 

3.1.5.  Highway Interchange. Highway interchanges are a significant example of the road 

structures that need a typification process to be properly generalised. Grosso (2004) noticed 

that highway interchanges are characterised by a high density in nodes that correspond to 

fork and y-nodes in our classification. The detection algorithm consists in a clustering by 

spread search in the road graph on the fork and y-nodes. Then, all roads inside the buffered 

convex hull of the cluster belong to the highway interchange (Figure 5). Over-detection is 

managed excluding the clusters whose extent contains a significant amount of buildings. 

The cluster search threshold was determined considering the usual length of slip roads and 

set to 400 m. If there is no building data available, measures can be used only on roads like 

the amount of dead ends, the presence of dual carriageways and the belonging of nodes to 

roundabouts. 

 
Figure 5.  Highway interchange detected by clustering the fork (triangles) and y-nodes 

(circles). 

3.1.6.  Rest Areas. Rest areas are also important to detect. The properties of  the structure 

are the presence of an entrance and an exit with roads between located on both sides of dual 

carriageways or other major road. The detection algorithm is composed of two main steps: 

the detection and grouping of entrances and exits, and the addition of in-between roads. 
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Entrances and exits are detected with y-nodes and their orientation (Figure 6a). The y-nodes 

belonging to an interchange are excluded and couples (entrance, exit) are formed 

considering the highway direction. Then, we switch once again to faces and a buffer is used 

on the good side (considering the direction) of the major road in which the small 

neighbouring faces are aggregated (Figure 6b). According to our experiments, a buffer size 

of 500 m and an area threshold for the faces to be included in the rest area of 50000 m² are 

effective thresholds. 

(b)

80 m

(b)

80 m80 m

Highway services exit

Highway services enter

(a)

+

Highway services exit

Highway services enter

(a)

+
 

Figure 6.  (a) Detection of enters and exits of rest areas. (b) detection of the extent of the 

rest area. 

3.1.7.  Dead Ends. Dead end roads are another road structure that play a key role in 

selection processes because they are either useless (leading to nowhere important) or very 

important (leading to a significant facility). Unlike simple dead ends, the detection of dead 

end groups is not  obvious. It uses the notion of minimal graph cycles: the roads that do not 

belong to a minimal cycle or that belong to a cycle disconnected from the graph (case with 

a roundabout at the end of the dead end) are considered as dead ends and are then grouped 

by connectivity. In the test data, optional facility data is available so dead ends are enriched 

with access to the facility when exists (when the nearest access to the network of a facility 

point is a dead end). 

3.2.  Typification of particular structures 

Pattern typification is considered as the final step of the selection process (Figure 1) but it is 

presented here as it is completely linked to the structures recognition. A typification 

operator has been defined by McMaster and Shea (1992) like this : 'A selective number and 

pattern of the symbols are depicted. Generally, this is accomplished by leaving out the 

smallest features, or those which add little to the general impression of the distribution (...) 

or using a representative pattern of the symbols...'. This step concerns a large part of the 

road structures presented in section 3.1. The road segments belonging to a structure needing 

typification are ignored by the different selection steps (rural, urban and continuity 

checking) in order to be finally typified. As a consequence, a parameter of the overall 

process is the choice of the important road patterns that have to be typified rather than to be 

simply selected or eliminated by the appropriate process. Two implemented methods to 

typify structures are presented in this section. 

First, a simple typification of roundabouts and branching crossroads relies on their 

characterisation with an enriched data schema. The roles of the road segment in the 

complex junction are identified: the road segments leading to a roundabout or belonging to 
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it are distinguished. Then the last ones are collapsed into one point where the first ones are 

extended. Branching crossroads are typified into a T-node thanks to the enriched schema 

that identifies the minor and major roads of the abstracted T-shaped junction. A size 

parameter is added to decide whether the junction has to be typified or not. In the test case 

presented in the results section 5, if the diameter of a roundabout is under 100m, it is 

typified. 

Dual carriageways can be typified with the collapse of the structure into its centreline. The 

centreline can be obtained with algorithm computing skeletons of surfaces. Thom's (2005) 

method using Delaunay triangulation was implemented. 

4. The Road Network Selection Process 

The previous section presents a prerequisite step for the selection process described in this 

section as all the structures and patterns recognised in the road network enable a correct and 

relevant selection. As exposed in Figure 1, two different selection processes were 

developed, one for rural areas, one for urban areas. Added to that, a continuity checking 

process at the interface of the areas is included  to recombine the selections.  

4.1.  Road selection in rural areas 

Rural selection is based on determining roads saliency by shortest paths between attraction 

points following the method of Richardson and Thomson (1996). The aim of the method is 

to estimate road use by cars, so shortest paths are computed in the network between nodes 

where cars are supposed to start (residential areas or airports) and nodes where cars are 

supposed to arrive (commercial or work areas). The attraction points result from the 

optional facility data weighted by importance and attached to a node of the network (Figure 

7). If facility points are not available, random points can be used (Ruas and Morisset, 

1997). Shortest paths are computed in the complete road graph including roads in urban 

areas to be really meaningful. Moreover, road use estimation is considered as an 

enrichment of road segments and it will be useful for urban selection process as input 

described in section 4.2. 

 

Hospital : 3

Train Station : 2

Town hall : 1

School : 2

3

2

3

Hospital : 3

Train Station : 2

Town hall : 1

School : 2

3

2

3

 
Figure 7.  How weighted attraction points are attached to the road network. 

Instead of using simply road length to compute shortest paths, a travel time estimation is 

used. The travel time is estimated with a weight function (Figure 8) taking into account 

attribute values or geometric characteristics : road length is multiplied by factors smaller 

than 1 for quickening characteristics and greater than 1 otherwise. Road class (main roads 
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are designed to go faster), road sinuosity (the geometric measure of sinuosity is taken from 

Mustière (2001)), town crossing, are used to compute factors by default. When such 

attribute data can be available (like in our test data), road width (or number of ways) or 

altitude difference can be added to the cost function. The factors were determined 

empirically in relation to the speed limitation they correspond to and validated by testing. 

For instance, major road class corresponds to a 1 factor as it is considered as the default 

speed. A minor road class corresponds to a 1.2  factor and high sinuosity corresponds to a 

1.35 factor. 

Length : 3525 m

Sinuosity : high

Road class : minor

Weight : 5790

Length : 3804 m

Sinuosity : low

Road class : secondary

Weight : 4650

 
Figure 8.  Example of cost function estimating road travel time. The two roads have 

comparable lengths but the road on the right has a much bigger weight because of its 

sinuosity, its minor road class and its altitude difference (it is a mountain road). 

Only the shortest paths between an attraction point and the ones in a radius of 50 km are 

computed, using the algorithm of Dijkstra (1959), because we consider that road trips over 

this distance will massively use highways that are already considered as important. Like in 

Richardson and Thomson (1996), after the computation of all the shortest paths, roads used 

by shortest paths have their road use estimation value incremented to assess their 

importance in relation to initial and final attraction point weights. In Figure 9a, there is a 

graph with 5 attraction points (AP) (a to e) weighted from 1 to 3 according to their 

importance. In Figure 9b the shortest path from AP "c" to AP "d" is computed and the 2 

roads used by the shortest paths are assigned a value equal to final AP weight (here 3).  In 

Figure 9c, all shortest paths from AP "c" to the others are computed and road values are 

incremented as soon as they are used by a shortest path. For example, the road between AP 

"c" and the centre simple node is used by several shortest paths and its value is incremented 

to 7 (3 from c to d, 2 from c to a and 2 from c to e). Figure 9d shows the values of all roads 

after all shortest paths have been computed. 
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Figure 9.  Valuing of roads in shortest path computation. See description of the process in 

the text. 

Finally, rural selection is processed using different parameters that correspond to 

thresholds. A road is selected if : 

 estimated road use is bigger than a given threshold (very used road segments are 

important). 

 or stroke (it belongs) length is bigger than a given threshold (long strokes are 

important). 

 or stroke (it belongs)  crosses a number of T-nodes bigger than a given threshold (it is 

important because it is served by many minor roads). 

 or it belongs to a dead end longer than a given threshold (long dead ends are significant 

landmarks in a map). 

 or it belongs to a dead end with facility access longer than a given threshold lower than 

the threshold just above (the access to the facility has to be maintained). 

The choice of the selection criteria is partly application-related. Other selection criteria 

could be chosen when it is necessary to meet particular specifications. For example, some 

specifications may require that roads with particular attribute values have to be always 

selected. 
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4.2.  Street selection in urban areas 

As street selection is a more complex problem than rural road selection, different 

approaches have been tried: (Ruas, 1999, Edwardes, 2000, Jiang and Claramunt, 2004). The 

approach presented in this paper is a kind of synthesis of these three ones based on the road 

block aggregation principle of Ruas (1999): as for roundabouts for instance, the faces of the 

graph are considered rather than the arcs. The face aggregation principle is quite similar to 

area aggregation methods (van Oosterom, 1995) : the smallest area is aggregated to the 

neighbour area that minimises a cost function. In the case of road faces, when two faces are 

aggregated, the road that separates them is eliminated and the remaining roads at the end of 

the process are selected. Ruas (1999) aimed at cartographic generalisation so buildings 

density was the key factor for aggregation. Hence, the principle was kept but factors for 

aggregation and dynamics were changed. 

4.2.1.  Urban network enriched model. In our process, data has to be enriched in urban 

areas (here called "towns" for the sake of simplicity (Figure 10)). Towns are characterised 

by a size ("big" or "small") and attribute statistics: strokes mean length in town, road use 

estimation mean for the streets and streets density. Two parameters are also assigned to the 

town: the maximum cost of aggregation (see section 4.2.3) and the maximum area of the 

faces. The parameters assigned can be different if the town is either big or small if we want 

big towns to be more simplified than small ones. Indeed, we have noticed that such 

requirements are common in generalised database specifications. 
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Figure 10.  Enriched data model of  an urban area for street selection, illustrated with data 

samples from the town of Salies-de-Béarn in the southwest of France. 
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Then, three new classes are added and populated. First, the road graph faces cut up by town 

limits are called "urban blocks". The urban blocks are the features that will be aggregated 

during the urban selection process.  

Then main roads passing inside the town, determined with stroke length, road class and 

road use estimation (result of rural selection), are classified as urban axes. The thresholds 

used are more restrictive than the ones for rural selection, which selects only the very 

important streets. It is both a way to be sure that these streets will not be eliminated in the 

process and to structure the town with its main axes.  

Finally, towns are partitioned by the urban axes to create "urban partitions". Like towns, 

partitions are characterised by a measure about the density of streets. It allows to take into 

account and maintain in the process road density differences like in town centre (many 

small roads) compared to suburbs (few longer roads). 

4.2.2.  Dynamics of aggregation. The aggregation algorithm is based on an aggregation 

cost. For each small block that needs to be aggregated, a cost is computed for each 

neighbour of the same partition (two blocks of different partitions can't be aggregated). The 

candidate neighbour with the lowest aggregation cost is chosen and aggregated if the cost is 

lower than a maximum cost. When there is no block small enough left or when all 

aggregation costs are above the maximum cost, the algorithm stops (Figure 11).  

Get smallest 

block

Get good 

candidates

Compute costs and 

get smallest

Aggregate the 

2 blocks

Size > t1 ?

Cost > t2 ?

number > 0 ?

yes

no

yes

yes

no

no

Blocks left ?

yes
End of process

no

 
Figure 11.  Diagram of the dynamics of the aggregation algorithm. 

We defined the cost function formula below to compute the aggregation cost.   
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The main factor is compactness (Figure 4b) as compact blocks are a good final result of the 

algorithm. The more appropriate the aggregation is, the lower the cost is. All factors used 

are normalised in order to be multiplied. If a factor is higher than 1 (for example the road 

use on the separating street is higher than the road use mean for town streets), the cost 

increases to make the aggregation more difficult. Apart from compactness, the factors used 

in the cost function are:  

 the graph centralities of separating streets as proposed Jiang and Claramunt (2004): 

centrality measures the importance of nodes in a graph and to measure the centrality of 

streets, they proposed to build a dual graph of the network where streets are the nodes 

connected by arcs to the nodes that represent intersecting streets. Thus, central 

separating streets are harder to eliminate by aggregation. 

 the traffic estimation of separating streets with the same value as the one computed 

for rural selection (but that was computed on all roads). Thus, streets with a traffic 

estimation higher than the town mean are harder to eliminate by aggregation. 

 the length of the strokes that contain the separating streets. Thus, streets that belong 

to strokes longer than the town mean are harder to eliminate by aggregation. 

 the partition block density as aggregation is made easier in town partitions that were 

not initially very dense in order to maintain the differences between town centre and 

suburbs. 

 the aggregated block size as aggregation is made easier when it generates small 

aggregated blocks. 

Once the factors were defined, the formula was adapted after testing by weighting more or 

less some factors to give them more or less importance in the cost. For instance, we believe 

that compactness is the key factor and should have the main influence in the cost, that is 

why the factor is powered by three while the centrality factor is square rooted. 

Figure 12 shows an example of aggregation : (a) block 1 is candidate for aggregation and 

has four neighbours. (b) Blocks 4 et 5 are eliminated because separated from 1 by important 

roads that belong to long and central strokes and cost is higher than maximum. (c) shows 

that the compactness of the aggregate 1-3 is quite low which increases the cost of 

aggregation. (d) shows that the aggregate 1-2 is very compact and as a consequence has a 

lower aggregation cost. Finally, block 1 is aggregated to block 2. 

After the aggregation, dead end selection in urban areas is managed the same way as in 

rural areas as it cannot be managed by a block aggregation process. Moreover, the dead 

ends linked to the network by a street that was eliminated are also eliminated whatever its 

length is to maintain network continuity. The two parameters of the algorithm are the 

minimum size of a block and the maximum aggregation cost that is related to the cost 

function formula. 
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Figure 12.  Which neighbour block can be aggregated to block 1? 

4.3.  Continuity checking 

The presented method for road network selection uses two different kind of processes for 

rural and urban areas. Using them independently would cause discontinuities and 

inconsistencies. In order to avoid such problems, a continuity checking step is necessary 

and is decomposed in two steps : first, continuity needs to be controlled at urban/rural 

interface zones; then, the connectivity within the complete selected network has to be 

checked and corrected if necessary. 

The idea is that a road partly selected in one of the processes should have its other part 

selected. If it has not been selected by the other process, it is restored during the continuity 

checking step. Strokes seem to be the ideal way to allow this (Figure 13). In this example, 

the road is only selected in urban selection and continuity checking allows to restore the 

part of the stroke that was not selected during rural selection providing a more logical 

selected network.  

Furthermore, to avoid discontinuities that are internal to one of the areas (it is most likely to 

appear in rural areas), an additional continuity checking post-process is carried out: groups 

of connected road segments that are not connected to the rest of the network are detected 

and the roads used by the shortest way to connect them are added to selection. The 

algorithm used here is similar to the one developed by Chaudhry and Mackaness (2005) : if 

discontinuities are detected, the unselected strokes are tested by length ascending order 

until the addition of one of them re-connects the network. The re-connecting stroke is 

added to selection. 
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(a)

(d)(c)

(b)

 
Figure 13.  (a) An initial network at the limit (in bold) of a town. (b) A big stroke that 

crosses both urban and rural areas. (c) The use of only the two independent processes 

creates a problem of continuity highlighted by the circle. (d) The continuity problem is 

solved by the use of the stroke highlighted in (b). 

5. Results and discussion 

As mentioned in section 2, the test data is BDTOPO® (1m resolution topographic database) 

from IGN France. The main test case is the generalisation of BDCARTO® (10m resolution 

database) from the test data. The process has been applied with selection parameters 

corresponding to BDCARTO® specifications. But the process has been tested with other 

parameters. The complete process has been implemented on Clarity™ GIS and the results 

presented here as well as the ones presented in the previous sections, are all obtained 

automatically. 

Figure 14 shows a result of the global process presented in the section 2 with the test case 

of BDCARTO® on the town of Salies-de-Béarn and its surrounding area. This result is 

good in relation to the specifications and is totally equivalent to actual BDCARTO®. 

Figure 15 focuses on street selections obtained on a larger city with two sets of parameters. 

The first case (b) consist in a light selection of the network while the second one is a stricter 

selection that approximately correspond to a 10m resolution database. In both, main streets 

still appear and the density difference between the city centre and the suburbs is visible. 
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Such results are shown before the pattern typification step so roundabouts and dual 

carriageways, visible in the pictures, would disappear in the final results. 

 
Figure 14.  A result of the global process on the town of Salies-de-Béarn and its 

surrounding area. 

The difficulty to evaluate such a process is that the quality of a selection is hardly 

quantifiable because of most selection specifications fuzziness. Even when the result is 

compared to a reference dataset, it is hard to say if the differences are due to an imperfect 

process, uncertainties in the specifications translation or errors in the reference dataset (up-

to-dateness for example). Nevertheless, the results were compared in our test case with 

BDCARTO®. Rural selection selects 95% of BDCARTO® roads (in terms of road length) 

and urban selection provides a road length up to 98% of BDCARTO® road length but not 

exactly the same road segments (75%, in length, of the roads selected are identical). Most 

differences are due to specification fuzziness and up-to-dateness differences. 

In terms of efficiency (how quickly the result is obtained), it is a quite heavy process with a 

lot of enrichment and process time consuming algorithms like shortest path and centrality 

computing, but database generalisation is not supposed to be 'on-the-fly'. 
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Figure 15.  (a) The street network of the city of Pau (southwest of France) in BDTOPO®. 

(b) a light selection of this street network. (c)  a stronger selection corresponding to 10 m 

resolution database. 
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The aim of this work was to design a generic process able to give results with different 

target specifications but also with different initial data. Nevertheless, the presented process 

is slightly dependant on the test data used to develop it. So, to be used with different 

datasets, the process would require little adjustments especially for shortest path 

computation where additional data is used for node and link weighting (point facilities data, 

road attributes like width or elevation).  

A difficult part of the process design is the choice of the multiple parameters and 

thresholds. Indeed, the translation of the target database specification may not always be 

obvious and the process requires a significant number of parameters. We decided to 

develop sets of default parameters to make the choice easier. Tests were carried out on the 

sensibility of a major part of the parameters, particularly the thresholds for selection like 

'selection if stroke length > 3000 km'. The tests showed that the process was not very 

sensible to the variation of such parameters. Then the parameters can be chosen by 

approximation without risking to change drastically the results. 

6. Conclusion 

To conclude, this paper presents a complete process to allow road network selection in 

model generalisation. It consists in (1) enriching the data by structures recognition, (2) rural 

selection based on assessing traffic by shortest paths, (3) street selection algorithm based on 

road block aggregation and (4) structures typification. The contribution is mainly the design 

of this generic process and the development of the urban selection method. There are also 

contributions in the structure detection algorithms. Tests carried out on large datasets show 

encouraging results for different kind of generalisation specifications. 

 

To go further, pattern typification has to be improved by implementing some algorithms 

specific to each structure. Added to that, it would be interesting to integrate new particular 

road structures like circular roads or star-shaped structures (Heinzle and Anders 2007). 

Their detection could be used to enhance the selection algorithms. The idea exposed in 

Marshall (2005) that road patterns are like an unfolding fractal shows that many more 

structures can be detected in a road network to add knowledge and improve the selection. 

As a further work, it would also be interesting to work on expressing the specifications of a 

selection to parameterise automatically the process, like in Hubert and Ruas (2003) that 

used generalised data samples to converge to the user needs. Finally, it could be interesting 

to insert this process into a global cartographic generalisation process that would deal with 

selection before the cartographic operations. 
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