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Abstract: Lanthanum orthoferrite, a highly potential three-way catalyst, shaped as apolycrys-
talline thin film has been comprehensively analysed by combining bulk and surface characterization
techniques. The possibility to accomplish unprecedented surface information has been presented,
thanks to the combined use of LEIS, XPS and ToF-SIMS. The structural, morphological and surface
properties at nano-metric scale make such thin films indistinguishable from powdered solids. Thus,5
the relevance of using such model materials for advanced surface investigations of LaFeO3±δ-based
three-way catalysts has been demonstrated.
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1 Introduction10

LaFeO3±δ (LFO) solids showing ABO3 perovskite structure have been demonstrated to be smart sup-

port materials in three-way catalysis (TWC) for the simultaneous abatement of CO, NO and unburnt

hydrocarbons in the catalytic converters of automotive engines. Their application in such a system is

highly suitable owing to their structural thermal stability under redox conditions [1], the possibility to

fine-tune their composition by substitution in A and/or B site(s) [2] and their consistent oxygen storage15

capacity (OSC) [3].
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In heterogeneous catalysis, only the outermost atomic layers of the active material, being in contact

with the reactants, can directly participate in the reaction. On the other hand, the subsurface can help

in maintaining and/or regenerating the active phase, which is the starting point of the key concept of

self-regeneration [4, 5]. Moreover, it was recently shown that the composition of the perovskite oxide20

plays a key role in the regeneration process. In return, the versatile composition of oxide perovskite

materials can help improving this crucial benefit [6]. In the context of reducing the amount of critical

raw materials while maintaining a high activity in TWC, lanthanum perovskite materials with extremely

low to zero noble metal content nowadays appear as quite a promising entry to the formulation of

future 3-way catalysts [7]. Quite recently, we have reported on an in situ Raman study of LaFeO3±δ and25

proposed that the surface composition and reconstruction played a crucial role in TWC performances

[8]. More precisely, the mobility of FeO6 moieties in and out the LFO lattice upon redox cycling was

proposed to take part in the activity enhancement of La-deficient materials [9]. Following this hypoth-

esis lies the capacity of iron-based moieties to move reversibly from the sub-surface to the surface

mediated by the precipitation of small Fe2O3 nanoparticles.30

Shaping LaFeO3±δ as Si-supported, polycrystalline thin films is expected to yield few layers of nanocrys-

tallites and hence, provide a chance for a better description of the active phase located on the catalyst’s

(sub)surface. In practice, such thin films are also likely to favour a more suitable surface analysis.

For example, perovskites shaped as thin films make it possible to afford an elemental depth profiling

using ToF-SIMS, which is not as efficient with the corresponding powders. Distantly adapted from the35

well-accepted concept of investigating monocrystalline surfaces as model active materials [10], the flat

model catalyst approach we apply here, however, does not involve such a material gap [11, 12]. To the

best of our knowledge, the application of this method is original in the investigation of catalytically

relevant LaFeO3 thin films. Such a model material paves the way to a clear depiction of the surface

and sub-surface that determine the catalytic behaviour of active bulk materials. However, an obvious40

prerequisite to the use of LaFeO3±δ thin films as convenient model shapes for in-depth surface analyses

lies in the structural and textural analogy with lab-scale active materials, such as powdered catalysts.

The present work aims at clarifying the relevance of polycrystalline thin films in being used as a model

surface/sub-surface system for investigating LaFeO3±δ-based three-way catalysts.

2 Materials and Methods45

2.1 Preparation of polycrystalline LFO thin films

The preparation of the precursor sol was largely based on the one of Liu et al. for preparing alumina

supported LaFeO3±δ films[13]. 0.65g of lanthanum nitrate hexahydrate (99.9 %, Aldrich) and 0.61 g

of iron nitrate nonahydrate (99.9 %, Aldrich) were diluted in millipore water (15.0 MΩcm at 17 ◦C)

for preparing 5 mL of bimetallic solution having a metal concentration of [Fe]=[La]=0.3 molL−1. The50

solution was transferred in a round flask and vigorously stirred. Citric acid (99.5 %, Sigma-Aldrich) was
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then added in order to reach a concentration of 0.6 molL−1, thus leading to a citric acid:(Fe+La) molar

ratio of 1. Further, 25µL ethylene glycol (99.5 %, Fluka) and 700µL aqueous ammonium hydroxide

(25%, Fluka) were added to facilitate the polymerization and adjust the pH, respectively. The solution

was then heated under reflux at 50 ◦C overnight. Subsequently, the precursor sol was further heated at55

55 ◦C in air until the total volume of the sol was decreased to one half of its initial value.

Si(100) substrates (Sil’Tronix) were cleaned by successive immersion in acetone (10 minutes) and

isopropanol (10 minutes) in an ultrasonic bath. After rinsing with millipore water, the substrates were

immersed in freshly prepared piranha solution (vol. 1:1 H2O2/H2SO4) for 20 minutes and rinsed well

with millipore water and stored in the same for transportation. Before deposition, the substrate was60

characterized confirming a 1-2 nm of amorphous silica layer covering Si(100).

The sol was then deposited at room temperature on the dried SiO2/Si(100) substrates by spin coating

with a typical speed of 2000 rpm. The layers were further heated up to 150 ◦C for 2 hours (ramp:

0.5 ◦Cmin−1) and subsequently heated up to 650 ◦C for 4 hours (ramp: 1.0 ◦Cmin−1) in a muffle oven.

A thin film appearing transparent, slightly orange-coloured and showing only few, tiny cracks was thus65

obtained.

2.2 X-Rays Diffraction (XRD)

The X-ray diffraction structural characterization of the LaFeO3±δ film was carried out using a 9 kW

Rigaku Smartlab rotated anode X-ray diffractometer using Cu Kα (1.5418 Å) wavelength, operated in

Bragg-Brentano reflexion geometry. To avoid any saturation of the detector due to the (004) peak of70

the oriented Si substrate, the sample was intentionally disoriented by 2°, once it was verified that the

deposition was not epitaxial but polycrystalline.

2.3 Raman Analyses

Raman spectra were recorded using an Ar+ (488 nm) laser for excitation, the power at the sample was

adjusted using neutral density filters for the purpose of the experiments. The laser beam was focused75

at the surface of layered samples using a 100X microscope objective (NA 0.9). The Raman signal was

collected in backscattering mode using the same objective through a confocal hole of 100µm diameter.

The scattered light was dispersed via a spectrometer equipped with a 1800 grooves grating (typical

spectral resolution at 488 nm: 2 cm−1) and finally analysed using a Peltier-cooled CCD (Horiba Labram

HR).80

2.4 Surface properties

Atomic Force Microscopy (AFM) analysis The surface morphology of the films was locally investi-

gated using a commercial atomic force microscope (AFM) (MFP-3D, Asylum Research) working in AC
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-or tapping- mode under ambient conditions. Si tips (Nanoworld Arrow-NC probes) with cantilever

stiffness of 40 Nm−1 were used as local probes.85

Time of Flight -Secondary Ion Mass Spectrometry (ToF-SIMS) analysis ToF-SIMS depth profiling

was performed in positive mode using a TOF.SIMS5 instrument (ION-TOF, GmbH Germany), equipped

with a bismuth liquid metal ion gun. Pulsed Bi+ primary ions have been used for analysis (25 keV, 1 pA)

while the sputtering was performed using a Cs+ (1 keV, 80 nA) ion source running in non-interlaced

mode [14]. The analysed surface was 100µm X 100µm centred over the 300µm X 300µm sputtered90

crater. Charging effects were compensated using pulsed low energy electrons (20 eV).

X-Ray Photoelectron Spectroscopy (XPS) analysis XPS characterization was carried out using the

Kratos AXIS UltraDLD spectrometer using a monochromatic Al Kα X-ray source (10 mA, 12 kV). C 1s,

O 1s, Fe 2p and La 3d high resolution spectra were obtained using a 20 eV pass energy while keeping a

pressure in the analysis chamber below 5×10−9 mbar during analysis. All spectra have been calibrated95

by giving the adventitious C 1s spectral component (C-C, C-H) a binding energy (BE) of 284.8 eV. A

Shirley background [15] was subtracted from the spectra for quantification. The analysed area was

about 300µm X 700µm.

Low-Energy Ion Scattering (LEIS) analysis LEIS experiments were run using a Qtac100 instrument

(ION-TOF GmbH) under a working pressure range of 1×10−8 mbar. The samples were analysed using100

a 3 keV 4He+ primary ion beam directed perpendicular to the target surface. The beam current was

typically set to 5 nA. The experiments have been performed at various ionic doses, the analysed area

was kept 1000µm X 1000µm. The samples were treated in situ under atomic oxygen plasma prior to

LEIS analyses.

3 Results and Discussion105

3.1 Surface morphology of LFO films

The 100X magnification picture of LFO, presented in Fig. 1a shows leaf-like patterns with orange

ridges and dark blue gullies. The AFM image shown in Fig. 1b revealed that the ridges are consistent

with zones featuring thicker deposits while gullies are characteristic of thiner LaFeO3±δ layers. The

peak-to-valley roughness reaches 160 nm while the average level of thickness is equal to 70 nm±10 nm.110

Fig. 1c shows that the LFO film is made of nano-sized aggregates similar in size and shape to

those observed in powders prepared from the citrate-route [16]. The root mean squared roughness

(RMS), Rq , defined by Rq =
√

1
n

∑n
i=1 y2

i , where yi is the level of the i th of n data points, was found

to reach about 15.6 nm. Interestingly, the average radius of LaFeO3±δ nanocrystallites from Figure

1c reaches 68 nm ± 3 nm, which matches well the depth of the deposit. This suggests that a single115
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Figure 1: a: 100X magnification optical microscopy image, b: large-scale AFM image and c: AFM image
on smaller area of LFO film.

layer of LaFeO3±δ nanocrystals was deposited. It is to be noticed from Fig.1c, however, that between

theLaFeO3±δ nanocrystals nanosized voids are present.

3.2 Structure of LFO layers

3.2.1 X-Ray diffraction (XRD)120

The diffraction pattern of the LFO layer displayed in Fig. 2 shows every reflection of the polycrystalline

perovskite LaFeO3±δ crystallised in orthorhombic lattice with lattice constants a=5.553 Å, b=5.563 Å

and c=7.867 Å (space group: Pbnm) [17].

Figure 2: X-ray diffractogram of LaFeO3±δ thin film; red stick diagram: diffraction pattern of LaFeO3±δ
(PDF 74-2203)

No reflection of any other crystalline phase such as La2O3, La(OH)3 or Fe2O3 is observed.
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3.2.2 Raman spectroscopy125

The typically analysed sample depth is approximately 1µm, which is one order of magnitude higher

than the film’s thickness. As a result, the Raman spectra recorded by focusing the laser beam at

the surface of the layers are largely dominated by the signature of crystalline silicon found in bare

SiO2/Si(100), as can be seen in the spectra presented in Fig. 3, bottom.

Figure 3: Bottom: Raman spectra of bare SiO2/Si(100) (A) and of LFO thin film recorded in either a gully
(B) or a ridge region (C). Top: Difference spectrum (C-A); λexc.=488 nm, acquisition time: 30 s, three
scans were averaged.

However, the signature of polycrystalline lanthanum orthoferrite (LFO) can be handily retrieved by130

subtracting the Raman spectrum of the LFO thin film by the one of pure Si recorded under the same

conditions. The difference spectrum, presented on top of Figure 3 C-A is similar in every respect to

the Raman profile of the very same materials shaped as powders [9]. The assignment of the Raman

bands of LFO have been already largely reported [18–20]. In brief, the modes below 200 cm−1 are

related to La motions, the doublet of bands observed at 269 and 298 cm−1 are oxygen octahedral tilt (T)135

modes while the band at 431 cm−1 is assigned to the bending vibration of FeO6 octahedra. The band at

638 cm−1 is assigned to Fe-O and La-O stretch vibrations. Broad bands of relatively high intensity are

also detected at ∼1147 and ∼1300 cm−1, which were previously assigned to second order scattering of

IR-active longitudinal optic (LO) phonon modes. To sum up, in spite of the relatively low share of LFO

phase as compared to the volume probed by Raman spectroscopy, LFO bands of high enough intensity140

are detected, which paves the way to further operando Raman analyses.
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3.3 Surface analysis of LFO thin films

X-ray Photoelectron Spectroscopy (XPS) The XPS spectra of the LaFeO3±δ thin film for C 1s, La 3d,

Fe 2p, and O 1s are presented in Fig. 4. The C 1s photopeak presents an aliphatic peak together with

weaker features at higher binding energies (BE) assigned to hydroxyl and carbonyl surface contamina-145

tions. The peak at BE of 289.2 eV with 11% of the total carbon peak area is attributed to the presence of

adsorbed carbonate species at the surface of the LaFeO3±δ film, as was previously also observed in the

lanthanum-based corresponding powders [8].

Figure 4: La 3d, Fe 2p, O 1s and C 1s spectra of LaFeO3±δ thin film

The high-resolution spectrum of La 3d exhibits two peaks localized at 834.3 eV and 851.0 eV cor-

responding to the spin-orbit splitting of La 3d5/2 and La 3d3/2 of La3+ ion in its oxide form [21–24].150

Each of the spin-orbit peak is further split by multiplet splitting components. The multiplet structure

associated to La 3d5/2 peak shows a magnitude of 4 eV. This value corresponds to the presence of lan-

thanum hydroxide [21]. Indeed, owing to the reactive nature of La compounds which react in ambient

air with water and CO2 to form La hydroxides and carbonates, it is possible that this La 3d component

is consisting of contributions from surface hydroxides and carbonates besides the mixed oxide. The155

binding energies of Fe 2p3/2 and Fe 2p1/2 are 710.5 eV and 724.2 eV, respectively, which is in line with

the BE of Fe3+ ions in their oxide form. This is further confirmed by the 8.6 eV BE separation between

the main Fe 2p3/2 peak and its satellite (sat.), characteristic of Fe3+ [25]. La 3d and Fe 2p core-level

spectra thus revealed that both La and Fe stand in +3 oxidation state and their respective areas allows to

calculate an atomic La:Fe ratio of 1.8. Only the La 3d5/2 peak was considered for quantification keeping160

in mind the overlapping of La MNN Auger peak with the La 3d3/2 component [21]. Compared to the
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nominal composition, the LaFeO3±δ thin film exhibits an excess of lanthanum at the surface whose

value is close to what has been already reported on powdered samples [8].

The high-resolution spectrum of O 1s of the perovskite film is dominated by two intense components

at 529.5 eV and 532.8 eV. The first one is in line with previous studies of contribution of bulk oxygen165

lattice involved in lanthanum oxide and iron oxide groups [21, 24, 26]. The second contribution cen-

tered at 532.8 eV is assigned to oxygen from hydroxyl groups (∼ 531 eV), organic oxygen (∼ 532 eV)

and silica due to the existence of a silica over the Si substrateappearing from the voids arising from

inhomogeneity of the film at both micro- and nanoscale, as discussed previously.
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Low-Energy Ion Scattering (LEIS) The composition of the outermost surface of the LaFeO3±δ thin170

film was investigated by means of LEIS and the corresponding spectra are presented in Fig. 5. Under

static conditions, as in Fig. 5a, both La and Fe feature low-intensity scattering peaks detected at 2671

and 2313 eV, respectively, which confirms that the outermost LaFeO3±δ surface contains both La and

Fe species. The coverage of the LaFeO3±δ nanocrystals over the silica/silicon surface induced inter-

particle voids, see Fig. 1c, which can explain the detection of the low intensity Si peak at 1760 eV.175

Upon increasing the ionic dose (see, for example, Fig 5c, d and e), both Fe and La peaks were found to

gradually and jointly increase in intensity.

Figure 5: 4He+ at 3 keV LEIS spectra of LaFeO3±δ thin film recorded using an ionic dose of a:
2.0×1014 cm−2, b:1.5×1016 cm−2, c: 5.9×1016 cm−2, d: 1.1×1017 cm−2 and e: 1.5×1017 cm−2; Note
that the spectra are shifted by a constant offset for clarity

An attempt for getting more information on the composition of the extreme surface of the film as

probed by LEIS was made by considering the areas of Gauss LEIS surface peaks of Fe and La , further

denoted as AFe and ALa , as a function of the ionic dose applied. The LEIS peaks areas presented in Fig.180

6.

The extrapolated values of the raw areas of both La and Fe surface peaks at zero ionic dose suggest

that both lanthanum and iron species are found in the extreme surface of the perovskite film. Besides,

the ALa
AFe

ratio, plotted against the ionic dose in Fig. 6, approaches a constant value close to 2. This

suggests that, within the sample depth investigated by LEIS, the lanthanum excess evidenced by XPS185

translates into a relatively stable La/Fe ratio.
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Figure 6: Evolution of the areas of Gauss profiles respectively assigned to Fe (red squares) and La (black
triangles) surface peaks and the ratio of La:Fe raw areas (blue triangles) as a function of the applied
ionic dose
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3.3.1 Time of flight - Secondary Ions Mass Spectrometry (ToF-SIMS)

The elemental depth profile was built using the relative SIMS intensities of the Cs2O+ (281.80 a.m.u),

CsFe+ (188.84 a.m.u), CsLaO+ (287.80 a.m.u) and Si+ (27.98 a.m.u) fragments, which are representative

for O, Fe, La and Si-containing moieties, respectively. A constant sputter rate of 0.08 nms−1 was190

estimated on the basis of the AFM data, thus making it possible to convert sputter time into sample

depth. Fig. 7 shows the evolution of the normalised intensities of the most relevant fragments, as

detailed above.

Figure 7: SIMS depth profile of Cs-enriched relevant fragments

A first layer of approximately 10 nm exhibits highest relative content in oxygen species, which can

be related to contributions of carbonates species such as La2(CO3)3 as well as hydroxyls from La, as195

suggested by our XPS results. Between 20 and 60 nm, both the concentrations of La- and Fe-containing

moieties gently increase, as the contribution of oxygen declines. Having in mind that the LaFeO3±δ
phase is confirmed by XRD and Raman, we assume here that this moderate shift in the contribution of

La, Fe and O-containing fragments does not reflect a genuine composition gradient, but is induced by

an experimental bias. As a result, we propose that this region corresponds to a pure LaFeO3±δ phase200

which does not exhibit significant carbonate content. Between 60 and 75 nm, the depth profile features

the coexistence of La, Fe, Si and oxygen species, which corresponds to the LaFeO3±δ/SiO2/Si interface.

Finally, only pure silicon is detected when the depth exceeds 120 nm. On the basis of the presented XPS

and structural results, one would expect the depth profile to show a marked excess of La-containing

fragments at the surface and a subsequent convergence of the normalised contributions of Fe- and205

La-containing species when entering the sample bulk. However, the depth profile shown here does

not comply with this expectation at the outermost surface. Indeed, besides the skin effect and surface

contaminants blurring the first five nanometers of SIMS intensities, both La- and Fe-moieties seems to

evolve similarly.

An elemental mapping was also run over a wide sample surface and is presented in Fig. 8. It can be210

seen that La and Fe species are found in similar areas and that no obvious sizeable segregated domains
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are detected within the investigated range.

Figure 8: 500µm X 500µm maps of Fe+ (left), LaO+ (middle) and Si+(right) fragments distribution as
afforded from ToF-SIMS experiments

4 Conclusion

A polycrystalline thin film of LaFeO3±δ was prepared by spin coating over SiO2/Si(100) using the

polymerisable complex method. The LaFeO3±δ layer was shown to retain the same structural and215

surface properties as the powdered solids, which makes the as-prepared thin film a relevant model

catalyst for investigating bulk catalysts based on LaFeO3±δ. On the other hand, shaping LaFeO3±δ into

a thin film made it possible to attain unprecedented combined surface analyses. Moreover, the present

work establishes the possibility to investigate such thin films using in situ Raman spectroscopy as well

as advanced surface characterisation techniques in quasi-in situ or near-ambient pressure (NAP) XPS.220

This can enable us to establish relationships between the physico-chemical properties of perovskite

model surfaces and the reactivity of the conventional catalysts.
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