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In this article, we explore both numerically and analytically how the dynamical environments of mildly
relativistic binaries evolve with increasing the general relativity factor γ (the normalized inverse of the
binary size measured in the units of the gravitational radius corresponding to the total mass of the system).
Analytically, we reveal a phenomenon of the relativistic shifting of mean-motion resonances: on increasing
γ, the resonances between the test particle and the central binary shift, due to the relativistic variation of the
mean motions of the primary and secondary binaries and the relativistic advance of the tertiary’s pericenter.
To exhibit the circumbinary dynamics globally, we numerically integrate equations of the circumbinary
motion of a test particle and construct relevant scans of the maximum Lyapunov exponents and stability
diagrams in the “pericentric distance–eccentricity” plane of initial conditions. In these scans and diagrams,
regular and chaotic domains are identified straightforwardly. Our analytical and numerical estimates of the
shift size are in a good agreement. Prospects for identification of the revealed effect in astronomical
observations are discussed.

DOI: 10.1103/PhysRevD.100.064016

I. INTRODUCTION

Any gravitating binary with the mass parameter (ratio of
masses of the companions) greater than a specific threshold
has a zone of chaos around it, where all circumbinary orbits
of low-mass particles, irrespective of their eccentricities,
are chaotic, due to accumulation of integer mean-motion
resonances to the parabolic separatrix [1]. This underlines
the importance of consideration of circumbinary resonant
phenomena in actual astrophysical situations.
If any gravitating binary, whose dynamical environments

are under study, is massive and close enough, one has to
take into account effects of general relativity. Some aspects
of resonant and chaotic orbital dynamics around relativistic
binaries were explored by means of numerical experiments
in [2–4]. In [2], an evolution of a massive black hole binary
with a resonantly trapped circumbinary neutron star was
studied. In [3], a specific resonance between the relativistic
precession of a binary and the orbital motion of a distant
third body around the binary was analyzed. Evolving
chaotic dynamics of a test particle orbiting around a
decaying (due to the gravitational radiation) relativistic
binary was considered in [4].

In this article, we focus on resonant circumbinary
phenomena. Namely, we explore the dynamical environ-
ments of mildly relativistic binaries, with an emphasis on
analyzing the resonant structure of the border of the
circumbinary chaotic zone.
A paradigmatic example of a relativistic binary is the

black hole binary GW150914 shrinking before the merger:
a transient gravitational-wave signal was observed by
the Laser Interferometer Gravitational-Wave Observatory
(LIGO) in 2015; it was attributed to the merger of two black
holes [5–7]. In the source frame, the initial masses of the
two merging black holes were estimated to have beenm1 ∼
36 and m2 ∼ 29 Solar masses [5]. New discoveries in this
rapidly developing field of astronomy emerge [8]; there-
fore, theoretical studies of the premerger evolution, starting
from mildly relativistic phases, of such and similar objects
are actual. GW150914 represents just an example where
circumbinary resonant phenomena can be present.
Although circumbinary matter was not observed directly
in the case of GW150914, it is inherent (in the form of
planets and disks) to close stellar binaries, including
binaries that have compact objects as components. Much
more details and examples are given below in Sec. V.
In this article, we restrict our analysis to solely mildly

relativistic binaries. Analytically, we reveal a phenomenon
of resonance shifting in the dynamical vicinity of a*iis@gaoran.ru
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relativistic binary: on increasing γ (the normalized inverse
of the binary size measured in the units of the gravitational
radius corresponding to the total mass of the system), the
mean-motion resonances between the test particle and the
central binary shift slowly, due to the relativistic variation
of the mean motions and the relativistic periastron advance.
We derive formulas predicting this phenomenon analyti-
cally, construct relevant scans of Lyapunov exponents and
stability diagrams, and compare the obtained numerical
results with our theoretical predictions.
The paper is organized as follows. In Secs. II and III, a

general theoretical approach to the effect of the relativistic
shifting of circumbinary mean-motion resonances is given.
In Sec. IV, we describe our numerical experiments, present
Lyapunov exponent scans and stability diagrams, and
compare the numerical results with the theoretical predic-
tions. In Sec. V, prospects for astronomical observations of
resonance shifts in the dynamics around relativistic binaries
are considered. Section VI is devoted to the general
discussion and conclusions.

II. RESONANT CIRCUMBINARY DYNAMICS

In the given problem, mean-motion resonances [9,10]
correspond to commensurabilities between the orbital
frequencies of the primary binary and an orbiting test
particle. In the case of the particle’s circumbinary motion,
one has a > ab, where a and ab are the particle’s and the
binary’s semimajor axes, respectively. We consider mean-
motion resonances of the form ðkþ qÞ=k, where k and q
are integers, and we set 1 − k ≤ q ≤ −1 and k ≥ 3.
Therefore, in what follows, q is always negative. The
integer jqj is the order of the resonance.1 Therefore, the
ratio of the particle’s and binary’s orbital frequencies is
close to ðkþ qÞ=k ¼ ðk − jqjÞ=k and is less than one.
Extending the analysis presented in [11,12], the

Hamiltonian of a particle’s motion in the vicinity of a
mean-motion particle-binary resonance ðkþ qÞ=k in the
restricted elliptic planar three-body problem can be
written as

H ¼ 1

2
βΛ2 −

Xp¼0

p¼q

ϕkþq;kþp;k cosðψ þ pϖÞ; ð1Þ

where β ¼ 3k2=a2, Λ ¼ Ψ −Ψres, Ψ ¼ ðμ1aÞ1=2=k, Ψres ¼
ðμ21=ðk2ðkþ qÞnbÞÞ1=3, and μ1¼1−μ, μ ¼ m2=ðm1 þm2Þ
(we set m1 > m2); ϖ is the longitude of the particle’s
pericenter; ψ ¼ kl − ðqþ kÞlb, where l and lb are the mean
longitudes of the particle and the binary, respectively. Note
that index p ≤ 0.
The units are chosen in such a way that the total mass of

the primary (central) binary, the gravitational constant, and

the primary binary’s semimajor axis ab are all equal to one.
The primary binary’s mean longitude lb ¼ nbt, and the
primary binary’s mean motion nb ¼ 1; i.e., the time unit
equals 1

2πth part of the binary’s orbital period.
Model (1) represents a truncated expansion of the original

Hamiltonian, as expressed in resonance canonical Delaunay
variables [10], in the Laplace series in the vicinity of a given
high-order (jqj≳ 2) mean-motion resonance; the expansion
is truncated by ignoring the rapidly oscillating and small-
amplitude terms. In [11,12], the model was demonstrated to
provide a good description of the close-to-resonant dynami-
cal behavior, if its applicability conditions are satisfied; see
also comments to formula (4) below.
If the central binary is eccentric (the primary binary’s

eccentricity eb > 0), resonance ðkþ qÞ=k ¼ ðk − jqjÞ=k
splits in a cluster of jqj þ 1 subresonances p ¼ 0;
−1;−2;…; q. The resonant argument of each subresonance
is given by

ϕ ¼ ψ þ pϖ ¼ kl − ðqþ kÞlb þ pϖ

¼ kl − ðk − jqjÞlb − jpjϖ; ð2Þ
where p ¼ 0;−1;−2;…; q.
At q ¼ 1 − k, one has integer resonances (the binary’s

and particle’s periods are in the ratio 1=k, while their mean
motions are in the integer ratio k=1). At k ≥ 2, each of them
splits (if eb > 0) into a cluster of k subresonances with the
arguments

ϕ ¼ kl − lb þ pϖ ð3Þ
with p ¼ 0;−1;−2;…; 1 − k.
The coefficients of the subresonant terms are given by

jϕkþq;kþp;kj ≈
μ

jqjπa
� jqj
jpj

��
ϵ

2

�jpj�ϵb
2

�jqj−jpj
; ð4Þ

where ϵ ¼ ea=ja − abj and ϵb ¼ eba=ja − abj; ab and eb
are the primary binary’s semimajor axis and eccentricity,
respectively; a and e are the particle’s semimajor axis and
eccentricity, respectively.
In any application, formula (4) can be considered to

provide a satisfactory qualitative precision, if ϵjqj < 1 [11].
Besides, as already noted above, model (1) is restricted to
the resonances of relatively high order: jqj≳ 2.
The frequency of small-amplitude oscillations on sub-

resonance jpj is given by

ω0¼ðβjϕkþq;kþp;kjÞ1=2

≈
a

ja−abj
nb

�
μ1μ

4jqj
3π

� jqj
jpj

��
a
ab

��
ϵ

2

�jpj�ϵb
2

�jqj−jpj�1=2
:

ð5Þ
According to Eq. (4), if the central binary is circular (its

eccentricity is zero), only one subresonance persists, the
last one (that with jqj ¼ jpj).

1Note that the letter q is also used, traditionally, to designate
the pericentric distance.
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As it is clear, e.g., from Eq. (3), the apsidal precession
may influence the location of resonances. Therefore, let us
consider the relevant effects invoking the precession in the
given dynamical configuration. There exist a number of
causes for the apsidal precession, among them general
relativity. A relatively rapid apsidal precession in our Solar
System is exhibited by Mercury. The rate of Mercury’s
apsidal precession due to perturbations from all other
planets is equal to 53200 per century; general relativity
adds 4300 per century (see, e.g., [13]), whereas the Solar
oblateness and tidal effects are negligible.
Einstein’s formula for the relativistic apsidal precession

rate of a particle orbiting around single central mass M is

ωE ≡ _ϖ ¼ 6πGM
c2að1 − e2Þ ¼

3πRg

qð1þ eÞ ð6Þ

(in radians per particle’s orbital revolution) [13], where G is
the gravitational constant, c is the speed of light, and a and
e are the semimajor axis and eccentricity of the particle’s
orbit, respectively; the gravitational radius Rg of the central
mass M is equal to 2GM=c2.
For the classical nonrelativistic case, approximate ana-

lytical expressions describing the secular dynamics in the
hierarchical circumstellar and circumbinary systems can be
found in [14–16]. In the hierarchical circumbinary version
of the circular (eb ¼ 0) restricted planar three-body prob-
lem, the apsidal precession rate of a circumbinary passively
gravitating tertiary, in ratio to the particle’s mean motion n,
is given by

ωcl

n
¼ 3

4

m1m2

ðm1 þm2Þ2
�
ab
a

�
2

¼ 3

4
μð1 − μÞ

�
ab
q

�
2

ð1 − eÞ2: ð7Þ

Here the subindex “cl” of ω means “classical”; i.e., the
problem is nonrelativistic. The barycentric frame is
adopted; m1 and m2 are the masses of the binary compo-
nents (we set m1 ≥ m2); μ ¼ m2=ðm1 þm2Þ; ab and eb are
the primary binary’s semimajor axis and eccentricity,
respectively; a, q, and e are the tertiary’s semimajor axis,
pericentric distance and eccentricity, respectively.
In circumbinary configurations, general relativity can

contribute much to the apsidal precession of the tertiary, if
the central binary is massive and close enough. In the
hierarchical circumbinary problem one has M ¼ m1 þm2

in Eq. (6); therefore

ωE

n
¼ 3γ

ab
qð1þ eÞ ; ð8Þ

where the dimensionless parameter γ, as defined in [17], is
given by

γ ¼ GMS

c2aE
·
ðm1 þm2Þ

ab

¼ 9.870994 × 10−9 ·
ðm1 þm2Þ

ab
; ð9Þ

MS is the Solar mass, aE is the astronomical unit, ab is the
binary’s size, m1 and m2 are in Solar units, and ab is in
astronomical units. From Eq. (9) we see that the γ factor is
just the normalized inverse of the size of the binary
measured in the units of the gravitational radius corre-
sponding to the total mass of the system.
In the post-Newtonian (PN) formalism, Eq. (8) for the

pericenter advance is valid in its first approximation. For
the second PN approximation, relevant expressions can be
found, e.g., in [18–23]. We adopt the formula as given in
[19] and in [23], Eq. (A1), rewriting it in the form

ω1PNþ2PN

n
¼ ωE

n
þ
�
ωE

n

�
2
�
13

6
þ 17

12
e2
�
; ð10Þ

where ωE is given by Eq. (8). As one may conclude
from this formula, the 2PN term in Eq. (10) may start to
compete with the 1PN term at large e and γ. Therefore,
henceforth we restrict our analysis to relatively small
eccentricities e≲ 0.2.
The ratio of the relativistic (1PN) precession rate and the

classical precession rate, as follows from Eqs. (7) and (8), is
given by

ωE

ωcl
¼ 4γ

μð1 − μÞ
q
ab

ð1þ eÞ−1ð1 − eÞ−2: ð11Þ

The relativistic apsidal precession around a gravitating
binary also contains a contribution due to the rotation of the
binary; this contribution is retrograde. If m2 ≪ m1, the rate
of the precession induced by the spin angular momentum L
of the binary is given by

ωL

n
¼ −

4Gm2a
1=2
b

c2a3=2ð1 − e2Þ3=2 ; ð12Þ

see Eqs. (A2) and (A3) in [24] and also [25]. Introducing γ
and q in this formula, one has

ωL

n
≃ −4μγ

�
ab
q

�
3=2

ð1þ eÞ−3=2: ð13Þ

As revealed in [24], the rotating central binary induces also
a quadruple moment and the corresponding (much smaller)
prograde precession rate is given by

ωQ

n
≃
�
6þ 171

8
e2
�
μ
a2b
a3

¼
�
6þ 171

8
e2
�
μγ

�
ab
q

�
3

ð1 − eÞ3; ð14Þ
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with accuracy ∼e4. Thus, the total rate of the relativistic
precession caused by the central binary is given by

ωrel

n
¼ ωE

n
þ ωL

n
þ ωQ

n
: ð15Þ

III. RELATIVISTIC SHIFTING OF
CIRCUMBINARY RESONANCES: THEORY

The relativistic shifts of the mean motion n1 of the
central binary and the mean motion n2 of the tertiary from

their nominal values nð0Þ1 and nð0Þ2 can be calculated using
Eqs. (6) and (7) in [17]; we rewrite these equations in the
form

n1 ¼
�
1þ μð1 − μÞ − 3

2
γ1

�
nð0Þ1 ; ð16Þ

n2 ¼
�
1 −

3

2
γ2

�
nð0Þ2 ; ð17Þ

where γ1 and γ2 are the values of the γ parameter calculated
via Eq. (9), where ab is set equal, respectively, to the
semimajor axis of the central binary and to the semimajor
axis of the tertiary’s orbit. Designating the ratio of the
orbital periods of the tertiary and the primary binary by fT,
one has for the value of this ratio shifted from the nominal

location fð0ÞT

fT ≈
�
1þ μð1 − μÞ

2
γ þ 3

2

�
1 − e
q

− 1

�
γ

�
fð0ÞT ; ð18Þ

where γ ≡ γ1 and q is measured in units of the primary
binary size. Here it was taken into account that the
correction is much less than the ratio itself. Designating
the ratio of the semimajor axes by fa, one has

fa ≈
�
1þ μð1 − μÞ

3
γ þ

�
1 − e
q

− 1

�
γ

�
fð0Þa : ð19Þ

For e ∼ 0 and q ≫ 1, these two formulas reduce to

fT ≈
�
1 −

3

2
γ

�
fð0ÞT ð20Þ

and

fa ≈ ð1 − γÞfð0Þa : ð21Þ

Let us now calculate how the shift of resonance can be
influenced by the relativistic apsidal precession. We con-
sider the integer mean-motion resonances (the binary’s and
particle’s periods are in the ratio 1=k, while their mean
motions are in the integer ratio k=1).

As follows from Eq. (4), in the circular (eb ¼ 0)
restricted planar three-body problem only one subreso-
nance is present in the mean-motion resonance multiplet,
namely, that with p ¼ 1 − k. The resonance is therefore not
split and is represented in the sum (1) solely by the term
with p ¼ 1 − k. For the system to be in resonance, the
averaged time derivative of the resonant argument, given by
Eq. (3), should be equal to zero: k_l − _lb þ ð1 − kÞ _ϖ ¼ 0.
Therefore, the location of an integer mean-motion reso-
nance is given by

nres
nb

¼ 1

k
þ k − 1

k
·
ωΣ

nb
; ð22Þ

where the apsidal precession rate is the sum of the classical
and relativistic contributions:

ωΣ ¼ ωcl þ ωrel: ð23Þ

In the following, we are interested in the resonance
relativistic shift from the classical nominal location affected
already by the classical circumbinary precession. Based on
Eq. (23), it is straightforward to assess the amount of this
shift:

fT ≈
�
1 − ðk − 1ÞωE

n

�
fð0ÞT ≈

�
1 −

3ðk − 1Þγ
qð1þ eÞ

�
fð0ÞT ; ð24Þ

where q is measured in units of the primary binary size.
Analogously,

fa ≈
�
1 −

2ðk − 1Þγ
qð1þ eÞ

�
fð0ÞT : ð25Þ

At e ∼ 0, one has

fT ≈
�
1 −

3ðk − 1Þγ
q

�
fð0ÞT ð26Þ

and

fa ≈
�
1 −

2ðk − 1Þγ
q

�
fð0Þa : ð27Þ

The total shift in the semimajor axis is given by the sum of
the shifts in (19) and (25):

Δfa ≡ fa

fð0Þa

− 1

≈
μð1 − μÞ

3
γ þ

�
1 − e
q

− 1

�
γ −

2ðk − 1Þγ
qð1þ eÞ ; ð28Þ

or, at e ∼ 0 and q ≫ 1,
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Δfa ≈ −
�
1þ 2ðk − 1Þ

q

�
γ: ð29Þ

For example, assume that e ¼ 0, q ¼ 2, and k ¼ 3; then
from Eq. (28) follows Δfa ≈ −2.5γ and from Eq. (29)
follows Δfa ≈ −3γ.
Note that, as already mentioned above, in the case when

the primary binary is circular (eb ¼ 0), solely the p ¼ 1 − k
term is present in the multiplet; others are nonexistent (have
zero coefficients) and, therefore, there is no need to
consider them. Concerning half-integer and other higher-
level (in the Farey tree defined below in Sec. IV) reso-
nances, their shifts can be estimated as averages taken over
their two integer neighbors in the Farey tree.
Concluding this section, one may summarize that the

mean-motion resonances between the tertiary and the
primary binary are subject to shifting from their nominal
locations due to (i) the relativistic corrections to the mean
motions of the central binary and the tertiary and (ii) the
relativistic apsidal precession of the tertiary’s orbit. In both
cases, the shift in the period ratio or in the semimajor axis
ratio is negative and is of the order of γ; thus, the
cumulative effect is also of the order of γ. The total shift
can be calculated using Eq. (28) or (29).

IV. STABILITY DIAGRAMS

Our numerical simulations are performed in the frame-
work of the circular restricted three-body planar problem in
post-Newtonian approximation, adopting the equations
of motion as given in [17]. The software code developed
in [17] is used.
To distinguish between regular and chaotic types of

motion in the given problem, we use a statistical method
proposed and applied in [26,27]. It consists of four steps.
(i) On a representative set of initial data, two differential
distributions (histograms) of the orbits in the computed value
of log10λmax (where λmax is the maximum Lyapunov expo-
nent) are constructed, using two different time intervals for
the integration. (ii) If the phase space of motion is divided
[28], each of these distributions has at least two peaks.

The peak that shifts (moves in the negative direction in the
horizontal axis), when the integration time interval is
increased, corresponds to the regular orbits. The peak (or
a set of peaks) that stays still corresponds to the chaotic orbits.
(iii) The value of log10 λmax at the histogram minimum
between the peaks is identified, thus providing a numerical
criterion for separating the regular motion from the chaotic
one. (iv) The obtained criterion can be used in any further
computations to identify regular or chaotic orbits on much
finer initial data grids and, rather often, on smaller time
intervals of integration. For the case of circumbinarymotion,
this method was implemented in [29] to construct stability
diagrams of circumbinary planetary systems in the “q − e”
(pericentric distance–eccentricity) space of initial conditions
of planetary orbits.
Henceforth, we adopt the following designations: Tr is

the time of simulation (in orbital periods of the central
binary), q is the initial pericentric distance (in units of the
central binary size), μ≡m2=ðm1 þm2Þ is the mass param-
eter of the central binary (m2 < m1), and γ is the relativistic
factor already defined.
In Fig. 1, we illustrate the limits of validity of the code

used. The rate of precession of the pericenter of a particle’s
orbit around a single primary is shown as a function of the
relativistic factor γ. (For a single primary, the relativistic
factor γ is formally defined by setting the mass of the
secondary to zero and the binary size to unity.) For all
panels of the figure, the particle’s pericentric distance
q ¼ 3. The eccentricities are (a) e ¼ 0.1, (b) e ¼ 0.2,
and (c) e ¼ 0.3. The dots represent the results of our
numerical simulations, and the dashed straight line is the
theoretical ω ¼ 2π ωE

n , where
ωE
n is given by Eq. (8).

One can see that the performance of the code improves
with e decreasing: while at e ¼ 0.3 the code sharply starts
to produce a false retrograde precession at γ > 0.003, at
e ¼ 0.1 the precession starts to be retrograde much later,
at γ > 0.008. Therefore, one may estimate and expect that
at e ≈ 0 the code is valid at γ values up to 0.01.
Our computations, performed separately at three relevant

points of the diagram, namely, at (q ¼ 1.5, e ¼ 0.01),
(q ¼ 2.0, e ¼ 0.01), and (q ¼ 2.2, e ¼ 0.01), confirm this

1

10-7

10-6

10-5

10-4
10-3

10-2

10-1

10-710-610-510-410-310-210-1

ω

γ

(a)
1

10-7

10-6

10-5

10-4
10-3

10-2

10-1

10-710-610-510-410-310-210-1

ω

γ

(b)
1

10-7

10-6

10-5

10-4
10-3

10-2

10-1

10-710-610-510-410-310-210-1

ω

γ

(c)

FIG. 1. The rate of apsidal precession of the particle’s orbit around a single primary, as a function of the relativistic factor γ. For all
panels, we set the particle’s pericentric distance q ¼ 3. The eccentricities: (a) e ¼ 0.1, (b) e ¼ 0.2, (c) e ¼ 0.3. The dots represent the
results of our numerical simulations, and the dashed straight line is the theoretical ω ¼ 2π ωE

n , where
ωE
n is given by Eq. (8).
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expectation. In Fig. 2, the precession rate dependence on γ
is shown for these three cases. The curves are apparently in
a good agreement with the 1PN theory up to γ values as
large as 0.01.
Now let us proceed to a numerical verification of the

resonance shift phenomenon in the three-body problem.We
set μ ¼ 0.1 and build two scans (one for γ ≈ 0 and one for
γ ¼ 0.01) of the maximum Lyapunov exponent along the q
axis at a small fixed e, namely, at e ¼ 0.01. The scan’s
interval covers a relevant neighborhood of q ∼ 2, namely,
q ∈ ½1.5; 2.2�. Note that Figs. 2(a) and 2(c) correspond to
the borders of this interval. The scans are presented in
Fig. 3. The black curve corresponds to γ ¼ 10−7, and the
red one to γ ¼ 10−2. The 3=1 resonance chaotic band (at
q ≈ 2) is apparently shifted by the amount of ≈ − 0.03. As
already calculated in Sec. III by means of Eq. (28), the
theoreticalΔfa ≈ −2.5γ ≈ −0.03. The perfect agreement of
the numerical-experimental result with the theory is evi-
dent; and the resonant shift phenomenon is thus confirmed
numerically.
To provide a global picture of the circumbinary dynam-

ics, we construct q-e stability diagrams (Fig. 4) in the given
problem. In the upper panels of Fig. 4, the stability
diagrams are presented for various γ values at fixed
μ ¼ 0.1. Chaotic and regular zones in the plane of initial
values of e and q are shown in red and blue, respectively.
These diagrams are presented here just for illustrative

purposes, to provide a global overview of resonances.

The used code is not accurate enough to characterize
resonance shifts at γ ¼ 0.01 and e ¼ 0.1–0.3 (i.e., in the
upper part of the third panel in the figure). What is more,
the deviations between the three panels cannot be used to
quantify our effect, because it was described above ana-
lytically for the case of e ≈ 0. However, at e ≈ 0, the code is
expected to perform accurately enough.
To distinguish between regular and chaotic orbits, the

statistical method [26,27] is used, as described above.
Namely, two values of the finite-time maximum Lyapunov
exponent λmax are computed on a grid of initial values on two
time intervals Tr ¼ 104 and Tr ¼ 105 (measured in the
central binary revolutions); then, the λmax distributions are
compared. The panels below the stability diagrams in Fig. 4
demonstrate the corresponding histograms of the maximum
Lyapunov exponent λmax. TheN=Ni value is the normalized
relative number of orbits with the given λmax. The histograms
are computed on fine grids of initial q and e, as prescribed
above by the general algorithm of constructing such dia-
grams. Black and red curves correspond to the two compu-
tation times of 104 and 105 binary periods, respectively. The
derived numerical criteria for the separation between regular
and chaotic orbits are indicated in the histograms by dashed
vertical lines. It is apparent that the fixed and shifted peaks are
well separated (no overlap of them is present) and thus the
regions of chaos and order are well defined.
The chaos border in Figs. 4(a)–4(c) is ragged due to

resonances; the most prominent “teeth” (bands) correspond
to integer resonances (the binary’s and particle’s periods are
in the ratio 1=k, while their mean motions are in the integer
ratio k=1). The Farey tree [30] of the resonant teeth at the
border is evident. Recall how the Farey tree is built:
consider first the lowest-order “neighboring” ratios m=n
and m0=n0 [in the given case, these are the integer ratios
m=1 and ðmþ 1Þ=1]; then, the next (higher) level of the
Farey tree is made of mediants given by the formula
m00=n00 ¼ ðmþm0Þ=ðnþ n0Þ ¼ ð2mþ 1Þ=2. Thus the
half-integer mean-motion resonances are the mediants
for the integer ones, and so on. The orbital resonances
accumulate more and more densely with increasing k, i.e.,
on approaching the parabolic separatrix; this effect is
evident in the upper right parts of the panels in Fig. 4.
Note that the shape of the resonant bands is essentially

1

10-7

10-6

10-5

10-4
10-3

10-2

10-1

10-710-610-510-410-310-210-1
ω

γ

(a)
1

10-7

10-6

10-5

10-4
10-3

10-2

10-1

10-710-610-510-410-310-210-1

ω

γ

(b)
1

10-7

10-6

10-5

10-4
10-3

10-2

10-1

10-710-610-510-410-310-210-1

ω

γ

(c)

FIG. 2. The same as in Fig. 1, but at e ¼ 0.01 (all panels) and q ¼ 1.5 [panel (a)], q ¼ 2.0 [panel (b)], and q ¼ 2.2 [panel (c)].
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the resonance shift direction.
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sensitive to variations of the system parameters; this is
generic for marginal resonances; see [31]. Thus, the
diagrams in Fig. 4 graphically demonstrate how major
resonances interact and overlap.
As alreadymentioned above, at e ≈ 0 the code is expected

to perform accurately enough, and the resonance shifting
phenomenon can be checked. Consider the resonant “tooth,”
directed to the point (q ≈ 2, e ¼ 0). It corresponds to the
mean-motion resonance 3=1. Comparing Figs. 4(b) and 4(c)
(at e ≈ 0, where the code is accurate), one may see that, on
increasing γ by amount of 0.01, the tooth is shifted at this
point to the left in the semimajor axis, by amount of≈ − 0.03.
Therefore, in this diagram, the numerical result again agrees
with the analytical estimate already given above.
To illustrate the effect in a more general setting, in Fig. 5

we present a stability diagram constructed in the plane of
values of the γ parameter and the initial value of q; whereas
μ ¼ 0.1 and e ¼ 0.01. The method of construction is the
same as for Fig. 4; the technical histogram of regular and
chaotic orbits, not shown here, again demonstrates their
perfect separation. In Fig. 5, thevicinity of the 3=1 resonance
is displayed. Chaotic and regular zones are shown in red and
blue, respectively. The white dashed curve is given by
Eq. (28) at k ¼ 3, μ ¼ 0.1, e ¼ 0.01, and q ¼ 2.051. We
see that the resonance shift increases with γ and it generally
follows the theoretical relation. At the highest values of γ
(∼0.01) in the diagram, the computed shift seems to be
somewhat stronger than the theoretical one. This may be due
to restrictions in both the theory and simulation code. To
reveal graphically the code validity limits, in Fig. 6 we

present the normalized difference ðω − ωEÞ=ωE as a function
of γ. Hereω is computed using the numerical code andωE is
calculated by Eq. (8). The presented curves correspond to
q ¼ 1.95 and q ¼ 2.05 (in the vicinity of the 3=1 resonance;
see Fig. 5); e ¼ 0.01. An artifact deviation of up to ≈16% is
seen at γ ¼ 0.01. This deviation inωmay result in a deviation
of up to≈12% in the total resonance shift at γ ¼ 0.01, but the
theory limitations come already into play at this level, as,
e.g., we do not take into account the role of the binary’s
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angular momentum. Finally, we may conclude that the
theory and simulation results are in a reasonable quantitative
agreement.

V. OBSERVABILITY OF THE EFFECT

What are the prospects for astronomical observations of
such resonance shifts in the dynamics of matter around
relativistic binaries? Generally, circumbinary material is
now routinely observed in the form of planets and disks
[32,33]. Near-resonant circumbinary planets (CBPs) were
identified [29,34], as well as resonant features in circum-
binary disks; see, e.g., [35]. On the other hand, planetary
systems of compact stars are known to be an ordinary
phenomenon [33]. Moreover, historically, the first exopla-
net was discovered in 1992 in a system of a neutron star
(hereafter NS) [36]. Nowadays, the ubiquity of planets in
orbits around such compact objects as single pulsars is well
established. Tight binaries with compact components such
as white dwarfs (hereafter WD) are observed that have
CBPs [33]; a particular example is NN Ser.
As soon as the considered effect is proportional to γ, let

us see, first of all, which binaries may have values of γ large
enough. As given by Eq. (9), the γ factor is just the
normalized inverse of the size of the binary measured in the
units of the gravitational radius corresponding to the total
mass of the system. Therefore, high values of γ are inherent
to binaries that are tight and massive.
Merging black hole binaries, already mentioned in the

introduction, such as GW150914, have γ ∼ 1 at their late
premerger stages of evolution; but any low-mass material
around them (such as planets) is practically impossible to
observe at the present technological level. There may exist
relevant observationally verifiable mechanisms, such as
production of free-floating planets, but considering such
possibilities is far beyond the scope of our article.
Among the ordinary stellar binaries, the tightest ones are

the so-called contact binaries, the W UMa-type stars. For
them, the binary mass is ∼2 Solar masses, and the binary
size is ∼2 Solar radii; therefore γ ∼ 10−6. This value should

be typical for yellow and red dwarf contact binaries,
because for small main-sequence stars (M dwarfs) mass
is approximately directly proportional to radius; see Table 1
in [37].
If we consider WD-WD and NS-NS binaries in close-to-

contact configurations (not yet observed), we find that γ
would be equal to ∼10−4 for a WD contact binary and ∼0.1
for an NS contact binary (given that WD and NS masses are
of order of a Solar mass and their radii are ∼104 and
∼10 km, respectively). These are the values that can be
expected at late stages the inspiralling evolution of such
binaries. If any close-to-resonant circumbinary planet were
observed in such a system at this stage, its resonant shift can
be identified by modern methods of exoplanetary studies,
such as eclipse timing variation (ETV) or transit timing
variation (TTV) methods in the case of WD-WD systems
and the pulsar timing method in the case of NS-NS systems.
(For descriptions of the methods see [33].) If any disk
material were present, shifts of resonant features can also be
searched for.
In principle, even for ordinary contact binaries (W UMa-

type stars) the effect can be searched in the near future,
because the TTV method already provides the relative
precision of ∼10−4 in the determination of orbital periods
of CBPs; see examples in [34,38].
Apart from stellar binaries, another relevant class of

astrophysical objects, perspective from the observational
viewpoint, is represented by supermassive black hole
(SMBH) binaries in active galactic nuclei, such as OJ
287 and PKS 1302-102. The SMBH masses in active
galactic nuclei can be as great as ∼1010 in Solar units,
whereas the sizes of the SMBH binaries in OJ 287 and PKS
1302-102 are ∼0.1 pc in the both cases [39,40]. Therefore,
γ ∼ 0.01 for both OJ 287 and PKS 1302-102. Resonance
shifts can be searched in the dynamics of any material
orbiting around the SMBH binaries, if such material were
identified.
Concluding, two major classes of astrophysical objects,

namely, (i) contact or close-to-contact stellar binaries and
(ii) SMBH binaries in active galactic nuclei, represent
perspective targets for astronomical observation and veri-
fication of the considered effect.

VI. DISCUSSION AND CONCLUSIONS

In this article, we have explored both numerically and
analytically how the dynamical environments of mildly
relativistic binaries may evolve with increasing the general
relativity factor γ.
To exhibit the circumbinary dynamics globally, we have

constructed, using direct numerical integrations, the q-e
stability diagrams of the circumbinary orbits, in which any
resonant and chaotic features can be straightforwardly
identified.
Both analytically and numerically, we have revealed a

new phenomenon of the relativistic shifting of mean-motion
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FIG. 6. The normalized difference ðω − ωEÞ=ωE as a function
of γ. The numerical code is used to compute ω, and ωE is
calculated by Eq. (8). The black and red curves correspond to
q ¼ 1.95 and q ¼ 2.05, respectively; e ¼ 0.01.
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resonances: on increasing γ, themain chaotic resonant bands
(corresponding to integer resonances between the test
particle and the central binary) shift, due to the relativistic
corrections to the mean motions of the primary and
secondary binaries and due to the relativistic advance of
the tertiary’s pericenter. We have derived formulas describ-
ing this phenomenon analytically. Our analytical and
numerical estimates of the shift size agree well.
Apart from the theoretical and numerical-experimental

aspects of the resonance shift phenomenon, we have
considered prospects for its astronomical observation and
verification. We find that two major classes of astrophysical
objects, namely, (i) contact or close-to-contact stellar
binaries and (ii) SMBH binaries in active galactic nuclei,
are perspective for identifying the effect in observations.
Finally, we note that any numerical-experimental explo-

ration of the resonant dynamical environments on further
increasing γ requires much harder numerical simulation
efforts, exploiting codes taking into account higher PN
approximations. We leave this exploration for a future
work. However, extrapolating the resonance shifting phe-
nomenon to the domain of larger values of γ, i.e.,
physically, to harder relativistic inspiralling binaries, one
may expect that, on increasing γ, the resonant bands would

further shift slowly closer to the central binary. Graphically,
this phenomenon might be called a “sundew” effect, in
analogy to a carnivorous plant that looks similar to the
presented stability diagrams. The sundew effect might be
important for the fate of any circumbinary matter (planets,
planetesimals, dust, or dark matter particles), if present. The
dynamical regular evolution of the matter between the
slowly closing resonant teeth, as well as the chaotic
evolution inside them, deserves a further numerical study.
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