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Unravelling topological determinants of ex-
citable dynamics on graphs using analytical
mean-field approaches

Marc-Thorsten Hütt and Annick Lesne

Abstract. We present our use of analytical mean-field approaches in in-
vestigating how the interplay between graph topology and excitable dy-
namics produce spatio-temporal patterns. We first detail the derivation
of mean-field equations for a few simple model situations, mainly 3-state
discrete-time excitable dynamics with an absolute or a relative excita-
tion threshold. Comparison with direct numerical simulation shows that
their solution satisfactorily predicts the steady-state excitation density.
In contrast, they often fail to capture more complex dynamical features,
however we argue that the analysis of this failure is in itself insightful,
by pinpointing the key role of mechanisms neglected in the mean-field
approach. Moreover, we show how second-order mean-field approaches,
in which a topological object (e.g. a cycle or a hub) is considered as
embedded in a mean-field surrounding, allow us to go beyond the spa-
tial homogenization currently associated with plain mean-field calcu-
lations. The confrontation between these refined analytical predictions
and simulation quantitatively evidences the specific contribution of this
topological object to the dynamics.

Mathematics Subject Classification (2010). Primary 05C82; Secondary
92C42.

Keywords. Network dynamics, analytical approaches, simulation.

1. Introduction

The original mean-field approach has been introduced in statistical physics for
the analysis of ferromagnetism [28]. Its insight is to approximately describe
the effect of specific couplings between a given atom and its neighbors (actu-
ally all reduced to their spin) as the influence of their average magnetization,

This work has been completed in the framework of the ZiF programme Discrete and
continuous models in the theory of networks.
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acting as an homogeneous external magnetic field (the mean field). It has lead
to a general class of methods, involving similar ‘mean-field’ ansatzes [19, 20].
In the context of dynamics on graphs, it has for example been applied to
self-organized criticality [8], reaction-diffusion processes on networks for one-
component [7] and multi-component systems [27], voter model [26], or ex-
citable dynamics [6, 17, 18]. A general discussion of the accuracy of such
methods can be found in [14] and the monograph [2]. The forest-fire model
in [15] is the first attempt to take into account graph topology in a mean-field
approach, via shortcut density.

In all dynamic models where nodes of the graph can be in a finite num-
ber of states, the general spirit of mean-field approaches is a space-implicit
description in terms of the probability (in physical terms, the density) of
each state. Such approaches provide an average view over space, initial con-
ditions and stochasticity of the dynamics, based on ignoring spatial corre-
lations and inhomogeneities. The validity of mean-field approximations thus
requires weak correlations and statistical homogeneity. While standard mean-
field approaches in continuous systems are shown to be valid above a critical
dimension dc, the situation is different on a graph, where mean-field failure
is presumed to originate in the inherent heterogeneities of its topology and
the way they influence the dynamics. In the context of processes on graphs,
mean-field equations are usually not derived bottom-up from a microscopic
stochastic description, but rather proposed straightforwardly in view of the
qualitative features of the local dynamics, e.g. how many excited neighbors
are required to excite a node in case of excitable dynamics [4, 25, 3, 24].

We will present in Section 2 the derivation of mean-field equations for
two instances of discrete-time excitable dynamics on graphs. In both models,
a node i of the graph can be either susceptible S, excited E, or refractory R.
The dynamics is defined as a 3-state cellular automaton S → E → R → S
according to the following rules: an excited node at time t becomes refractory
at time t + 1, a refractory node at time t becomes susceptible at time t + 1
with a recovery probability p (else it remains refractory), and a susceptible
node becomes excited according to the state at time t of the neighboring
nodes on the graph. For the absolute threshold model, a susceptible node at
time t becomes excited at time t+ 1 if it has at least q excited neighbors (we
will mostly consider the simplest case q = 1), while for the relative threshold
model, a susceptible node becomes excited at time t+ 1 if at least a fraction
κ of its neighbors are excited at time t. Additionally, spontaneous excitations
can occur at susceptible nodes with probability f per time step. When p < 1
(stochastic recovery) and/or f > 0 (spontaneous excitations), the dynamics
is stochastic. An additional level of stochasticity comes from the randomness
of initial conditions. What thus makes sense is to describe average behaviors.
These two models are reminiscent of SIS and SIR models [16, 4], however
no simple mapping can be drawn (excitation propagation is a stochastic step
in SIS and SIR, involving a transmission probability), and their behaviors
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differ. As for the underlying graphs, we actually consider ensembles of graphs
defined by current models, from Erdős-Rényi random graphs [10] to Barabási-
Albert scale-free graphs [1] to Molloy-Reed configuration model that samples
graphs with any prescribed degree distribution, to hierarchical or modular
complex networks [5].

To evaluate the validity of a mean-field approach and its limits, we
have compared in Section 3 the analytical mean-field predictions and the
numerical implementation of our two models of excitable dynamics on graphs.
Failure of a mean-field approach means that either correlations between the
nodes, or local network features, or both, matter. We will discuss the insights
than can be gained from the analysis of this failure. Section 4 is devoted
to the analytical strategies we have devised to go beyond basic mean-field
approaches and take into account some specific topological features of the
graph, in order to gain some general understanding of the interplay between
graph topology and its excitable dynamics.

2. Mean-field equations for excitable dynamics on graphs

2.1. Principle of mean-field approximation(s)

Denoting xi(t) the state of node i at discrete time t, the standard mean-
field approach for describing the average graph dynamics actually comprises
two different approximations, whatever the considered model of dynamics.
The first one is a spatial de-correlation of the node states when computing
statistical averages: 〈xi(t)xj(t)〉 ≈ 〈xi(t)〉〈xj(t)〉. The second one is a spatial
homogenization, considering that 〈xi(t)〉 is independent of the node i. These
two approximations will allow us to derive autonomous, deterministic and
space-implicit equations for the densities cα(t) = Prob[xi(t) = α], with here
α = E,S,R.

2.2. Absolute threshold q = 1 for excitation propagation

Mean-field dynamics is derived by identifying the probability that a given
neighbor is not excited with the average and node-independent quantity
1−cE(t). A decorrelation approximation lies in considering an average quan-
tity, while its node-independence amounts to an homogenization. Another
homogenization arises in replacing the number of direct neighbors of a node
(that is, its degree) with the average degree 〈k〉. This latter approximation
is applied in particular to the probability that a node has at least an excited
neighbor at time t, which is the condition for its excitation by neighbors
in the absolute-threshold model. This probability is accordingly estimated
as 1− B(0, 〈k〉, cE(t)), where the binomial distribution can be explicitly ex-
pressed B(0, 〈k〉, cE(t)) = (1 − cE(t))〈k〉. This probability has then to be
multiplied by (1− f) (no overriding spontaneous excitation) and by the ho-
mogenized probability cS(t) that the node is susceptible. Overall, mean-field
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evolution equations for the state densities are: cE(t+ 1) = cS(t)
[
f + (1− f)[1− (1− cE(t))〈k〉]

]
cR(t+ 1) = cE(t) + (1− p)cR(t)
cS(t+ 1) = 1− cE(t+ 1)− cR(t+ 1)

(2.1)

In the regimes where cE(t) � 1, the term 1 − (1 − cE(t))〈k〉 simply reduces
to 〈k〉 cE(t). Note that the average degree 〈k〉 is usually not an integer: while
the probabilistic reasoning makes sense only for integral 〈k〉, the resulting
formula can be interpolated and extended to any real value of 〈k〉.

Fixed points of (2.1), i.e. cα(t + 1) = cα(t) = c∗α for α = E,S,R,
correspond to steady states. For all mean-field fixed points, we have: p c∗R =
c∗E , p(1− c∗S) = c∗E(1 + p), whatever the excitation probability model and the
value of f . For f = 0, there is a trivial (unstable) fixed point (coE = 0, coR =
0, coS = 1) whatever the value of p. Still for f = 0, there is also a non trivial
fixed point:

c∗E =
p (〈k〉 − 1)

〈k〉(p+ 1)
, c∗S =

1

〈k〉
, c∗R =

〈k〉 − 1

〈k〉(p+ 1)
(2.2)

provided the consistency condition 〈k〉c∗E � 1 holds. Else we have to solve
numerically the non-linear equation:

c∗E = [1− c∗E(1 + 1/p)]
[
f + (1− f)[1− (1− c∗E)〈k〉]

]
(2.3)

2.3. Relative threshold κ for excitation propagation

In case of a relative excitation threshold κ, the most basic mean-field approx-
imation states that a susceptible node of degree k gets excited if its average
number of excited neighbors, kcE , is larger than kκ, that is if cE ≥ κ what-
ever the node degree k. This leads to the simple evolution equations, where
H is the Heaviside function: cE(t+ 1) = cS(t) [f + (1− f)H[cE(t)− κ]]

cR(t+ 1) = cE(t) + (1− p)cR(t)
cS(t+ 1) = 1− cE(t+ 1)− cR(t+ 1)

(2.4)

A refined set of equations can be obtained using combinatoric probabilistic
arguments, and considering for all nodes the same homogenized degree, equal
to the average degree 〈k〉. We define n̄κ as the smallest integer larger or equal
to κ〈k〉, that is, n̄κ = dκ 〈k〉e. Excitation propagation at a susceptible node
then requires that it has at least n̄κ excited neighbors, whatever its actual
degree. The mean-field evolution equations for a relative excitation threshold
κ then coincide with those obtained for an absolute excitable threshold q =
n̄κ. The factor [1− (1−cE(t))〈k〉] in the above mean-field evolution equations
(2.1) is now to be replaced with:

d〈k〉e−n̄κ∑
j=0

(
d〈k〉e
n̄κ + j

)
cE(t)n̄κ+j(1− cE(t))d〈k〉e−n̄κ−j (2.5)
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Note that 〈k〉 is usually not an integer, and has to be replaced by d〈k〉e for
the binomial coefficient to make sense. For κ → 0, we have n̄κ = 1, and
the mean-field equations for an absolute threshold q = 1 are satisfactorily
recovered. Overall, we obtain the coupled equations:

cE(t+ 1) = fcS(t)

+(1−f)cS(t)
∑d〈k〉e−n̄κ

j=0

(
d〈k〉e
n̄κ + j

)
cE(t)n̄κ+j(1−cE(t))d〈k〉e−n̄κ−j

cR(t+ 1) = cE(t) + (1− p)cR(t)
cS(t+ 1) = 1− cE(t+ 1)− cR(t+ 1)

(2.6)

When cE(t) � 1, the term for j = 0 dominates and the above sum can be
replaced in the numerical implementation by the proxy:(

d〈k〉e
n̄κ

)
cE(t)n̄κ (2.7)

For f = 0, the evolution described by the simple equations (2.4) has a
non trivial stable fixed point:

c∗E =
p

2p+ 1
, c∗S =

p

2p+ 1
, c∗R =

1

2p+ 1
(2.8)

provided κ < c∗E , i.e. κ < p/(2p+ 1). When κ > p/(2p+ 1), the stable fixed
point becomes: c∗E = 0, c∗S = 1, c∗R = 0. When the evolution is described by
the refined mean-field equations (2.6) with the simplification (2.7), the fixed
points in the absence of spontaneous excitations (f = 0) correspond to the
solutions of:

c∗E =

(
d〈k〉e
n̄κ

)
(c∗E)n̄κ(1− c∗E(1 + 1/p)) (2.9)

satisfying he condition 0 ≤ c∗E ≤ p/(p+ 1), so that c∗R ≥ 0 and c∗S ≥ 0. This
yields a trivial fixed point (coE = 0, coR = 0, coS = 1) whatever the value of
p. This fixed point is stable for n̄κ ≥ 2 (the stability analysis is easily done
by reducing the evolution to two coupled equations, e.g. for cE(t) and cR(t),
and determining for which values of κ the eigenvalues of the Jacobian matrix
have a modulus strictly lower than 1). For n̄κ = 1, i.e. for κ < 1/〈k〉, the
stable fixed point is associated to the nontrivial solution of (2.9).

For f > 0, we have to numerically solve the fixed point equations. How-
ever, at small f , a simple approximation is to identify the average excitation
density with coE = f (instead of coE = 0) at large values of κ, while the non
trivial value c∗E at low values of κ is considered to be unaffected by a small
rate of spontaneous excitations. The good accuracy of these various analyt-
ical predictions for the steady-state excitation density is presented below n
Section 3 and associated figures.

2.4. Evolution for degree classes

In the basic mean-field equations (2.1) and (2.6), graph topology is involved
only through the average degree 〈k〉. It is possible to better take into account
a broad degree distribution by considering degree classes, that is, subsets of



6 Marc-Thorsten Hütt and Annick Lesne

nodes of a given degree. We denote cE(k, t) the average excitation density
of nodes of degree k (and similarly cS(k, t) and cR(k, t), for susceptible and
refractory states). In the mean-field approximation for an excitable dynamics
with absolute threshold q = 1, a node in the class of degree k has k cE(t)
excited neighbors and a probability 1 − (1 − cE(t)]k to have at least one
excited neighbor: some node heterogeneity is now included in the mean-field
dynamics. Evolution equations become: cE(k, t+ 1) = cS(k, t)

[
f + (1− f) [1− (1− cE(t)]k

]
cR(k, t+ 1) = ckE(k, t) + (1− p)cR(k, t)
cS(k, t+ 1) = 1− cE(k, t+ 1)− cR(k, t+ 1)

(2.10)

The overall excitation density is related to these partial densities by the
relation

∑
k ρ(k) cE(k, t) = cE(t) directly involving the degree distribution

ρ(k). However, several mean-field approximations are still present: at the
dynamic level, we still ignore correlations between the states of the nodes,
and at the network level, we neglect degree-degree correlations and consider
the degree-average state for neighboring nodes.

In case of excitable dynamics with a relative threshold κ, we introduce
nκ(k) as the smallest integer larger or equal to κk. The equation for cE(k, t)
is the same as for an absolute threshold q = nκ(k):

cE(k, t+ 1) = f cS(k, t) + (1− f) cS(k, t)

k∑
j=nκ(k)

(
k
j

)
cE(t)j(1− cE(t))k−j

(2.11)
In a finite graph (hence having a bounded maximal degree), equations for an
absolute threshold q = 1 are recovered in the limit κ → 0, when all nκ(k)
reduce to 1.

A refinement is to take into account degree-degree correlations (see
e.g. [23, 4] for application to SIS epidemic model and [27] for application
to diffusion-annihilation process). An analysis of mean-field validity in the
case where degree-degree correlations cannot be ignored is presented in [14],
suggesting that the mean first-neighbor degree d is a good predictor of the
validity (the more reliable the larger d); d reduces to the average degree 〈k〉 in
uncorrelated networks. Degree-degree correlations are described by the con-
ditional probability ρ(k′|k) that the degree of a neighbor of a node of degree
k is k′. For an excitable model with absolute threshold q = 1, the proba-
bility for a node of degree k to have at least an excited neighbor becomes
1− (1−

∑
k′ ρ(k′|k) cE(k′, t))k, replacing 1− (1−cE(t))k in (2.10). The mean

excitation field of a node,
∑
k′ ρ(k′|k) cE(k′, t) ≡ cE(nn(k), t), now depends

on the node degree k. This modification of cE(t) into a degree-dependent local
field cE(nn(k), t) also holds in (2.11) for the model with a relative excitation
threshold κ.
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2.5. Pair-correlation equations

Identifying the probability that two neighboring nodes are simultaneously
excited with [cE(t)]2 is often too crude. This approximation can be circum-
vented by introducing a quantity cE,E(t), describing the probability that two
neighbors are simultaneously excited, and similar quantities for the other pair
correlations [9, 22]. The evolution of state densities cα(t) can be written in a
less approximate way by involving these additional variables. For an excitable
model with an absolute threshold q = 1, it comes:

cE(t+ 1) = fcS(t) + (1− f)cS(t)

[
1−

(
1− cE,S(t)

cS(t)

)〈k〉]
(2.12)

cR(t+ 1) = cE(t) + (1− p)cR(t) (2.13)

cS(t+ 1) = 1− cE(t+ 1)− cR(t+ 1) (2.14)

While spatial homogenization remains, the mean-field decorrelation approxi-
mation is relaxed and displaced at a higher order, in a closure relation of the
form 〈xxyy〉 = 〈xx〉〈yy〉 required to get an autonomous set of equations of
evolution for the pair-correlations, as follows:

cE,S(t+ 1) = fp cS,R(t) + (1− f)p
cS,R(t)cE,S(t)

cS(t)

+(1− f)fcS,S(t)

(
1− cE,S(t)

cS(t)

)〈k〉−1

(2.15)

+(1− f)2cS,S(t)

(
1− cE,S(t)

cS(t)

)〈k〉−1
[

1−
(

1− cE,S(t)

cS(t)

)〈k〉−1
]

This evolution equation for c(E,S, t) contains four terms: the probability that
in a pair of neighbors (S,R), the first one gets spontaneously excited and the
second one recovers; the probability that in a pair of neighbors (S, S), the first
one gets excited due to its excited neighbors and the second one recovers; the
probability that in a pair of neighbors (S, S), the first one gets spontaneously
excited and the second one escapes both spontaneous and neighbor-induced
excitation and remains susceptible; the probability that in a pair of neighbors
(S, S), the first one gets excited due to its excited neighbors and the second
one escapes both spontaneous and neighbor-induced excitation and remains
susceptible. Similar equations can be written for the other joint densities cE,R
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and cS,R:

cE,R(t+ 1) = cS,R(t)

[
(1− p)f + (1− p)(1− f)

[
1−

(
1− cE,S(t)

cS(t)

)〈k〉]]

+cE,S(t)

[
(f + (1− f)

[
1−

(
1− cE,S(t)

cS(t)

)〈k〉]]
(2.16)

cS,R(t+ 1) = cS,R(t) (1− p)(1− f)

(
1− cE,S(t)

cS(t)

)〈k〉
+ (1− p)p cR,R(t)

+ p cE,R(t) + (1− f) cE,S(t)

(
1− cE,S(t)

cS(t)

)〈k〉
(2.17)

supplemented with cS(t + 1) = 1 − cE(t + 1) − cR(t + 1), cS,S(t + 1) =
cS(t+ 1)− cS,E(t+ 1)− cS,R(t+ 1) and similar relationships for cE,E(t+ 1)
and cR,R(t+1). Such pair-correlation equations have been used for instance to
investigate co-activation and pinpoint its topological determinants, through
a comparison of analytical predictions and numerical simulations [17].

3. Successes and failures of mean-field approaches: numerical
checks

3.1. A remarkable power to predict excitation density in random graphs

An implicit step in the practical use of mean-field approaches is to identify
empirical space averages that can be measured in experiments and simu-
lation, with the statistical averages cα(t) involved in the equations (here
α = E,S,R). The validity of this identification directly follows from the ap-
plicability of the law of large numbers, which has the same conditions of
validity as the mean-field approximations, namely it also requires weak cor-
relations and statistical homogeneity.

To evaluate the validity of mean-field approximations, we implemented
numerically the two models of excitable dynamics on graph described in the
introduction. They are specially suitable for a numerical analysis, since they
actually take the form of three-state cellular automata. The initial condition
is generally taken at random, with equal fractions of susceptible, excited and
refractory nodes spanning the graph. All the spatio-temporal correlations
and network heterogeneities are by construction taken into account in the
simulation. We compared the steady-state mean-field excitation density c∗E
predicted analytically and its numerical value, observed in the simulation
after discarding initial transients and performing a suitable time average.

As seen on Fig. 1, for excitable dynamics on a highly connected ran-
dom graph (Erdős-Rényi graph of average degree 10), the simulated time-
average excitation density lies around the mean-field prediction, with some
fluctuations of relatively low amplitude. The goodness of the basic mean-field
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Figure 1. Mean-field excitation density and its simulated
counterpart on a highly connected random graph, for an
absolute excitation threshold q = 1. Simulation has been
performed with a spontaneous excitation rate f = 0.01, on a
random graph (Erdős-Rényi) with 100 nodes and 500 links.
The upper panel displays a simulated trajectory for a recov-
ery probability p = 0.3 (highly fluctuating black line), its
moving average (light grey dashes), the approximate fixed
point given by (2.2) and the steady-state solution of mean-
field equations (2.1). The lower panel compares the excita-
tion density obtained in the simulation, the fixed point (2.2)
and the steady-state solution of (2.1) for varying values of the
recovery probability p. Error bars on simulation points have
been obtained from the last 250 time steps of a 500 time-step
simulation starting from random initial conditions.

approach on highly connected random graphs relies (i) on the spatial homo-
geneity of these graphs, (ii) the fact that they are locally similar to a tree,
and (iii) the large enough number of neighbors. Consequently it is respec-
tively valid (i) to identify the node degrees with the average degree, (ii) to
consider that there is no correlations between the states of node neighbors
as if the topology around each node were star-like, and (iii) to identify the
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Figure 2. Mean-field excitation density and its simulated
counterpart on a low-connectivity random graph, for an ab-
solute excitation threshold q = 1. Same as Fig. 1 now on a
random graph (Erdős-Rényi) with 100 nodes and 200 links.

excitation probability of the neighbors of a given node with the average exci-
tation density. When the graph connectivity decreases, the prediction quality
decreases, as seen on Fig. 2.

Considering scale-free graphs yields a prediction quality similar to that
observed for low-connectivity random graph, as seen on Fig. 3. However, a
marked difference is the range and nature of fluctuations, which now exhibit
spikes. This latter feature is presumably due to the spatial heterogeneity of
the network, where nodes of both small and high degree are present, and the
fact that high-degree nodes may nucleate coherent waves of activation (see
below, § 4.3 and [17]).

In the case of a relative excitation threshold, Fig. 4 shows the good
agreement of both the mean-field prediction (2.8) and the stationary solu-
tion of mean-field equations (2.6) and (2.7) with the numerical steady-state.
Both correctly predicts the exchange of stability between the non-trivial fixed
point and the value coE = f corresponding to the extinction of excitation prop-
agation. We have shown in [11] that a sustained activity (corresponding to
the non trivial steady state) occurs up to a value κm that can be roughly
estimated from the graph topology as the maximal degree kmax of the graph,
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Figure 3. Mean-field excitation density and its simulated
counterpart on a scale-free graph for an absolute excitable
threshold q = 1. Same as Fig. 2 now on a a scale-free graph
(Barabási-Albert) with 100 nodes and 197 links (correspond-
ing to m = 2 links being added per node during preferential
attachment).

in agreement with the upper bound 1/〈k〉 (larger that 1/kmax) predicted here
using mean-field analysis. The observed lower bound c∗E can be explained as a
fluctuation effect: the actual number of excited neighbors of a node of degree
k can be higher than kc∗E , which accommodates excitation propagation for
relative threshold values higher than κ = c∗E .

3.2. Insightful failures

Numerical simulations, Fig. 3, show that basic mean-field equations fail to
describe the full complexity of excitable dynamics on graphs with a very broad
degree distribution. They miss self-organized formation of coherent patterns
of excitation, responsible of the spikes apparent on the time evolution of
the overall excitation density. In showing the limits of considering the same
average degree for all nodes, they indirectly demonstrate the central role of
hubs in the dynamics of scale-free graphs. Actually, a sounder approximation
is to consider that hubs act as organizing centers of the excitable dynamics,
see § 4.3. An another numerical observation is the fact that plain mean-
field description accounts for the excitation density but not at all for the



12 Marc-Thorsten Hütt and Annick Lesne
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Figure 4. Mean-field excitation density and its simulated
counterpart on a random graph, in case of relative excitation
threshold. Simulation has been performed with a recovery
probability p = 0.2, a spontaneous excitation rate f = 0.01,
on a random graph (Erdős-Rényi) with 100 nodes and 200
links. The time-averaged excitation density obtained in the
simulation (black dots) is compared for various values of the
relative threshold κ with the fixed point (2.8) and the steady-
state solution of mean-field equations (2.6) and (2.7). Error
bars on simulation points have been obtained from the last
250 time steps of a 500 time-step simulation starting from
random initial conditions. The first step (blue line, eq. (2.8))
is located at κ = p/(2p+ 1) and the second step (red contin-
uous and dashed lines, eqs. (2.6) and (2.7)) is at the higher
value κ = 1/〈k〉, indicated by the gray dashed vertical line.

correlation between co-activation patterns and graph topology [21]. Finally,
mean-field equations provide an average view of the dynamics: they do not
reflect dynamical features of individual trajectories.

Mean-field analysis alone is not reliable enough to grasp understanding
of dynamics on complex networks. In general there is no internal way to de-
lineate which results are correct and which are by far different from the actual
behavior. On the other hand, numerical simulation alone is often as complex
and intricate as an experiment on the real system, and it may prove difficult
to dissect and identify the local features and basic mechanisms responsible of
the observed behavior. We claim that a reliable understanding can be gained
by the conjunction of mean-field analysis and numerical simulation.
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Figure 5. Cycling excitation in a triangle. Considering the
runtime of an excitation in a triangle, with initial condi-
tion (E,S,R), the figure compares the analytical prediction
τ(L, p) = L − 1 + τbreak(L, p) for L = 3, with τbreak(L, p)
given in (4.1), continuous red line, plus/minus the corre-

sponding standard deviation
√
p/(1− p)2, dashed red lines,

with the simulation result (black dots). Errors bars on the
numerical estimates have been computed with 100 runs.

4. Second-order mean-field approach for topological devices

4.1. Principle

Mean-field approaches described above all involved a spatial homogenization
over the nodes (or subsets of nodes) of the graph. This is obviously a criti-
cal gap for investigating the interplay between graph topology and excitable
dynamics. To circumvent this gap, we devised a refined analytical approach
involving a more detailed account of the topology. The contribution of a spe-
cific topological motif (for instance a triangle, a cycle, a shell of nodes at the
same distance from a given hub, a module) to the overall dynamical behavior
can be computed by considering it as a device embedded in a surrounding de-
scribed by mean-field densities. This approach amounts to use a second-order
mean-field approximation, in which the (local) probability that neighbors of
the motif are excited is given by the (global) steady-state mean-field excita-
tion density c∗E .

This general idea of mean-field for embedded devices is specially fruitful
when considering the contribution of cycles (i.e. closed paths) to the over-
all dynamical behavior. Indeed, cycles are a feature not accounted in stan-
dard nor even in refined (pair-correlations or degree-classes) mean-field ap-
proaches, while they play a key role in excitable dynamics by contributing to
excitation amplification and sustained activity [13, 12, 11]. In the case of an
absolute excitation threshold q = 1, we detail below in § 4.2 how to compute
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the average success rate of a cycle, by considering that it is embedded in a
mean-field environment. We also sketch below in § 4.3 the application of this
methodology to study co-activation, by using a shell model around a hub [17].

4.2. Excitation of a cycle

In a cycle of length L (i.e. a closed path of L nodes), a cycling excitation van-
ishes as soon as it meets a refractory node. Only long cycles can persistently
store excitation: cycles should be long enough so that excitation always faces
a susceptible substrate. Quantitatively, the probability πL that a site R as
recovered after L − 2 steps, in time to accommodate the cycling excitation,
should be close enough to 1. The simple computation (ignoring correlations

with the surroundings) yields πL =
∑L−3
j=0 (1− p)jp = 1− (1− p)L−2. Failure

of re-excitation thus occurs on average after a time

τbreak(p, L) =
1

(1− πL)
=

1

(1− p)L−2
(4.1)

The quantity τ(L, p) = L−1+τbreak(p, L) provides an estimate of the average
runtime of the cycle. Using a similar reasoning, the probability that there is
exactly N re-excited nodes in a row in the cycle is πNL (1 − πL). The time
after which failure of re-excitation occurs thus follows exactly a geometric
distribution with parameter 1−πL. Accordingly, the corresponding variance,
which coincides with the variance of the cycle runtime, is equal to πL/(1 −
πL)2. In particular, πL = p for a triangle (L = 3), and the runtime is predicted

to be equal to 2+1/(1−p) with a standard deviation
√
p/(1− p)2. The good

accuracy of this simple analysis is shown on Fig. 5.

A more detailed analysis shows that a cycle that is initially all sus-
ceptible and receives an excitation does not trigger a cycling excitation. It
should also contain a refractory node, otherwise two waves of excitation will
propagate in opposite direction and ultimately annihilate, which does not
correspond to a cycling excitation. The probability that excitation of a cycle
sets in is thus difficult to compute, as it essentially depends on the initial con-
dition of the cycle. This difficulty has been circumvented above by computing
the number of re-excitations Nreex, defined as the number of excitations fol-
lowing in a row the completion of a cycle. Nreex = 1 if the cycle excitation
only closes onto itself, Nreex = L+ 1 if a second full turn is completed. Nreex
is a number that is not a multiple of L in case of incomplete turns.

We can provide a refined estimate of the probability of continued exci-
tation of a cycle, i.e. re-excitation of its nodes, using the second-order mean-
field methodology described above. For simplicity we consider the case with
no spontaneous excitations (f = 0). To get re-excited nodes, we have to con-
sider that they do not fail to recover in time, and once recovered, that they
do not receive a perturbing external excitations. Considering all the possible
timings j between 1 and L − 2 steps for the recovery, and the subsequent
absence of external inputs during the L − 2 − j remaining steps, we obtain
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the probability γ(L, p) of a re-excitation:

γ(L, p) =

L−2∑
j=1

p(1− p)j−1[(1− c∗E)〈k〉−2]L−2−j

= p × [(1− c∗E)〈k〉−2]L−2 − (1− p)L−2

(1− c∗E)〈k〉−2 − (1− p)
(4.2)

Note that for a triangle, L = 3, the sum (correctly) contains a single term,
yielding γ(L, p) = p: there is no way to perturb a cycling excitation along a
triangle ESR except by a lack of recovery, the effect of which is analyzed in
Fig. 5.. In this mean-field approach, γ(L, p)N is the cumulative probability to
have at least N re-excitations in a row, while the probability to have exactly
N re-excitations in a row is (1 − γ(L, p))γ(L, p)N . The average number of
re-excitations following cycle completion becomes:

〈Nreex〉 =
γ(L, p)

1− γ(L, p)
= τbreak − 1 (4.3)

In particular, (4.1) is recovered for a triangle, with L = 3 and γ(L, p) = p. Un-
der the assumption that re-excitations dominate cycle activity, i.e. the cycle
completion is followed by several turns of cycling re-excitation, this mean-
field computation also gives the probability that at a given time a L-cycle is
active, equal to γ(L, p)L. The computation (4.2) involves several mean-field
approximations: the probability of excitation of a cycle neighbor is taken
equal to the steady-state mean-field excitation density c∗E , the correlations
between the states of the cycle neighbors are ignored, and the degree of cy-
cle nodes are replaced by the average degree 〈k〉. This latter approximation
could be eliminated by considering explicitly the degrees (k1, . . . , kL) of the
cycle nodes. The probability of N re-excitations following cycle completion
is then given by:

P (N,L, p) =

N∏
α=1

L−2∑
j=1

p(1− p)j−1[(1− c∗E)kα−2]L−2−j

 (4.4)

where the label α of the degree should be understood modulo L, starting
from the node having received the excitation. If another excitation enters the
cycle at some susceptible node before the cycling excitation arrives, a phase
slip is observed [12].

4.3. Shell model of hub-induced co-activation

In the case of an excitable dynamics with an absolute threshold q = 1, the
qualitative analysis of the dynamics suggests that hubs act as sources of
excitation, spreading any single excitation they have received from their nu-
merous neighbors. To quantitatively check whether this phenomenon actually
dominates the dynamics, we considered the graph as a set of nested shells
centered on the strongest hub [17]. Nodes belonging to the same shell are
by definition at the same distance to the hub (Fig. 6). We first estimate the
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Figure 6. Shell model for analytical estimation of co-
activation. When the graph has a broad degree distribution,
the excitable dynamics with an absolute threshold q = 1
is presumably dominated by the presence of hubs. We thus
propose to represent the graph as a nested set of shells (bold
red) centered around the strongest hub. Co-activation is then
approximated as the synchronous activation of nodes in the
same shell by an excitation propagating from the hub

probability of excitation of the hub, of degree khub, by identifying it with
the mean-field excitation density c∗E for an average degree 〈k〉 = khub, given
in (2.2):

cE(hub) = c∗E(khub) (4.5)

Comparison of this prediction and numerical simulation for hubs of various
degrees is shown on Fig. fig:MF-hub, as a function of their degree khub.

Once the hub gets excited, nodes of the same shell will be reached at
the same time by the excitation wave propagating from the hub. Accordingly,
they will get excited jointly provided they are both in a susceptible state when
the excitation wave arrives. The probability of such an event for a given pair
of nodes, presumed to be the main contribution to the probability of their
co-activation, can be computed in the mean-field approximation. We have
to express that each node of the two paths from the hub to the considered
nodes is susceptible when the excitation wave arrives. When ignoring pair
correlations, the co-activation probability of any given pair of nodes in shell
n can be written:

Qn = c∗hub(E)[c∗(S)]2n (4.6)

The comparison of this analytical prediction with the co-activation probabil-
ity observed in the simulation has shown that excitations are more strongly
coordinated in space and time than accounted in the derivation of (4.6).
Dynamic correlations between neighbors should also be taken into account,
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Figure 7. Prediction of the steady-state excitation density
of a node as a function of its degree. The figure compares
the prediction (4.5), red line, and the simulation result for
various nodes (scatter plot, black dots). The simulation has
been performed for the excitable model with an absolute
threshold q = 1, with p = 0.8 and f = 0.001, on a scale-
free graph (Barabási-Albert) with 100 nodes and 985 links
(corresponding to m = 5 links being added per node during
preferential attachment).

for instance using the pair-correlation mean-field equations detailed above in
§ 2.5, see [17] for details.

5. Conclusion

Mean-field approaches provide an analytical way to get some insights on ex-
citable dynamics on graphs. They involve a closure relation, namely they
ignore some correlations, and some kind of spatial homogenization, namely
they also ignore most spatial structures and heterogeneities. Sometimes, a
self-consistent validity check is possible. However, we claim that the most
interesting insights come from either the agreement or the discrepancies be-
tween mean-field predictions and what is observed in numerical experiments.
In this regard, analytical approaches are used as null models, as a way of
hypothesis testing, to check the validity of their assumptions by compar-
ing their predictions with direct simulation. Mean-field approaches presented
above thus offer a sequence of nested null models, increasingly taking into
account graph topological features.
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Our previous and present investigations have shown that the validity
and accuracy of mean-field approaches strongly depend on the observable.
They are in general satisfactory for describing excitation density, but of more
limited validity for investigating complex features like co-activation or sus-
tained activity. Mean-field failure reveals the presence and key role of collec-
tive patterns of activity. When these collective patterns are rooted in some
topological motifs, we propose a methodology based on mean-field-embedded
devices, that is, the detailed description of the activity of a subset of nodes,
given that their surrounding is described by mean-field densities. Beyond the
examples detailed above for excitable dynamics with an absolute threshold
q = 1, we also successfully implemented this mean-field methodology in the
case of a relative excitation threshold, for instance to compute the contri-
bution of multiple excitations meeting at a node and increasing the prob-
ability that this node gets excited and propagates the excitation [11]. This
original methodology circumvents the limitation coming from the spatial ho-
mogenization involved in more basic mean-field approaches, and provides an
analytical access to the interplay between dynamics and the underlying net-
work topology. Joining these analytical results and simulation at the same
time validates our analytical understanding and guides the interpretation of
the detailed numerical results.

Mean-field approaches can be applied to a variety of other dynamical
processes on graphs. What we have described using the formalism of graphs
and excitable dynamics can be extended to numerous other settings, for in-
stance reaction-diffusion on a structured substrate, in surface chemistry, or
colonization-extinction processes on a heterogeneous landscape, in ecology.
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