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A FAMILY OF CUBIC FOURFOLDS WITH FINITE–DIMENSIONAL MOTIVE

ROBERT LATERVEER

ABSTRACT. We prove that cubic fourfolds in a certain 10–dimensional family have finite–dimensional

motive. The proof is based on the van Geemen–Izadi construction of an algebraic Kuga–Satake

correspondence for these cubic fourfolds, combined with Voisin’s method of “spread”. Some

consequences are given.

1. INTRODUCTION

The notion of finite–dimensional motive, developed independently by Kimura and O’Sullivan

[29], [2], [38], [26], [22] has given considerable new impetus to the study of algebraic cycles.

To give but one example: thanks to this notion, we now know the Bloch conjecture is true for

surfaces of geometric genus zero that are rationally dominated by a product of curves [29]. It thus

seems worthwhile to find concrete examples of varieties that have finite–dimensional motive,

this being (at present) one of the sole means of arriving at a satisfactory understanding of Chow

groups.

The object of the present note is to add to the list of examples of varieties with finite–dimensional

motive, by considering cubic fourfolds over C. There is one famous cubic fourfold with finite–

dimensional motive: the Fermat cubic

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0 .

The Fermat cubic has finite–dimensional motive because it is rationally dominated by a product

of (Fermat) curves, and the indeterminacy locus is again of Fermat type [49].

The main result of this note proves finite–dimensionality for a 10–dimensional family of cubic

fourfolds containing the Fermat cubic:

Theorem (=theorem 3.1). Let X ⊂ P5(C) be a smooth cubic fourfold, defined by an equation

f(x0, . . . , x4) + x3
5 = 0 ,

where f(x0, . . . , x4) defines a smooth cubic threefold. Then X has finite–dimensional motive.

Unlike the Fermat cubic, the cubics as in theorem 3.1 are not obviously dominated by a product

of curves, so we need some more indirect reasoning. In a nutshell, the idea of the proof of theo-

rem 3.1 is as follows: thanks to the work of van Geemen–Izadi [19], there exists a Kuga–Satake

correspondence for these special cubic fourfolds. This implies that the homological motive of X
is a direct summand of the motive of an abelian variety. Then, considering the family of all cubic
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2 ROBERT LATERVEER

fourfolds as in theorem 3.1 and using the machinery developed by Voisin [57], [60] and L. Fu

[15], we can upgrade this relation to rational equivalence and prove the Chow motive of X is a

direct summand of the motive of an abelian variety.

We present some consequences of finite–dimensionality. One consequence is the verification

of (a weak form of) the Bloch conjecture for these special cubic fourfolds:

Corollary (=corollary 4.1). Let X be a cubic fourfold as in theorem 3.1. Let Γ ∈ A4(X × X)
be a correspondence such that

Γ∗ : H3,1(X) → H3,1(X)

is the identity. Then

Γ∗ : A3
hom(X) → A3

hom(X)

is an isomorphism.

Another consequence (proposition 4.14) concerns Voevodsky’s smash–nilpotence conjecture

for products X1 ×X2, where X1, X2 are cubic fourfolds as in theorem 3.1.

Conventions. In this note, the word variety will refer to a reduced irreducible scheme of finite

type over C. A subvariety is a (possibly reducible) reduced subscheme which is equidimensional.

All Chow groups are with rational coefficients: we will denote by AjX the Chow group of

j–dimensional cycles on X with Q–coefficients; for X smooth of dimension n the notations AjX
and An−jX will be used interchangeably.

The notations Aj
hom(X) and Aj

AJ(X) will be used to indicate the subgroups of homologically,

resp. Abel–Jacobi trivial cycles. For a morphism f : X → Y , we will write Γf ∈ A∗(X × Y )
for the graph of f . The category of Chow motives (i.e., pure motives with respect to rational

equivalence as in [46], [38]) will be denoted Mrat.

To avoid heavy notation, if τ : Y → X is a closed immersion and a ∈ Ai(Y ), we will fre-

quently write a ∈ Ai(X) to indicate the proper push–forward τ∗(a). Likewise, for any inclusion

Y ⊂ X and b ∈ Aj(X) we will often write

b|Y ∈ Aj(Y )

to indicate the cycle class τ ∗(b).
We will write Hj(X) and Hj(X) to indicate singular cohomology Hj(X,Q), resp. singular

homology Hj(X,Q).

2. PRELIMINARIES

2.1. Finite–dimensional motives. We refer to [31], [2], [22], [26], [38] for the definition of

finite–dimensional motive. An essential property of varieties with finite–dimensional motive is

embodied by the nilpotence theorem:

Theorem 2.1 (Kimura [31]). Let X be a smooth projective variety of dimension n with finite–

dimensional motive. Let Γ ∈ An(X × X)Q be a correspondence which is numerically trivial.
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Then there is N ∈ N such that

Γ◦N = 0 ∈ An(X ×X) .

Actually, the nilpotence property (for all powers of X) could serve as an alternative definition

of finite–dimensional motive, as shown by a result of Jannsen [26, Corollary 3.9]. Conjecturally,

any variety has finite–dimensional motive [31]. We are still far from knowing this, but at least

there are quite a few non–trivial examples:

Remark 2.2. The following varieties have finite–dimensional motive: abelian varieties, varieties

dominated by products of curves [31], K3 surfaces with Picard number 19 or 20 [41], surfaces

not of general type with vanishing geometric genus [20, Theorem 2.11], Godeaux surfaces [20],

Catanese and Barlow surfaces [58], certain surfaces of general type with pg = 0 [44], Hilbert

schemes of surfaces known to have finite–dimensional motive [9], generalized Kummer varieties

[61, Remark 2.9(ii)], 3–folds with nef tangent bundle [23] (an alternative proof is given in [52,

Example 3.16]), 4–folds with nef tangent bundle [24], log–homogeneous varieties in the sense of

[8] (this follows from [24, Theorem 4.4]), certain 3–folds of general type [54, Section 8], varieties

of dimension ≤ 3 rationally dominated by products of curves [52, Example 3.15], varieties X
with Ai

AJ(X) = 0 for all i [51, Theorem 4], products of varieties with finite–dimensional motive

[31].

Remark 2.3. It is worth pointing out that all examples of finite-dimensional motives known so

far happen to be in the tensor subcategory generated by Chow motives of curves (i.e., they are

“motives of abelian type” in the sense of [52]). That is, the finite–dimensionality conjecture is

still unknown for any motive not generated by curves (on the other hand, there exist many such

motives, cf. [11, 7.6]).

2.2. Kuga–Satake. This subsection presents the first main ingredient of this note: the van

Geemen–Izadi construction of an algebraic Kuga–Satake correspondence for the cubic fourfolds

under consideration.

Theorem 2.4 (van Geemen–Izadi [19]). Let X ⊂ P5 be a smooth cubic fourfold, defined by an

equation

x3
5 + f(x0, . . . , x4) = 0 ,

where f(x0, . . . , x4) defines a smooth cubic threefold. Let Z ⊂ P6 be the cubic fivefold defined

by

x3
6 + x3

5 + f(x0, . . . , x4) = 0 .

There exist an elliptic curve E and a correspondence Γ ∈ A5(X × Z × E) such that

Γ∗ : H4(X)prim → H6(Z × E)

is injective.

Proof. This is [19, Corollary 5.3]. This result is based on the facts that (1) the Hodge structure

of any smooth cubic fourfold is of K3 type (i.e., H4,0(X) = 0 and dimH3,1(X) = 1), and (2)

for cubics as in theorem 2.4, the cyclotomic field Q(ζ) acts on H4(X)prim (where ζ = e
2πi
3 ), and

so the theory of half twists [18] applies.
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We note that [19, Corollary 5.3] actually shows more precisely that

Γ∗ : H4(X)prim → Im
(
H5(Z)⊗H1(E) → H6(Z ×E)

)

is injective. Also, as we shall see below (in the proof of theorem 2.8), the elliptic curve E is

actually a plane cubic of Fermat type x3
0 + x2

1 + x3
2 = 0. �

Corollary 2.5. Let X be as in theorem 2.4. There exist an abelian variety A (of dimension 22)

and a correspondence Ψ ∈ A3(X ×A) such that

Ψ∗ : H4(X)prim → H2(A)

is injective.

Proof. Any smooth cubic fivefold Z has H5(Z) = N2H5(Z), where N∗ denotes the geometric

coniveau filtration (this follows from the fact that any cubic fivefold Z has A0(Z) = A1(Z) = Q,

which is proven in [36] or, alternatively, [39] or [21]).

Now, [1, Theorem 1] furnishes an abelian variety J (of dimension h2,3(Z) = 21 ) and a

correspondence Λ′ on J × Z that induces an isomorphism

(Λ′)∗ : H1(J)
∼=
−→ H5(Z) .

(As noted by the referee, one may avoid recourse to [1] here by using the fact that thanks to

Collino [10], the Abel–Jacobi map induces an isomorphism from the Albanese of the Fano sur-

face of planes in Z to the intermediate Jacobian of Z.)

The correspondence Λ′ induces an isomorphism

Λ′ : h1(J)
∼=
−→ h5(Z) in Mhom ,

hence there also exists a correspondence Λ on Z × J inducing the inverse isomorphism

Λ: h5(Z)
∼=
−→ h1(J) in Mhom .

The composition

H4(X)prim
Γ∗−→ H5(Z)⊗H1(E)

(Λ×∆E)∗
−−−−−→ H1(J)⊗H1(E) ⊂ H2(J ×E)

has the required properties. �

Notation 2.6. Let

X → B

denote the universal family of all smooth cubic fourfolds of type

x3
5 + fb(x0, . . . , x4) = 0 ,

where fb(x0, . . . , x4) defines a smooth cubic threefold. (That is, the parameter space B is a

Zariski open in a linear subspace B̄ of the complete linear system PH0(P5,OP5(3)).)
Likewise, let

Z → B

denote the family of smooth cubic fivefolds of type

x3
6 + x3

5 + fb(x0, . . . , x4) = 0 .
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For b ∈ B, we will write Xb ⊂ P5 and Zb ⊂ P6 to denote the fibre of X → B (resp. Z → B)

over b.

Notation 2.7. Let

X → B , Y → B

be two smooth families (i.e., smooth projective morphisms between smooth quasi–projective va-

rieties). A relative correspondence from X to Y is by definition a cycle class in

A∗(X ×B Y) .

As explained in [38, Section 8.1], using Fulton’s refined Gysin homomorphisms [16] one can

define the composition of relative correspondences. For a relative correspondence Γ ∈ Ai(X ×B

Y), and a point b ∈ B the “restriction to a fibre” is defined as

Γ|Xb×Yb
:= ι∗(Γ) ∈ Ai(Xb × Yb) ,

where ι∗ denotes the refined Gysin homomorphism associated to the lci morphism ι : b → B.

A crucial point in this note is that the Kuga–Satake construction of [19] can be done family–

wise:

Theorem 2.8. Notation as in 2.6. There exists a relative correspondence

ΓKS ∈ A5
(
X ×B (Z ×E)

)
,

such that for any b ∈ B, the restriction

ΓKS,b := ΓKS|Xb×Zb×E ∈ A5
(
Xb × (Zb ×E)

)

has the property that

(ΓKS,b)∗ : H4(Xb)prim → H6(Zb × E)

is injective.

Proof. To prove this, we partially unravel the proof of [19, Theorem 5.2] and [19, Corollary 5.3].

For a given b ∈ B, let us denote

V := H4(Xb)prim(1)

(where the Tate twist indicates V is a weight 2 Hodge structure with V 0,2 = 1). The cubic Xb is

invariant under the Z/3Z action on P5 induced by

[x0 : . . . : x5] 7→ [x0 : . . . : x4 : ζx5] ,

where ζ = e
2πi
3 . As such, we have that V is a vector space over K := Q(ζ). Let E ⊂ P2 denote

the degree 3 Fermat curve. Then E is an elliptic curve with complex multiplication by K (here

K acts via mutiplication on the last coordinate), and

K−1/2
∼= H1(E) .

(NB: in the notation of [19], the curve E is both Y1 and AK .) The positive half twist V1/2 (a

Hodge structure of weight 1) exists [18, Example 2.12 and Proposition 2.8], [19, Theorem 2.6].

Moreover, there is an equality of Hodge structures of weight 3

V1/2(−1) = W :=
(
V ⊗H1(E)

)<β>

,
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where ()<β> denotes the invariant part under a certain automorphism β of Xb ×E [19, Theorem

3.4 and Lemma 3.7]. The automorphism β is defined as

β := ((α4)
∗, (α1)

∗) : Xb ×E → Xb × E ,

where α4 (resp. α1) is the restriction to Xb (resp. to E) of the automorphism of P5 given by

[x0 : . . . : x5] 7→ [x0 : . . . : x4 : ζx5]

(resp. of the automorphism of P2 defined as [x0 : x1 : x2] 7→ [x0 : x1 : ζx2]).
There is a homomorphism

µf : V ⊗H1(E) → W ⊂ H4(Xb)⊗H1(E) ,

defined as the projection onto the β–invariant subspace. The homomorphism µf is induced by a

correspondence; what’s more, this correspondence comes from a relative correspondence (this is

because the automorphism β = (α4, α1) in [19, Theorem 3.4] comes from an automorphism of

P5×E, and so for each Xb the homomorphism µf is given by the restriction of a correspondence

on P5 × E × P5 × E ×B).

Next, one considers the homomorphism

µf ⊗ id : V ⊗H1(E)⊗H1(E) → W ⊗H1(E) ⊂ H4(Xb)⊗H1(E)⊗H1(E) ;

this has the property that

Im(µf ⊗ id) = V1/2(−1)⊗K−1/2 = W ⊗H1(E) .

The domain of µf ⊗ id has a certain Hodge substructure S defined as

S :=
{
w ∈ V ⊗K−1/2 ⊗K−1/2 | ((α4)

∗ ⊗ ζ ⊗ 1)w = w , (1⊗ ζ ⊗ ζ)w = w
}
.

One checks that

S ∼= V (−1) .

Since S ⊂ V1/2(−1)⊗K−1/2, the restriction of µf ⊗ id to S is injective, and thus

(µf ⊗ id)(S) ∼= V (−1) .

One checks that actually

S ⊂ V ⊗K(−1) ⊂ V ⊗K−1/2 ⊗K−1/2 ,

where K(−1) is a trivial weight 2 rank 2 Hodge structure. It follows that the (twisted) isomor-

phism

Γ: V → S ∼= V (−1)

is induced by a correspondence on Xb×Xb×E×E. This correspondence is again the restriction

of a relative correspondence (it comes from ∆X ×D, where D ∈ A1(E × E)).
Next, the work of Shioda [49, Theorem 2] produces a homomorphism

Sh : H4(Xb)⊗H1(E) → H5(Zb) .

As Sh comes from a rational map Xb × E 99K Zb, it is induced by a correspondence (the

closure of the graph). As this rational map comes from a rational map P5 × P2
99K P6, this

correspondence is the restriction of a relative correspondence.
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Finally, one considers the composition

V
Γ
−→ V ⊗H1(E)⊗H1(E)

µf⊗id
−−−→ W ⊗H1(E)

Sh⊗id
−−−→ H5(Zb)⊗H1(E) .

This composition is injective, and it is induced by a correspondence which is the restriction to

Xb × Zb × E of a relative correspondence. �

2.3. Splitting. For the proof of the main result, it will be useful to have splittings of the injec-

tions of subsection 2.2.

Lemma 2.9. Let

ΓKS ∈ A5
(
X ×B (Z ×E)

)

be a relative Kuga–Satake correspondence as in theorem 2.8. For any b ∈ B there exists a

correspondence Λb ∈ A5(Zb × E ×Xb) such that

H4(Xb)prim
(ΓKS,b)∗
−−−−−→ H6(Zb × E)

(Λb)∗
−−−→ H4(Xb)prim

is the identity.

Proof. The varieties Xb, Zb and E verify the Lefschetz standard conjecture, and hence homolog-

ical and numerical equivalence coincide for all powers and products of Xb, Zb, E [30], [31]. It

follows that the homological motives

h4(Xb) , h6(Zb × E) ∈ Mhom

are contained in a semisimple subcategory M◦
hom ⊂ Mhom (one may define M◦

hom as the full ad-

ditive subcategory generated by motives of varieties for which the Lefschetz standard conjecture

is known; it follows from [25] that M◦
hom is semisimple).

Theorem 2.4, combined with semisimplicity, now implies that

ΓKS,b : h4(Xb) → h6(Zb ×E) in M◦
hom

is a split injection, i.e. there exists a correspondence Λb as in lemma 2.9. �

The splitting of lemma 2.9 can be extended to the family, in the following sense:

Proposition 2.10. Let

ΓKS ∈ A5
(
X ×B (Z ×E)

)

be a relative Kuga–Satake correspondence as in theorem 2.8. There exists a relative correspon-

dence

Λ ∈ A4
(
(Z ×E)×B X

)
,

such that for any b ∈ B we have that

H4(Xb)prim
(ΓKS,b)∗
−−−−−→ H6(Zb × E)

(Λ|b)∗
−−−→ H4(Xb)prim

is the identity, where Λ|b := Λ|Zb×E×Xb
∈ A4(Zb × E ×Xb).
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Proof. This uses the idea of “spreading out” algebraic cycles, as advocated in [57], [60], [59].

Lemma 2.9, plus the observation that Im
(
H∗(P5) → H∗(Xb)

)
is generated by linear subspace

sections, gives a decomposition of the diagonal of Xb:

∆Xb
= Λb ◦ ΓKS,b +

∑
j
cj(Hb)

j × (Hb)
4−j in H8(Xb ×Xb) ,

where cj ∈ Q and Hb ∈ A1(Xb) is the restriction of an ample class H ∈ A1(P5). That is, the

relative correspondences

∆X ,prim := ∆X −
(∑

j
cjH

j ×H4−j × B
)
|X×BX ∈ A4(X ×B X )

and

ΓKS ∈ A5
(
X ×B (Z ×E)

)

have the following property: for any b ∈ B, there exists a correspondence Λb ∈ A4(Zb×E×Xb)
such that

∆X ,prim|b = Λb ◦ (ΓKS)|b ∈ H8(Xb ×Xb) .

We now apply Voisin’s argument, in the form of proposition 2.11 below, to finish the proof.

�

Proposition 2.11 (Voisin [57], [60]). Let X , Y and Z be families over B, and assume the mor-

phisms to B are smooth projective and the total spaces are smooth quasi–projective. Let

Γ ∈ Ai(X ×B Z) ,

Ψ ∈ Aj(X ×B Y)

be relative correspondences, with the property that for any b ∈ B there exists Λb ∈ A∗(Yb × Zb)
such that

Γ|b = Λb ◦ (Ψ)|b in H2i(Xb × Zb) .

Then there exists a relative correspondence

Λ ∈ A∗(Y ×B Z)

with the property that for any b ∈ B

Γ|b = (Λ)|b ◦ (Ψ)|b in H2i(Xb × Zb) .

Proof. The statement is different, but this is really the same Hilbert schemes argument as [57,

Proposition 2.7], [59, Proposition 4.25]. The point is that the data of all the (b,Λb) that are

solutions to the splitting problem

Γ|b = Λb ◦ (Ψ)|b in H2i(Xb × Zb)

can be encoded by a countable number of algebraic varieties pj : Mj → B, with universal objects

Λj ⊂ Y ×Mj
Z , with the property that for m ∈ Mj and b = pj(m) ∈ B, we have

(Λj)|m = Λb in H∗(Yb × Zb) .

By assumption, the union of the Mj dominate B. Since there is a countable number, one of

the Mj (say M0) must dominate B. Taking hyperplane sections, we may assume M0 → B is
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generically finite (say of degree d). Projecting Λ0 to Y×BZ and dividing by d, we have obtained

Λ as requested. �

For ease of reference, we spell out the following restatement of proposition 2.10:

Corollary 2.12. Let

∆X ,prim ∈ A4(X ×B X )

be the “corrected relative diagonal” appearing in the proof of proposition 2.10. Let

ΓKS ∈ A5
(
X ×B (Z ×E)

)

be a relative Kuga–Satake correspondence as in theorem 2.8. There exists a relative correspon-

dence

Λ ∈ A4
(
(Z ×E)×B X

)
,

such that for any b ∈ B we have that
(
∆X ,prim − Λ ◦ ΓKS

)
|Xb×Xb

= 0 in H8(Xb ×Xb) .

2.4. Algebraic cycles in a family. The second key ingredient in this note is the machinery of

“spread” as developed by Voisin [57], [60], [59], in order to deal efficiently with algebraic cycles

in a family of varieties. This subsection contains a result by L. Fu, which is a version of “spread”

adapted to dealing with non–complete linear systems.

Proposition 2.13 (L. Fu [15]). Let X → B be as in notation 2.6. Then

lim
−→

B′⊂B

A4
hom(X

′ ×B′ X ′) = 0 ,

where the direct limit is taken over the open subsets B′ ⊂ B. In other words, for an open B′ ⊂ B
and a homologically trivial cycle a ∈ A4

hom(X
′ ×B′ X ′), there is a smaller open B′′ ⊂ B′, such

that the restriction of a to the base change X ′′ ×B′′ X ′′ is rationally trivial.

Proof. This is [15, Proposition 4.1], applied to the family X → B. In the notation of [15], the

closure B̄ of the base B can be written as B̄ = P
(
⊕α∈Λ0

Cxα
)
, where

Λ0 :=
{
α = (α0, . . . , α5) ∈ N5 | α0 + · · ·+ α5 = 3 , α5 = 0 mod 3

}
.

This ensures that the proof of [15, Proposition 4.1] applies to the family X → B.

(NB: to be sure, the statement of [15, Proposition 4.1] is geared towards families of cubic

fourfolds having a finite order polarized automorphism that is symplectic, whereas the family

X → B of notation 2.6 corresponds to cubics invariant under a polarized order 3 automorphism

that is non–symplectic. However, the proof of [15, Proposition 4.1] only uses the description B̄ =
P
(
⊕α∈Λj

Cxα
)
, and not the symplectic/non–symplectic behaviour of the automorphism.) �

Remark 2.14. Alternatively, a slightly different proof of proposition 2.13 could be given as

follows. There is a natural map P5 → P := P(15, 3), where P(15, 3) is a weighted projective

space [14]. The family X̄ → B̄ corresponds to (hypersurfaces in P5 that are inverse images of)
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the complete linear system PH0(P,OP(3)). Since the sheaf OP(3) is locally free and very ample

[12], the stratification argument of [33] applies to prove that

Ahom
∗ (X̄ ×B̄ X ) = 0 .

Next, to pass to opens B′ ⊂ B̄, we can use [15, Proposition 4.3] (which is based on the fact that

“the Chow motive of a cubic fourfold does not exceed the size of Chow motives of surfaces”, to

cite [15, Section 4.2]).

(NB: this alternative proof avoids recourse to [15, Proposition 4.2], and only uses the easier

[15, Proposition 4.3].)

3. MAIN

Theorem 3.1. Let X ⊂ P5 be a smooth cubic fourfold, defined by an equation

x3
5 + f(x0, . . . , x4) = 0 ,

where f(x0, . . . , x4) defines a smooth cubic threefold. Then X has finite–dimensional motive (of

abelian type).

Proof. As before, let

X → B

denote the family of smooth cubic fourfolds as in notation 2.6. We have seen (theorem 2.8) that

there is a relative Kuga–Satake correspondence

ΓKS ∈ A5
(
X ×B (Z ×E)

)

(where Z is a family of cubic fivefolds and E is a fixed elliptic curve). We have also seen

(corollary 2.12) there exists a “relative splitting”. That is, the relative correspondence

D := ∆X ,prim − Λ ◦ ΓKS ∈ A4(X ×B X )

has the property that restriction to any fibre is homologically trivial:

D|Xb×Xb
= 0 in H8(Xb ×Xb) for all b ∈ B .

We now proceed to make D globally homologically trivial. The Leray spectral sequence

argument of [57, Lemmas 3.11 and 3.12] shows that there exists a cycle γ ∈ A4(P5 × P5) such

that after shrinking B (i.e. after replacing the parameter space B by a smaller non–empty Zariski

open subset B′), one has
(
D − γ

)
|X ′×B′X ′ = 0 in H8(X ′ ×B′ X ′) .

In light of proposition 2.13, this implies there exists a smaller non–empty Zariski open B′′ ⊂ B′

and a rational equivalence
(
D − γ

)
|X ′′×B′′X ′′ = 0 in A4(X ′′ ×B′′ X ′′) .

In particular, when restricting to a fibre we find that
(
D − γ

)
|Xb×Xb

= 0 in A4(Xb ×Xb) ∀b ∈ B′′ .

Now, [59, Lemma 3.2] implies that the same actually holds for every fibre over B, i.e.
(
D − γ

)
|Xb×Xb

= 0 in A4(Xb ×Xb) ∀b ∈ B .
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Plugging in the definition of D, this implies that for any b ∈ B, we have a rational equivalence

(1) ∆Xb
= Λb ◦ ΓKS,b +R in A4(Xb ×Xb) ,

where R is a sum of “completely decomposed correspondences”

R =
∑

i
Ri =

∑
i
ciH

i ×H4−i ∈ A4(Xb ×Xb)

(with ci ∈ Q and H ∈ Im
(
A1(P5) → A1(Xb)

)
an ample class).

We define a “primitive diagonal”

∆−
Xb

:= ∆Xb
+
∑

i
diH

i ×H4−i ∈ A4(Xb ×Xb) ,

where the constants di are such that the push–forward

(ib × ib)∗(∆
−
Xb
) = 0 in A6(P5 × P5)

(here ib denotes the inclusion Xb → P5). Since the correspondence R is the restriction of some-

thing from P5 × P5, we have that

R ◦∆−
Xb

= 0 in A4(Xb ×Xb) .

It thus follows from equality (1) that

∆−
Xb

= Λb ◦ ΓKS,b ◦∆
−
Xb

in A4(Xb ×Xb) ,

i.e. the homomorphism of motives

(Xb,∆
−
Xb
, 0) → h(Zb)⊗ h(E)(−1) in Mrat

has a left–inverse. This implies there also is a homomorphism

h(Xb) → h(Zb)⊗ h(E)(−1)⊕
⊕

i

L(mi) in Mrat ,

exhibiting h(Xb) as a direct summand of the right–hand–side. Now we note that the cubic five-

fold Zb has

Aj
AJ(Zb) = 0 for all j

([36], or [39] or [21]). This implies (using [51, Theorem 4]) that the fivefold Zb has finite–

dimensional motive. Since E is a curve, h(Zb)⊗ h(E) is also a finite–dimensional motive, and

so we have exhibited h(Xb) as direct summand of a finite–dimensional motive.

�

For later use, we observe that we can also obtain a version of corollary 2.5 on the level of

Chow motives:

Corollary 3.2. Let X be a smooth cubic fourfold as in theorem 3.1. There exist an abelian

variety A of dimension g = 22, and a homomorphism

f : h(X) → h2g−2(A)(3− g)⊕
⊕

j

L(mj) in Mrat ,

which identifies h(X) with a direct summand of the right–hand–side.
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(In particular, there is a correspondence Ψ ∈ Ag+1(X × A) inducing split injections

Ψ∗ : A3
hom(X) → Ag

(2)(A) .)

Proof. The proof of theorem 3.1 gives a homomorphism

h(X) → h6(Z × E)(−1)⊕
⊕

i

L(mi) in Mrat

admitting a left–inverse, where Z is a cubic fivefold.

We have seen (in the proof of corollary 2.5) that there also exists a homomorphism

h(Z ×E) → h2(A)(2)⊕
⊕

j

L(mj) in Mrat

admitting a left–inverse.

Combining these two, we obtain a homomorphism

h(X) → h2(A)(1)⊕
⊕

j

L(mj) in Mrat

admitting a left–inverse. Composing with a Lefschetz operator on A, one obtains a homomor-

phism

f : h(X) → h2g−2(A)(3− g)⊕
⊕

j

L(mj) in Mrat

that admits a left–inverse, i.e. h(X) identifies with a direct summand of the right–hand–side. �

Remark 3.3. The argument used to prove theorem 3.1 is hardly original, and I do not claim credit

for this argument. Indeed, a similar use of the Kuga–Satake construction in a family appears in

[58]. More precisely: Voisin proves in [58, Theorem 0.7] that if the variational Hodge conjecture

is true, then the Kuga–Satake construction is algebraic, and consequently a certain large family

of K3 surfaces (obtained as sections of a vector bundle on a rationally connected variety) has

finite–dimensional motive.

It is also worth mentioning that an explicit Kuga–Satake construction for the 4–dimensional

subfamily of cubics of the form

x3
5 + x3

4 + f(x0, . . . , x3) = 0

already appears in [56, Example 4.2]. This construction in [56] is mentioned by van Geemen as

inspiration for his general theory of half twist [18, Introduction].

Remark 3.4. The family of cubic fourfolds X of theorem 3.1 is studied from a lattice–theoretic

viewpoint in [7, Example 6.4]. Among other things, they prove that the natural Z/3Z action

(defined by the automorphism we denoted α4 in the proof of theorem 2.8 above) has the property

that

dimH4(X)Z/3Z = 1 ,

and so

H4(X)prim ∩H4(X)Z/3Z = 0 .
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4. CONSEQUENCES

4.1. Bloch conjecture.

Corollary 4.1. Let X be a cubic fourfold as in theorem 3.1. Let Γ ∈ A4(X × X) be a corre-

spondence such that

Γ∗ : H3,1(X) → H3,1(X)

is the identity. Then

Γ∗ : A3
hom(X) → A3

hom(X)

is an isomorphism.

Proof. As is well–known, this is a consequence of finite–dimensionality; we include a proof for

completeness’ sake. Using an argument involving the truth of the Hodge conjecture for X and

non–degeneracy of the cup–product pairing (similar to [58, Proof of corollary 3.11] and [42,

Lemma 2.5], where this is done for K3 surfaces), the assumption implies that

Γ∗ : H4
tr(X) → H4

tr(X)

is also the identity, where H4
tr denotes the orthogonal complement (under the cup–product pair-

ing) of N2H4(X). It follows there is a cohomological decomposition

Γ = ∆X + γ ∈ H8(X ×X) ,

where γ is a cycle supported on (Y ×X) ∪ (X × Y ), for some Y ⊂ X of codimension 2. That

is, the cycle

Γ−∆X − γ ∈ A4(X ×X)

is homologically trivial. Using finite–dimensionality of X , this cycle is nilpotent. The cycle γ
does not act on A3

hom(X) = A3
AJ(X) for dimension reasons. It follows that

(Γ◦N)∗ = id : A3
hom(X) → A3

hom(X)

for some N ∈ N. �

Remark 4.2. Corollary 4.1 establishes a weak form of the Bloch conjecture [4]. Recall that the

Bloch conjecture (in the special case of a cubic fourfold X) predicts that if a correspondence

acts as the identity on H3,1(X), then it acts as the identity on A3
hom(X).

There is related work of L. Fu [15], proving that for any cubic fourfold, Bloch’s conjecture is

true for the graph of an automorphism acting as the identity on H3,1(X).

4.2. The Fano variety of lines.

Corollary 4.3. Let X be a smooth cubic fourfold as in theorem 3.1, and let F (X) be the Fano

variety of lines on X . Then F (X) has finite–dimensional motive.

Proof. This follows from the main result of [34]. �

Remark 4.4. Corollary 4.3 can be extended to hyperkähler fourfolds that are birational to F (X).
Indeed, the isomorphism of Rieß[45] implies that birational hyperkähler varieties have isomor-

phic Chow motives.
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4.3. Indecomposability.

Theorem 4.5 (Vial [53]). Let M be a smooth projective variety of dimension n ≤ 5. Assume

that M has finite–dimensional motive, and that the standard Lefschetz conjecture B(M) holds.

Then there exists a refined Chow–Künneth decomposition, i.e. a set of mutually orthogonal

idempotents

Πi,j ∈ An(M ×M) ,

such that Πi,j acts on cohomology as a projector on Gr
j

Ñ
H i(M), where Ñ∗ is the niveau filtration

of [53].

Proof. This is a combination of [53, Theorems 1 and 2], since M verifies conditions (*) and (**)

of loc. cit. �

Remark 4.6. The “niveau filtration” Ñ∗ of [53] is a variant of the geometric coniveau filtration

N∗ of [5]. It is expected that there is equality Ñ∗ = N∗; this is true if the standard Lefschetz

conjecture is true for all smooth projective varieties [53].

Definition 4.7. Let X be a cubic fourfold as in theorem 3.1. We define the “transcendental

motive” t(X) ∈ Mrat as

t(X) = (X,Π4,1, 0) ∈ Mrat ,

where the Πi,j are Vial’s refined Chow–Künneth decomposition [53, Theorems 1 and 2].

Remark 4.8. The fact that t(X) is well–defined (i.e., independent of choices up to isomorphism)

follows from [53] and [27, Theorem 7.7.3].

The motive t(X) is an analogue of the “transcendental part of the motive” t2(X) that is

defined for any (not necessarily finite–dimensional) surface in [27]. Just like in the surface

case, the motive t(X) can actually be defined for any (not necessarily finite–dimensional) cubic

fourfold, cf. [43, (4.1)].

Proposition 4.9. Let X be a cubic fourfold as in theorem 3.1. The motive t(X) is indecompos-

able, i.e. any submotive is either 0 or equal to t(X).

Proof. Let M ∈ Mrat be a submotive of t(X). Then

0 ⊂ H∗(M) ⊂ H∗(t(X)) = H4
tr(X) ,

where H4
tr(X) ⊂ H4(X) is as in the proof of corollary 4.1. The cup–product argument of the

proof of corollary 4.1, plus the fact that h3,1(X) = 1, implies that the Hodge structure H4
tr(X)

is indecomposable. That is, H∗(M) is either 0 or all of H4
tr(X). In the first case, we conclude

that M = 0 (there are no finite–dimensional phantom motives). In the second case, we conclude

(again using finite–dimensionality) that M = t(X), since they coincide in Mhom. �

Corollary 4.10. Let X be a cubic fourfold as in theorem 3.1. Suppose G ⊂ Aut(X) is a finite

group of finite–order automorphisms such that

g∗ 6= id : H3,1(X) → H3,1(X)

for some g ∈ G. Let Y → X/G be a resolution of singularities of the quotient. Then

Aj
hom(Y ) = 0 for all j .
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Proof. We have

Aj
hom(Y ) ∼= Aj(t(X)G) ,

where we define

t(X)G := (X,Π4,1 ◦
∑

g∈G

Γg, 0) ∈ Mrat .

This is a submotive of t(X); as such, it must be 0 or all of t(X). The second possibility can be

excluded, because it would imply

H3,1(X)G = H3,1(X) ,

contradicting the hypothesis. �

4.4. Smash–equivalence.

Definition 4.11. Let X be a smooth projective variety. A cycle a ∈ Ai(X) is called smash–

nilpotent if there exists m ∈ N such that

am := ︸ ︷︷ ︸
(m times)

a× · · · × a = 0 in Ami(X × · · · ×X) .

We will write Ai
⊗(X) ⊂ Ar(X) for the subgroup of smash–nilpotent cycles.

Conjecture 4.12 (Voevodsky [55]). Let X be a smooth projective variety. Then

Ai
num(X) ⊂ Ai

⊗(X) for all i .

Remark 4.13. It is known [2, Théorème 3.33] that conjecture 4.12 implies (and is strictly

stronger than) Kimura’s conjecture “all varieties have finite–dimensional motive”. For partial

results concerning conjecture 4.12, cf. [28], [48], [47], [52, Theorem 3.17], [35].

The results of this note give some new examples where Voevodsky’s conjecture is verified:

Proposition 4.14. Let Z be a product

Z = X1 ×X2 ,

where the Xj are smooth cubic fourfolds as in theorem 3.1. Then

Ai
⊗(Z) = Ai

num(Z) for all i 6= 4 .

Proof. We have seen (in the proof of corollary 3.2) there exists a map of motives

h(Xj) → h2(A)(1)⊕

4⊕

m=0

h(SpC)(m) in Mrat

that admits a left–inverse. It follows there is also a map

h(Z) = h(X1 ×X2) → h4(A× A)(2)⊕

5⊕

m′=1

h2(A)(m′)⊕
⊕

m′′

h(SpC)(m′′) in Mrat
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admitting a left–inverse. In particular, this implies there is a correspondence–induced injection

(2) Ai
num(Z) →֒ Ai−2

(2i−8)(A× A)⊕
⊕

m′

(πA
2 )∗A

i−m′

(A) .

By general properties of Beauville’s splitting [3], we know that the term (πA
2 )∗A

i−m′

(A) is 0
unless i−m′ is 1 or 2. For i−m′ = 1, we have

(πA
2 )∗A

1(A) = A1
(0)(A) ,

which is known to have trivial intersection with A1
num(A). For i−m′ = 2, we have

(πA
2 )∗A

2(A) = A2
(2)(A)

∼=
−→ Ag

(2)(A) ,

where the isomorphism is given by Künnemann’s hard Lefschetz result [32], which implies

(πA
2 )∗A

2(A) ⊂ A2
⊗(A) .

It remains to analyze the first summand of the right–hand side of (2). For i > 6 we have that

2i− 8 > i− 2 and this summand vanishes [3]. For i = 6, this summand is

A4
(4)(A× A)

∼=
−→ A2g

(4)(A×A) ,

which proves this summand is smash–nilpotent. For i = 5, this summand is

A3
(2)(A×A)

∼=
−→ A2g−1

(2) (A× A) ,

and so this summand is again smash–nilpotent, because homologically trivial 1–cycles on abelian

varieties are smash–nilpotent [47].

This proves the proposition: for any i 6= 4, we have checked that the injection (2) sends

Ai
num(Z) to something smash–nilpotent. The left inverse of (2) being given by a correspondence,

this implies that any element in Ai
num(Z) is smash–nilpotent.

(NB: this proof breaks down for i = 4, because it is not known whether

A2
(0)(A×A) ∩ A2

num(A× A) = 0 ,

which is one of Beauville’s conjectures.) �
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Matemática Iberoamericana, Madrid 2007, arXiv: math/0609669,

[9] M. de Cataldo and L. Migliorini, The Chow groups and the motive of the Hilbert scheme of points on a

surface, Journal of Algebra 251 no. 2 (2002), 824—848,

[10] A. Collino, The Abel–Jacobi isomorphism for the cubic fivefold, Pacific Journal of Mathematics Vol. 122

No. 1 (1986), 43—55,

[11] P. Deligne, La conjecture de Weil pour les surfaces K3, Invent. Math. 15 (1972), 206—226,

[12] C. Delorme, Espaces projectifs anisotropes, Bull. Soc. Math. France 103 (1975), 203—223,

[13] C. Deninger and J. Murre, Motivic decomposition of abelian schemes and the Fourier transform. J. reine

u. angew. Math. 422 (1991), 201—219,

[14] I. Dolgachev, Weighted projective varieties, in: Group actions and vector fields, Vancouver 1981, Springer

Lecture Notes in Mathematics 956, Springer Berlin Heidelberg New York 1982,

[15] L. Fu, On the action of symplectic automorphisms on the CH0–groups of some hyper-Kähler fourfolds,

Math. Z. 280 (2015), 307—334,

[16] W. Fulton, Intersection theory, Springer–Verlag Ergebnisse der Mathematik, Berlin Heidelberg New York

Tokyo 1984,

[17] B. van Geemen, Kuga–Satake varieties and the Hodge conjecture, in: The Arithmetic and Geometry of

Algebraic Cycles, Banff 1998 (B. Gordon et alii, eds.), Kluwer Dordrecht 2000,

[18] B. van Geemen, Half twists of Hodge structures of CM–type, J. Math. Soc. Japan Vol. 53 No. 4 (2001),

813—833,

[19] B. van Geemen and E. Izadi, Half twists and the cohomology of hypersurfaces, Math. Z. 242 (2002),

279—301,

[20] V. Guletskiı̆ and C. Pedrini, The Chow motive of the Godeaux surface, in: Algebraic Geometry, a volume

in memory of Paolo Francia (M.C. Beltrametti, F. Catanese, C. Ciliberto, A. Lanteri and C. Pedrini,

editors), Walter de Gruyter, Berlin New York, 2002,

[21] A. Hirschowitz and J. Iyer, Hilbert schemes of fat r–planes and the triviality of Chow groups of com-

plete intersections. In: Vector bundles and complex geometry, Contemp. Math. 522, Amer. Math. Soc.,

Providence (2010),

[22] F. Ivorra, Finite dimensional motives and applications (following S.-I. Kimura, P. O’Sullivan and others),

in: Autour des motifs, Asian-French summer school on algebraic geometry and number theory, Volume
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