
HAL Id: hal-02308858
https://hal.science/hal-02308858

Preprint submitted on 8 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Categories for Me, and You?
Clément Aubert

To cite this version:

Clément Aubert. Categories for Me, and You?. 2019. �hal-02308858�

https://hal.science/hal-02308858
https://hal.archives-ouvertes.fr


Categories for Me, and You?∗

Clément Aubert†

October 8, 2019

∗The title echoes the notes of Olivier Laurent, available at
https://perso.ens-lyon.fr/olivier.laurent/categories.pdf.

†e-mail: caubert@augusta.edu. Some of this work was done when I was sup-
ported by the NSF grant 1420175 and collaborating with Patricia Johann,
http://www.cs.appstate.edu/~johannp/.

https://perso.ens-lyon.fr/olivier.laurent/categories.pdf
mailto:caubert@augusta.edu
http://www.cs.appstate.edu/~johannp/


This result is folklore, which is a
technical term for a method of
publication in category theory. It
means that someone sketched it on the
back of an envelope, mimeographed it
(whatever that means) and showed it
to three people in a seminar in Chicago
in 1973, except that the only evidence
that we have of these events is a
comment that was overheard in
another seminar at Columbia in 1976.
Nevertheless, if some younger person is
so presumptuous as to write out a
proper proof and attempt to publish it,
they will get shot down in flames.

Paul Taylor

2

http://math.andrej.com/2012/09/28/substitution-is-pullback/comment-page-1/#comment-21991


Contents

1. On Categories, Functors and Natural Transformations 6
1.1. Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2. Properties of Morphisms, Objects, Functors, and Categories . . . . . . . . . 7
1.3. Constructions over Categories and Functors . . . . . . . . . . . . . . . . . . 15

2. On Fibrations 18

3. On Slice Categories 21
3.1. Preliminaries on Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Cartesian Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. On Monads, Kleisli Category and Eilenberg–Moore Category 29
4.1. Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2. Kleisli Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3. Eilenberg–Moore Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography 41

A. Cheat Sheets 43
A.1. Cartesian Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2. Monadic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3



Disclaimers

Purpose

Those notes are an expansion of a document whose first purpose was to remind myself the
following two equations:

Mono = injective = faithful
Epi = surjective = full

I am not an expert in category theory, and those notes should not be trusted1. However,
if it happens that someone can save the time that was lost tracking the definition of
locally cartesian closed category (Definition 21), of the cartesian structure in slice categories
(Sect. 3.2), or of the “pseudo-cartesian structure” on Eilenberg–Moore categories (Sect. 4.3),
then those notes will have fulfilled their goal of giving to those not present in that seminar
in Chicago in 1973 a chance to find a proper definition, and detailed proofs.

I’m not intending to be as presumptuous as to try to publish those notes, but plan on
continuing on tuning them as I see fit.

Conventions

Those notes are not self-contained (for instance, the definition of “commuting diagram” is
supposed to be known), but they are aiming at being as uniform as possible. The references
point to either the most simple and accessible description (in the case e.g. of the definition
of binary product) or to the only known reference. When a structure is known under
different names, they are listed. Some of the subscripts are dropped when they can be
inferred from context.

In Category Theory, there are as many notational conventions as (fill in the
blank), but the following one will be used:

1That being said, those notes were carefully written, and precise references are given when available.

4



Objects A, B, C, D, E, I, J , P , X, Y , Z
Morphisms e, f , g, h, k, m, p, v
Categories A, B, C, D, E
Functors F , G, T , U

Natural Transformations α
Monads T

Object in Slice Category (X, fX), (Y, fY ), (A, fA) (Chap. 3)
Morphisms in Slice Category f , g, k, l, m (Chap. 3)

T -algebras Ā = (A, fA), B̄ = (B, fB) (Sect. 4.3)

Sometimes, those symbols will be sub- or superscripted with symbols, such as number
or object’s name, for the sake of clarity.

5



1. On Categories, Functors and Natural
Transformations

1.1. Basic Definitions

Definition 1 (Category). A category C consists of

a class of objects (or elements) denoted Obj(C),

a class of morphisms (or arrows, maps) between the objects, denoted HomC.

For a particular morphim f , we write f : A → B if A and B are objects in C, call A
(resp. B) the domain (resp. the co-domain) of f and write HomC(A,B) (or MorC(A,B),
C(A,B)) for the collection of all the morphisms in C between A and B. For every three
objects A, B and C in C, the composition of f : A → B and g : B → C is written as g ◦ f
(or gf , f ; g, fg), and its domain (resp. co-domain) is A (resp. C).

The classes of objects and of morphisms, together with the definition of composition,
should be such that the following holds:

Associativity for every f : A → B, g : B → C and h : C → d, h ◦ (g ◦ f) = (h ◦ g) ◦ f

Identity for every object A, there exists a morphism idA : A → A called the identity
morphism for A, such that for every morphism f : B → A and every morphism g : A → C,
we have idA ◦f = f and g ◦ idA = g.

Composition and identity can often be inferred from the classes of objects and morphisms,
and will be left implicit when this is the case.

The notion of isomorphism, written ∼= and used in the two following definitions, is
formally introduced in Definition 4.

Definition 2 (Functors). Let C and D be two categories, a morphism1 F : C → D is

a pseudo-functor if ∀A,B,C in C, ∀f : A → B, g : B → C in C,

Fxi is in D (1.1)

F idxi
∼= idFxi

(1.2)

F (g ◦ f) ∼= F (g) ◦ F (f) (1.3)
1Using the word “morphism” in the technical sense of Definition 1 would require to observe that categories
and their functors form a category – which is true –. We use this term here informally, sometimes
“mapping” or “map” is used to avoid confusing the formal definition of morphism with the informal
notion of “not necessarily structure-preserving relationship between two mathematical objects”.

6



a functor if it is a pseudo-functor, 1.2 and 1.3 are equalities.

Definition 3 (Natural transformation [20, page 16]). Given F,G : D → C two functors, a

natural transformation α : F
•
−→ G assigns to every object A in D a morphism αA : FA →

GA in C such that ∀f : A → B in D, the following commutes in C:

FA

GA

FB

GB

Ff

Gf

αA αB

We then say that αA : FA → FB is natural in A.
If, for every object A, the morphism αA is an isomorphism, then α is said to be a natural

isomorphism (or a natural equivalence, an isomorphism of functors).

Since A is universally quantified, we simply write that α is natural, and remove the A
from the previous diagram. Even if the

•
−→ notation is convenient to distinguish natural

transformations from functors and morphisms, we will omit it most of the time, and use
→ for natural transformation, trusting the reader to understand whenever we are refering
to a natural transformation or some other construction.

1.2. Properties of Morphisms, Objects, Functors, and Categories

Definition 4 (Properties of morphisms). Let F : C → D be a functor, a morphism
f : X → Y in C is

an epimorphism (or onto, right-cancellative) if for all g1, g2 : Z → X, f◦g1 = f◦g2 =⇒
g1 = g2. We write ։.

a monomorphism (or left-cancellative) if for all g1, g2 : Z → X, g1 ◦ f = g2 ◦ f =⇒
g1 = g2. We write ֌ or →֒ (but this last one is often reserved for inclusion morphisms).

a bimorphism if it is a monomorphism and an epimorphism. We write
∼
−→.

a retraction (has a right inverse) if there exists g : Y → X such that f ◦g = idY . Then
g is a section of f .

a section (has a left inverse) if there exists g : Y → X such that g ◦ f = idX . Then g
is a retraction of f .

an isomorphism if there exists g : Y → X such that f ◦ g = idY and g ◦ f = idX . We
write ∼=, and f−1 for g.

an endomorphism if X = Y .

7



an automorphism if it is both an isomorphism and an endomorphism.

over u in D if Ff = u

cartesian over (or above) u : I → J in D (or a cartesian, or terminal, lifting of u) if
Ff = u and for all Z, for all g : Z → Y in C for which Fg = u ◦w for some w : FZ → I,
there is a unique h : Z → X in C such that Fh = w and f ◦ h = g.

In C

Z

X Y

h

f

g

In D

FZ

I J

w

u

We write u§X for the cartesian morphism over u with codomain X. For a reason that will
become clear with Definition 12, we write u∗X for the domain of u§(X).

It used to be the case that cartesian morphisms were called “strong cartesian”, the
qualification of “cartesian” being reserved for the case where w = idI [27, Appendix B].

cartesian if it is cartesian over Ff .

opcartesian over (or above) u : I → J in D if Ff = u and for all Z, for all g : X → Z
in C for which Fg = w ◦ u for some w : J → FZ, there is a unique h : Y → Z in C such
that Fh = w and h ◦ f = g.

8



In C

Z

X Y

h

f

g

In D

FZ

I J

w

u

We write uX§ for the opcartesian morphism over u with domain X. For a reason that
will become clear with Definition 13, we write u∗X for the co-domain of u§(X).

vertical if Ff = idFx.

The terms over, cartesian over, opcartesian over and vertical are mostly used when F is a
fibration (Definition 10).

Definition 5 (Properties of objects). An object A in C is

terminal (or final) if for all B in C, there exists a unique morphim f : A → B. Such an
object is denoted 1 (or t) and is unique, and the unique morphism A → 1 is denoted !A.

initial (or co-terminal, universal) if for all B in C, there exists a unique morphim
f : B → A. Such an object is denoted 0 (or i) and is unique, and the unique morphism
0 → A is denoted !A.

strict initial if it is initial and every morphism f : B → A is an isomorphism.

zero (or null) if it is both initial and terminal.

Definition 6 (Properties of categories). A category C has

(cartesian binary) product [1, page 35] if ∀A1, A2 in C, ∃B in C and ∃πi : B → Ai for
i ∈ {1, 2}, such that ∀fi : D → Ai, ∃!v : D → B such that the following commutes:

D

BA1 A2

f1 f2v

π1 π2

9



We call B the product of A1 and A2, and denote it with A1 ×A2, v is the product of the
morphisms f1 and f2 and is written f1 × f2, and πi are the (canonical) projections.

For all A in C, a morphism δA : A → A × A (sometimes written ∆A) is a diagonal
morphism if, for i ∈ {1, 2}, πi ◦ δA = idA. Moreover, for all f : A → B and g : A → C,
we write 〈f, g〉 for (f × g) ◦ δA : A → (B × C).

all finite product if it has all (cartesian binary) product and a terminal object [2, Defi-
nition 2.19].

exponent if C has (cartesian binary) product and ∀A1, A2 in C, ∃B in C and f : B ×
A2 → A1 such that ∀C and g : C × A2 → A1, ∃!u : C → B such that the following
commutes:

C

B

u

C ×A2

B ×A2 A1

u× idA2

f

g

Then,

• B is an exponential object, denoted A2 ⇒ A1 (or AA2

1 ),

• u is the transpose of g, denoted λg (or g̃),

• f is the evaluation morphism, denoted evA1,A2
.

and we say that

• B is exponentiating if ∀A1 in C, A1 ⇒ B exists,

• B is exponentiable (or powerful) if ∀A1 in C, B ⇒ A1 exists.

pullback if, for i ∈ {1, 2}, ∀Ai, B in C, fi : Ai → B, there exists an unique C in C,
pi : C → Ai such that the following commutes:

C

A1

A2

B

p1

p2

f1

f2

and such that for all D, gi : D → Ai such that f1 ◦ g1 = f2 ◦ g2, there exists a unique
v : D → C such that gi = pi ◦ v:

10



C A2

A1 B

D

p2

p1

f1

f2
g1

g2

v

This diagram is called the pullback diagram (or cartesian square), and we usually draw
a right angle in the corner where C is, as follows:

C

The object C is sometimes called

• the fibred product of A1 and A2 over B and written A1 ×
B A2 (or A1 ×

c
C
A2),

• the pullback of A2 along f1 and written f1A2,

• the pullback of A1 along f2 and written f2A1.

The morphism p1 (resp. p2) is sometimes called the pullback of f2 along f1 (resp. the
pullback of f2 along f1) and written f∗

2 f1 (resp. f∗
1 f2).

pushout if Cop (cf. Definition 8) has pullback.

equalizers if for all f, g : A → B, there exists an object Ef,g and a morphism ef,g :
Ef,g → A such that f ◦ ef,g = g ◦ ef,g , and such that for all object Z and morphism
m : Z → A such that f ◦ m = g ◦ m, there exists a unique u : Z → Ef,g such that
ef,g ◦ u = m.

Z

Ef,g A B

f

g

∃!u

ef,g

m

A category C is

the category 1 if it has only one object (often written 1 as well) and one morphism.

11



monoidal if it has

• a bifunctor ⊗ : C× C → C,

• a neutral object I (a right and left identity),

• natural isomorphisms

– αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C) (the associator),

– λA : I ⊗A → A (the left unitor),

– ρA : A⊗ I → A (the right unitor)

such that for all A,B,C and D, the following diagrams commute:

((A ⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D

A⊗ ((B ⊗ C)⊗D)

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D))

αA,B,C ⊗ idD

αA,B⊗C,D

αA⊗B,C,D

αA,B,C⊗D

idA⊗αB,C,D

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA ⊗ idB idA⊗λB

strict monoidal if it is monoidal and α, λ and ρ are identities,

symmetric monoidal if it is monoidal and it have an isomorphism sA,B : A⊗B → B⊗A
such that the following three diagrams commute:

A⊗ I I ⊗A

A

sA,I

ρA λA

A⊗B A⊗B

B ⊗A

idA⊗B

sA,B sB,A

12



(A⊗B)⊗ C (B ⊗A)⊗ C

A⊗ (B ⊗ C) B ⊗ (A⊗ C)

(B ⊗C)⊗A B ⊗ (C ⊗A)

sA,B ⊗ idC

αA,B,C

sA,B⊗C

αB⊗C,A

αB,A,C

idB ⊗sA,C

closed monoidal if it is monoidal and, for all B, the functor ⊗B : → ⊗B2 has a right
adjoint (Definition 7) ⇒B : → B ⇒ .

Cartesian monoidal if its monoidal structure is given by the (binary cartesian) product:
the bifunctor ⊗ is the product, the neutral object is the terminal object 1, and, for every
A, B and C,

• αA,B,C : (A×B)× C → A× (B × C), the associator, is 〈π1 ◦ π1, π2 × idC〉,

• λA : 1×A → A, the left unitor, is π2,

• ρA : A× 1 → A, the right unitor, is π1.

Note that every cartesian monoidal category is symmetric monoidal, with sA,B = π2×π1 :
A×B → B ×A.

Cartesian closed if it has a terminal object and every object is exponentiating, or, equiv-
alently, if it has a terminal object, and every pair of objects have an exponent and a
product.

discrete if the only morphisms are the identities.

a preorder category if there is at most one morphism between any two objects.

well-pointed if it has a terminal object 1 and for all f1, f2 : A → B such that f1 6= f2,
there exists p : 1 → A, a global object (or point) such that f1 ◦ p 6= f2 ◦ p.

pointed if it has a zero object.

We refer to Sect. A.1 for a series of equalities concerning the binary product, the expo-
nents and the associator for the product.

We will often omit the subscripts on the natural transformations, objects and morphisms
above when they can be infered from context. We also work up to associativity most of
the time.

2This functor can be thought of as a “partially applied bifunctor”.

13



Definition 7 (Properties of functors). Given two functors F : D → C and G : C → D,

F is a left adjoint to G (and G is a right adjoint to F ) [20, page 492] if for all D in
D, C in C, HomC(FD,C) ∼= HomD(D,GC) are natural in the variables C and D, that is,

F and G are equiped with natural transformations η : idC
•
−→ F ◦G and ε : G ◦ F

•
−→ idD

such that for all D in D, C in C, the following commutes:

GC GFGC

GC

G(ηC)

εGCidGC

FD FGFD

FD

ηFD

F (εD)idFD

We write F ⊣ G.

F is full if for every D,E in D, for all g : FD → FE, there exists h : D → E such that
g = Fh.

F is faithfull (or an embedding) if for every D, E in D, for all f1, f2 : D → E,
Ff1 = Ff2 =⇒ f1 = f2.

F is fully faithful if it is full and faithful.

F is contravariant (or a co-functor) if for all f : A → B in D, Ff : Fb → Fa.

F is a bifunctor (or a binary functor) if D is the product of two categories.

F is an endofunctor if D = C, and we write Fn for the application of F n times.

F is a (left) strong functor [12, Definition 2.6.7] if F is an endofunctor on a monoidal
category C endowed with a (tensorial) (left) strength lst, a natural transformation lstA,B :
A⊗ FB → F (A⊗B) such that the following commutes:

(A⊗B)⊗ FC

F ((A⊗B)⊗ C)

A⊗ (B ⊗ FC)

A⊗ F (B ⊗ C)

F (A⊗ (B ⊗ C))

lstA⊗B,C

αA,B,FC

idA⊗ lstB,C

lstA,B⊗C

F (αA,B,C)

14



I ⊗ FA F (I ⊗A)

FA

lstI,A

λFA F (λA)

F is a right strong functor if F is an endofunctor on a monoidal category C endowed
with a (tensorial) right strength rst, a natural transformation rstA,B : FA⊗B → F (A⊗B)
such that the following commutes:

FA⊗ (B ⊗ C)

F (A⊗ (B ⊗C))

(FA⊗B)⊗C

F (A⊗B)⊗C

F ((A⊗B)⊗ C)

rstA,B⊗C

α−1
FA,B,C

rstA,B ⊗ idC

rstA⊗B,C

F (α−1
A,B,C)

FA⊗ I F (A⊗ I)

FA

rstA,I

ρFA F (ρA)

Note that a fully faithful functor may not be an isomorphism of categories, and that a
“strong” functor usually refers to a left strong functor.

1.3. Constructions over Categories and Functors

Definition 8 (Constructions over categories). Given B and C two categories, and B an
object of B,

B is a subcategory of C if B is a category, whose objects are a subcollection of objects
of C, and whose morphisms are a subcollection of morphisms of C.

The arrow category B
→ [12, page 28] (or the category of arrows of B B

2 [20,
pages 40–41]) has

for objects morphisms of B,

15



for morphisms couples (u, g) : f1 → f2 of morphisms of B such that the following
commutes:

B1

B′
1

B2

B′
2

g

f1

u

f2

The slice category B/B [12, page 28] (or the category of object over B, or over
category) is the subcategory of B→, which have

for objects morphisms of B whose codomain is B,

for morphisms the morphisms of B→ whose first component is idB .

The co-slice category B\B [13, page 28] (or the under category, (B ↓ B) or (B/B))
is the subcategory of B→, which have

for objects morphisms of B whose domain is B,

for morphisms the morphisms of B→ whose second component is idB.

The opposite category B
op [20, page 33] has

for objects objects of B,

for morphisms fop : B → A for each morphism f : A → B in B.

The functor category B
C [20, page 40] (orFunct(C,B)) has

for objects functors F : C → B,

for morphisms natural transformations between functors from C to B.

Definition 9 (Constructions over functors). Given A, B and C three categories, F : B → C

and G : A → C two functors,

the opposite of F is the unique functor F op : Bop → C
op.

the comma category (G ↓ F ) [20, pages 45–46] has

for objects triples (A,B, f) such that A in A, B in B and f : GA → FB is a morphism
in C.

for morphisms pairs (g, h) : (A1, A2, f1) → (B1, B2, f2) of morphisms in A and B

respectively, such that g : A1 → A2, h : B1 → B2) the following commutes:

16



GA1

FB1

GA2

FB2

Gg

f1

Fh

f2

Remark 1 (Comma category as a general construction).

• If A = C, G = idC and B = 1, then if F1 = c for c in C, (G ↓ F ) is precisely C/c
the slice category over c.

• If B = C, F = idC and A = 1, then if G1 = c for c in C, (G ↓ F ) is precisely c\C
the coslice category over c.

• If F and G are the identity functor of C, then (F ↓ G) is the arrow category C
→.

• If F and G are both functor with domain 1, and F1 = A, G1 = B, then (F ↓ G) is
the discrete category whose objects are morphisms from A to B.

17



2. On Fibrations

Definition 10 (Fibration [9, Definition 1.2. 12, page 49]). The functor U : E → B is

a fibration if for every Y in E and u : I → UY in B, there is a cartesian morphism
f : X → Y in E above u.

an opfibration (or cofibration) [13, Section 9.1] if Uop : Eop → B
op is a fibration.

a bifibraction if it is a fibration and an opfibration.

a cloven (op)fibration if it is an (op)fibration and has a cleavage, i.e. a choice of
(op)cartesian liftings.

Definition 11 (Fibre). If U : E → B is a fibration and X is an object in B, then we write
EX and call the fibre over X the category whose

objects are the objects Y in E such that UY = X,

morphisms are the morphisms f in E such that Uf = idX .

Definition 12 (Re-indexing (or substitution, relabeling, inverse image, transition) func-
tor [17, page 268, 12, pages 48–49]). Given U : E → B a cloven fibration, for all f : X → UP
in B, we define the re-indexing functor f∗ : EUP → EX as

on objects f∗P is the domain of f §
P ,

on morphisms for k : P → P ′, f∗k is given by cartesianity of f §
P ′ along k ◦ f §

P :

f∗P

f∗P ′

P

P ′

kf∗k

f §
P ′

f §
P

Definition 13 (Opreindexing (or extension, sem) functor). Let U : E → B be a cloven
opfibration, f : UP → Y be a morphism in B. We define the opreindexing functor f∗ :
EUP → EY as

on objects f∗P is the codomain of fP
§ ,

18



on morphisms for k : P → P ′, f∗k is given by opcartesianity of fP
§ along fP ′

§ ◦ k.

f∗(P )

f∗(P
′)

P

P ′

k f∗k

fP ′

§

fP
§

Definition 14 (Properties of fibres [26, page 27]). Let U : E → B be a cloven opfibration,
J be an object in B, and A,B be in EJ . The fibre EJ has fibred product if

• the fibre EJ has product, denoted ×EJ
below

• ∀u : I → J in B, u∗(A×EJ
B) ∼= (u∗A)×EI

(u∗B).

it has fibred exponent if

• the fibre EJ has exponent, denoted ⇒EJ
below,

• ∀u : I → J in B, u∗(B ⇒EI
A) ∼= (u∗B) ⇒EJ

(u∗A).

Definition 15 (Generic objects [12, Definition 5.2.8]). Let U : E → B be a fibration, an
object X in E is

weak generic (or generic [13, Definition 1.2.9, 8, pages 47–48]) if for all Y in E, there
exists f : Y → X and f is cartesian.

generic if for all Y in E, there exists a unique u : UY → UX and there exists f : Y → X
cartesian over u.

strong generic if for all Y in E, there exists a unique f : Y → X and f is cartesian.

split generic [12, Definition 5.2.1, 13, Definition 1.2.11] if U is a split fibration, and
there exists a collection of isomorphisms

θI : HomB(I, UX) ∼= Obj(EI)

with θJ(u ◦ v) = v∗(θIu) for v : J → I.

The image UX in B is written Ω.

Definition 16 (Properties of fibrations). A fibration U : E → B has

product [12, page 97] if B has pullback and all re-indexing functor u∗ has a right adjoint
Πu that respects in some way the Belk-Chevalley condition.

19



simple product [12, page 94] if B has product and all substitution functors along the
cartesian product projections πI,J : I × J → I have a right adjoint ΠI,J that respects in
some way the Belk-Chevalley condition.

simple Ω-product if B has product and simple product for cartesian projections of prod-
ucts with Ω.

exponent [10, Definition 3.9, p. 179] if it has cartesian product and some functor has
a fibred right adjoint.

fibred product [8, page 42] if every fibre has fibred product.

a fibred terminal object [8, pages 42–43] if each fibre EX has a terminal object 1EX
,

and if reindexing preserves terminal object: ∀X,Y, f : UX → UY , f∗
1EY

= 1EX
.

it is

a split fibration [12, pages 49–50] if it is cloven, and additionally, id∗ = id and (v◦u)∗ =
u∗ ◦ v∗,

a polymorphic fibration [12, p. 471] if it has a generic object, fibred finite product,
and finite products in B.

a partial order (or preordered) fibration [18, page 233, 12, page 43] if every fibre is
a preorder category.

Lemma 1. A fibration is faithful if and only if it is a partial order fibration.

Proof. Let U : E → B be a fibration.

⇒ Let A in B and f, g in EA, both are vertical, i.e. Uf = idA = Ug, but as U is faithful,
f = g, i.e. EA is a preorder.

⇐ Assume f, g : P → Q and Uf = Ug. As every morphism in E can be factorised as the
composition of a vertical morphism and a cartesian lifting [12, 1.1.3, p.29], i.e. f = h◦f ′

and g = u◦g′. Both h and u are endomorphisms in EP , herce, by partial ordering, h = u.
Moreover, a cartesian morphism is unique up to isomorphism in a fibre [12, Proposition
1.1.4], so that f ′ = g′, and f = g.

20



3. On Slice Categories

3.1. Preliminaries on Slices

We start by coming back to the definition of slice category (Definition 8) and introduce
proper notations for it.

Definition 17 (Slice category). Let C be a category, and A be an object of C. The slice
category C/A is the category whose

objects are pairs (X, fX) such that X is an object of C and fX : X → A is a morphism
of C,

morphisms h : (X, fX) → (Y, fY ) are morphism h : X → Y in C such that fY ◦ h = fX
in C:

X Y

A

h

fX fY

identity on (X, fX)is idX ,

composition is defined as h ◦C/A g = h ◦C g.

For the following definition, we will use the definition and notation relative to the pull-
back introduced in Definition 6.

Definition 18 (Pullback (or change-of-base) functor [4, page 13.4.1, 2, Proposition 5.10]).
Let C be a category with all pullbacks, f : A → B be a morphism in C, we define the the
pullback functor f∆ : C/B → C/A as

on objects f∆(C, fC) is the pair (fC, f∗fC) given by the pullback of f along fC :

A B

CfC

fC

f

f∗fC

f∗
Cf

on morphisms f∆m, for m : (C, fC) → (D, fD) a morphism in C/B, is the unique
morphism between f∆(C, fC) and f∆(D, fD) given by taking (f∗C, f∗fC ,m ◦ f∗

Cf) as
the “alternative” pullback of f and fD.

21



More precisely, we have:

f∗C

f∗D

A

C

D

B

f∗fC

f∗fD

fC

fD

m

f

f∗
Cf

f∗
Df

f∆m

Then, since f∗fD is the pullback of f and fD, and since f ◦ f∗fC = fD ◦ (m ◦ f∗
Cf)

(because fD ◦ m = fC , since m is a morphism in C/B, and f ◦ f∗fC = fC ◦ f∗
Cf , by

construction), there exists a unique f∆m such that f∗fC = f∗fD ◦ f∆m, and so f∆m is a
morphism in C/A.

In the future, we will prefer the notation A×B
C
D over f∗D.

Remark 2. This pullback functor f∆ : C/B → C/A is not to be confused with the
reindexing functor f∗ : EUP → EX defined thanks to a cloven fibration U : E → B in
Definition 12, even if they are sometimes both denoted with f∗ [3, Example 7.29].The fact
that the same notation is used for both probably comes from the fact that if U is the
codomain functor cod : B→ → B, then CZ

∼= C/Z for all Z in C [12, 28, Ex. 1.4.2], and
the assimilation is grounded.

Definition 19 (Composition functor [4, page 13.4.2]). Let f : A → B be a morphism in
C, we define the composition functor Σf : C/A → C/B to be

on objects Σf (C, fC) is (C, f ◦ fC),

on morphisms Σfk, for k : (C, fC) → (D, fD) a morphism in C/A, is k itself:

A B

C D

f

fC

fD

f ◦ fD

f ◦ fC

k

22



We can easily make sure that k is a morphism in C/B: f ◦ fD ◦ k = f ◦ fC holds since k
is a morphism in C/A.

Given f : B → A, f∆ and Σf are actually adjoints, and it can be the case that f∆ also
has a right adjoint:

Definition 20 (Adjoints of f∆ [3, Definition 9.19, 17, Corollary A.1.5.3]). Let f : B → A,
if f∆ has a right adjoint, then we write it Πf , say that f is exponentiable, and we have:

Σf ⊣ f∆ ⊣ Πf

I.e.,

C/A C/B
f∆

Σf

Πf

In particular, for the adjunction Σf ⊣ f∆, we have the unit ηΣf
: idC/A

•
−→ f∆Σf and the

counit ǫΣf
: Σff

∆ •
−→ idC/B such that for all (C, fC) in C/B, (D, fD) in C/A,

∀k : (C, fC) → f∆(D, fD),∃!l : Σf (C, fC) → (D, fD)

s.t. k = f∆l ◦ (ηΣf
)(C,fC) (3.1)

∀k : Σf (C, fC) → (D, fD),∃!l : (C, fC) → f∆(D, fD)

s.t. k = (ǫΣf
)(D,fD) ◦ Σf l (3.2)

And, for the adjunction f∆ ⊣ Πf , the unit ηΠf
: idC/B

•
−→ Πff

∆ and the counit ǫΠf
:

f∆Πf
•
−→ idC/A are such that

∀k : (D, fD) → Πf (C, fC),∃!l : f
∆(D, fD) → (C, fC)

s.t. k = Πf l ◦ (ηΠf
)(D,fD) (3.3)

∀k : f∆(D, fD) → (C, fC),∃!l : (D, fD) → Πf (C, fC)

s.t. k = (ǫΠf
)(C,fC) ◦ f

∆l (3.4)

In the following (Sect. 3.2.1, Sect. 3.2.2 and Sect. 3.2.3), we’ll prove that, under certain
conditions, the slice category C/A can be endowed with a cartesian structure [2, Proposition
9.20], with (A, idA) being the terminal object, and, for (X1, fX1

) and (X2, fX2
) two objects,

(X1, fX1
)× (X2, fX2

) =def ΣfX1
(f∆

X1
(X2, fX2

)) (3.5)

23



or, equivalently

(X1, fX1
)× (X2, fX2

) =def ΣfX2
(f∆

X2
(X1, fX1

))) (3.6)

(X1, fX1
) ⇒ (X2, fX2

) =def ΠfX1
(f∆

X1
(X2, fX2

))) (3.7)

with

ev(X1,fX1
),(X2,fX2

) : ((X1, fX1
) ⇒ (X2, fX2

))× (X1, fX1
) → (X2, fX2

)

=def (ǫΣfX1

)(X2,fX2
) ◦ΣfX1

((ǫΠfX1

)f∆

X1
(X2,fX2

)) (3.8)

To have a cartesian closed category in every slice, we will have to suppose the initial
category C is locally cartesian closed (LCC). LCC categories are of interest on their own,
because e.g. of the link they have to dependent type [25], but whenever they have a
terminal object seems to vary with the author1.

Definition 21 (Locally Cartesian Closed). A category C is locally cartesian closed if,
equivalently,

1. it has pullbacks and every morphism is exponentiable [17, page 13]

2. each slice category C/A is cartesian closed [17, Corollary 1.5.3, 12, page 81]

3. C has a terminal object, and for all morphism f : C → D in C, the composition
functor (Definition 19) Σf : C/C → C/D has a right adjoint f∆, which in turns has
a right adjoint Πf (Definition 20).

3.2. Cartesian Structure

3.2.1. Terminal Object

Lemma 2 (Terminal Object). For all C and A an object of C, C/A has terminal object.

Proof. We prove that (A, idA) is a terminal object in C/A: let (X, fX) be an object in
C/A, we want to construct a unique h : (X, fX) → (A, idA) such that ida ◦h = fX . But
ida ◦h = fX implies that h = fX , and it is unique, since any other morphism h′ would be
such that ida ◦h

′ = h′ = fX = h.

Remark that the unique morphism between an object and the terminal object is given
by the object itself.

1Compare “By convention, a locally cartesian closed category is assumed to have a terminal object, so
that it is in particular cartesian closed.” [17, page 48] with “A locally cartesian category which has a
terminal object is cartesian closed.” [4, pages 381–382, 4, Proposition 13.4.6]. Steve Awodey [2, Remark
9.21] writes it explicitly: “The reader should be aware that some authors do not require the existence
of a terminal object in the definition of a locally cartesian closed category.”

24



Y

X1 ×
A
C
X2

X1

X2

A

fX1
◦ (f∗

X1
fX2

)

p2

p1

fX1

fX2

p′2

p′1

fY

v

Figure 3.1.: Situation in the proof of Lemma 3

3.2.2. Products

Remark 3 (On products). The “spontaneous” way to define a product in C/A from the
product in C does not work: suppose we define (X, fX)×C/A (Y, fY ) to be (x×C y), (fX ×C

fY ), as fX ×E fY is a morphism into A×C A, it is not a morphism in C/A.

Lemma 3 (Products). If C has pullbacks and A is an object of C, then C/A has product.

Proof. Let (X1, fX1
) and (X2, fX2

) be objects of C/A, we write ((X1×
A
C
X2), f

∗
X1

fX2
, p2) the

pullback of fX2
along fX1

in C and define their product in C/A to be (ΣfX1
(f∆

X1
(X2, fX2

))), f∗
X1

fX2
, p2),

i.e., (((X1 ×
A
C
X2), fX1

◦ (f∗
X1

fX2
)), f∗

X1
fX2

, p2). In the following, let p1 = f∗
X1

fX2
.

Checking that ((X1 ×
A
C
X2), fX1

◦ (f∗
X1

fX2
)) is an object in C/A, and that p1 and p2 are

morphisms in C/A is straightformard, and can be read from Figure 3.1.
For the universal property, let (Y, fY ) be an object of C/A and, for i ∈ {1, 2}, p′i : Y → Xi

be a morphism of C/A, i.e. such that fY = fXi
◦ p′i. We produce the unique v of C/A such

that p′i = pi ◦ v and fY = fXi
◦ pi ◦ v. Since ((X1 ×

A
C
X2), p1, p2) is the pullback of X1 and

X2, we know there is a unique v : Y → X1 ×
A
C
X2 such that p′i = pi ◦ v. We are left to

prove that fY = fXi
◦ pi ◦ v:

fY = fXi
◦ p′i (Since p′i is a morphism in C/A)

= fXi
◦ pi ◦ v (By definition of v)

25



Remark 4 (“Altenate” product). Remark that, by the universal property of the pullback,
fX1

◦(f∗
X1

fX2
) ∼= fX2

◦(f∗
X2

fX1
), so that we could equivalently take the product of (X1, fX1

)

and (X2, fX2
) to be (((X1 ×

A
C
X2), fX2

◦ (f∗
X2

fX1
)), f∗

X2
fX1

, p2).
This justifies the two presentations given in Equation 3.5 and Equation 3.6 and makes

the product in slice categories symmetric “by construction”.

Remark 5 (On the product of morphisms). Given f : (X1, fX1
) → (X2, fX2

) and g :
(Y1, fY1

) → (Y2, fY2
) two morphims in C/A, their product f × g : (X1, fX1

) × (Y1, fY1
) →

(X2, fX2
) × (Y2, fY2

) is the only v given by the universal property of the pullback of fY2

along fX2
below:

X1 ×
A
C
Y1

X2 ×
A
C
Y2

X2

Y2

X1

Y1

A

f∗
Y2
fX2

f∗
X2

fY2

fX2

fY2

fX1

fY1

f∗
Y1
fX1

f∗
X1

fY1

v

f

g

Notice first that fX1
= fX2

◦ f and fY1
= fY2

◦ g since f and g are morphisms in
C/A. Hence, fX2

◦ f ◦ f∗
X1

fY1
= fY2

◦ g ◦ f∗
Y1
fX1

, and by the universal property of the
pullback of fY2

along fX2
, there exists a unique v such that f∗

X2
fY2

◦ v = f ◦ f∗
X1

fY1
and

f∗
Y2
fX2

◦ v = g ◦ f∗
Y1
fX1

. Hence, it follows that v is a morphism in C/A, and we write it
f × g.

3.2.3. Exponents

Lemma 4 (Exponents). If for all fX1
: X1 → A, f∆

X1
has a right adjoint, then C/A has

exponents.

Proof. Let (X2, fX2
) be an object of C/A, we define

• (X1, fX1
) ⇒ (X2, fX2

) to be ΠfX1
(f∆

X1
(X2, fX2

)),

• the evaluation map

ev(X1,fX1
),(X2,fX2

) : ((X1, fX1
) ⇒ (X2, fX2

))× (X1, fX1
) → (X2, fX2

)

26



to be (ǫΣfX1

)(X2,fX2
) ◦ΣfX1

((ǫΠfX1

)f∆

X1
(X2,fX2

)), where (X2, fX2
) (resp. f∆

X1
(X2, fX2

))

is the component at which the natural transformation ǫΣfX1

(resp. ǫΠfX1

) is taken.

• and for all (Z, fZ) and h : (Z, fZ) × (X1, fX1
) → (X2, fX2

), the definition of λg :
(Z, fZ) → (X1, fX1

) ⇒ (X2, fX2
) will be given below, using the properties given in

Equation 3.2 and Equation 3.4 of the co-units of the adjunctions given in Defini-
tion 20.

We first check that this object and this morphism belong to C/A:

• Since fX1
: X1 → A, f∆

X1
: C/A → C/X1 and ΠfX1

: C/X1 → C/A, we have that
(X1, fX1

) ⇒ (X2, fX2
) is an object in C/A.

• First, note that, by expanding the definitions of product (Lemma 3) and exponent
in the slice category,

((X1, fX1
) ⇒ (X2, fX2

))× (X1, fX1
)

is
ΣfX1

(f∆
X1

(ΠfX1
(f∆

X1
(X2, fX2

)))

and we can check that this is indeed the domain of the evaluation map. Secondly,
this evaluation map

(ǫΣfX1

)(X2,fX2
) ◦ ΣfX1

((ǫΠfX1

)f∆

X1
(X2,fX2

))

is indeed in C/A:

– f∆
X1

(X2, fX2
) is in C/X1,

– hence, (ǫΠfX1

)f∆

X1
(X2,fX2

) is a morphism in C/X1,

– and since ΣfX1
: C/X1 → C/A, ΣfX1

((ǫΠfX1

)f∆

X1
(X2,fX2

)) is in C/A.

– for (ǫΣfX1

)(X2,fX2
), it suffices to check that (X2, fX2

) is an object in C/A, and

hence that (ǫΣfX1

)(X2,fX2
) is indeed in C/A.

For the universal property of the evaluation map: suppose there exists (Z, fZ) and
h : (Z, fZ)× (X1, fX1

) → (X2, fX2
). Since

(Z, fZ)× (X1, fX1
) = ΣfX1

(f∆
X1

(Z, fZ))

by Equation 3.2, there exists a unique l1 : f
∆
X1

(Z, fZ) → f∆
X1

(X2, fX2
) such that

h = (ǫΣf
)(X2,fX2

) ◦ ΣfX1
(l1)

27



But then, by Equation 3.4, there exists a unique l2 : (Z, fZ) → ΠfX1
(f∆

X1
(X2, fX2

)) such
that

l1 = (ǫΠfX1

)(f∆

X1
(X2,fX2

)) ◦ f
∆
X1

(l2)

Putting it all together, and leaving the subscripts aside, we have:

h = ǫΣfX1

◦ ΣfX1
(ǫΠfX1

◦ f∆
X1

(l2))

= ǫΣfX1

◦ ΣfX1
(ǫΠfX1

) ◦ΣfX1
(f∆

X1
(l2)) (Since ΣfX1

is a functor)

= ev(X1,fX1
),(X2,fX2

) ◦ ΣfX1
(f∆

X1
(l2)) (By definition of ev)

A close inspection reveals that ΣfX1
(f∆

X1
(l2)) and l2 × id(X1,fX1

) are actually the same

morphism: f∆
X1

(l2) and l2 × id(X1,fX1
) are both obtained as the unique morphism between

(Z, fZ) × (X1, fX1
) and ((X1, fX1

) ⇒ (X2, fX2
)) × (X1, fX1

) using the universal property
of the pullback f∗

X1
l2, and ΣfX1

on morphisms is the identity. Hence, we get:

= ev(X1,fX1
),(X2,fX2

) ◦ (l2 × id(X1,fX1
))

Hence, the universal property of the evaluation map is proven, and we let

λ(h) = l2

which is unique by uniqueness of l1 and l2 and is a morphism in C/A by construction.

28



4. On Monads, Kleisli Category and
Eilenberg–Moore Category

4.1. Monads

Definition 22 (Monad (or triple in monoid form, or Kleisli triple) [23, page 61, 6, page 8,
5, page 5]). A monad T over a category C is a triple (T, η, µ), where

• T : C → C is an endofunctor, called the carrier,

• η : idC
•
−→ T is a natural transformation, called the unit,

• µ : T 2 •
−→ T is a natural transformation, called the multiplication

such that, for all object A in C, the following commute:

T 3A

T 2A

T 2A

TA

TµA

µTA

µA

µA

TA

T 2A

T 2A

TA

ηTA

TηA

µA

µA
idTA

The definition of Kleisli triples and monads can vary slightly, but they are in bijection [5,
page 8].

Definition 23 (Properties of monad). A monad T = (T, η, µ) over a category C is

(Left) Strong [23, page 74, 13, page 168] if C is monoidal, and (T, lst) is a (left)
strong functor (Definition 7), such that the following commutes:

I ⊗X I ⊗ TX

T (I ⊗X)

idI ⊗ηX

ηI⊗X
lstI,X

29



I ⊗ T 2X T (I ⊗ TX) T 2(I ⊗X)
lstI,TX T lstI,TX

I ⊗ TX T (I ⊗X)

idI ⊗µX

lstI,X

µI⊗X

Note that if C is symmetric, then a swapped (or twisted) strength map sstlA,B : TA⊗B →
T (A⊗B) can be defined as TsB,A ◦ lstB,A ◦sTA,B.

Right Strong if C is monoidal, and (T, rst) is a right strong functor that obey similar
laws. Note that if C is symmetric, then a swapped (or twisted) strength map sstrA,B :
A⊗ TB → T (A⊗B) can be defined as TsB,A ◦ rstB,A ◦sA,TB.

Commutative [16, page 203] if C is symmetric, T is a right and left strong monad, and
the two morphisms µ ◦ T sstr ◦ rst and µ ◦T sstl ◦ lst are equal, in which case it is named
the double strength and written γA,B : TA⊗ TB → T (A⊗B).

Affine [14, Definition 1] if C has a terminal object 1, and T1 ∼= 1.

There is a long and interesting development about right strong monads, and commutative
monads, that can be found in [24, page 71, 20, pages 252–257]. Affine, commutative, and
strongly affine monads are developed in [14, 15, 11], but the original theory is in [19]. An
alternative definition of strong monad, involving prestrenghts and what the author calls
Kleisli strength, can be found in [24].

Definition 24 (Kleisli liftings [21, page 28]). Given T = (T, η, µ) a monad over C, for
f : A → TB, we define the Kleisli lifting of f to be f# = µTB ◦ Tf : TA → TB.

Sect. A.2 gathers the equalities about the monads, the left strength, and T -algebras
(whose definition follows in Sect. 4.3) as well as some of the equalities that can be immedi-
ately inferred from them, that we will use in the rest of this document.

4.2. Kleisli Categories

Definition 25 (Kleisli category [20, page 147]). Given T = (T, η, µ) a monad over C, the
Kleisli category CT is the category whose

objects are the objects of C,

morphisms are morphisms in C whose target is of the form TX forX in C, i.e. HomCT
(A,B) =

HomC(A,TB),

identity is ηA : A → TA,

30



composition of f in HomCT
(A,B) and g in HomCT

(B,C), g ◦ f in HomCT
(A,C) is

g# ◦ f : A → TC.

Remark 6. For f in HomCT
(A,B) and g in HomCT

(B,C),

1. Composition with the identity behaves as expected:

(f ◦ η)# = µ ◦ Tf ◦ Tη (Definition 24)

= f ◦ µ ◦ Tη (By naturality of µ)

= f (m2)

2.

(g# ◦ f)# = (µ ◦ Tg ◦ f)# (Definition 24)

= µ ◦ T (µ ◦ Tg ◦ f) (Definition 24)

= µ ◦ Tµ ◦ T 2g ◦ Tf

= µ ◦ Tg ◦ µ ◦ Tf (m5)

= g# ◦ f# (Definition 24)

4.3. Eilenberg–Moore Categories

Definition 26 (Eilenberg–Moore category). Given T = (T, η, µ) a monad over C, the
Eilenberg-Moore category C

T is the category whose

objects are T -algebras, i.e., Ā = (A, fA) where A is the carrier, i.e. an object in C, and
fA is a T -action, i.e., a morphism TA → A such that the following commutes:

A TA

A

ηA

fAidA

T 2A

TA

TA

A

TfA

µA

fA

fA

morphisms are the T -homomorphisms between T -algebras, i.e. a morphism between
Ā = (A, fA) and B̄ = (B, fB) is a morphism f : A → B in C such that

f ◦ fA = fB ◦ Tf

identity is the identity on the carrier,

composition is the composition of the underlying morphisms in C.

31



Definition 27 (T -algebra homomorphism in its right-hand argument (AHom) [7, page 192]1).
If C has product and T is a (left) strong monad on C, then given an object B in C, and
two algebras Ā = (A, fA) and C̄ = (C, fC) in C

T , we say that a morphism f : B ×A → C
in C is a T -algebra homomorphism in its right-hand argument if the following diagram
commutes:

B × TA

B ×A

T (B ×A) TC

C

id×fA fC

lst Tf

f

We write AHomC(B× Ā, C̄)2 to denote the subcollection of morphisms in C from B×A
to C that are T -algebra homomorphisms in their right-hand arguments.

Lemma 5. For all D in C and Ā = (A, fA) in C
T , π2 : D×A → A is in AHomC(D× Ā, Ā).

Proof. π2 ◦ (id×fA) = fA ◦ π2 = fA ◦ Tπ2 ◦ lst by p8 and s3.

Finally, we note that AHom has some nice closure properties:

Lemma 6 (Closure properties of AHom). Let D be in C, Ā = (A, fA), C̄ = (C, fC) in C
T ,

and f be in AHomC(D × Ā, C̄).

1. For all D′ in C and g : D′ → D, f ◦ (g × id) is in AHomC(D
′ × Ā, C̄).

2. For all B̄ in C
T and g in AHomC(D×B̄, Ā), the morphism f ◦〈π1, g〉 is in AHomC(D×

B̄, C̄).

Proof. 1.

f ◦ (g × id) ◦ (id×fA)

=f ◦ (id×fA) ◦ (g × id) (p12)

=fC ◦ Tf ◦ lst ◦(g × id) (Since f is in AHomC(D × Ā, C̄))

=fC ◦ Tf ◦ lst ◦(g × T id)

=fC ◦ Tf ◦ T (g × id) ◦ lst (s4)

=fC ◦ T (f ◦ (g × id)) ◦ lst

2. This part of the proof has multiple steps, and requires to take associativity explicitly
into account.

f ◦ 〈π1, g〉 ◦ (id×fB)

1Thank to Paul Blain Levy for pointing out the right definition.
2However, it should be stressed that B × Ā is not an object in C nor in C

T , we are just using it as a
convenient notation.

32



=f ◦ 〈π1 ◦ (id×fB), g ◦ (id×fB)〉 (p5)

=f ◦ 〈π1, g ◦ (id×fB)〉 (p8)

=f ◦ 〈π1, fA ◦ Tg ◦ lst〉 (Since g is in AHomC(D × B̄, Ā))

=f ◦ (id×fA) ◦ 〈π1, T g ◦ lst〉 (p6)

=fC ◦ Tf ◦ lst ◦〈π1, T g ◦ lst〉 (Since f is in AHomC(D × Ā, C̄))

=fC ◦ Tf ◦ T 〈π1, g〉 ◦ lst (See below)

=fC ◦ T (f ◦ 〈π1, g〉) ◦ lst

We prove that lst ◦〈π1, T g ◦ lst〉 = T 〈π1, g〉 ◦ lst as follows. First, observe that

α ◦ (δ × id)

=〈π1 ◦ π1, π2 × id〉 ◦ (δ × id) (as1)

=〈π1 ◦ π1 ◦ (δ × id), (π2 × id) ◦ (δ × id)〉 (p6)

=〈π1 ◦ π1 ◦ (〈id, id〉 × id), (π2 × id) ◦ (〈id, id〉 × id)〉 (p3)

=〈π1 ◦ π1 ◦ (〈id, id〉 × id), (π2 ◦ 〈id, id〉)× (id ◦ id)〉 (p4)

=〈π1 ◦ 〈id, id〉 ◦ π1, (π2 ◦ 〈id, id〉)× (id ◦ id)〉 (p8)

=〈id ◦π1, id× id〉 (p9)

=〈π1, id〉

=〈π1 ◦ id, id ◦ id〉

=(π1 × id) ◦ 〈id, id〉 (p2)

=(π1 × id) ◦ δ (p3)

Hence, we get:

lst ◦〈π1, T g ◦ lst〉 = lst ◦(π1 × (Tg ◦ lst)) ◦ δ (p1)

= lst ◦(id×(Tg ◦ lst)) ◦ (π1 × id) ◦ δ (p12)

= lst ◦(id×(Tg ◦ lst)) ◦ α ◦ (δ × id) (Previous remark)

= lst ◦(id×Tg) ◦ (id× lst) ◦ α ◦ (δ × id) (p13)

= T (id×g) ◦ lst ◦(id× lst) ◦ α ◦ (δ × id) (s4)

= T (id×g) ◦ Tα ◦ lst ◦(δ × id) (s5)

= T (id×g) ◦ Tα ◦ lst ◦(δ × T id)

= T (id×g) ◦ Tα ◦ T (δ × id) ◦ lst (s4)

= T ((id×g) ◦ α ◦ (δ × id)) ◦ lst

= T ((id×g) ◦ (π1 × id) ◦ δ) ◦ lst (Previous remark)

= T ((π1 × g) ◦ δ) ◦ lst (p12)

= T 〈π1, g〉 ◦ lst (p1)

33



4.3.1. Terminal Object

Theorem 1. If C has a terminal object 1, then 1̄ = (1, !T1) is a terminal object in C
T .

Proof. First, observe that 1̄ = (1, !T1) is an object in C
T :

T 2
1 T1

T1 1 1

T !T1

µ1

!T1

!T1

id1

η1

all commutes because there is only one morphism from T 2
1 to 1, and only one morphism

from 1 to 1 in C.
Given (A, fA) in C

T , we use that 1 is terminal in C to obtain a morphism !A : A → 1,
and note that it is a morphism in CT :

TA

A

T1

1

fA

T !A

!A

!T1

Everything commutes in this diagram because there is only one morphism from TA to
1 in C.

4.3.2. Products

Theorem 2. If C has product, then CT has products, defined by Ā× B̄ = (A×B, ((fA ×
fB) ◦ 〈Tπ1, Tπ2〉)) and with projections πi inherited from C.

Proof. We have to prove that 1. that our candidate is an object in C
T , 2. that our projec-

tions are T -algebra homomorphisms, and 3. that our candidate together with the projec-
tions satisfy the universal property of the product.

1. We have to prove that (fA × fB) ◦ 〈Tπ1, Tπ2〉 satisfies al1 and al2, and we’ll use that
fA and fB satisfy them:

(fA × fB) ◦ 〈Tπ1, Tπ2〉 ◦ η = (fA × fB) ◦ 〈Tπ1 ◦ η, Tπ2 ◦ η〉 (p5)

= (fA × fB) ◦ 〈η ◦ π1, η ◦ π2〉 (m4)

34



= 〈fA ◦ η ◦ π1, fB ◦ η ◦ π2〉 (p6)

= 〈π1, π2〉 (al2)

= id (p7)

(fA × fB) ◦ 〈Tπ1, Tπ2〉 ◦ T ((fA × fB) ◦ 〈Tπ1, Tπ2〉)

=(fA × fB) ◦ 〈Tπ1 ◦ T (fA × fB), Tπ2 ◦ T (fA × fB)〉 ◦ T (〈Tπ1, Tπ2〉) (p5)

=(fA × fB) ◦ 〈T (π1 ◦ (fA × fB)), T (π2 ◦ (fA × fB))〉 ◦ T (〈Tπ1, Tπ2〉)

=(fA × fB) ◦ 〈T (fA ◦ π1), T (fB ◦ π2)〉 ◦ T (〈Tπ1, Tπ2〉) (p8)

=〈fA ◦ T (fA ◦ π1), fB ◦ T (fB ◦ π2)〉 ◦ T (〈Tπ1, Tπ2〉) (p6)

=〈fA ◦ TfA ◦ Tπ1, fB ◦ T (fB) ◦ Tπ2〉 ◦ T (〈Tπ1, Tπ2〉)

=〈fA ◦ µ ◦ Tπ1, fB ◦ µ ◦ Tπ2〉 ◦ T (〈Tπ1, Tπ2〉) (al2)

=(fA × fB) ◦ 〈µ ◦ Tπ1, µ ◦ Tπ2〉 ◦ T (〈Tπ1, Tπ2〉) (p6)

=(fA × fB) ◦ 〈µ ◦ Tπ1 ◦ T (〈Tπ1, Tπ2〉), µ ◦ Tπ2 ◦ T (〈Tπ1, Tπ2〉)〉 (p5)

=(fA × fB) ◦ 〈µ ◦ T (π1 ◦ 〈Tπ1, Tπ2〉), µ ◦ T (π2 ◦ 〈Tπ1, Tπ2〉)〉

=(fA × fB) ◦ 〈µ ◦ T 2(π1), µ ◦ T 2(π2)〉 (p9)

=(fA × fB) ◦ 〈Tπ1 ◦ µ, Tπ2 ◦ µ〉 (m6)

=(fA × fB) ◦ 〈Tπ1, Tπ2〉 ◦ µ (p5)

2. We let π1 : Ā × B̄ → Ā be the first projection, and prove that it is a morphism in
C
T .

π1 ◦ (fA × fB) ◦ 〈Tπ1, Tπ2〉 = fA ◦ π1 ◦ 〈Tπ1, Tπ2〉 (p8)

= fA ◦ Tπ1 (p9)

We prove similarly that π2 : Ā× B̄ → B̄ is a morphism in C
T .

3. We now have to prove the universal property of that product, i.e., that for all C̄ =
(C, fC) such that there exist f : C̄ → Ā and g : C̄ → B̄, there exists a unique
h : C̄ → Ā× B̄ such that f = π1 ◦h and g = π2 ◦ h. A picture at the end of this part
depicts the situation at the end of this proof.

Let h = 〈f, g〉 be the mediating morphism into the product. We first prove it is a
morphism in C

T :

〈f, g〉 ◦ fC = 〈f ◦ fC , g ◦ fC〉 (p5)

= 〈fA ◦ Tf, fB ◦ Tg〉 (Since f and g are morphisms in C
T )

= (fA × fB) ◦ 〈Tf, Tg〉 (p6)

= (fA × fB) ◦ 〈T (π1 ◦ 〈f, g〉), T (π2 ◦ 〈f, g〉)〉 (p9)

= (fA × fB) ◦ 〈Tπ1 ◦ T 〈f, g〉, Tπ2 ◦ T 〈f, g〉〉

35



= (fA × fB) ◦ 〈Tπ1, Tπ2〉 ◦ T 〈f, g〉 (p5)

That f = π1 ◦ h follows from π1 ◦ 〈f, g〉 = f , similarly for g = π2 ◦ h.

If there were another morphism h′ with the same properties, we could get a h′ : C →
A×B that would contradict the uniqueness of 〈f, g〉 with respect to the product in
C. The picture we obtain is the following:

TC

C

fC

T (A×B)

TA× TB

A×B

〈Tπ1, Tπ2〉

fA × fB

TA

A

fA

Tf

f

Tπ1

π1

TB

B

fB

Tg

g

Tπ2

π2

We also note that the duplication δ is easily defined as a morphism in C
T , since

TA

A

TA× TA

A×A

fA (fA × fA) ◦ 〈Tπ1, Tπ2〉

Tδ

δ

commutes trivially:

(fA × fA) ◦ 〈Tπ1, Tπ2〉 ◦ Tδ = (fA × fA) ◦ 〈Tπ1 ◦ Tδ, Tπ2 ◦ Tδ〉 (p5)

= (fA × fA) ◦ 〈T (π1 ◦ δ), T (π2 ◦ δ)〉

= (fA × fA) ◦ 〈T id, T id〉 (p16)

= (fA × fA) ◦ 〈id, id〉

= (fA × fA) ◦ δ (p3)

= δ ◦ fA (p17)

36



4.3.3. Exponent-like Structures

Eilenberg–Moore categories do not have exponents, but can be endowed with two structures
that share similarities with exponents. Below, they are named “internal” and “external”,
but no “canonical” name for them is known. The “external” is used, for instance, in [22,
Lemma 3.1.].

“Internal Exponents”

Theorem 3. If C is cartesian closed and T is (left) strong, letting Ā = (A, fA) be an

object in C
T and B be an object in C, then B

∗
⇒ Ā =: (B ⇒ A,λ(fA ◦ T ev ◦Ts ◦ lst ◦s))

is an object in C
T .

Proof. We need to show that λ(fA ◦ T ev ◦Ts ◦ lst ◦s) : T (B ⇒ A) → B ⇒ A satisfies (al1)
and (al2). We will use that, since (A, fA) is an object in B

T , fA satisfies them.

λ(fA ◦ T ev ◦Ts ◦ lst ◦s) ◦ η = λ(fA ◦ T ev ◦Ts ◦ lst ◦s ◦ (η × id)) (e1)

= λ(fA ◦ T ev ◦Ts ◦ lst ◦(id×η) ◦ s) (p14)

= λ(fA ◦ T ev ◦Ts ◦ η ◦ s) (s1)

= λ(fA ◦ T ev ◦η ◦ s ◦ s) (m4)

= λ(fA ◦ T ev ◦η) (p15)

= λ(fA ◦ η ◦ ev) (m4)

= λ(ev) (al1)

= id (e2)

λ(fA ◦ T ev ◦Ts ◦ lst ◦s) ◦ µ

=λ(fA ◦ T ev ◦Ts ◦ lst ◦s ◦ (µ× id)) (e1)

=λ(fA ◦ T ev ◦Ts ◦ lst ◦(id×µ) ◦ s) (p14)

=λ(fA ◦ T ev ◦Ts ◦ µ ◦ T lst ◦ lst ◦s) (s2)

=λ(fA ◦ T ev ◦µ ◦ T 2(s) ◦ T lst ◦ lst ◦s) (m6)

=λ(fA ◦ µ ◦ T 2(ev) ◦ T 2(s) ◦ T lst ◦ lst ◦s) (m6)

=λ(fA ◦ TfA ◦ T 2(ev) ◦ T 2(s) ◦ T lst ◦ lst ◦s) (al2)

=λ(fA ◦ TfA ◦ T 2(ev) ◦ T 2(s) ◦ T lst ◦Ts ◦ Ts ◦ lst ◦s) (p15)

=λ(fA ◦ T (fA ◦ T ev ◦Ts ◦ lst ◦s) ◦ Ts ◦ lst ◦s)

=λ(fA ◦ T (ev ◦(λ(fA ◦ T ev ◦Ts ◦ lst ◦s)× id)) ◦ Ts ◦ lst ◦s) (e3)

=λ(fA ◦ T ev ◦T (λ(fA ◦ T ev ◦Ts ◦ lst ◦s)× id) ◦ Ts ◦ lst ◦s)

=λ(fA ◦ T ev ◦Ts ◦ T (id×(λ(fA ◦ T ev ◦Ts ◦ lst ◦s))) ◦ lst ◦s) (p14)

37



=λ(fA ◦ T ev ◦Ts ◦ lst ◦(id×T (λ(fA ◦ T ev ◦Ts ◦ lst ◦s))) ◦ s) (s4)

=λ(fA ◦ T ev ◦Ts ◦ lst ◦s ◦ (T (λ(fA ◦ T ev ◦Ts ◦ lst ◦s))× id)) (p14)

=λ(fA ◦ T ev ◦Ts ◦ lst ◦s) ◦ T (λ(fA ◦ T ev ◦Ts ◦ lst ◦s)) (e1)

Note that if forg : CT → C is the forgetful functor associated with T , then

forg(B
∗
⇒ Ā) = forg(B ⇒ A,λ(fA ◦ T ev ◦Ts ◦ lst ◦s))

= B ⇒ A

= B ⇒ (forg (A, fA))

= B ⇒ (forg Ā)

Remark 7. Note that ev ◦s is in AHomC(A×A
∗
⇒ B̄, B̄):

ev ◦s ◦ (id×λ(fB ◦ T ev ◦Ts ◦ rst ◦s))

= ev ◦(λ(fB ◦ T ev ◦Ts ◦ rst ◦s)× id) ◦ s

=fB ◦ T ev ◦Ts ◦ rst ◦s ◦ s (e3)

=fB ◦ T ev ◦Ts ◦ rst (p15)

“External Exponents”

Theorem 4. If C has all equalizers, exponents and products, for every object C in C, and
algebras Ā = (A, fA), B̄ = (B, fB) in C

T , there exists an object Ā ⊸ B̄ in C such that
AHomC(C × Ā, B̄) ∼= HomC(C, Ā ⊸ B̄) .

Proof. We have to

1. give the definition of the object Ā ⊸ B̄,

2. construct Θ : AHomC(C × Ā, B̄) → HomC(C, Ā ⊸ B̄),

3. construct Ω : HomC(C, Ā ⊸ B̄) → AHomC(C × Ā, B̄) and

4. prove that Θ ◦ Ω = Ω ◦Θ = id.

1. Let (Ā ⊸ B̄, e) be the equalizer of λ(ev ◦(id×fA)) : (A ⇒ B) → (TA ⇒ B) and
λ(fB ◦ T ev ◦ rst) : (A ⇒ B) → (TA ⇒ B):

Ā ⊸ B̄ A ⇒ B TA ⇒ B

λ(ev ◦(id×fA))

λ(fB ◦ T ev ◦ rst)

e

38



2. Given f in AHomC(C × Ā, B̄), we let Θf be the morphism mf : C → Ā ⊸ B̄ given
by (Ā ⊸ B̄, e):

C

Ā ⊸ B̄ A ⇒ B TA ⇒ B

∃!mf

e

λf

We verify that the property of the equalizer can indeed be used:

λ(ev ◦(id×fA)) ◦ λf

=λ(ev ◦(id×fA) ◦ (λf × id)) (e1)

=λ(ev ◦(λf × id) ◦ (id×fA)) (p12)

=λ(f ◦ (id×fA)) (e3)

=λ(fB ◦ Tf ◦ rst) (Since f is in AHomC(C × Ā, B̄))

=λ(fB ◦ T (ev ◦(λf × id)) ◦ rst) (e3)

=λ(fB ◦ T ev ◦T (λf × id) ◦ rst)

=λ(fB ◦ T ev ◦ rst ◦(λf × T id)) (s4)

=λ(fB ◦ T ev ◦ rst ◦(λf × id))

=λ(fB ◦ T ev ◦ rst) ◦ λf (e1)

3. Given g in HomC(C, Ā ⊸ B̄), we define Ωg to be λ−1(e ◦ g). We prove that it is a
morphism in AHomC(C × Ā, B̄) using that e is the equalizer of λ(ev ◦(id×fA)) and
λ(fB ◦ T ev ◦ rst):

λ(ev ◦(id×fA)) ◦ e = λ(fB ◦ T ev ◦ rst) ◦ e

=⇒ λ(ev ◦(id×fA)) ◦ e ◦ g = λ(fB ◦ T ev ◦ rst) ◦ e ◦ g

=⇒ λ−1(λ(ev ◦(id×fA)) ◦ e ◦ g) = λ−1(λ(fB ◦ T ev ◦ rst) ◦ e ◦ g)

=⇒ λ−1(λ(ev ◦(id×fA))) ◦ ((e ◦ g)× id)

= λ−1(λ(fB ◦ T ev ◦ rst)) ◦ ((e ◦ g)× id) (e4)

=⇒ ev ◦(id×fA) ◦ ((e ◦ g)× id) = fB ◦ T ev ◦ rst ◦((e ◦ g)× id) (e6)

=⇒ ev ◦((e ◦ g) × id) ◦ (id×fA) = fB ◦ T ev ◦ rst ◦((e ◦ g)× T id) (p12)

=⇒ ev ◦((e ◦ g) × id) ◦ (id×fA) = fB ◦ T ev ◦T ((e ◦ g) × id) ◦ rst (s4)

=⇒ ev ◦((e ◦ g) × id) ◦ (id×fA) = fB ◦ T (ev ◦((e ◦ g)× id)) ◦ rst

=⇒ ev ◦(λ(λ−1(e ◦ g)) × id) ◦ (id×fA)

= fB ◦ T (ev ◦(λ(λ−1(e ◦ g)) × id)) ◦ rst (e5)

=⇒ λ−1(e ◦ g) ◦ (id×fA) = fB ◦ T (λ−1(e ◦ g)) ◦ rst (e3)

39



4. Given g in HomC(C, Ā ⊸ B̄), Θ(Ωg) = Θ(λ−1(e ◦ g)) is the unique morphism
mλ−1(e◦g)):

C

Ā ⊸ B̄ A ⇒ B TA ⇒ B

∃!mλ−1(e◦g))

e

λ(λ−1(e ◦ g)))

But since λ(λ−1(e ◦ g))) = e ◦ g, we have that mλ−1(e◦g)) = g. Moreover, given f in
AHomC(C× Ā, B̄), Ω(Θf) = λ−1(e ◦Θf) where Θf is the unique morphism mf such
that e ◦mf = λf . Hence, Ω(Θf) = λ−1(e ◦mf ) = λ−1(λf) = f .

We conclude that Θ ◦Ω = Ω ◦Θ = id.

Remark 8. Note that ev
⊸

=: (e× id) ◦ ev is in AHomC(Ā ⊸ B̄ × Ā, B̄):

ev ◦(e× id) ◦ (id×fA) = ev ◦(id×fA) ◦ (e× id) (p12)

= λ−1(λ(ev ◦(id×fA) ◦ (e× id)) (e6)

= λ−1(λ(ev ◦(id×fA)) ◦ e) (e1)

= λ−1(λ(fB ◦ T ev ◦ rst) ◦ e)
(Since e is the equalizer of λ(ev ◦(id×fA)) and λ(fB ◦ T ev ◦ rst))

= λ−1(λ(fB ◦ T ev ◦ rst ◦(e × id)) (e1)

= fB ◦ T ev ◦ rst ◦(e × id) (e6)

= fB ◦ T ev ◦T (e× id) ◦ rst (s4)

Connecting the Internal and the External Exponents

It is conjectured that for every object C in C, and all algebras Ā = (A, fA), B̄ = (B, fB)
in C

T ,
HomC(C, Ā ⊸ B̄) ∼= HomCT (Ā, C

∗
⇒ B̄)

However, the proof attempts require to be explicit about the associativity, and seemed
doubtful.

40



Bibliography

[1] Paolo Aluffi. Algebra: Chapter 0. Volume 104. Graduate Studies in Mathematics.
American Mathematical Society, 2009, page 713. isbn: 9780821847817.

[2] Steve Awodey. Category Theory. 2nd edition. Oxford Logic Guides. Oxford Univer-
sity Press, 2010, page 336. isbn: 0199237182.

[3] Steve Awodey. Category Theory. Lecture notes. LMUMunich, 2011. url: http://www.andrew.cmu.edu/c

[4] Michael Barr and Charles Wells. Category Theory for Computing Science. Volume 22.
Originally published: Prentice-Hall International Series in Computer Science, 1995.
Sept. 2012, pages 1–538. url: http://www.tac.mta.ca/tac/reprints/articles/22/tr22.pdf.

[5] Nick Benton. Monads and Effects. Lecture Notes. Sept. 2000. url: http://research.microsoft.com/en-

[6] Nick Benton, John Hughes, and Eugenio Moggi. “Monads and Effects”. In: APPSEM
2000. Edited by Gilles Barthe et al. Volume 2395. Lecture Notes in Computer Science.
Springer, 2000, pages 42–122. doi: 10.1007/3-540-45699-6_2.

[7] Paul Blain Levy. “Call-by-push-value”. PhD thesis. Queen Mary, University of Lon-
don, 2001, page 310. url: http://www.cs.bham.ac.uk/~pbl/papers/thesisqmwphd.pdf.

[8] Claudio Alberto Hermida. “Fibrations, Logical Predicates and Indeterminates”. PhD
thesis. University of Edinburgh, 1993. url: http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-

[9] Pieter J. W. Hofstra. Fibrations and Proofs. Lecture notes. Tutorial for FMCS 2008.
Halifax, 2008. url: mysite.science.uottawa.ca/phofstra/halifax.pdf.

[10] Bart Jacobs. “Comprehension Categories and the Semantics of Type Dependency”.
In: Theoretical Computer Science 107.2 (1993), pages 169–207. doi: 10.1016/0304-3975(93)90169-T.

[11] Bart Jacobs. “Semantics of weakening and contraction”. In: Annals of Pure and Ap-
plied Logic 69.1 (1994), pages 73–106. issn: 0168-0072. doi: 10.1016/0168-0072(94)90020-5.

[12] Bart Jacobs. Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics 141. North Holland, 1999. isbn: 9780444508539.

[13] Bart Jacobs. “Categorical Type Theory”. PhD thesis. University of Nijmegen, 1999.
url: http://www.cs.ru.nl/B.Jacobs/PAPERS/PhD.ps.

[14] Bart Jacobs. “Affine Monads and Side-Effect-Freeness”. In: Coalgebraic Methods in
Computer Science - 13th IFIP WG 1.3 International Workshop, CMCS 2016, Colo-
cated with ETAPS 2016, Eindhoven, The Netherlands, April 2-3, 2016, Revised Se-
lected Papers. Edited by Ichiro Hasuo. Volume 9608. Lecture Notes in Computer Sci-
ence. Springer, 2016, pages 53–72. isbn: 978-3-319-40369-4. doi: 10.1007/978-3-319-40370-0_5.

41

http://www.andrew.cmu.edu/course/80-413-713/
http://www.tac.mta.ca/tac/reprints/articles/22/tr22.pdf
http://research.microsoft.com/en-us/um/people/nick/BHM.ps
https://doi.org/10.1007/3-540-45699-6_2
http://www.cs.bham.ac.uk/~pbl/papers/thesisqmwphd.pdf
http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-277/ECS- LFCS-93-277.pdf
mysite.science.uottawa.ca/phofstra/halifax.pdf
https://doi.org/10.1016/0304-3975(93)90169-T
https://doi.org/10.1016/0168-0072(94)90020-5
http://www.cs.ru.nl/B.Jacobs/PAPERS/PhD.ps
https://doi.org/10.1007/978-3-319-40370-0_5


[15] Bart Jacobs. “Effectuses fromMonads”. In: Electronic Notes in Theoretical Computer
Science 325 (2016), pages 169–183. doi: 10.1016/j.entcs.2016.09.037.

[16] Bart Jacobs. “From probability monads to commutative effectuses”. In: Journal
of Logical and Algebraic Methods in Programming 94 (2018), pages 200–237. doi:
10.1016/j.jlamp.2016.11.006.

[17] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Vol-
ume 2. Oxford Logic Guides. Oxford University Press, 2002. isbn: 978-0-19-852496-0.

[18] Shin-ya Katsumata. “Relating computational effects by ⊤⊤-lifting”. In: Information
and Computation 222 (2013), pages 228–246. doi: 10.1016/j.ic.2012.10.014.

[19] Harald Lindner. “Affine parts of monads”. In: Archiv der Mathematik 33 (1979),
pages 437–443. doi: 10.1007/BF01222782.

[20] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in
Mathematics 5. Springer New York, 1971. isbn: 978-1-4757-4721-8. doi: 10.1007/978-1-4757-4721-8.

[21] Ernest G. Manes. Algebraic Theories. Volume 26. Graduate Texts in Mathematics.
Springer New York, 1976. doi: 10.1007/978-1-4612-9860-1.

[22] Rasmus Ejlers Møgelberg and Alex Simpson. “Relational Parametricity for Com-
putational Effects”. In: Logical Methods in Computer Science 5.3 (2009). doi:
10.2168/LMCS-5(3:7)2009.

[23] Eugenio Moggi. “Notions of Computation and Monads”. In: Information and Com-
putation 93.1 (1991), pages 55–92. doi: 10.1016/0890-5401(91)90052-4.

[24] Philip S. Mulry. “Notions of Monad Strength”. In: Festschrift for Dave Schmidt.
Edited by Anindya Banerjee et al. Volume 129. Electronic Proceedings in Theoretical
Computer Science. 2013, pages 67–83. doi: 10.4204/EPTCS.129.6.

[25] Robert A. G. Seely. “Locally cartesian closed categories and type theory”. In: Mathe-
matical Proceedings of the Cambridge Philosophical Society 95 (Jan. 1984), pages 33–
48. issn: 1469-8064. doi: 10.1017/S0305004100061284.

[26] Hendrik Tews. “Coalgebraic Methods for Object-Oriented Specification”. PhD thesis.
Technischen Universität Dresden, 2002. url: http://askra.de/PhD/main.pdf.

[27] Glynn Winskel and Mogens Nielsen. “Models for concurrency”. In: Semantic Mod-
elling. Edited by Samson Abramsky, Dov M. Gabbay, and Thomas Stephen Edward
Maibaum. Volume 4. Handbook of Logic in Computer Science. Oxford University
Press, 1995, pages 1–148. isbn: 978-0198537809.

42

https://doi.org/10.1016/j.entcs.2016.09.037
https://doi.org/10.1016/j.jlamp.2016.11.006
https://doi.org/10.1016/j.ic.2012.10.014
https://doi.org/10.1007/BF01222782
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4612-9860-1
https://doi.org/10.2168/LMCS-5(3:7)2009
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.4204/EPTCS.129.6
https://doi.org/10.1017/S0305004100061284
http://askra.de/PhD/main.pdf


A. Cheat Sheets

A.1. Cartesian Structure

Product

〈f, g〉 =def (f × g) ◦ δ (p1)

s =def π2 × π1 (p2)

δ =def 〈id, id〉 (p3)

(f1 × g1) ◦ (f2 × g2) = (f1 ◦ f2)× (g1 × g2) (p4)

〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 (p5)

(f × g) ◦ 〈h1, h2〉 = 〈f ◦ h1, g ◦ h2〉 (p6)

〈π1, π2〉 = id (p7)

πi ◦ (f1 × f2) = fi ◦ πi (p8)

πi ◦ 〈f1, f2〉 = fi (p9)

f ◦ π2 = π2 ◦ (id×f) (p10)

f ◦ π1 = π1 ◦ (f × id) (p11)

f × g = (f × id) ◦ (id×g)

= (id×g) ◦ (f × id) (p12)

(f ◦ g)× id = (f × id) ◦ (g × id) (p13)

(f × g) ◦ s = s ◦ (g × f) (p14)

s ◦ s = id (p15)

πi ◦ δ = id (p16)

(f × f) ◦ δ = δ ◦ f (p17)

Exponents

λf ◦ g = λ(f ◦ (g × id)) (e1)

λ ev = id (e2)

ev ◦(λf × id) = f (e3)

λ−1(f ◦ g) = (λ−1f) ◦ (g × id) (e4)

43



λλ−1f = f (e5)

λ−1λf = f (e6)

f = g ⇐⇒ λ−1f = λ−1g (e7)

f = g ⇐⇒ λf = λg (e8)

ev ◦(f × id) = λ−1(f) (e9)

Associativity

〈π1 ◦ π1, π2 × id〉 =: α (as1)

〈id×π1, π2 ◦ π2〉 =: α−1 (as2)

α−1 ◦ α = id (as3)

α ◦ α−1 = id (as4)

α ◦ s ◦ α = (id×s) ◦ α ◦ (s× id) (as5)

(f1 × (f2 × f3)) ◦ α = α ◦ ((f1 × f2)× f3) (as6)

α−1 ◦ (f1 × (f2 × f3)) = ((f1 × f2)× f3) ◦ α
−1 (as7)

A.2. Monadic Structure

Monad

µ ◦ µ = µ ◦ Tµ (m1)

µ ◦ Tη = id (m2)

µ ◦ η = id (m3)

η ◦ f = Tf ◦ η (m4)

Tf ◦ µ = Tµ ◦ T 2f (m5)

Tf ◦ µ = µ ◦ T 2f (m6)

(Left) Strength

lst ◦(id×η) = η (s1)

lst ◦(id×µ) = µ ◦ T lst ◦ lst (s2)

Tπ2 ◦ lst = π2 (s3)

lst ◦(f × Tg) = T (f × g) ◦ lst (s4)

Tα ◦ lst = lst ◦(id× lst) ◦ α (s5)

44



Algebras

fA ◦ η = id (al1)

fA ◦ µ = fA ◦ TfA (al2)

45


	1 On Categories, Functors and Natural Transformations
	1.1 Basic Definitions
	1.2 Properties of Morphisms, Objects, Functors, and Categories
	1.3 Constructions over Categories and Functors

	2 On Fibrations
	3 On Slice Categories
	3.1 Preliminaries on Slices
	3.2 Cartesian Structure
	3.2.1 Terminal Object
	3.2.2 Products
	3.2.3 Exponents


	4 On Monads, Kleisli Category and Eilenberg–Moore Category
	4.1 Monads
	4.2 Kleisli Categories
	4.3 Eilenberg–Moore Categories
	4.3.1 Terminal Object
	4.3.2 Products
	4.3.3 Exponent-like Structures


	Bibliography
	A Cheat Sheets
	A.1 Cartesian Structure
	A.2 Monadic Structure


