A Riemann-Hilbert approach to the lower tail of the KPZ equation - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2019

A Riemann-Hilbert approach to the lower tail of the KPZ equation

Abstract

Fredholm determinants associated to deformations of the Airy kernel are closely connected to the solution to the Kardar-Parisi-Zhang (KPZ) equation with narrow wedge initial data, and they also appear as largest particle distribution in models of positive-temperature free fermions. We show that logarithmic derivatives of the Fredholm determinants can be expressed in terms of a 2x2 Riemann-Hilbert problem, and we use this to derive asymptotics for the Fredholm determinants. As an application of our result, we derive precise lower tail asymptotics for the solution of the KPZ equation with narrow wedge initial data, refining recent results by Corwin and Ghosal.

Dates and versions

hal-02308822 , version 1 (08-10-2019)

Identifiers

Cite

Mattia Cafasso, Tom Claeys. A Riemann-Hilbert approach to the lower tail of the KPZ equation. 2019. ⟨hal-02308822⟩
25 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More