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Autonomous vehicles (AVs) allow new ways of regulating the traffic flow on road networks. Most of available results in this direction are based on microscopic approaches, where ODEs describe the evolution of regular cars and AVs. In this paper, we propose a multiscale approach, based on recently developed models for moving bottlenecks. Our main result is the proof of existence of solutions for time-varying bottleneck speed, which corresponds to open-loop controls with bounded variation.

Introduction

Autonomous Vehicles (briefly AVs) represent the most disruptive technology for traffic regulation [START_REF] Harper | Cost and benefit estimates of partiallyautomated vehicle collision avoidance technologies[END_REF][START_REF] Milakis | Policy and society related implications of automated driving: a review of literature and directions for future research[END_REF][START_REF] Wadud | Help or hindrance? the travel, energy and carbon impacts of highly automated vehicles[END_REF][START_REF] Wan | Optimal speed advisory for connected vehicles in arterial roads and the impact on mixed traffic[END_REF][START_REF] Wang | Comparing traffic state estimators for mixed human and automated traffic flows[END_REF]. The effect of AVs in terms of influencing bulk traffic has been studied in-silico [START_REF] Davis | Effect of adaptive cruise control systems on traffic flow[END_REF][START_REF] Guériau | How to assess the benefits of connected vehicles? a simulation framework for the design of cooperative traffic management strategies[END_REF][START_REF] Knorr | Reducing traffic jams via VANETs[END_REF][START_REF] Talebpour | Influence of connected and autonomous vehicles on traffic flow stability and throughput[END_REF][START_REF] Wang | Cooperative car-following control: Distributed algorithm and impact on moving jam features[END_REF], artificial environment [START_REF] Jang | Simulation to scaled city: Zero-shot policy transfer for traffic control via autonomous vehicles[END_REF] and also in experiments [START_REF] Stern | Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[END_REF]. In particular, the results of [START_REF] Stern | Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[END_REF] showed a potential decrease of up to 40% in fuel consumption by dampening of traffic waves. Despite such achievements, a complete macroscopic theory for control of bulk traffic via AVs is still missing. The need of a macroscopic theory is due to the curse of dimensionality preventing control design for microscopic models [START_REF] Delle Monache | Feedback Control Algorithms for the Dissipation of Traffic Waves with Autonomous Vehicles[END_REF].

Our approach to bypass current limitations is based on the idea of using macroscopic models for the bulk traffic, consisting of partial differential equations (PDEs), paired with microscopic ones for the AVs, consisting of ordinary differential equations (ODEs). The history of modeling traffic via partial differential equations started with the celebrated Lighthill-Whitham-Richards (briefly LWR) model for traffic flow on a road [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF]. The authors assumed that the average speed v depends only on local density, thus obtaining a scalar conservation law. More recently, the LWR model was paired to an ODE via a moving flux constraint producing a multiscale model, see [START_REF] Delle Monache | A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow[END_REF][START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Delle Monache | Stability estimates for scalar conservation laws with moving flux constraints[END_REF]. Moreover, other works used coupled ODE-PDE systems [START_REF] Borsche | Mixed systems: ODEs -balance laws[END_REF][START_REF] Delle Monache | A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow[END_REF][START_REF] Lattanzio | Moving bottlenecks in car traffic flow: a PDE-ODE coupled model[END_REF][START_REF] Lebacque | Introducing buses into first-order macroscopic traffic flow models[END_REF][START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF].

Here we extend the multiscale model of [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF] by assuming that the AV desired speed, described by a control u, is time-dependent, as in the case of regulation by a centralized controller. The resulting system is obtained by modifying the ODE for the AV, which is given by the minimum between the desired speed u and the average speed v of local downstream traffic. The proposed approach has already been investigated numerically in [START_REF] Piacentini | Traffic control via moving bottleneck of coordinated vehicles[END_REF], using Model Predictive Control and proving its effectiveness in reducing traffic nuisance.

We base our work on the many results available for the multiscale model of [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]. In particular, existence and well-posedness of solutions was investigated in [START_REF] Delle Monache | Stability estimates for scalar conservation laws with moving flux constraints[END_REF][START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF][START_REF] Liard | Well-posedness for scalar conservation laws with moving flux constraints[END_REF] and the numerical aspect in [START_REF] Chalons | A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem[END_REF][START_REF] Delle Monache | A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow[END_REF][START_REF] Delle Monache | A numerical scheme for moving bottlenecks in traffic flow[END_REF]. Moreover, the multiscale model was extended to second order in [START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF], replacing the LWR by Aw-Rascle-Zhang model.

The complete multiscale model is given by the system (2), consisting of a scalar conservation law, a controlled ODE and a moving flux constraint (plus initial conditions). To couple the equations, we need to specify the capacity reduction function F α for every AV desired speed. This gives rise to undercompressive shocks also depending on the desired speed u, see [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF]. The definition of solution needs to reflect this choice via a modified entropy condition, see point 3 of Definition 3.1. Our main result is the proof of existence of solutions for time-varying speed profile of the AV with bounded variation. The latter corresponds for a centralized controller to an open loop control u with bounded variation in time. In order to achieve the result, we construct approximate solutions via wave-front tracking approximations. In particular, we construct approximation grids allowing all left and right densities of undercompressive shocks for the discretized desired speed. As usual, the sequence of approximate solutions satisfy some compactness estimate, that allows to pass to the limit. In our case, we need to define a Glimm type functional accounting for the density total variation, a term for variation due to undercompressive shocks and the time-variation of the time-varying speed. We can prove that at each wave interaction such functional either decreases (by a quantity bounded away from zero) or remains constant, but in this case the number of waves does not increase. Moreover, a detailed analysis is necessary to prove the convergence of the AV speed. Once a limit of approximate solutions is obtained, one has to prove that it satisfies the various conditions in the definition of solution. For this we use various results from the above mentioned literature adapted to our case. We remark that these results can be extended to the case of a finite number of autonomous vehicles, provided their trajectories do not interact. This extension is straightforward since all the waves generated by the multiscale system propagate with finite speed.

The paper is organized as follows. Section 2 describes the coupled PDE-ODE model and introduces the basic notation. Section 3 deals with the Cauchy problem. More precisely, in Subsection 3.1 we describe the wave-front tracking algorithm, we construct the approximating grids, and we define the Glimm type functional; in Subsection 3.2 we study the changes in the Glimm type functional, due to wave interactions; finally in Subsection 3.3 we state and prove the main theorem. The paper ends with Appendix A, which contains various technical lemmas used in Subsection 3.3, and with Appendix B, which describes in details the solution to the Riemann problem.

Description of the control model

Consider a unidirectional road I, model by the real line R, where the traffic is described by the LWR model [START_REF] Lighthill | On kinematic waves. II. A theory of traffic flow on long crowded roads[END_REF][START_REF] Richards | Shock waves on the highway[END_REF] ∂

t ρ + ∂ x f (ρ) = 0, (1) 
where ρ = ρ(t, x) ∈ [0, R] denotes the macroscopic traffic density at time t ≥ 0 and at position x ∈ R, and f = f (ρ) is the flux, which depends only on ρ. The constant R denotes the maximum possible density of the road. As usual the flux f is given by ρv (ρ), where

v ∈ C 2 2 2 ([0, R]; [0, +∞))
is the average speed of cars. We assume that the flux satisfies the condition

(F) f : C 2 2 2 ([0, R]; [0, +∞)), f (0) = f (R) = 0, f strictly concave: -B ≤ f (ρ) ≤ -β < 0 for all ρ ∈ [0, R],
for some β, B > 0. Moreover, we assume v (ρ) < 0 for every ρ ∈ ]0, R[.

Note that, by (F), the speed v is a strictly decreasing function.

Assume that a vehicle, e.g. a police or autonomous vehicle (AV), whose position is described by the variable y = y(t), aims at controlling the behavior of traffic, selecting its maximal speed. Hence the evolution of such a vehicle is described by the ordinary differential equation

(ODE) ẏ(t) = ω(ρ(t, y(t)); u) := min{u(t), v(ρ(t, y(t) + ))}, where u = u(t) ∈ [0, V ], with V := max ρ∈[0,R] v(ρ)
, is a control function, selecting the desired speed of the vehicle. Indeed, the vehicle can move at its desired speed as long as the downstream traffic moves faster, otherwise it has to adapt. The notations ρ (t, x -) and ρ (t, x + ) stand respectively for the left and right trace, with respect to the variable x, of ρ at the point (t, x), i.e.

ρ(t, x -) := lim ξ→x - ρ(t, ξ) and ρ(t, x + ) := lim ξ→x + ρ(t, ξ),
whose existence is ensured provided ρ(t, •) has finite total variation. In the sequel, the notation is used also for the trace with respect to the time variable t.

Following the model proposed in [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Lebacque | Introducing buses into first-order macroscopic traffic flow models[END_REF], we consider the following system

∂ t ρ (t, x) + ∂ x f (ρ (t, x)) = 0, t > 0, x ∈ R, (2a) ẏ(t) = min{u(t), v(ρ(t, y(t) + ))}, t > 0, (2b) f (ρ (t, y(t))) -ẏ(t)ρ (t, y(t)) ≤ F α ( ẏ(t)) := max ρ∈[0,R] (αf (ρ/α) -ρ ẏ(t)) , t > 0, (2c) ρ(0, x) = ρ 0 (x), x ∈ R, (2d) 
y(0) = y 0 . (2e) 
Above, ρ 0 and y 0 are the initial traffic density and AV position, while the function F α in (2c), α ∈ ]0, 1[, represents the road capacity reduction due to the presence of the AV, acting as a moving bottleneck which imposes a unilateral flux constraint at the AV position. To determine the function F α , we consider reduced flux function

f α : [0, αR] -→ R + ρ -→ ρv(ρ/α) = αf (ρ/α), 0 F α (u) ρ * u ρu ρu ρu ρ f f α R ϕ u uρ Figure 1:
The definition of ρu , ρu , ρu and ρ * u .

which is a strictly concave function satisfying

f α (0) = f α (αR) = 0. For every u ∈ [0, V ],
define the point ρu as the unique solution to the equation f α (ρ) = u. Introduce also, for every u ∈ [0, V ], the function

ϕ u : [0, R] -→ R + ρ -→ f α (ρ u ) + u (ρ -ρu ) .
Hence, if ẏ(t) = u, the function F α in (2c) is defined by

F α : [0, V ] -→ R + u -→ ϕ u (0) = f α (ρ u ) -uρ u .
If ẏ(t) = v(ρ(t, y(t) + )), then the inequality (2c) is trivially satisfied since the left-hand side is zero. Finally, the points 0 ≤ ρu ≤ ρu ≤ ρu ≤ ρ * u ≤ R are uniquely defined by ρu = min I u , ρu = max I u ,

I u = {ρ ∈ [0, R] : f (ρ) = ϕ u (ρ)} , (3) 
and implicitly by

v(ρ * u ) = u, (4) 
see [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF] and Figure 1. It is straightforward to see that ρV = ρV = ρV = ρ * V = 0.

Lemma 2.1 Assume that the flux f satisfies (F). Let ρu ≤ ρu ≤ ρ * u be defined by (3) and (4). Then the maps ρ(u) : u → ρu and ρ(u) : u → ρu are strictly decreasing on [0, V ] and satisfy

-∞ < ρ (u) < 0 -∞ < ρ (u) < 0 ( 5 
)
for every u ∈ [0, V [. Moreover, the maps ρ(u) and ρ * (u) : u → ρ * u = v -1 (u) are also Lipschitz continuous functions. Finally we have

ρu < ρu < ρu α < ρu < ρ * u ( 6 
)
for every u ∈ [0, V [.

Proof. First note that f ρu α = u; thus differentiating this expression with respect to u we deduce that f ρu α ρ u α = 1 and so ρ u < 0 for every u ∈ [0, V ]. This proves that ρu is strictly decreasing with respect to u.

Observe that f α (ρ) < f (ρ) for every ρ ∈ ]0, αR] and that the function

H : [0, R] → R, defined by H(ρ) = f (ρ) -ϕ u (ρ), is strictly concave. By (3), H (ρ u ) = H (ρ u ) = 0. Moreover H (ρ u ) = f (ρ u ) -f α (ρ u ) > 0 for every u ∈ [0, V [. The concavity of H implies that ρu < ρu < ρu < ρ * u (7)
for every u ∈ [0, V [. Besides, since the map ρ → f (ρ)uρ is strictly concave for every fixed u ∈ [0, V ], with point of maximum at ρu /α, by (3) we also deduce that ρu < ρu /α < ρu . Therefore [START_REF] Davis | Effect of adaptive cruise control systems on traffic flow[END_REF] implies [START_REF] Chen | Divergence-measure fields and hyperbolic conservation laws[END_REF].

By (3), we have

f (ρ u ) -uρ u = f α (ρ u ) -uρ u and f (ρ u ) -uρ u = f α (ρ u ) -uρ u . (8) 
Differentiating equations (8) w.r.t. u, for every u ∈ [0, V [ we have

ρ (u) = ρu -ρu f (ρ u ) -u = ρu -ρu f (ρ u -θ(ρ u -ρu /α))(ρ u -ρu /α) ≥ 1 f (ρ u -θ(ρ u -ρu /α)) ≥ - 1 β , (9) ρ 
(u) = ρu -ρu f (ρ u ) -u = ρu -ρu f (ρ u -θ (ρ u -ρu /α))(ρ u -ρu /α) ≤ 1 f (ρ u -θ (ρ u -ρu /α)) ≤ - 1 B (10) 
for some θ, θ ∈ [0, 1]. Using ( 6), ( 10), (F), and the fact that u = f (ρ u /α), we deduce that (5) holds and that both ρu and ρu are strictly decreasing as functions of u ∈ [0, V [. Finally, by [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF], we deduce that

- 1 β ≤ ρ (u) < 0
for every u ∈ [0, V [, proving that the function ρ(u) is Lipschitz continuous. By (F), v is a continuously differentiable function and v (ρ) < 0 for every ρ ∈ ]0, R[. Using the Inverse Function Theorem, we deduce that v -1 is a continuously differentiable function and ρ * (u) = v -1 (u). This concludes the proof. 2

Lemma 2.2 Let us consider the sequence ω n , defined by

ω 0 = 0, ω n+1 = ρ-1 (ρ (ω n )) ∀n ∈ N. ( 11 
)
Then ω n is a strictly increasing sequence such that

lim n→+∞ ω n = V.
Proof. By Lemma 2.1, the functions

ρ : [0, V ] → [0, ρ(0)] , ρ : [0, V ] → [0, ρ(0)] ,
are strictly decreasing and so invertible. This implies that the sequence ω n , defined in [START_REF] Delle Monache | Stability estimates for scalar conservation laws with moving flux constraints[END_REF], is well defined and ω n ∈ [0, V ] for every n ∈ N. Note also that (5) in Lemma 2.1 implies that the inverse functions of ρ and ρ are strictly decreasing functions.

First we claim that ω n < V for every n ∈ N. We proceed by induction on n. When n = 0, clearly ω 0 = 0 < V . Assume now that ω n-1 < V and so ρ (ω n-1 ) > 0 = ρ (V ). Hence ρ-1 (ρ (ω n-1 )) < V , i.e. ω n < V , proving the claim.

We prove now that ω n is a strictly increasing sequence. Fix n ∈ N. Since ω n < V , we deduce, by [START_REF] Chen | Divergence-measure fields and hyperbolic conservation laws[END_REF], that ρ (ω n ) < ρ (ω n ) and so ρ-1 (ρ (ω n )) > ω n , i.e. ω n+1 > ω n .

Since ω n is an increasing sequence, then it has a limit L. Clearly L ∈ [0, V ]. By [START_REF] Delle Monache | Stability estimates for scalar conservation laws with moving flux constraints[END_REF], we deduce that

L = ρ-1 (ρ (L)) ⇐⇒ ρ (L) = ρ (L) ⇐⇒ L = V, concluding the proof. 2 Remark 1 If u 1 < u 2 , then either ρ(u 2 ) < ρ(u 1 ) < ρ(u 2 ) < ρ(u 1 ) or ρ(u 2 ) ≤ ρ(u 2 ) < ρ(u 1 ) < ρ(u 1 ).

The Cauchy problem

Let us consider an initial density ρ 0 ∈ L 1 1 1 (R; [0, R]) with finite total variation, an initial position of the AV y 0 ∈ R, and an open-loop control u ∈ L 1 1 1 (R + ; [0, V ]) with finite total variation. Following [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Chalons | General constrained conservation laws. Application to pedestrian flow modeling[END_REF][START_REF] Delle Monache | Stability estimates for scalar conservation laws with moving flux constraints[END_REF], we define solutions to (2) as follows.

Definition 3.1 The couple (ρ, y) provides a solution to (2) if the following conditions hold.

1. ρ ∈ C 0 0 0 R + ; L 1 1 1 (R; [0, R]) and TV (ρ(t)) < +∞ for all t ∈ R + ; 2. y ∈ W 1,1 loc (R + ; R); 3. For every κ ∈ R and for all ϕ ∈ C 1 1 1 c (R 2 ; R + ) it holds R + R (|ρ -κ|∂ t ϕ + sgn(ρ -κ)(f (ρ) -f (κ))∂ x ϕ) dx dt + R |ρ 0 -κ|ϕ(0, x) dx + 2 R + (f (κ) -ẏ(t)κ -min{f (κ) -ẏ(t)κ, F α ( ẏ(t))}) ϕ(t, y(t)) dt ≥ 0 ; (12) 4. For a.e. t > 0, f (ρ (t, y(t) ± )) -ẏ(t)ρ (t, y(t) ± ) ≤ F α ( ẏ(t)); 5. For a.e. t > 0, ẏ(t) = min {u(t), v (ρ (t, y(t) + ))}.
Remark 2 We observe that the definition introduced in [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF], requiring only the entropy admissibility on R + × ] -∞, y(t)[ and R + × ]y(t), +∞[, is not sufficiently strong to single out a unique non-classical solution to Riemann problems. For example, the undercompressive shock between ρ * u and 0 traveling with speed u would be an admissible solution in the sense of [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]Definition 4.1] for the initial datum ρ 0 (x) = ρu . Instead, condition [START_REF] Delle Monache | Feedback Control Algorithms for the Dissipation of Traffic Waves with Autonomous Vehicles[END_REF], as well as its equivalent formulation used in [START_REF] Delle Monache | Stability estimates for scalar conservation laws with moving flux constraints[END_REF], ensures that, if an undercompressive shock is present at x = y(t), it satisfies point 4 in Definition 3.1 as an equality.

Wave-front tracking approximation

Since solutions to Riemann problems are known analytically (see details in Appendix B), we are able to construct piecewise constant approximations of solutions to (2) via the wave-front tracking algorithm, see [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF][START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF] for the general theory. Definition 3.2 Given ε > 0, we say that the maps ρ ε , y ε , and u ε provide an ε-approximate wave-front tracking solution to (2) if the following conditions hold.

1. ρ ε ∈ C 0 0 0 R + ; L 1 1 1 loc (R; [0, R]
) is piecewise constant, with discontinuities occurring along finitely many straight lines in the (t, x)-plane. Moreover jumps of ρ ε can be shocks, rarefactions, or undercompressive shocks, and they are indexed by J (t) = S(t) ∪ R(t) ∪ U(t). For simplicity, the jumps of ρ ε are called ρ-waves. Moreover we call classical waves the ρ-waves described by the jump sets S and R.

2. u ε ∈ L 1 1 1 (R + ; R + ) is a piecewise constant function with a finite number of discontinuities. 3. y ε ∈ W 1,1 loc (R + ; R) is a piecewise affine function.
We refer to it as the y-wave.

4. Along each shock x(t) = x α (t), α ∈ S(t), we have, for a.e. t > 0,

ρ ε (t, x α (t) -) < ρ ε (t, x α (t) + ).
Moreover, for a.e. t > 0,

ẋα (t) - f (ρ ε (t, x α (t) -)) -f (ρ ε (t, x α (t) + )) ρ ε (t, x α (t) -) -ρ ε (t, x α (t) + ) ≤ ε.
5. Along each rarefaction front x(t) = x α (t), α ∈ R(t), we have, for a.e. t > 0,

ρ ε (t, x α (t) + ) < ρ ε (t, x α (t) -) ≤ ρ ε (t, x α (t) + ) + ε.
Moreover, for a.e. t > 0,

ẋα (t) ∈ f (ρ ε (t, x α (t) -)), f (ρ ε (t, x α (t) + )) .
6. Along an undercompressive shock we have, for a.e. t > 0, x α (t) = y ε (t), α ∈ U, and

ρ ε (t, y ε (t) -) = ρuε(t) > ρuε(t) = ρ ε (t, y ε (t) + ).
Moreover, for a.e. t > 0, ẋα (t) = ẏε (t) = u ε (t).

The following estimates hold

ρ ε (0, •) -ρ 0 L 1 (R) < ε, u ε -u L 1 (0,+∞) < ε. 8. For a.e. t > 0 ẏε (t) = min {u ε (t), v (ρ ε (t, y ε (t) + ))} .
Remark 3 With relation to Definition 3.2, we recall here the various types of waves. With the terms ρ-wave and y-wave we denote respectively a discontinuity for ρ ε and the curve t → (t, y ε (t)). Shocks, rarefactions and undercompressive shocks are all ρ-waves. Moreover an undercompressive shock is also a y-wave. Finally, by classical wave we mean a ρ-wave, which is not a y-wave.

We describe here a possible algorithm for constructing a sequence of approximate wavefront tracking solutions. First of all, given ν ∈ N, let us define the following grids on the interval [0, R] for density and on [0, V ] for velocity.

Step 1. Let u ν 0 = 0 and set recursively

u ν j > u ν j-1 such that ρu ν j = ρu ν j-1 for j ≥ 1.
and stop the procedure at j = J ν such that Vu ν Jν +1 < 2 -ν , see Figure 2a. By Lemma 2.2, the iterative procedure is finite. We set ρ ν j = ρu ν Jν -j for j = 0, . . . , J ν .

Step 2. Divide the interval [0, u ν 1 ] into 2 ν parts, define the grid points

u ν k,0 := ku ν 1 2 -ν , k = 0, . . . , 2 ν -1, the corresponding ρ ν Jν +k = ρu ν k,0 ∈ ]ρ 0 , ρ0 [ and consider the recursive sequence u ν k,i ∈ u ν i , u ν i+1 such that ρu ν k,i = ρu ν k,i-1 for i = 1, . . . , J ν .
Step 3. To complete the mesh, we divide the remaining sub-interval [ρ 0 , R] in 2 ν parts, defining

ρ ν := ρ0 + (R -ρ0 )2 -ν , = 1, . . . , 2 ν .
Step 4. Relabeling the points defined above, we obtain the grids

M ν := {ρ ν i } Mν i=0 ⊂ [0, R] (with ρ ν 0 = 0 and ρ ν Mν = R) and U ν := {u ν i } Nν i=0 ⊂ [0, V ] (with u ν 0 = 0 and u ν Nν = V )
, where the points are labeled in increasing order. We also set 2b. Given an initial traffic density ρ 0 ∈ L 1 1 1 (R; [0, R]) with finite total variation, we consider a sequence of piece-wise constant functions ρ 0,ν : R → M ν such that ρ 0,ν has a finite number of discontinuities and

δ ν ρ := min i=1,...,Mν ρ ν i -ρ ν i-1 ≥ c ν 2 -ν , δ ν u := min i=1,...,Mν u ν i -u ν i-1 ≥ c ν 2 -ν , ε ν ρ := max i=1,...,Mν ρ ν i -ρ ν i-1 ≤ C ν 2 -ν , ε ν u := max i=1,...,Mν u ν i -u ν i-1 ≤ C ν 2 -ν , for some c ν , C ν > 0 depending on α, f and J ν . Also, let f ν : [0, R] → [0, +∞[ be the piecewise linear function such that f ν (ρ ν i ) = f (ρ ν i ) for each ρ ν i ∈ M ν , see Figure
lim ν→+∞ ρ 0,ν -ρ 0 L 1 1 1 (R) = 0 and TV(ρ 0,ν ) ≤ TV(ρ 0 ) for all ν ∈ N. (13) 
Besides, given u ∈ L 1 1 1 (R + ; [0, V ]) with finite total variation, we fix a sequence of piecewise constant functions u ν : R + → U ν , such that u ν has a finite number of discontinuities and

lim ν→+∞ u ν -u L 1 1 1 (R + ) = 0 and TV(u ν ) ≤ TV(u) for all ν ∈ N. ( 14 
) • • • • • • • • • • • • • • • • • • • • • • • 0 u ν 1 u ν 2 V u ρ ρ0 ρ0 ρ ν Jν -1 ρ ν Jν -2 ρ(•) ρ(•)
Step 1

Step 2

(a) Construction of the grids M ν and U ν . For every ν ∈ N \ {0}, we apply the following procedure. At time t = 0, we solve all the (classical) Riemann problems determined by a discontinuity of ρ 0,ν and the constrained Riemann problem at the AV initial position y 0 (see Appendix B), replacing the function f by f ν . In this way, for small times t > 0 we obtain a piecewise constant function ρ ν = ρ ν (t, x) with values in M ν and whose jump discontinuities satisfy the Rankine-Hugoniot condition

0 ρ f R αR ρ0 ρ0 ρ ν j (b) Construction of f ν .
ẋα (t) = f ν (ρ ν (t, x α (t) -)) -f ν (ρ ν (t, x α (t) + )) ρ ν (t, x α (t) -) -ρ ν (t, x α (t) + ) = f (ρ ν (t, x α (t) -)) -f (ρ ν (t, x α (t) + )) ρ ν (t, x α (t) -) -ρ ν (t, x α (t) + ) ,
thus providing a weak solution of (2a). In particular, every rarefaction wave is approximated by a rarefaction fan, formed by rarefaction shocks of strength less than ε ν ρ . We repeat the previous construction at every time t at which the following possibilities occur:

1. two classical waves (shock or rarefaction jumps) of ρ ν interact together; 2. a classical discontinuity of ρ ν interacts with y ν ;

3. u ν ( t-) = u ν ( t+ ).
In this way we construct a piecewise constant function ρ ν and a piecewise linear function y ν .

Remark 4 By slightly modifying the wave speeds, we may assume that, at every positive time t, at most one of the previous interactions happens.

Remark 5 As usual, since rarefaction waves are generated only at time t = 0 or along the AV trajectory, we need to split rarefaction waves into rarefaction fans just at time t = 0 and possibly at the discontinuity points for u ν .

Given a wave-front tracking approximate solution (ρ ε , y ε , u ε ) to (2), we define the Glimm type functional

Υ(t) = Υ(ρ ε (t, •), u ε ) := TV (ρ ε (t, •)) + 2R + γ(t) + 6 β TV (u ε (•); [t, +∞[) , ( 15 
)
where γ is given by

γ(t) := -2 ρuε(t) -ρuε(t) if ρ ε (t, y ε (t) -) = ρuε(t) , ρ ε (t, y ε (t) + ) = ρuε(t) , 0 otherwise.
It is clear that Υ is well defined for a.e. t ≥ 0 and it changes only at discontinuity points of ūε or at interaction times. Moreover, we observe that Υ(t) ≥ TV (ρ ε (t, •)) ≥ 0 and, with the above choices ( 13), ( 14), Υ(0) ≤ TV(ρ 0 ) + 2R + 6 β TV(u). The functional Υ will serve to provide an uniform estimate on the total variation of the approximate solutions ρ ν constructed above.

Interaction estimates

This subsection we will show the following property of the functional Υ. Proposition 3.1 Let {ρ ν , y ν , u ν } ν∈N be the sequence of approximate solutions constructed in Section 3.1. For any ν ∈ N, at any wave interaction or jump in u ν the map t → Υ(t) = Υ(ρ ν (t, •), u ν ) either decreases by at least min δ ν ρ , 6δ ν u /β , or it remains constant and the number of waves does not increases.

Proof. We will detail the different types of interactions separately. To this end, we introduce the following notations:

• F u -wave: a wave denoting the AV trajectory with maximum speed u without discontinuity in ρ. The notation is to indicate a fictitious wave.

• N F u -wave: a wave denoting the AV trajectory with maximum speed u and discontinuity in ρ. The notation is to indicate a non fictitious wave. We can distinguish two cases:

-U C u -wave: a wave (ρ l , ρ r ) denoting the AV trajectory with maximum speed u verifying ρ l = ρu and ρ r = ρu . The notation indicates an undercompressive shock.

-C u -wave: a wave (ρ l , ρ r ) denoting the AV trajectory with speed u verifying ρ l < ρ r . The notation indicates a classical shock.

Let us consider an interaction occurring at time t = t away from the AV trajectory. In this case, either two shocks collide, or a shock and a rarefaction front interact. In both cases the number of waves diminishes. Moreover, TV(ρ ν ( t+ , •)) ≤ TV(ρ ν ( t-, •)), while the other terms in [START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF] remain constant and we conclude that Υ( t+ ) ≤ Υ( t-).

We then focus on events involving the AV trajectory. Interactions between classical waves and y ν have been studied in [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]. Since the functional used there is equivalent to the one defined in [START_REF] Holden | Front tracking for hyperbolic conservation laws[END_REF] when the control u ν does not jump, we can conclude as in [9, Lemma 2] that at any interactions of this type either Υ decreases of at least δ ν ρ , or remains constant and the number of waves does not increases.

Therefore, we focus here on the situations in which a jump in u occurs.

Lemma 3.1 Assume that, at time t = t, the control jumps from u -= u( t-) to u + = u( t+ ) and that we have a F u --wave at t = t-. We have the following two cases.

1. At t+ we have a F u + -wave and no wave is produced (see Figure 3a).

t = t ω(ρ; u -) ω(ρ; u + ) (a) ρ / ∈ [ρ u -, ρu -] ∪ [ρ u + , ρu + ] t = t ω(ρ; u -) u + ρ ρ ρu + ρu + (b) ρ ∈ [ρ u + , ρu + ] \ [ρ u -, ρu -]
Figure 3: Jump from u -to u + at t = t with a F u --wave at t = t-.

2. At t+ we have a U C u + -wave and the number of waves increases (see Figure 3b).

In both cases, we have the estimate

∆Υ( t) = - 6 β u + -u -≤ - 6 β δ ν u < 0.
Proof. Before time t, we have a F u --wave and we denote the density by ρ. Thus, the speed of the AV is w(ρ; u -) and ρ ∈ ]ρ u -, ρu -[. At t = t, a jump in the control from u -to u + occurs and two cases may happen:

1. ρ ∈ ]ρ u + , ρu + [: no new wave is produced (see Figure 3a). Thus, we have:

∆TV(ρ( t, •)) = 0, ∆γ( t) = 0, ∆TV(u; [ t, +∞[) = -u + -u -.
We conclude that ∆Υ( t) = -6

β |u + -u -| ≤ -6 β δ ν u < 0. 2. ρ ∈ ]ρ u + , ρu + [: a U C u + -
wave arises together with two shocks (ρ, ρu + ) and (ρ u + , ρ) (see Figure 3b). Thus, we have:

∆TV(ρ( t, •)) = |ρ -ρu + | + |ρ u + -ρu + | + |ρ u + -ρ| = 2 |ρ u + -ρu + | , ∆γ( t) = -2 |ρ u + -ρu + | , ∆TV(u; [ t, ∞)) = -u + -u -.
We conclude that ∆Υ( t) = -6

β |u + -u -| ≤ -6 β δ ν u < 0. This concludes the proof. 2 
Lemma 3.2 Assume that, at time t = t, the control jumps from u -= u ( t-) to u + = u ( t+ ) and that we have a C u --wave (ρ l , ρ r ) at t = t-. Then, at t = t+ , we have a F u + -wave and no wave is produced (see Figure 4). Moreover

∆Υ( t) = - 6 β u + -u -≤ - 6 β δ ν u < 0. t = t u - u + ρu - ρu - Figure 4: Jump from u -to u + (u + < u -) at t = t with a C u --wave at t = t-: ρ l ≤ ρu -and ρ r ≥ ρu -.
Proof. Since (ρ l , ρ r ) is a C u --wave, it holds ρ l ≤ ρu -and ρ r ≥ ρu -. Therefore, by Lemma 2.1, we have ρ l ≤ ρu + if u + < u -and ρ r ≥ ρu + if u + > u -. In both cases the classical shock (ρ l , ρ r ) satisfies the constraint (2c) at the position y ν ( t) of the AV. Thus:

∆TV(ρ( t, •)) = 0, ∆γ( t) = 0, ∆TV(u; [ t, +∞[) = -u + -u -. Therefore ∆Υ( t) = - 6 β u + -u -≤ - 6 β δ ν u < 0, concluding the proof. 2 
Lemma 3.3 Assume that, at time t = t, the control jumps from u -to u + and that we have a U C u --wave at t = t-. The following two cases may happen.

1. The undercompressive shock is canceled. Then a rarefaction fan and a F u + -wave arise (see Figure 5).

2. At time t = t+ we have a U C u + -wave (see Figure 6). Then, the number of waves increases, since a rarefaction fan and a shock wave are produced.

In both cases we have ∆Υ( t) ≤ -δ ν ρ .

Proof. At t = t-, we have a U C u --wave (ρ u -, ρu -) and the speed of the AV is u -. At t = t, a jump from u -to u + occurs and two cases may happen.

1. The undercompressive shock disappears and so the Riemann problem at t = t is solved by a rarefaction fan. Hence we have which gives

∆TV(ρ( t, •)) = 0, ∆γ( t) = 2 (ρ u --ρu -) , ∆TV(u; [ t, +∞[) = -u + -u -, t = t ρu - u - ω(ρ u -; u + ) ρu - (a) u -< u + t = t ρu - u - u + ρu - (b) u -> u +
∆Υ( t) = 2 (ρ u --ρu -) - 6 β u + -u -. (16) 
We distinguish two cases.

(a) u -< u + and ρu + ≤ ρu -(see Figure 5a). In this situation we have f (ρ u -) ≤ u + and ρu + ≤ ρu + , ρu -< ρu -. By Taylor formula and (F), there exists

ξ ∈ ]ρ u -, ρu -[ such that u + -u -≥ f (ρ u -) - f (ρ u -) -f (ρ u -) ρu --ρu - = - f (ξ) 2 (ρ u --ρu -) (17) 
≥ β 2 (ρ u --ρu -).
From ( 16) and ( 17) we deduce

∆Υ( t) ≤ -(ρ u --ρu -) ≤ -δ ν ρ .
(b) u + < u -and ρu -≤ ρu + (see Figure 5b). In this situation we have f (ρ u -) ≥ u + and ρu -≤ ρu-, ρu + < ρu + . If u -= V (and thus ρu -= ρu-), we have

∆Υ( t) ≤ - 6 β u + -u -≤ - 6 β δ ν u .
Otherwise, by Taylor formula and (F), there exists

ξ ∈ ]ρ u -, ρu -[ such that u --u + ≥ f (ρ u -) -f (ρ u -) ρu --ρu - -f (ρ u -) = - f (ξ) 2 (ρ u --ρu -) (18) ≥ β 2 (ρ u --ρu -).
From ( 16) and [START_REF] Lattanzio | Moving bottlenecks in car traffic flow: a PDE-ODE coupled model[END_REF],

∆Υ( t) ≤ -(ρ u --ρu -) ≤ -δ ν ρ . t = t ρu - ρu + u - u + ρu - ρu + (a) u -< u + t = t ρu - ρu + u - u + ρu - ρu + (b) u -> u + Figure 6:
Jump in u at t = t with a U C u --wave at t = tand a U C u + -wave at t = t+ .

2. A new undercompressive shock arises at t = t+ . Again, we distinguish two cases.

(a) If u -< u + and ρu + > ρu -, then we have ρu + < ρu -< ρu + < ρu -(see Remark 1).

In this case, a U C u + -wave is created together with a rarefaction fan (ρ u -, ρu + ) and a shock wave (ρ u + , ρu -) (see Figure 6a). Thus, we have

∆TV(ρ( t, •)) = 2 (ρ u --ρu + ) , ∆γ( t) = -2 (ρ u + -ρu + ) + 2 (ρ u --ρu -) , ∆TV(u, [ t, +∞[) = -u + -u -,
and we conclude that

∆Υ( t) = 2 (ρ u--ρu + ) - 6 β u + -u -. (19) 
Moreover, by Taylor's theorem and (F),

u + -u -≥ f (ρ u + ) -f (ρ u -) ρu + -ρu - - f (ρ u -) -f (ρ u -) ρu --ρu - = f (ξ) ξ -ρu - - f (ξ) -f (ρ u -) (ξ -ρu -) 2 (ρ u + -ρu -)
for some ξ ∈ ]ρ u + , ρu -[. Combining Taylor's theorem with (F), we conclude that there exist ξ ∈ ]ξ, ρu -[ such that

u + -u -≥ - f ( ξ) 2 (ρ u --ρu + ) ≥ β 2 (ρ u --ρu + ). ( 20 
)
From ( 19) and [START_REF] Lefloch | Hyperbolic systems of conservation laws[END_REF],

∆Υ( t) ≤ -(ρ u--ρu + ) ≤ -δ ν ρ .
(b) If u + < u -and ρu -> ρu + , then we have ρu -< ρu + < ρu -< ρu + (see Remark 1). In this case, a U C u + -wave is created together with a shock wave (ρ u -, ρu + ) and a rarefaction fan (ρ u + , ρu -) (see Figure 6b). Thus, we have

∆TV(ρ( t, •)) = 2 (ρ u + -ρu -) ∆γ( t) = -2 (ρ u + -ρu + ) + 2 (ρ u --ρu -) , ∆TV(u; [ t, +∞[) = -u + -u -,
and we conclude that

∆Υ( t) = 2 (ρ u + -ρu -) - 6 β u + -u -. (21) 
Moreover, by Taylor's theorem and (F),

u --u + ≥ f (ρ u -) -f (ρ u + ) ρu --ρu + - f (ρ u + ) -f (ρ u + ) ρu + -ρu + = f (ξ) ξ -ρu + - f (ξ) -f (ρ u + ) (ξ -ρu + ) 2 (ρ u --ρu + )
for some ξ ∈ ]ρ u -, ρu + [. Combining again Taylor's theorem with (F), we conclude that there exists ξ ∈ ]ρ u -, ξ[ such that

u --u + ≥ - f ( ξ) 2 (ρ u + -ρu -) ≥ β 2 (ρ u + -ρu -) . (22) 
From ( 21) and ( 22) we obtain

∆Υ( t) ≤ -(ρ u + -ρu -) ≤ -δ ν ρ .
The proof is so finished. 2

This concludes the proof of Proposition 3.1. 2

Proposition 3.1 ensures that the number of wave fronts in ρ ν is finite and the wave-front tracking procedure can be prolonged for every positive time. Moreover, the total variation of ρ ν is uniformly bounded in time: Corollary 3.1 Let {ρ ν , y ν , u ν } ν∈N be the sequence of approximate solutions constructed in Section 3.1. Then for any ν ∈ N, t > 0, it holds

TV (ρ ν (t, •)) ≤ Υ(t) ≤ Υ(0) ≤ TV(ρ 0 ) + 2R + TV(u).

Existence of a solution

The following is the main result of the paper. Theorem 3.1 Let the initial conditions ρ 0 ∈ L 1 1 1 (R; [0, R]) with finite total variation, y 0 ∈ R, and the open-loop control u ∈ L 1 1 1 (R + ; [0, V ]) with finite total variation. There exists a solution (ρ, y) to (2) in the sense of Definition 3.1.

First, we prove that a limit of the sequence of approximate solutions {ρ ν , y ν , u ν } ν∈N to (2) constructed in Section 3.1 exists. Lemma 3.4 Let {ρ ν , y ν , u ν } ν∈N be the sequence of approximate solutions to (2) constructed in Section 3.1. Then, up to a subsequence, we have

ρ ν → ρ, in L 1 1 1 loc (R + × R; [0, R]), (23a) 
y ν → y, in L ∞ ∞ ∞ loc (R + ; R), ( 23b 
) ẏν → ẏ, in L 1 1 1 loc (R + ; R), (23c) 
for some ρ ∈ C 0 0 0 R + ; L 1 1 1 (R; [0, R]) with TV (ρ(t)) < +∞ for a.e. t ∈ R + and y ∈ W 1,1 1,1 1,1 loc (R + ; R), which is a Lipschitz continuous function with Lipschitz constant V .

Proof. Fix T > 0. By Corollary 3.1, we know that TV(ρ ν (t, •)) is uniformly bounded for a.e. t ∈ [0, T ]. This, together with the finite wave speed propagation, implies that

R |ρ ν (t, x) -ρ ν (s, x)| dx ≤ L |t -s| for all t, s ∈ [0, T ],
for some L depending on f and on the total variation bound, but not on ν. Helly's Theorem, see [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF]Theorem 2.4], implies the existence of ρ ∈ C 0 0 0 [0, T ]; L 1 1 1 (R; [0, R]) such that TV (ρ(t)) < +∞ for a.e. t ∈ [0, T ] and a subsequence of {ρ ν } ν , which for simplicity we denote again by {ρ ν } ν . This implies that (23a) holds. By construction (see point 8 of Definition 3.2), we deduce that

0 ≤ ẏν (t) ≤ V (24) 
for a.e. t ∈ [0, T ] and ν ∈ N \ {0}. Hence Ascoli Theorem [START_REF] Rudin | Principles of mathematical analysis[END_REF]Theorem 7.25] implies that, there exists a function y ∈ C 0 0 0 ([0, T ]; R) and a subsequence of {y ν } ν , which for simplicity we denote again by {y ν } ν , such that y ν converges to y uniformly in C 0 0 0 ([0, T ]; R). By the arbitrariness of T , the function y can be defined on R + and (23b) holds. Moreover y is a Lipschitz continuous function with V as a Lipschitz constant.

To prove (23c), we aim to estimate the total variation of ẏν on [0, T ]. Since [START_REF] Milakis | Policy and society related implications of automated driving: a review of literature and directions for future research[END_REF] holds, then it is sufficient to estimate the positive variation of ẏν , denoted with the symbol TV + . Observe that ẏν can jump only at interactions with waves coming from the right (see the interactions' estimates in [9, Section 4.2]) or at jumps in the control u ν . In particular, ẏν is non-decreasing at interactions with rarefaction fronts, which can be originated at t = 0, or at upward jumps in u ν (see Figure 5a). We have the following two possibilities. I. A fan of rarefaction fronts interacts with the AV at most once. If y ν interacts over the time interval [t 1 , t 2 ] with rarefaction fronts, all originated from the point (0, x 0 ), and u ν is constant in [t 1 , t 2 ], then there exists a constant C > 0 such that

TV + ( ẏν ; [t 1 , t 2 ]) ≤ |v(ρ ν (t 1 , y ν (t 1 ) -)) -v(ρ ν (t 2 , y ν (t 2 ) + ))| ≤ C |ρ 0 (x 0-) -ρ 0 (x 0+ )| . (25) 
If y ν interacts over [t 1 , t 2 ] with rarefaction fronts, all originated from ( t, y ν ( t)) with t > 0, and u ν is constant over [t 1 , t 2 ] (such rarefaction wave created at t > 0 is described in Lemma 3.3; see also Figure 5 and Figure 6), then either a F uν ( t+ ) -wave arises (see Figure 5) or a U C uν ( t+ ) -wave arises (see Figure 6). In the former case, the rarefaction wave connects ρuν( t-) to ρuν( t-) and so, using ( 17) and ( 18), there exists a positive constant C > 0 such that

TV + ( ẏν ; [t 1 , t 2 ]) ≤ v ρuν( t-) -v ρuν( t-) ≤ C |u ν ( t+ ) -u ν ( t-)| . (26) 
In the latter case, when a U C uν ( t+ ) -wave arises (see Figure 6), the rarefaction wave connects either ρuν( t-) to ρuν( t+ ) or ρuν( t-) to ρuν( t+ ) . Using ( 20) and ( 22), we deduce that there exists a constant C > 0 such that

TV + ( ẏν ; [t 1 , t 2 ]) ≤ |v(ρ ν (t 1 , y ν (t 1 ))) -v(ρ ν (t 2 , y ν (t 2 )))| ≤ C |u ν ( t+ ) -u ν ( t-)| . (27) 
II. The AV interacts with a fan of rarefaction shocks (ρ l , ρ r ) modifying n ν times its speed. Define, for every i ∈ {1, • • • , n ν }, the times t 2i-1 and t 2i , respectively the

x t x 0 y 0 t 1 t 2 (t uν 1 , y ν (t uν 1 )) • (t uν 2 , y ν (t uν )) • t 4 t 3 ρ l ρ r Figure 7:
The AV interacts with a fan of rarefaction shocks (ρ l , ρ r ) modifying its speed over the time intervals [t 1 , t 2 ] and [t 3 , t 4 ]. In this situation n ν = 2 and, for every i ∈ {1, 2},

u ν (t nν i -) = u ν (t nν i + ).
times at which the AV enters from the left and exits from the right the rarefaction fan. Moreover, for every i ∈ {1, • • • , n ν }, define by t uν 2i-1 and t uν 2i the point of discontinuity for u ν in such a way

t 0 < t 1 < t 2 < t uν 1 < t uν 2 < • • • < t 2nν -3 < t 2nν -2 < t uν 2nν -3 < t uν 2nν -2 < t 2nν -1 < t 2nν
, where t 0 is the time at which the rarefaction fan is originated. For simplicity we denote with ρ l and ρ r respectively the left and the right states of the rarefaction fan; see Figure 7. Note that v (ρ l ) < v (ρ r ).

Since, ẏν can increase only at interactions with waves coming from the right or at jumps in u ν , we have

TV + ( ẏν ; [t 1 , t 2nν ]) ≤ nν i=1 |v (ρ l ) -v (ρ r )| + 2nν -2 i=1 |u ν (t uν i -) -u ν (t uν i + )| = n ν [v(ρ r ) -v(ρ l )] + 2nν -2 i=1 |u ν (t uν i -) -u ν (t uν i + )|.
The speed of AV is modified in the time interval

[t 2i-1 , t 2i ] for every i ∈ {1, • • • , n ν }; in particular, we deduce that v(ρ l ) ≤ v(ρ r ) ≤ u ν (t uν 2i-1 -) for every i ∈ {1, • • • , n ν -1}. Moreover, since the speed of AV is constant over the time interval t uν 2i-1 , t uν 2i for every i ∈ {1, • • • , n ν -1}, we have u ν (t uν 2i-1 + ) ≤ v(ρ l ) ≤ v(ρ r ). Therefore (n ν -1) [v(ρ r ) -v(ρ l )] ≤ nν -1 i=1 u ν (t uν 2i-1 -) -u ν (t uν 2i-1 + ) ,
and so

TV + ( ẏν ; [t 1 , t 2nν ]) ≤ [v(ρ r ) -v(ρ l )] + 2 uν -1 i=1 u ν (t uν 2i-1 -) -u ν (t nν 2i-1 + ) . (28) 
We have

TV ( ẏν ; [0, T ]) ≤ 2TV + ( ẏν ; [0, T ]) + ẏν ∞ , ≤ 2 Nν i=0 TV + ( ẏν ; ]t uν i , t uν i+1 [) + 2 Nν i=1 |u ν (t uν i + ) -u ν (t uν i -)| + ẏν ∞ . (29) 
Above, (t uν i ) i=1,••• ,Nν are the N ν discontinuous points of u ν such that, for every i = 1, • • • , N ν , t uν i < T . Moreover, by convention t uν 0 = 0 t uν Nν +1 = T . Combining ( 25), ( 26), [START_REF] Rudin | Principles of mathematical analysis[END_REF], and ( 28), we deduce

Nν i=0 TV + ( ẏν ; ]t uν i , t uν i+1 [) ≤ C(T V (ρ 0 ) + T V (u)) + 2T V (u). (30) 
From ( 29) and [START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF], there exists a constant C > 0 such that TV ( ẏν ; [0, T ]) ≤ 2CTV(ρ 0 ) + (2C + 6)TV(u) + V, proving (23c), concluding the proof. 2

Proof of Theorem 3.1. Consider a sequence of approximate solutions {ρ ν , y ν , u ν } ν∈N to (2) constructed in Section 3.1. By Lemma 3.4, there exist ρ ∈ C 0 0 0 R + ; L 1 1 1 (R; [0, R]) such that TV (ρ(t)) < +∞ for a.e. t and y ∈ W 1,1 1,1 1,1 loc (R + ; R) such that, up to a subsequence, (23a), (23b), and (23c) hold. We prove that the couple (ρ, y) provides a solution to (2) according to Definition 3.1. Clearly the points 1 and 2 of Definition 3.1 hold.

Since ρ ν is a weak entropy solution of (2a)-( 2c)-(2d) in the sense of Definition 3.1, points 3 and 4, then, for every κ ∈ R and for all ϕ ∈ C 1 1 1 c (R 2 ; R + ), it holds

R + R (|ρ ν -κ|∂ t ϕ + sgn(ρ ν -κ)(f (ρ ν ) -f (κ))∂ x ϕ) dx dt + R |ρ 0,ν -κ|ϕ(0, x) dx + 2 R + (f (κ) -ẏν (t)κ -min{f (κ) -ẏν (t)κ, F α ( ẏν (t))}) ϕ(t, y(t)) dt ≥ 0 . (31) 
Using (23a) and (23c) and passing to the limit in [START_REF] Wadud | Help or hindrance? the travel, energy and carbon impacts of highly automated vehicles[END_REF] as ν → +∞, we conclude that ρ satisfies [START_REF] Delle Monache | Feedback Control Algorithms for the Dissipation of Traffic Waves with Autonomous Vehicles[END_REF], hence point 3 of Definition 3.1 holds.

We deal now with the point 4 of Definition 3.1. Fix T > 0 and consider the sets

D l := {(t, x) ∈ [0, T ] × R : x < y(t)} , D r := {(t, x) ∈ [0, T ] × R : x > y(t)} , D ν l := {(t, x) ∈ [0, T ] × R : x < y ν (t)} , D ν r := {(t, x) ∈ [0, T ] × R : x > y ν (t)} . Fix ψ ∈ C 1 1 1 c (]0, T [ × R; R + )
. By [6, Theorem 2.2], since ρ ν and ρ are weak solutions of (1), we deduce that [START_REF] Wan | Optimal speed advisory for connected vehicles in arterial roads and the impact on mixed traffic[END_REF] and

D ν l (ρ ν ∂ t ψ + f (ρ ν )∂ x ψ) dt dx = T 0 [f (ρ ν (t, y ν (t) -)) -ρ ν (t, y ν (t) -) ẏν (t)] ψ(t, y ν (t))dt
D l (ρ∂ t ψ + f (ρ)∂ x ψ) dt dx = T 0 [f (ρ(t, y(t) -)) -ρ(t, y(t) -) ẏ(t)] ψ(t, y(t))dt (33) 
hold. The construction of (ρ ν , y ν ), [START_REF] Wan | Optimal speed advisory for connected vehicles in arterial roads and the impact on mixed traffic[END_REF] and the fact that ψ ≥ 0 imply

D ν l (ρ ν ∂ t ψ + f (ρ ν )∂ x ψ) dt dx ≤ T 0 F α ( ẏν (t))ψ(t, y ν (t))dt. ( 34 
)
Lemma 3.4 and the Dominated Convergence Theorem imply The same holds for the right traces. By the arbitrariness of ψ, we deduce that

lim ν→∞ D ν l (ρ ν ∂ t ψ + f (ρ ν )∂ x ψ) dt dx = D l (ρ∂ t ψ + f (ρ)∂ x ψ) dt dx, (35) 
f (ρ(t, y(t) ± )) -ρ(t, y(t) ± ) ẏ(t) ≤ F α ( ẏ(t))
for a.e t ∈ ]0, T ]. Thus the couple (ρ, y) satisfies point 4 of Definition 3.1.

It remains to prove that the couple (ρ, y) satisfies point 5 of Definition 3.1. From Lemma 3.4, ( 14) and the construction of (ρ ν , y ν , u ν ), there exists a null set N such that, for every t ∈ R * + \ N ,

• lim ν→∞ ẏν ( t ) = ẏ( t ), • ẏν ( t ) = min {u ν ( t ), v (ρ ν ( t, y ν ( t ) + ))},
• y is continuously differentiable at t,

• lim ν→∞ ρ ν ( t, x) = ρ( t, x) for a.e. x ∈ R, • lim ν→∞ u ν ( t ) = u( t ),
• u( t-) = u( t+ ) =: ū.

We have to prove that, if t ∈ R + \ N , then lim ν→∞ min {u ν ( t ), v (ρ ν ( t, y ν ( t) + ))} = min {u( t ), v (ρ( t, y( t) + ))} .

(37)

To this aim, it is sufficient to prove that lim ν→∞ v (ρ ν ( t, y ν ( t) (a) If ρ + = ρ -, then using Lemma A.1 and Lemma A.3, we have that for every > 0 there exists ν ∈ N such that

+ )) = v (ρ(
v(min{ρ + +2 , R}) ≤ min{u ν ( t), v(ρ ν ( t, y ν ( t) + ))} := ẏν ( t) ≤ min{u ν ( t), v(ρ + -2 )} (38 
) for every ν ≥ ν. Since t ∈ R * + \ N , by passing to the limit in (38) as ν → ∞, we deduce (37), for the arbitrariness of .

(b) If ρ + = ρ -and y( t) ≤ y ν ( t) up to a subsequence; from Lemma A.1 we have that for every > 0 there exists ν ∈ N such that

v(min{ρ + + , R}) ≤ min{u ν ( t), v(ρ ν (t, y ν ( t) + ))} := ẏν ( t) ≤ v(ρ + -) (39) 
for every ν ≥ ν. Since t ∈ R * + \ N , the equality (37) holds by passing to the limit in (39) as ν → ∞.

(c) If ρ + = ρ -and y ν ( t) < y( t) up to a subsequence; in this case, from Lemma A.1 and Lemma A. 

(t) -y( t) t - t ∈ [v(ρ + + ), v(ρ + -)].
Using that y is continuously differentiable at time t and the arbitrariness of , we conclude that (37) holds.

Case: ρ

-, ρ + ∈ [0, ρ * ū]. Since t ∈ R * + \ N , ẏ( t) = lim ν→∞ y ν ( t) = lim ν→∞ min{u ν ( t), v(ρ ν ( t, y ν ( t) + )}.
From Lemma A.5, for every > 0 there exists ν ∈ N such that

v(ρ * ū + ) ≤ min{u ν ( t), v(ρ ν ( t, y ν ( t) + )} ≤ u ν ( t) for ν ≥ ν. Since ρ + ∈ [0, ρ * ū], we know that ẏ( t) = u( t) = min{u( t), v(ρ( t, y( t) + ))}.
3. Case: ρ + < ρ * ū < ρ -. This case cannot occur by Lemma A.6.

Case: ρ

-< ρ * ū < ρ + .
(a) If y( t) ≤ y ν ( t) up to a subsequence, by Lemma A.1 for every > 0 there exists ν such that we have

v(min{ρ + + , R}) ≤ min(u ν ( t), v(ρ ν (t, y ν ( t) + ))) := ẏν ( t) ≤ v(ρ + -) (41) 
for ν ≥ ν. Since t ∈ R * + \ N , the equality (37) holds by passing to the limit in (41) as ν → ∞.

(b) If y ν ( t) < y( t) up to a subsequence, using Lemma A.7 and reasoning as in item 1c

we get the conclusion.

This concludes the proof. 

Lemma A.2 Let t ∈ R + \ N . If ρ -, ρ + ∈ [ρ * ū, R], then ρ -≤ ρ + .
The proof is identical to that of [21, Lemma 5] remarking that, for every > 0, there exists ν ∈ N such that ρ * uν ( t) < ρ * ū + ≤ ρ + + for every ν ≥ ν.

Lemma A.3 Let t ∈ R + \ N and > 0. Assume that ρ * ū ≤ ρ -≤ ρ + . Then there exists ν ∈ N such that ρ ν ( t, x) ∈ ]ρ --2 , min(ρ + + 2 , R)[,
for every ν ≥ ν and for every x ∈ ] min{y( t), y ν ( t)}, max{y( t), y ν ( t)}[; see Figure 9.

The proof is identical to that of [START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF]Lemma 6] remarking that, for every > 0, there exists ν ∈ N such that ρuν( t) < ρū + ≤ ρ * ū -2 for every ν ≥ ν. The Riemann problem. The situation of a shock with speed greater than u and uρ l ≤ f (ρ l ) ≤ ϕ u (ρ l ). In this case y(t) = y(0) + ut, while the solution for ρ is composed by the classical shock connecting ρ l to ρ r .

x ρ ν ( t, •) ∈ ρ( t, •) ∈ y( t) yν( t) yν( t) -δ yν( t) -δ y( t) + δ y( t) + δ ρ - ρ + ρ -+ ρ -- ρ + + ρ + -
1. f (ρ r ) > ϕ u (ρ r ). This hypothesis implies that ρu < ρ r < ρu , while σ = u implies that the vehicle at y has density ρ r in front. Moreover σ = u and ρ l < ρ r imply that ρu < ρ l < ρ r < ρu . In this case the solution is given by

ρ(t, x) =                  ρ l if x < f (ρ l )-f (ρu) ρ l -ρu t ρu if f (ρ l )-f (ρu) ρ l -ρu t < x < ut ρu if ut < x < f (ρr)-f (ρu)
ρr-ρu t ρ r if x > f (ρr)-f (ρu) ρr-ρu t and y(t) = y(0) + ut.

Finally note that u ≤ v (ρ r ), so that the constraint in (42) for u is satisfied.

2. uρ r ≤ f (ρ r ) ≤ ϕ u (ρ r ). This hypothesis implies that either 0 ≤ ρ r ≤ ρu or ρu ≤ ρ r ≤ ρ * u , while σ = u implies that in front of the vehicle at y there is density ρ r . If 0 ≤ ρ r ≤ ρu , then the assumptions ρ l < ρ r and σ = u produce a contradiction. Thus we deduce that ρu ≤ ρ r ≤ ρ * u . In this case the solution is given by

ρ(t, x) =    ρ l if x < f (ρ l )-f (ρr) ρ l -ρr t ρ r if x > f (ρ l )-f (ρr)
ρ l -ρr t and y(t) = y(0) + ut.

Finally note that u ≤ v (ρ r ), so that the constraint in (42) for u is satisfied.

3. f (ρ r ) < uρ r . This hypothesis implies that ρ r > ρ u , while σ = u implies that in the front of the vehicle at y there is density ρ r . The fact that ρ l < ρ r is in contradiction with σ = u, so that this case does not happen.
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 2 Figure 2: Visual representation of the construction of the grids for ρ ν and u ν and of the construction of f ν .

Figure 5 :

 5 Figure 5: Jump in u at t = t with a U C u --wave at t = twhich gets canceled at t = t+ .

  ρ

Figure 9 :

 9 Figure 9: Illustration of Lemma A.3 in the case ρ *ū ≤ ρ -< ρ + and y ν ( t) < y( t). The approximate density ρ ν ( t, •) in the space interval ]y ν ( t) -δ, y( t) + δ[ belongs to the area surrounded by the red dotted lines, while ρ( t, •) in the interval ]y( t)δ, y( t) + δ[ belongs to the grey shaded zone.

T 0 Figure 10 :Figure 11 :Figure 12 :Figure 13 :

 010111213 Figure 10: The situation of Lemma A.4 in the case ρ * ū ≤ ρ -< ρ + ≤ R with y ν ( t) < y( t).

  t, y( t) + )). The proof follows closely the one given in [21, Section 3.3] for a constant control speed u. Define ρ ± = lim x→y( t)± ρ( t, x), which exist since TV(ρ( t, •); R) is finite. Various cases can occur. 1. Case: ρ -, ρ + ∈ [ρ * ū, R]. From Lemma A.2, see also the entropy condition (12), the only possible case is ρ * ū ≤ ρ -≤ ρ + .

  By Lemma A.4, there exists c > 0 and a sequence t ν t such that ρ ν (s, y ν (s)+ ) ∈ ]ρ + -, ρ + + [ for every s ∈ [t ν , t + c], hence ẏν (s) ∈ ]v(ρ + + ), v(ρ + -)[ for every s ∈ [t ν , t + c]. By passing to the limit in (40), we have for a.e t ∈ ] t, t + c] y

	t	
	t ẏν (s)ds	(40)
	and, by Lemma 3.4,	
	lim	

[START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF]

, we have that for every > 0 there exists ν ∈ N such that ρ ν ( t, y ν ( t) + ) ∈ ]ρ --2 , ρ + + 2 [ for every ν ≥ ν. For a.e t > t,

y ν (t)y ν ( t) = ν→∞ y ν (t) = y(t).

2

  Lemma A.1[21, Lemma 4]. Let t ∈ R + \ N and > 0. Assume that ρ -, ρ + ∈ [0, R]. -, 0}, min{ρ -+ , R}[ , x ∈ ] min{y( t), y ν ( t)} -δ, min{y( t), y ν ( t)}[, ]max{ρ + -, 0}, min{ρ + + , R}[ , x ∈ ]max{y( t), y ν ( t)}, max{y( t), y ν ( t)} + δ[;

	There exist 0 < δ < δ such that			
	ρ( t, x) ∈	]max{ρ --/2, 0}, min{ρ -+ /2, R}[ , x ∈ ]y( t) -δ, y( t)[, ]max{ρ + -/2, 0}, min{ρ + + /2, R}[ , x ∈ ]y( t), y( t) + δ[,
	and, for ν ∈ N * sufficiently large,			
	ρ ν ( t, x) ∈ ]max{ρ -see Figure 8.				
		ρ			
		ρ + +			
		ρ + ρ + -				ρ ν ( t, •) ∈ ρ( t, •) ∈
		ρ -+			
		ρ -			
		ρ --			
		yν( t) -δ yν( t) -δ	yν( t)	y( t)	y( t) + δ y( t) + δ	x

Figure

8

: Illustration of Lemma A.1 in the case ρ -< ρ + and y ν ( t) < y( t). The approximate density ρ ν ( t, •) in the space interval ]y ν ( t) -δ, y ν ( t)[ ∪ ]y( t), y( t) + δ[ belongs to the area surrounded by the red dotted lines, while ρ( t, •) in the interval ]y( t)δ, y( t) + δ[ belongs to the grey shaded zone.

  t ξν f > t such that (t, ξ ν (t)) ∈ T 0 for every t ∈ [ t, t ξν f [, and ρ ν (t, x+) ∈ ]ρ + -, ρ + + [ for every (t, x) ∈ ([ t, +∞[ × ]ξ ν (t), +∞[) ∩ T 0 .Moreover, there exist c > 0 independent of ν and t ν ∈ [ t, t + c[ such that y ν (t ν ) = ξ ν (t ν ) and lim ν→∞ t ν = t; see Figure10.

	t						
						ρν(t, x) ∈ (ρ+ -, ρ+ + )
							(t, ξν(t))
	t + δ u						(t, yν(t))
			t ξν f	•		•	
	t ν						
	t						
	yν( t) -	δ	yν( t)	ξ ν ( t)	y( t)	y( t) + δ	x
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Appendix A Technical lemmas

Here we state some technical lemmas used in the proof of Theorem 3.1. In the following, we denote by ρ and y respectively the limit functions of wave front tracking approximate solutions ρ ν and y ν ; see Lemma 3.4. Moreover, if t > 0, then we define ρ -:= ρ ( t, y( t) -) and ρ + := ρ ( t, y( t) + ).

for every ν ≥ ν and x ∈ ] min{y ν ( t), y( t)}δ, max{y ν ( t), y( t)} + δ[. Lemma A.6 [21, Lemma 9]. If min{ρ + , ρ -} < ρ * ū < max{ρ + , ρ -}, then it holds ρ -< ρ * ū < ρ + .

Lemma A.7 [21, Lemma 10]. Let t ∈ R + \ N and > 0. Assume that ρ -< ρ * ū < ρ + and y ν ( t) < y( t) (up to a subsequence) for every ν ∈ N. Then there exist a domain T 1 and, for every ν ∈ N, a piecewise constant function ξ 

Appendix B The Riemann problem at the vehicle location

We recall here the definition of the solution to the Riemann problem, i.e. problem [START_REF] Borsche | Mixed systems: ODEs -balance laws[END_REF] with initial data

Denote by R the standard (i.e., without the constraint (2c)) Riemann solver for (2a)-(42), i.e., the (right continuous) map (t, x) → R(ρ L , ρ R )(x/t) given by the standard weak entropy solution, see for instance [START_REF] Lefloch | Hyperbolic systems of conservation laws[END_REF]. Moreover, given u ∈ [0, V ], let ρu and ρu , with ρu ≤ ρu , be the points defined in [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF]. Following [9, Definition 3.1], the constrained Riemann solver is defined as follows:

In the next subsections we detail the structure of solutions in some cases.

B.1 Case of a shock wave in ρ: ρ l < ρ r .

We suppose that 0 ≤ ρ l < ρ r ≤ R. Denote by σ the speed of the shock wave, i.e.

First assume σ < u. The following possibilities hold.

1. f (ρ r ) > ϕ u (ρ r ). This hypothesis implies that ρu < ρ r < ρu , while σ < u implies that the vehicle at y enters in the region with density ρ r . Moreover σ < u and ρ l < ρ r imply that ρu < ρ l < ρ r < ρu . Therefore the solution is given by

ρr-ρu t and y(t) = y(0) + ut;

see Figure 11. Finally note that u ≤ v (ρ l ) ≤ v (ρ r ), so that the constraint in (42) for u is satisfied.

2. uρ r ≤ f (ρ r ) ≤ ϕ u (ρ r ). This hypothesis implies that either 0 ≤ ρ r ≤ ρu or ρu < ρ r < ρ * u , while σ < u implies that the vehicle at y enters in the region with density ρ r . If 0 ≤ ρ r ≤ ρu , then the assumptions ρ l < ρ r and σ < u give a contradiction. Thus we deduce that ρu < ρ r < ρ * u . In this case the solution is given by

ρ l -ρr t and y(t) = y(0) + ut;

see Figure 12. Finally note that u ≤ v (ρ r ), so that the constraint in (42) for u is satisfied.

3. f (ρ r ) < uρ r . This hypothesis implies that ρ r > ρ * u , while σ < u implies that the vehicle at y enters in the region with density ρ r . In this case the solution is given by

The following possibilities hold.

1. f (ρ l ) > ϕ u (ρ l ). This hypothesis implies that ρu < ρ l < ρu , while σ > u implies that the vehicle at y enters in the region with density ρ l . Moreover σ > u and ρ l < ρ r imply 0

Figure 14: The Riemann problem. The situation of a shock with speed bigger than u and f (ρ l ) > ϕ u (ρ l ). In this case y(t) = y(0) + ut, while the solution for ρ is composed by two classical shocks and one non classical shock.

that ρu < ρ l < ρ r < ρu . In this case the solution is given by

ρr-ρu t and y(t) = y(0) + ut;

see Figure 14. Finally note that u ≤ v (ρ l ), so that the constraint in (42) for u is satisfied.

2. uρ l ≤ f (ρ l ) ≤ ϕ u (ρ l ). This hypothesis implies that either 0 ≤ ρ l ≤ ρu or ρu ≤ ρ l ≤ ρ * u , while σ > u implies that the vehicle at y enters in the region with density ρ l . If ρu ≤ ρ l ≤ ρ * u , then the assumptions ρ l < ρ r and σ > u produce a contradiction. Thus we deduce that 0 ≤ ρ l ≤ ρu . In this case the solution is given by

see Figure 15. Finally note that u ≤ v (ρ l ), so that the constraint in (42) for u is satisfied.

3. f (ρ l ) < uρ l . This hypothesis implies that ρ l > ρ * u , while σ > u implies that the vehicle at y enters in the region with density ρ l . The fact that ρ l < ρ r is in contradiction with σ > u, so that this case does not happen.

Finally suppose σ = u. The following possibilities hold. B.2 Case of a rarefaction wave in ρ: ρ r < ρ l .

Suppose that 0 ≤ ρ r < ρ l ≤ R. Denote with σ l and σ r respectively the characteristic speeds of ρ l and ρ r , i.e. σ l = f (ρ l ) and σ r = f (ρ r ) .

Note that σ l < σ r . First assume that σ r < u, so that the density in front of the vehicle at y is ρ r . The following possibilities hold.

1. f (ρ r ) > ϕ u (ρ r ). This hypothesis implies that ρu < ρ r < ρu . If ρ l ≤ ρu , then the solution for ρ is given by

while if ρ l > ρu , then the solution for ρ is given by

The solution for y is given by y(t) = ut; see Figure 16. Finally note that u ≤ v (ρ u ), so that the constraint in (42) for u is satisfied.

Figure 17: The Riemann problem. The situation of a rarefaction with speed less than u and uρ r ≤ f (ρ r ) ≤ ϕ u (ρ r ). In this case y(t) = ut, while the solution for ρ is composed by a classical rarefaction wave.

2. uρ r ≤ f (ρ r ) ≤ ϕ u (ρ r ). This hypothesis implies that either 0 ≤ ρ r ≤ ρu or ρu ≤ ρ r ≤ ρ * u If 0 ≤ ρ r ≤ ρu , then the assumption σ r < u gives a contradiction. Thus we deduce that ρu ≤ ρ r ≤ ρ * u . In this case the solution is given by

see Figure 17. Finally note that u ≤ v (ρ r ), so that the constraint in (42) for u is satisfied.

3. f (ρ r ) < uρ r . This hypothesis implies that ρ r > ρ * u . In this case the solution is given by

where u e = v(ρ r ) < u; see Figure 18. Note that u > v (ρ l ), so that the constraint in (42) for u is not satisfied. Thus the effective control is u e = v(ρ r ).

Assume now that u < σ l , so that the density in front of the vehicle at y is ρ l . The following possibilities hold.

1. f (ρ l ) > ϕ u (ρ l ). This hypothesis implies that ρu < ρ l < ρu . If ρ r ≥ ρu , then the solution for ρ is given by

Figure 18: The Riemann problem. The situation of a rarefaction with speed less than u and f (ρ r ) < uρ r . In this case y(t) = u e t, while the solution for ρ is composed by a classical rarefaction wave. while if ρ r < ρu , then the solution for ρ is given by

The solution for y is given by y(t) = ut; see Figure 19. Finally note that u ≤ v (ρ u ), so that the constraint in (42) for u is satisfied.

2. f (ρ l ) ≤ ϕ u (ρ l ). Since u < σ l < σ r , this hypothesis implies that ρ r < ρ l ≤ ρu . In this case the solution is given by

Figure 20: The Riemann problem. The situation of a rarefaction with speed greater than u and f (ρ l ) ≤ ϕ u (ρ l ). In this case y(t) = ut, while the solution for ρ is composed by a classical rarefaction wave. and y(t) = ut; see Figure 20. Finally note that u ≤ v (ρ l ), so that the constraint in (42) for u is satisfied.

Assume finally that σ l ≤ u ≤ σ r , so that the density in front of the vehicle at y is ρ = (f ) -1 (u). Note that ρu < ρ < ρu . The following possibilities hold.

1. ρ l ≤ ρu and ρ r ≥ ρu . The solution for ρ is given by

while the solution for y is y(t) = ut.

2. ρ l > ρu and ρ r ≥ ρu . The solution for ρ is given by

ρr-ρu t ρ r if x > f (ρr)-f (ρu) ρr-ρu t, while the solution for y is y(t) = ut.

3. ρ l ≤ ρu and ρ r < ρu . The solution for ρ is given by

while the solution for y is y(t) = ut.

4. ρ l > ρu and ρ r < ρu . The solution for ρ is given by

while the solution for y is y(t) = ut.