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The atomistic study of kink pairs on screw dislocations in body-centered cubic (bcc) metals is challenging
because interatomic potentials in bcc metals still lack accuracy and kink pairs require too many atoms to be
modeled by first principles. Here, we circumvent this difficulty using a one-dimensional line tension model whose
parameters, namely the line tension and Peierls barrier, are reachable to density functional theory calculations.
The model parameterized in V, Nb, Ta, Mo, W, and Fe, is used to study the kink-pair activation enthalpy and spatial
extension. Interestingly, we find that the atomistic line tension is more than twice the usual elastic estimates. The
calculations also show interesting group tendencies with the line tension and kink-pair width larger in group V
than in group VI elements. Finally, the present kink-pair activation energies are shown to compare qualitatively
with experimental data and potential origins of quantitative discrepancies are discussed.

DOI: 10.1103/PhysRevB.91.094105 PACS number(s): 62.20.F−

I. INTRODUCTION

The thermally activated glide of 1/2〈111〉 screw
dislocations controls the temperature-dependent plasticity of
body-centered-cubic (bcc) metals [1,2]. Intense investigations
are lead on these dislocations (see for example Refs. [3–17]),
the main issue being to derive the dislocation mobility law
from the atomic scale [18]. Among the different computational
studies, calculations based on density-functional theory (DFT)
have established some important features that were previously
matter of debate in bcc transition metals, such as the nonde-
generate dislocation core structure [6,10,17], the {110} glide
plane [9], and the single-hump Peierls barrier [10,17,19–21].
However, the main drawback of DFT-based methods applied
to extended defects such as dislocations is the limited number
of atoms that can be considered in the simulation cell, typically
a few hundred. These cell sizes are sufficient to study straight
dislocations perfectly aligned with their b = a0/2〈111〉
Burgers vector, where a0 is the equilibrium lattice parameter,
because the translational invariance along the dislocation
line allows to reduce the cell size in this direction to a
slab of length b = |b| = a0

√
3/2 using periodic boundary

conditions [9–12]. At finite temperatures [22], however, the
motion of screw dislocations proceeds through the formation
of kink pairs, thereby breaking the translational invariance
along the dislocation line. Simulating this process at the
atomic scale thus requires to consider a long dislocation with
kinks, which is out of the reach of current DFT calculations.
It is possible to circumvent this difficulty by employing the
line tension (LT) model, where the dislocation is represented
by a one-dimensional (1D) elastic line on a substrate, which
is a standard approach in dislocation theory, referred to as the
1D Frenkel-Kontorova model [23–25], the string model [26],
or more recently, the line-on-substrate model [27]. It is also
often simply named the line tension (LT) model [28,29].
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The Hamiltonian of the LT model is composed of two
distinct parts: (i) the substrate potential, also called Peierls
potential and (ii) the elastic energy associated with the stiffness
of the dislocation line, i.e. the line tension. To derive the
first term, DFT computations in a 1b slab cell can be used,
while the computation of the second term requires us to
break the translational invariance along the dislocation line.
A methodology has recently been developed to determine
the line tension with simulation cell sizes accessible to DFT
calculations using specific constrained displacements of atoms
situated inside the dislocation core [30]. The validity of this
method has been verified using three different semiempirical
interatomic potentials and it has then been applied to iron using
DFT [30].

In the present study, we extend this initial approach to com-
pute kink pairs in all bcc transition metals: group V vanadium,
niobium, and tantalum, group VI molybdenum and tungsten,
and ferromagnetic iron. The values obtained for the line tension
are compared to continuous elasticity theory. The LT model is
then used to predict the kink-pair activation enthalpy and the
kink-pair profile on screw dislocations, which are otherwise
beyond the reach of direct DFT calculations. Eventually, we
compare the DFT-based results to available experimental data,
based on either cyclic deformation [22,31,32] or successive
tensile deformation techniques [33–35].

II. SIMULATION CONDITIONS

The DFT simulation cell is oriented such that the {110}
screw dislocation glide plane has a normal vector along the
Z = [11̄0] direction with the dislocation line along the X =
[111] direction and the glide direction along the Y = [1̄1̄2]
axis. We consider a quadrupolar geometry, where a dislocation
dipole is introduced in a simulation cell with periodic boundary
conditions in all three directions [10].

The first-principles electronic structure calculations were
performed within the DFT framework using the PWSCF
plane-wave code [36]. The pseudopotentials are ultrasoft with
semicore electrons for V, Nb, Ta, Mo, and W, and without
semicore electron but with nonlinear core corrections for Fe.

1098-0121/2015/91(9)/094105(7) 094105-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.91.094105


DEZERALD, PROVILLE, VENTELON, WILLAIME, AND RODNEY PHYSICAL REVIEW B 91, 094105 (2015)

These pseudopotentials have been tested and used in previous
studies [21,37–39]. 1 × 2 × 16 and 1 × 2 × 8 shifted k-point
grids were used for the 1b and 2b cells respectively. This
k-point density is close to that of a 16 × 16 × 16 grid for a
one-atom bcc cell. As pointed out in Ref. [40], it is too sparse
for accurate calculations of bulk properties like the C44 elastic
constants in V and Nb due to the presence of a van Hove singu-
larity near the Fermi level [41]. However, since this singularity
is smeared out by the dislocation [21], this k-point density
issue should not affect the present results. Residual forces after
relaxation were smaller than 10−3 eV/Å, and the convergence
criterion for self-consistency on the total energy was 10−7 eV.
The Hermite-Gauss scheme to broaden the electronic density
of states was used with a smearing of 0.3 eV. The calculations
in iron are spin polarized [42] (ferromagnetic iron) and the
Perdew-Burke-Ernzerhof generalized gradient approximation
(GGA) was used with a wave-function cutoff of 40 Ry. The
bulk properties of all investigated elements calculated with
these pseudopotentials are presented in Ref. [21].

III. LINE TENSION MODEL

A. Formulation and approximations

In the LT model, the screw dislocation is represented by
a single function y(x), defined as the position y in the glide
plane of the dislocation segment situated at the x coordinate
along the dislocation line. If we assume that the derivatives
of the function y(x) are small and furthermore that the Peierls
barrier is small compared to the dislocation self-energy, we can
write a linearized version of the LT model [27,43,44], where
the dislocation enthalpy HLT is expressed as:

HLT(y,σxz) =
∫

dx

[
VP (y(x)) − σxzby(x) + �

2

(
dy

dx

)2]
.

(1)

Here, � is the line tension, which is assumed to be independent
of the dislocation line orientation in this simple model, VP the
Peierls potential and σxz the applied stress. In this study, we
neglect the dependence of the dislocation Peierls potential on
the applied stress. It should be noted that the line tension model
does not account for the long-range elastic interaction between
kinks, which have an edge character, nor does it account for the
asymmetry between left and right kinks [45]. We have however
checked by comparison with atomistic simulations using EAM
potentials [30] that these effects have no consequence for the
nucleation of kink pairs at high stress as considered here.

In order to combine the LT model with atomistic sim-
ulations, the integral in Eq. (1) must be discretized. The
dislocation line is thus decomposed into elementary segments
of length b, the position of which, {Yn}, is computed using
the methodology explained in Ref. [30]. After discretization,
Eq. (1) becomes:

HLT({Yn},σxz) = b
∑

n

[
VP (Yn) − σxzbYn

+ �

2b2
(Yn+1 − Yn)2

]
, (2)

where the sum over subscript n implicitly accounts for the
periodic boundary condition in the X direction. The Hamil-
tonian in Eq. (2) corresponds to the 1D Frenkel-Kontorova
model if the substrate potential is sinusoidal [25]. The main
interest of such a discretized model is that the different
terms involved in Eq. (2) can all be computed from atomistic
simulations as described in the following. Since the variable
Yn corresponds to the nth dislocation segment position, we
define the reaction coordinate as Yn/LP , with LP = a0

√
2/3

the distance between nearest valleys of the Peierls potential.
When the dislocation goes from one Peierls valley to the next,
this reduced coordinate varies between 0 and 1, with the initial
position of the straight dislocation taken as a reference.

B. Peierls barriers

The Peierls barrier, VP , was computed at the atomistic level
from the hypothetical situation of a straight infinite dislocation
moving between two Peierls valleys. All atoms in a given
[111] atomic column are thus forced to move rigidly, with the
same displacement. The Peierls barrier is then identified with
the dislocation minimum energy path (MEP) between Peierls
valleys.

The DFT calculations were performed in a cell of 1b in
the X direction, containing 135 atoms within the quadrupolar
arrangement. Lengths in the Y and Z directions are 15 LP

and 9 a0/
√

2, respectively. The reaction coordinate method
(or drag method) [46] is used to determine the Peierls barrier
with eleven images. This method was shown in Ref. [19] to be
equivalent to the nudged elastic band method for the simple
path considered here and is preferred for DFT calculations
because of its smaller computational cost. The results are
reported in Figs. 1(a)–1(c) for the different elements, as a
function of Y1/LP , the normalized dislocation position along
the path (the subscript “1” indicates that only one slab is used
in the X direction) [30]. The calculated energies are identical
to those from Ref. [21], but the definition for the dislocation
position is different. Here we use a one-dimension disregistry
that gives the dislocation position in the Y direction. The
drawback of this definition is that the final position for the
dislocation is not exactly equal to 1 in our computations. This
arises from the fact that the dislocations constituting the dipole
interact with each other, given the small distance (7.5LP )
between them. This artifact leads to Peierls stresses values
slightly higher than the ones predicted in Ref. [21] where
two different methods were used to evaluate the dislocation
position. However, the error remained less than 25%, which
is similar to the uncertainty related to the definition of the
dislocation position pointed out in Ref. [21]. In Figs. 1(a)–1(c),
continuous lines stem from a cubic spline procedure and
correspond to the function VP used in Eq. (2).

C. Line tension

To compute the line tension, �, a dislocation bow out has to
be considered in the simulation cell and thus, the translational
symmetry along the dislocation line must be broken. To this
end we considered a cell 2b thick in the X direction. The
dimensions in the Y and Z directions are unchanged and the
cell is duplicated in the X direction, with a total number of
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FIG. 1. (Color online) Minimum energy path between two
Peierls valleys per unit of b for a straight screw dislocation computed
with DFT for different bcc metals: (a) Fe, (b) group V elements: V,
Nb, Ta, and (c) group VI elements: Mo, W. The lines are the cubic
splines used to define the function VP (Y ) in Eq. (2).

atoms Nat = 270. When a straight dislocation changes Peierls
valley, the three [111] atomic columns around the intermediate
hard core undergo much larger displacements than the rest
of the crystal. Applying constrained displacements to these
atoms, as described in Ref. [30], we can enforce a bow out on
the dislocation consistent with the first stage of formation of a
kink pair and compute the associated energy.

In this process, a dislocation segment starts to glide towards
the next Peierls valley, while the rest of the dislocation line
remains in the initial Peierls valley. To mimic this process,
we considered a dislocation relaxed under zero stress and
constrained the core atoms situated in one of the two slabs
constituting the 2b cell to follow a prescribed trajectory, while
the atoms in the second slab were fixed to their initial positions
along the X direction. In this way, we impose different
dislocation positions Y1 and Y2 in the two slabs. The energy
difference, �E, between this constrained state and the relaxed
initial state, as well as the position difference Y2 − Y1 were then
calculated. According to Eq. (2), and accounting for periodic
boundary conditions along the X direction, we have:

�ELT = �E − bVP (Y1) − bVP (Y2) = �/b(Y2 − Y1)2. (3)

This function is quadratic in (Y2 − Y1) with a curvature equal
to 2�/b, allowing us to fit the line tension, denoted �DFT

thereafter.
We report the variation of �ELT against (Y2 − Y1)/LP as

symbols in Figs. 2(a)–2(c), along with the quadratic fits, as
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FIG. 2. (Color online) Elastic energy of the dislocation computed
from DFT in the 2b slab cell (symbols) and from a LT model (lines)
for (a) Fe, (b) group V elements, and (c) group VI elements. On the X

axis, Y1 and Y2 correspond to the position of the dislocation segments
in the first and second 1b slab, respectively. LP is the distance between
two Peierls valleys. The adjusted values of the line tension �DFT are
reported in Table I.

continuous lines. The fits are very satisfactory in the interval
(Y2 − Y1)/LP ∈ [0,0.05], for all investigated elements and
lead to the values of �DFT reported in Table I.

We then compared these LT predictions to the LT values pre-
dicted from isotropic and anisotropic elasticity. The isotropic
elastic value of the line tension is given by:

�iso
ela = μb2

4π

1 + ν

1 − ν
ln

(
R

r0

)
, (4)

TABLE I. Line tension (in eV/Å) computed from DFT (�DFT)
and from isotropic and anisotropic elasticity theory (�iso

ela and �aniso
ela ,

respectively). The total line tension, �aniso
tot , takes into account both

the core energy and core field contributions.

�DFT �iso
ela �aniso

ela �aniso
tot

V 3.17 0.68 0.37 0.51
Nb 4.02 0.44 0.18 0.37
Ta 4.22 1.72 1.97 2.13
Mo 2.86 1.93 1.58 2.03
W 3.89 2.56 2.55 3.10
Fe 3.52 1.51 2.05 2.30
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where ν, the Poisson ratio and μ, the shear modulus on {110}
are calculated by imposing that the prelogarithmic factor of
the elastic energy for a straight dislocation obtained from the
anisotropic and isotropic elasticity theory are equal for both the
screw and the edge orientations, as suggested by Scattergood
and Bacon [47,48]. The outer and inner cut-off radii R and r0

are chosen equal to the kink-pair width, W and the Burgers
vector b, respectively. The choice of R = W relies on the
line tension computation presented in Ref. [49]. Here, the
kink-pair width was calculated at finite but low stress, σ =
40 MPa, which corresponds to a typical value of the athermal
stress. The anisotropic LT, �aniso

ela (θ ), was calculated within
Stroh formalism [50] using the DISDI code [51].

In order to compare the line tension extracted from DFT
to the LT values from elasticity theory, we calculated a third
value for the LT, �aniso

tot , that takes into account the core energy
Ecore, as well as the dilatation field contribution Edil observed
in DFT calculations [21,52]. �aniso

tot is expressed as follows:

�aniso
tot = �aniso

ela (θ ) + Ecore + Edil, (5)

where θ is the angle between the dislocation line direction and
Burgers vector. In Eq. (5), we neglect the dependence of Ecore

and Edil on θ , and we do not take into account the core traction
term in the Volterra elastic field contribution, which was shown
to be negligible compared to the Volterra cut contribution [12].
The values of Ecore and Edil were calculated with DFT in a
previous study [21].

According to the present model, the LT values predicted
using elasticity are much smaller than those from DFT.
This illustrates the limitation of applying elasticity to highly
localized processes like kink-pair formation, which involves
dislocation segments with a length comparable to the core ra-
dius [30,53]. Interestingly, the difference between the isotropic
and anisotropic elastic LT values is much smaller than the
difference between the elastic and the DFT LT values. This
confirms that the discrepancy does not stem from anisotropy
but that it is related to the atomistic nature of the process. Note
that the DFT values are calculated at zero stress, while the kink-
pair widths used for the elastic LT evaluation were calculated
at σ = 40 MPa, but we checked that this difference cannot
compensate for the large discrepancies discussed earlier.

In order to study the effect of electronic band filling, the
values of �DFT and �ela were normalized by Ecoh/b (Fig. 3),
where Ecoh is the cohesive energy calculated in Ref. [21].
The calculation of the cohesive energy reported in Ref. [21]
requires the energy of the isolated atom, which was obtained
from spin-polarized calculations using a cubic box of side
length 21 Å and one k point. As expected, the normalized
�ela reproduce the classical group dependence on band filling
with normalized values larger in group VI than in group V
elements [54]. Surprisingly, this dependence is reversed for
the DFT line tensions, where the normalized �DFT are slightly
larger in group V than in group VI elements. We also notice
that the line tension in Fe is closer to group V than group
VI elements. In a previous paper [21], we showed that the
normalized Peierls energy, EP/(Ecoh/b) is twice larger in
group VI than in group V elements, and intermediate in Fe.
This trend is reversed for the DFT LT values, and moreover,
we should note that the difference between DFT normalized

V Nb Ta Mo W Fe
0.0

0.5

1.0

1.5

2.0

Γ/
(E

co
h/b

)

ΓDFT Γela
iso Γela

aniso
Γtot

aniso

FIG. 3. (Color online) Normalized line tension computed from
DFT and from isotropic (iso) and anisotropic (aniso) continuous
elasticity. �aniso

tot takes into account the dislocation core energy and
dilatation field contributions.

LT values is much smaller than other normalized quantities
such as the Peierls energy.

IV. KINK-PAIR ACTIVATION ENTHALPY
AND KINK-PAIR PROFILE

An excellent agreement on the kink-pair formation enthalpy
between LT predictions and direct atomistic calculations using
three different interatomic models was reported in Ref. [30].
This validated the initial approach and showed that the
potential variation of the line tension between the bottom and
the top of the Peierls landscape can be neglected. Despite the
differences that have been found for the dislocation trajectory
in the different bcc metals [21], our computation of the
line tension, based on the linear interpolation of the atomic
trajectories [30], remains valid since it has been tested on
different interatomic potentials [16,62,63] that predict very
different dislocation paths in Fe. We may therefore use the
DFT computations of the Peierls barriers and line tensions to
predict the kink-pair formation enthalpy in all investigated bcc
metals. In order to compute the kink-pair solution, we chose an
analytical form of the kink pair as a starting configuration and
we applied a Newton-Raphson procedure to the functional
presented in Eq. (2) in order to find the closest extremal
configuration. The trial solution has the form

Yi = LP [1 + tanh (α(i − n−))]/2

−LP [1 + tanh (α(i − n+))]/2,

where α, n−, and n+ are parameters adjusted to build a starting
configuration close enough to the saddle state. The results for
the kink-pair enthalpy versus applied stress are reported in
Figs. 4(a)–4(c). In Table II, we reported the Peierls stress, i.e.,
the stress at which the kink-pair enthalpy vanishes, and the
kink-pair formation energy, which corresponds to the kink-pair
formation enthalpy at zero stress, for all investigated metals.
Table II evidences the well-known discrepancy between
calculated and experimental Peierls stresses. This discrepancy
was shown to arise from zero-point energy vibrations [16] and
nonglide effects [64] that were not taken into account in the
present study because they remain a computational challenge
within DFT.
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FIG. 4. (Color online) Kink-pair activation enthalpy computed
from the LT model, parametrized with DFT for (a) Fe, (b) group
V elements, and (c) group VI elements.

From the LT calculations, we also obtained the profile of the
critical kink pair on the screw dislocation at σ = 40 MPa [see
Figs. 5(a)–5(c)], which we used to determine the kink-pair
width in Table II. The kink-pair widths reported in Table II
are defined as W = (d1 + d2)/2, where d1 and d2 are the
widths between the intersections of the tangents at the inflexion
point and the tangents of the profiles in their Peierls valleys,
respectively. The method used to determine d1 and d2 is illus-
trated in Fig. 5(a). In Fig. 5, the kink-pair height (respectively,
the kink-pair width) was normalized by the distance between
nearest Peierls valleys, LP (respectively by the Burgers vector,

TABLE II. DFT computed kink-pair features derived from
Figs. 4(a)–4(c) and 5(a)–5(c): the Peierls stress, σ DFT

P (in MPa), the
kink-pair energy, �EDFT

k (in eV) and the kink-pair width, W (in b
units), estimated at σ = 40 MPa using the method presented in Fig. 5.
We also reported the experimental data for the Peierls stress, σ

exp
P (in

MPa) and for the kink-pair energy, �E
exp
k (in eV), taken at the lowest

measured stress value in regime I (see Sec. V for details).

σ DFT
P σ

exp
P �EDFT

k �E
exp
k W

V 1210 360 [55] 0.89 19.5
Nb 890 450 [56] 1.28 0.62 [22] 21.5
Ta 1030 350 [57] 1.17 0.83 [31] 20.8
Mo 1390 870 [58] 1.05 1.19 [32] 15.9
W 2340 900 [59] 1.54 2.05 [33] 15.6
Fe 1450 370 [60,61] 0.91 0.83 [35] 19.3
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FIG. 5. (Color online) Profiles of the dislocation with a critical
kink pair at σ = 40 MPa, computed from the LT model with
parameters deduced from DFT calculations in (a) Fe, (b) group V
elements, and (c) group VI elements.

b) to enable comparison between elements. A group trend is
evidenced on the width of the kink-pair (see Table II): in
group V elements, the kink-pair width is larger than in group
VI elements, while the width is intermediate in Fe.

Figure 6 represents the kink-pair energy, �EDFT
k , as a func-

tion of the energy parameter, �EFK = 4
√

2/π × LP

√
�VP ,

which scales the kink-pair energy in an analytical calculation
assuming a cosinelike Peierls potential and small variations of
Yn with respect to position n along the 1D chain in Eq. (2),
i.e., the continuous version of the Frenkel-Kontorova model,
also known as the Sine-Gordon chain [26]. In this figure, we
also reported the results from a previous study, where different
interatomic models for Fe were employed and compared to
other DFT-based computations [30]. Note that there is an

0.0 0.5 1.0 1.5 2.0
ΔEFK (eV)
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)
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FIG. 6. (Color online) Kink-pair formation energy as a func-
tion of �EFK = 4

√
2/π × LP

√
�VP for all investigated elements.

The orange symbols correspond to the values obtained previously
in Fe[30] with either the SIESTA code, the interatomic potential
MCM2011 [16] or the interatomic potential M03 [62]. The solid
line has a slope of 1, as predicted from the LT model based on a
cosine function for the Peierls potential.
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excellent agreement between the present DFT calculation with
PWSCF and the previous DFT calculations obtained with the
SIESTA code in Fe reported in Ref. [30].

One can notice in Fig. 6 that all the DFT calculated kink-pair
energies are situated in the vicinity of a straight line with a
slope equal to 1, as predicted by the analytical calculation.
Deviations from this line come from the nonsinusoidal shape
of the energy profiles. The point that deviates most from the
straight line in Fig. 6 corresponds to the Mendelev interatomic
Fe model [62], as expected since this potential has a double-
humped Peierls barrier [7,10]. V and Nb, for which the Peierls
barriers are rather flat [Fig. 1(b)], correspond to kink-pair
energies situated further from the line than Ta, Mo, W, and
Fe that have Peierls barriers closer to cosine [Figs. 1(a), 1(c)].

In the work of Marinica et al. [65], the kink-pair formation
energy computed with three different EAM potentials for
W was found to scale with

√
VP , which according to the

present scaling and the fact that all three potentials have
the same distance between Peierls valleys, implies that they
also have similar line tensions. Assuming that first-principles
calculations would also yield the same line tension, the scaling
was used to predict kink-pair formation energies from the
only knowledge of first-principles Peierls barriers. The values
obtained here are slightly different (�Ek = 1.54 eV in W here
while in Ref. [65], �Ek = 2.1 eV), but the present work is more
accurate since we compute separately the Peierls barrier and
kink-pair formation energy and do not need any assumption
on the line tension.

V. DISCUSSION

The DFT kink-pair formation energies are compared to
experimental data in Table II. Although there is a general
agreement, discrepancies remain. A quantitative comparison
between DFT and experiments is however difficult for several
reasons, related to both experimental and computational
aspects. First, in the experiments that give access to the
resolved shear stress, σ , as a function of the strain rate, ε̇,
and the temperature, T , three different regimes are usually
identified, regime I (low σ , high T ), regime II (intermediate σ

and T ), and regime III (large σ , low T ). In Refs. [33–35],
these three regimes lead to three different predictions of
the kink-pair formation enthalpy as a function of stress,
and in turn, three different kink-pair formation energies,
since the enthalpy curves do not cross the zero-stress axis
at the same energy [33–35]. Moreover, the extrapolations
involve analytical models using line tensions taken from
the elasticity theory, which strongly underestimates the DFT
values, as shown in Sec. III. To avoid such treatments, we
reported here the kink-pair formation enthalpies measured
at the lowest stresses available [22,31–33,35], without any
additional theoretical assumption. These values necessarily
underestimate the kink-pair formation energies and are slightly
below those generally accepted and compiled for instance
in Ref. [66]. The latter however probably overestimates
the kink-pair formation energies because of the analytical

extrapolation, which increases rapidly at low stresses. From
the difference between these data, we can infer that the
experimental uncertainty is between 0.05 and 0.1 eV.

Another difficulty is that the experimental data were
obtained at high temperatures (regime I), while our DFT
computations do not account for finite-temperature effects.
The first missing contribution is the vibrational entropy, which
was recently shown to significantly lower the Peierls free
energy barrier at temperatures larger than room temperature
in Fe [67]. This decrease is related to the anharmonicity of the
atomic interactions and as such, this effect can be expected
to concern all materials, although its generality has yet to
be demonstrated. The electronic entropy could also play a
role, since the local density of states around the Fermi level
significantly changes upon defect formation or displacement
in these metals [21,68,69].

VI. SUMMARY AND CONCLUSIONS

The dislocation line tension was calculated from DFT
in six different bcc transition metals. The present work is
readily applicable to screw dislocations in all bcc metals
and could even be extended to other dislocations in more
complex materials provided setting up a method to mimic
the formation of a kink pair [30]. Once parametrized with
DFT-based computations for the line tension and Peierls
barrier, the LT model allows to predict the kink-pair formation
enthalpy at different applied stresses. We obtained the Peierls
stress and the kink-pair formation energy, as reported in
Table II and we showed that both isotropic and anisotropic
elasticity strongly underestimate the DFT-based line tension.
This important result raises questions on the interpretations
of deformation tests [22,31–35], which often rely on models
where the elasticity theory is used to determine the line tension.

The DFT-based calculations for the kink-pair formation
enthalpy have been compared to measured data at the
lowest applied stress. Discrepancies have been evidenced
and require further investigation, possibly in the direction
of vibrational [67] or electronic entropy which we intend to
explore in future work.
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