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Quantitative estimates of the threshold phenomena for

propagation in reaction-diffusion equations

Matthieu Alfaro 1, Arnaud Ducrot 2, Grégory Faye 3

Abstract

We focus on the (sharp) threshold phenomena arising in some reaction-diffusion equa-
tions supplemented with some compactly supported initial data. In the so-called ignition
and bistable cases, we prove the first sharp quantitative estimate on the (sharp) threshold
values. Furthermore, numerical explorations allow to conjecture some refined estimates.
Last we provide related results in the case of a degenerate monostable nonlinearity “not
enjoying the hair trigger effect”.

Key Words: extinction, propagation, threshold phenomena, sharp threshold phenomena.

AMS Subject Classifications: 35K57 (Reaction-diffusion equations), 35K15 (Initial value
problems for second-order parabolic equations), 35B40 (Asymptotic behavior of solutions).

1 Introduction

In this work we consider the solution u = u(t, x) of the reaction-diffusion equation

ut = ∆u+ f(u), t > 0, x ∈ RN , (1.1)

supplemented with some radially symmetric compactly supported initial data. Typically, f is
a so-called ignition or bistable nonlinearity. It is well established [7], [19] that, roughly speak-
ing, “small” initial data lead to extinction, whereas “large” initial data lead to propagation,
which is referred as a threshold phenomenon. It was more recently proved [4], [17], [14, 15]
that, in many situations, a sharp threshold phenomenon does occur. Here, we say that there
is a sharp threshold behavior when, for any strictly increasing family of initial data exhibiting
extinction for sufficiently small values of the parameter and propagation for sufficiently large
values of the parameter, there is exactly one member of the family for which neither extinc-
tion nor propagation occurs. For example, for smooth unbalanced bistable nonlinearity, in
one space dimension, it is well known that at the threshold value, the corresponding solution
of (1.1) converges to the unique ground state centered at the origin [7], [19], [4], [17], [14, 15].
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By a ground state of this equation we mean a positive stationary solution that decays to zero
at infinity, that is a solution of

0 = ∆u+ f(u), x ∈ RN , u > 0, lim
|x|→+∞

u(x) = 0.

As far as we know, no quantitative estimate of this (sharp) threshold phenomenon exists in
the literature. The goal of the present work is to fill this gap by providing such estimates in
some asymptotic regimes.

Initiation of propagating fronts or pulses has a long history with multiple applications in
both physical and natural sciences, e.g. flame combustion, epidemic outbreaks, ecological or
bacterial invasion. We can in particular mention applications in neuroscience where one is
typically interested to quantify the depolarization effect of local stimulation of an electrode
on a nerve fiber [18], [12], [16] or to characterize the critical stimulus amplitude and timing
needed to generate waves in visual cortex [5]. Several approaches have been developed to
derive criteria for initiation of propagation in bistable or excitable medium in one space
dimension. For McKean-type nonlinearity f(u) = −u + H(u − a), a ∈ (0, 1/2), and H
the Heaviside step function, an associated free boundary problem was studied by looking at
the evolution of m(t) = sup {x > 0 | u(t, x) = a}. By characterizing the asymptotic limiting
behavior of m(t), it was possible to obtain sharp threshold of propagation [18], [12] for some
classes of initial conditions which cross the threshold u = a only twice, and we refer to [13]
for a numerical treatment of the problem. More precisely, there is a trichotomy. If m(t) is
well defined for all time and lim sup

t→+∞
m(t) = +∞, then there is propagation. If there exists

T > 0 such that lim inf
t→T

m(t) = 0, then there is extinction. Finally, if m(t) remains uniformly

bounded for all times, then the corresponding solution u(t, x) converges to the unique ground
state to (1.1). Another method to derive quantitative conditions for initiation of propagation
in the one-dimensional case was obtained by rewriting the reaction-diffusion equation (1.1)
as a gradient-flow of the energy

E(u) =

∫ [
1

2
|∇u|2 + F (u)

]
dx, (1.2)

where F (u) = −
∫ u
0 f(v)dv, and projecting this gradient flow onto an approximate solution

space [16]. A common choice for the approximation space consists of the amplitude and
width of Gaussian profiles. This projects the infinite dimensional dynamical systems (1.1)
into a two-dimensional space and the criterion for initiating propagation takes the form of
separatrices given by the stable manifold of the ground state which is a saddle node in this
two-dimensional projected space. The idea that the ground state’s stable manifold forms a
threshold surface separating initial conditions leading to propagation or extinction was used
[9] to derive estimates of the sharp threshold by approximating the stable manifold by its
tangent linear space. Let us finally remark that the free boundary approach was recently
applied to neural field equation with Heaviside step nonlinearity where it is possible to obtain
explicit formula for the sharp threshold [5] in this nonlocal setting.

Previous works on (sharp) threshold phenomena for (1.1) rely on different tools such
as the so-called zero number argument [4], the combination of parabolic Liouville theorems
and results on exponential separation and principal Floquet bundle [17], or energy methods
[14, 15], [1]. Let us mention that the work [1], primarly concerned with a population dynamics
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model [10] for evolutionary rescue, shows in particular that the problem

ut = ∆u+ u(u− θ(t))(1− u)

where θ(t)↘ 0 as t→ +∞, enjoys the so-called hair trigger effect: for any nonnegative and
nontrivial initial data, the solution tends to 1 as t→ +∞, locally uniformly in x ∈ RN . Since
quantitative estimates for the bistable sharp threshold were missing, the main assumption
was

∫ +∞
0 θ(s)ds < +∞, which may be “not optimal”.

Our approach is rather more direct, in the spirit of [19], and consists in constructing
new and elaborate sub-and supersolutions that enable to capture the underlying time-space
scaling of the problem. The sharp quantitative estimates we obtain may lead to refine existing
results, such as those in [1] for instance.

We state below our assumptions and main results.

Assumption 1.1 (Nonlinearity f). The function f : R→ R is locally Lipschitz continuous.
There is a threshold θ ∈ (0, 1) such that

f(u) = 0 for all u ∈ (−∞, 0] ∪ {θ} ∪ [1,∞), (1.3)

and

f(u) > 0, ∀u ∈ (θ, 1), and


f(u) < 0, ∀u ∈ (0, θ), (BISTABLE CASE)

or

f(u) = 0, ∀u ∈ (0, θ), (IGNITION CASE).

(1.4)

In the bistable case, we further require ∫ 1

0
f(s)ds > 0. (1.5)

Moreover, the following structure conditions hold.

(i) There are r+ > 0 and δ+ ∈ (θ, 1) such that

f(u) ≤ r+(u− θ), ∀u ∈ [θ, δ+].

(ii) There are r− > 0 and δ− ∈ (θ, 1) such that

f(u) ≥ r− (u− θ) , ∀u ∈ (−∞, δ−].

Notice that the usual cubic bistable nonlinearity

f(u) = ru(u− θ)(1− u), ∀u ∈ [0, 1],

where r > 0, satisfies the above set of assumptions as soon as θ < 1
2 . Also, an ignition

linearity satisfies the above items (i) and (ii) as soon as

0 < lim inf
u→θ+

f(u)

u− θ
≤ lim sup

u→θ+

f(u)

u− θ
< +∞.

Now, for ε ∈ (0, 1− θ) and L > 0, we consider the family of initial data φεL given by

φεL(x) = (θ + ε)1BL(x), x ∈ RN , (1.6)

wherein 1A denotes the characteristic function of the set A, and BL the open ball of center
0 ∈ RN , and radius L. We denote by uεL the solution of (1.1) starting from the initial data
φεL. Then this family of solutions enjoys the so-called threshold property.
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Proposition 1.2 (Threshold property). Let Assumption 1.1 hold. Let ε ∈ (0, 1−θ) be given.
Then there exist L̂ε > 0 and L̃ε > 0 such that

lim
t→+∞

uεL(t, x) =

{
0 uniformly in RN if 0 < L < L̂ε,

1 locally uniformly in RN if L > L̃ε.

In a one dimensional framework, such threshold results were initiated by the seminal works
of Kanel’ [11], Aronson and Weinberger [2], Fife and McLeod [6]. We also refer to Du and
Matano [4] for more recent developments.

In arbitrary dimension and in our context, the existence of L̂ε for the ignition case can,
for instance, by found in [3] or [15]. Note that the study of the ignition case is sufficient to
conclude to the existence of L̂ε for the bistable case due to the comparison principle. Notice
also that the existence (as well as some estimates) of such small radii leading to extinction
will also be proved in this work for monostable nonlinearities (see Theorem 6.2), and thus for
the ignition case due to comparison arguments.

In arbitrary dimension, the proof of the existence of L̃ε can, for instance, be found in [17,
Lemma 3.5] in the case where f is bistable, of the class C1, and satisfies f ′(0) < 0. In our
context, since f is Lipschitz continuous on [0, 1], we can use a small C1−modification from
below of the nonlinearity f and construct a suitable subsolution converging to 1 when L is
large enough. Hence the existence of L̃ε follows from the comparison principle for the bistable
case, and thus for the ignition case due to comparison arguments.

Now, for each ε ∈ (0, 1− θ), we consider the quantities 0 < Lextε ≤ Lpropε given by

Lextε := sup
{
L > 0 : lim

t→∞
uεL(t, ·) = 0 uniformly in RN

}
,

Lpropε := inf
{
L > 0 : lim

t→∞
uεL(t, ·) = 1 in C0

loc(RN )
}
.

In this work we derive sharp estimates for the above quantities in the asymptotic ε→ 0.
We roughly prove that

Lextε and Lpropε ≈ ln
1

ε
as ε� 1.

Our precise result reads as follows.

Theorem 1.3 (Quantitative estimates of the threshold). Let Assumption 1.1 hold. Then
there are two constants 0 < C− < C+ such that

C− ≤ lim inf
ε→0+

Lextε

ln 1
ε

≤ lim sup
ε→0+

Lpropε

ln 1
ε

≤ C+.

Moreover, the constants C± can be chosen as

C− =
1√
r+
, C+ =

2√
r−
,

where r± are as in Assumption 1.1, items (i) and (ii).

When Lextε = Lpropε := L?ε for all small enough ε > 0 , we say that the threshold is sharp.
Theorem 1.3 immediately yields the following corollary.

4



Corollary 1.4 (Sharp threshold). Let Assumption 1.1 hold. If the threshold is sharp then

1√
r+
≤ lim inf

ε→0+

L?ε
ln 1

ε

≤ lim sup
ε→0+

L?ε
ln 1

ε

≤ 2√
r−
.

Let us recall that the sharp threshold phenomena was first analysed by Zlatǒs [19] in the
one dimensional setting.

In the bistable case, the threshold is known to be sharp when we further assume that f is
of the class C1 and f ′(0) < 0, see [17], which is the case of the usual cubic nonlinearity (1.8).
We also refer to [15, Theorem 4] for other conditions insuring that the threshold is sharp in
the bistable case.

In the ignition case, when N = 1, the threshold is known to be sharp when f is non-
decreasing in some right neighborhood of θ, see [4, Theorem 1.4], which is the case of the
nonlinearity (1.7). When N ≥ 2, we refer to [15, Theorem 5, Theorem 6] for conditions
ensuring that the threshold is sharp in the ignition case.

We now provide a corollary about the existence and the behavior as ε→ 0 for the sharp
threshold for the two following prototype nonlinearities

Ignition: f(u) = r(u− θ)(1− u)1(θ,1)(u), (1.7)

and
Bistable: f(u) = ru(u− θ)(1− u)1(0,1)(u), (1.8)

we shall use for numerical validations in Section 5. Here r > 0 and θ ∈ (0, 1) are given
parameters with θ < 1/2 in the bistable case (1.8). In these two prototype situations, our
main results above rewrite as follows.

Corollary 1.5 (Sharp threshold for prototype nonlinearities (1.7) and (1.8)). Let ε ∈ (0, 1−θ)
be given. We consider problem (1.1) with the nonlinearities (1.7) and (1.8). Then the family
of initial data φεL defined in (1.6) exhibits a sharp threshold L?ε that satisfies

C− ≤ lim inf
ε→0

L?ε
ln 1

ε

≤ lim sup
ε→0

L?ε
ln 1

ε

≤ C+,

where the constants C± read as

C− =
1√

r(1− θ)
, C+ =

2√
r(1− θ)

for (1.7),

while

C− =
1√

rθ(1− θ)
, C+ =

2√
rθ(1− θ)

for (1.8).

The organization of the paper is as follows. In Section 2 and Section 3 we inquire on
extinction and non extinction phenomena in some related toy models. Next, in Section 4,
we build on these preliminary results to prove Theorem 1.3 and Corollary 1.5, thus provid-
ing a quantitative estimate of the threshold phenomena. Section 5 is devoted to numerical
explorations that not only validate Theorem 1.3 and Corollary 1.5 but also enable to make
some conjectures on the best constants C±. Last, in Section 6, we present some results on
the threshold phenomena in the case of a degenerate monostable nonlinearity “not enjoy-
ing the so-called hair trigger effect”, the typical example being f(u) = rup(1 − u), where
p > pF := 1 + 2

N . These results are not sharp with respect to ε� 1 as in Theorem 1.3 above.
It however reflects the main order for the length of the sharp threshold for small ε and we
believe our construction of adequate sub and supersolutions is instructive.
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2 Extinction in a toy model

In this section, we consider the piecewise linear function

g(u) = (u− θ)+ .

Herein θ > 0 is a given and fixed parameter and the subscript + is used to denote the positive
part of a real number. Let N ≥ 1 be a given integer. Consider the solution w = w(t, x) of
the semi-linear problem

wt = ∆w + g(w), t > 0, x ∈ RN , (2.1)

together with the initial data

w(0, x) = (θ + ε)1BL(x), x ∈ RN , (2.2)

wherein ε > 0, L > 0, and BL ⊂ RN denotes the ball of radius L centred at the origin.

Proposition 2.1 (Extinction). Let δ > θ be given. Consider the time

Tε := ln
δ − θ
ε

. (2.3)

Then, for any 0 < γ < 1, there exists ε0 > 0 small enough such that, for each ε ∈ (0, ε0) and
for each 0 < L < γ ln 1

ε , the solution w = w(t, x) of (2.1)—(2.2) satisfies

sup
x∈RN

w (Tε, x) ≤ θ, (2.4)

and is thus going to extinction at large times.

Proof. Consider the solution v = v(t, x) of the heat equation

vt = ∆v, t > 0, x ∈ RN ,

starting from w(0, ·). Denote by Γ = Γ(t, x) the heat kernel on RN , given by

Γ(t, x) =
1

(4πt)
N
2

exp

(
−|x|

2

4t

)
, t > 0, x ∈ RN ,

where | · | is used to denote the Euclidean norm in RN . Then v(t, ·) = (θ + ε)Γ(t, ·) ∗ 1BL , so
that for all t > 0

V (t) := ‖v(t, ·)‖L∞(RN ) =
θ + ε

(4πt)
N
2

∫
|x|<L

e−
|x|2
4t dx =

θ + ε

(4π)
N
2

∫
|x|< L√

t

e−
|x|2
4 dx.

We now construct a supersolution to (2.1) in the form W (t, x) := v(t, x)ϕ(t), with ϕ(0) = 1
and ϕ(t) > 0. From Wt −∆W = vϕ′ and the expression of g this requires

ϕ′(t) ≥
(
ϕ(t)− θ

v(t, x)

)
+

, ∀(t, x) ∈ (0,+∞)× RN ,

and thus

ϕ′(t) ≥
(
ϕ(t)− θ

V (t)

)
+

, ∀t ∈ (0,+∞).
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We now choose ϕ as the solution of the Cauchy problem

ϕ′(t) = ϕ(t)− θ

V (t)
, ϕ(0) = 1,

that is

ϕ(t) = et
(

1−
∫ t

0
e−s

θ

V (s)
ds

)
.

Observe that V (0)ϕ(0) > θ and denote by T > 0 the first time where V (T )ϕ(T ) = θ (obviously

we let T = +∞ if such a time does not exist). Then
(
ϕ(t)− θ

V (t)

)
+

= ϕ(t) − θ
V (t) for all

t ∈ [0, T ), and thus W (t, x) = v(t, x)ϕ(t) is a supersolution to (2.1) on the time interval (0, T ).
In particular, if T < +∞, it follows from the comparison principle that w(T, ·) ≤W (T, ·) ≤ θ,
and we are done provided T ≤ Tε, a condition we aim at reaching below.

Now, observe that the condition T < +∞ rewrites as there exists t > 0 satisfying the
equation

FL(t) := θ

(
1− e−t

AL(t)

)
+ ε−

∫ t

0
e−s

θ

AL(s)
ds = 0,

wherein we have set

AL(t) :=
1

(4π)
N
2

∫
|x|< L√

t

e−
|x|2
4 dx = CN

∫ L
2
√
t

0
rN−1e−r

2
dr,

for some constant CN > 0. Since FL(0) = ε and F ′L(t) = θe−t
A′L(t)

A2
L(t)

< 0, the condition T ≤ Tε
is equivalent to require FL(Tε) < 0, that also reads as

1 +
ε

θ
<

∫ Tε

0

e−s

AL(s)
ds+

e−Tε

AL(Tε)
. (2.5)

Note that the right-hand side of the above expression is decreasing with respect to L. We
now select

Lε = γ

√
Tε ln

1

ε
, (2.6)

for some constant γ > 0 to be chosen later, and aim at proving that (2.5), with L = Lε, is
satisfied for ε > 0 small enough. To do so, set

Gε :=

∫ Tε

0

e−s

ALε(s)
ds.

Integrating by parts yields

Gε =

∫ Tε

0

e−s

ALε(s)
ds = 1− e−Tε

ALε(Tε)
+

CN
2N+1

LNε

∫ Tε

0

e−s

A2
Lε

(s)

1

s
N+2

2

e−
L2
ε

4s ds.

Next the change of variable z = s/L2
ε yields

Gε = 1− e−Tε

ALε(Tε)
+

CN
2N+1

∫ 1

γ2 ln 1
ε

0

e−L
2
εz

A2
1(z)

1

z
N+2

2

e−
1
4z dz.
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Hence (2.5) rewrites

2N+1

CNθ
ε < Hε :=

∫ 1

γ2 ln 1
ε

0

e−L
2
εz− 1

4z

A2
1(z)

1

z
N+2

2

dz. (2.7)

Observe that the function z ∈ (0,+∞) 7→ L2
εz + 1

4z is decreasing then increasing and reaches
its minimal value Lε at z = 1

2Lε
. Next one has, as ε→ 0,

2Lε = 2γ

√
ln(δ − θ) ln

1

ε
+ ln2 1

ε
= 2γ ln

1

ε

(
1 +O

(
ln−1

1

ε

))
.

We now restrict to 0 < γ < 2 and select k > 0 small enough so that γ < 2
1+k . It follows from

the above that, for 0 < ε� 1, (
1

2Lε
,
1 + k

2Lε

)
⊂

(
0,

1

γ2 ln 1
ε

)
.

Since

L2
εz +

1

4z
≤ Lε

2
(2 + k), ∀z ∈

(
1

2Lε
,
1 + k

2Lε

)
,

it follows that

Hε ≥
∫ 1+k

2Lε

1
2Lε

e−
Lε
2
(2+k)

z
N+2

2

dz

≥ e−
Lε
2
(2+k)(

1+k
2Lε

)N+2
2

k

2Lε
= CN,ke

−Lε
2
(2+k)L

N
2
ε ∼ CN,γ,ke−γ(1+

k
2
) ln 1

ε

(
ln

1

ε

)N
2

,

as ε → 0. In the above estimate, CN,k and CN,γ,k denote positive constants independent of
ε > 0 small enough, depending on (N, k) and (N, γ, k) respectively. As a result, by restricting
further to 0 < γ < 1 and k > 0 small enough so that γ(1 + k

2 ) < 1, we get that condition
(2.7) is satisfied for 0 < ε� 1. This completes the proof of the result.

3 Non extinction in a toy model

In this section, we fix θ ∈ (0, 1) and we consider the solution w = w(t, x) of the problem

wt = ∆w + w − θ, t > 0, x ∈ RN , (3.1)

together with the initial data

w(0, x) = (θ + ε)1BL(x), x ∈ RN . (3.2)

Proposition 3.1 (Non extinction). Let θ < α′ < α < 1 be given. Consider the time

Tε := ln
α− θ
ε

. (3.3)

Let γ > 2 be given. Then for any 0 < k < 1− 2
γ , there exists ε0 > 0 small enough such that,

for each ε ∈ (0, ε0) and for each L > γ ln 1
ε , the solution w = w(t, x) of (3.1)—(3.2) satisfies

min
|x|≤kLε

w(Tε, x) ≥ α′.
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Proof. Notice that the function w = w(t, x) is explicitly given by

w(t, x) = θ + et(v(t, x)− θ), (3.4)

where v = v(t, x) is the solution of the heat equation

vt = ∆v, t > 0, x ∈ RN ,

with the initial datum v(0, x) = w(0, x). Hence

w(Tε, x) = θ + eTε

[
ε− θ + ε

(4πTε)N/2

∫
|y|≥L

e−
|x−y|2
4Tε dy

]

= θ + (α− θ)

[
1− θ + ε

ε(4πTε)N/2

∫
|y|≥L

e−
|x−y|2
4Tε dy

]
,

from the definition of Tε in (3.3). As result, for all |x| ≤ kL one has, since |y| ≥ L ensures
that |x| ≤ kL ≤ k|y| and |x− y| ≥ (1− k)|y|,

w(Tε, x) ≥ θ + (α− θ)

[
1− θ + ε

ε(4πTε)N/2

∫
|y|≥L

e−
(1−k)2|y|2

4Tε dy

]

≥ θ + (α− θ)

[
1− θ + ε

ε(1− k)NπN/2

∫
|z|≥ (1−k)L√

4Tε

e−|z|
2
dz

]
. (3.5)

We now select

Lε = γ

√
Tε ln

1

ε
, (3.6)

for some constant γ > 2. In view of (3.5), it is enough to conclude the proof to reach

θ + (α− θ)

[
1− θ + ε

ε(1− k)NπN/2

∫
|z|≥ (1−k)Lε√

4Tε

e−|z|
2
dz

]
≥ α′,

for 0 < ε� 1, that is

Iε :=

∫
|z|≥ (1−k)

2
γ
√

ln 1
ε

e−|z|
2
dz ≤ εα− α

′

α− θ
(1− k)NπN/2

θ + ε
. (3.7)

On the other hand, by denoting by AN > 0 some constant depending on N , one has for
X > 0, ∫

|z|≥X
e−|z|

2
dz = AN

∫ ∞
X

rN−1e−r
2
dr ∼ AN

2
XN−2e−X

2
as X →∞,

so that, as ε→ 0,

Iε ∼
AN
2

(
(1− k)

2
γ

√
ln

1

ε

)N−2
exp

(
−(1− k)2

4
γ2 ln

1

ε

)
.

Since (1−k)γ
2 > 1, the above implies Iε = o(ε) as ε → 0, which validates (3.7), and thus

concludes the proof.
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4 Quantitative estimates of the (sharp) threshold phenomena

In this section, we complete the proof of Theorem 1.3 and Corollary 1.5.

Proof of Theorem 1.3. Let Assumption 1.1 hold. Let us select θ < δ < min(δ−, δ+), where
δ−, δ+ are provided by Assumption 1.1 (i), (ii) respectively.

By an immediate time-space rescaling argument we have that the threshold values Lextε =
Lextε (f) and Lpropε = Lpropε (f) under investigation are given by

Lextε =
1√
r+
Lextε (f/r+), Lpropε =

1√
r−
Lpropε (f/r−),

where L
ext/prop
ε (f/r) are the threshold values associated with the nonlinearity f/r.

Let us first enquire on Lextε (f/r+). Let us denote by wεL = wεL(t, x) the solution to

wt = ∆w +
1

r+
f(w),

starting from φεL(x) = (θ+ ε)1BL(x). By combining Assumption 1.1 (i) and comparison with
the ordinary differential equation (use the supersolution t 7→ θ + εet), we immediately have
the upper bound

w(t, x) ≤ δ, ∀(t, x) ∈ [0, Tε]× RN ,

where the time Tε was defined in (2.3). This in turn implies that w is a subsolution to (2.1)
on (0, Tε)×RN . As a result, the extinction result Proposition 2.1 applies: for any 0 < γ < 1,
we have, for 0 < ε� 1, Lextε (f/r+) ≥ γ ln 1

ε and thus

Lextε = Lextε (f) ≥ γ√
r+

ln
1

ε
.

This rewrites as
1√
r+
≤ lim inf

ε→0

Lextε

ln 1
ε

.

Let us now enquire on Lpropε (f/r−). Let us denote by wεL = wεL(t, x) the solution to

wt = ∆w +
1

r−
f(w),

starting from φεL(x) = (θ + ε)1BL(x). Set g(w) = 1
r− f(w) and note that due to Assumption

1.1 (ii), one has
g(w) ≥ w − θ, ∀w ∈ (−∞, δ].

Let η ∈ (0, δ−θ) be small enough and define a Locally Lipschitz continuous function ĝ : R→ R
such that

ĝ(w) =

{
g(w) for w ∈]−∞, θ] ∩ [δ,∞),

w − θ for w ∈ [θ, θ + η],

ĝ(w) ≤ g(w) for w ∈ [θ + η, δ] and
∫ 1
0 ĝ(s)ds > 0. Denote ŵ = ŵ(t, x) the solution of the

problem
ŵt = ∆ŵ + ĝ(ŵ), ŵ(0, x) = w(0, x),

10



so that ŵ(t, x) ≤ w(t, x). Fix η′ ∈ (0, η) and consider the time Tε = ln η
ε . Since

ĝ(w) ≥ w − θ, ∀w ∈ (−∞, θ + η],

and for all ε ≤ η one has ŵ(t, x) ≤ θ + η on [0, Tε] × RN , using Proposition 3.1, one obtains
that, for any given γ > 2 and k > 1− 2

γ , there exists ε0 > 0 such that, for all ε ∈ (0, ε0) and

L > Lε := γ ln 1
ε , one has

ŵ(Tε, x) ≥ (θ + η′)1BkLε .

Define by L̂propη′ the propagating threshold associated to the equation with the nonlinearity ĝ.

Hence, for all ε small enough such that kLε > L̂propη′ , one has ŵ(t, x)→ 1 as t→ +∞ locally
uniformly in space and therefore w(t, x) → 1 as t → +∞ locally uniformly in space. As a
consequence we obtain

Lpropε (f/r−) ≤ Lε for all ε << 1.

Hence we get

lim sup
ε→0

Lpropε (f/r−)

ln 1
ε

≤ γ, ∀γ > 2.

This rewrites as

lim sup
ε→0

Lpropε

ln 1
ε

≤ 2√
r−
,

and concludes the proof of Theorem 1.3.

Proof of Corollary 1.5. In view of Corollary 1.4, it is sufficient to prove that the threshold is
sharp. In the bistable case, the threshold is known to be sharp when we further assume that
f is of the class C1 and f ′(0) < 0, see [17], which is the case of the usual cubic nonlinearity
(1.8). On the other hand, the ignition case (1.7) can be handled using the results of [15].
Indeed fix ε ∈ (0, 1− θ) and fix L > Lpropε . We consider the family of solutions uεL = uεL(t, x)
of (1.1) starting from (1.6). Recall that it is non decreasing with respect to L. Then, since
uε
L

(t, ·)→ 1 as t→ +∞, locally uniformly in RN , there exists t > 0 such that the energy, see
(1.2), satisfies

E
(
uε
L

(t, ·)
)
< 0.

Finally, since uεL(t, ·) → 0 as L → 0, the existence of the sharp threshold Lεε directly follows
from the application of the results of Muratov and Zhong [15] for ignition nonlinearities and
the family of initial data {uεL(t, ·)}L>0. Notice that this argument also applies in the bistable
case and in some monostable situations (see Corollary 6.5).

5 Numerical explorations

We explored sharp threshold of propagation numerically for the one dimensional case, that
is N = 1 throughout this section. We first report on numerical explorations of the validity
range of our predictions from Corollary 1.4 for nonlinearities satisfying Assumption 1.1 and
more precisely Corollary 1.5 for (1.7) and (1.8). We also show some evidence for the existence
of a universal constant C(θ) such that

lim
ε→0+

L?ε
ln 1

ε

= C(θ),

for both ignition and bistable nonlinearities. Finally, we investigate other dependencies.

11



5.1 Numerical validation of Corollary 1.5

We used second order finite differences in space and a splitting method in time where the
diffusion part of the equation is evaluated with a Crank-Nicolson scheme while the nonlinear
term is either evaluated exactly (for the ignition case) or with a Runge-Kuttta method of order
two (for the bistable nonlinearity). Time step and space discretization were set respectively
to δt = 0.02 and δx = 0.02. We used direct numerical simulations to evaluate the critical
threshold L?ε using the following strategy. For fixed nonlinearity f and ε > 0, we varied the
size L > 0 of the support of the initial condition:

φεL = (θ + ε)1[−L,L],

and ran our numerical scheme from t = 0 to some final time t = T . For each L > 0, we
evaluated the maximum of the numerically computed solution at the last time step. We then
discriminated the precise value of L for which there is a transition from extinction (maximum
being close to zero) to propagation (maximum being close to one). As we expect the sharp
threshold L?ε to be of the order ln 1

ε as ε→ 0+ and the transition to occur for times of the order
ln 1

ε , we took a spatial domain of computation [−100, 100] and a final time of computation
T = 100. This allowed us to cover a range for ε from 10−3 to 10−1.

Ignition nonlinearity. We present our results for the ignition nonlinearity function

f(u) = (u− θ)(1− u), u ∈ [0, 1],

for several values of θ ∈ (0, 1). Numerically computed values of L?ε are plotted in Figure 1
(left) as a function of ln 1

ε together with a corresponding linear fit for several representative
values of θ. Measured slopes are presented in Table 1 for a larger range of θ ranging from 0.1
to 0.6. Our numerical results seem to indicate that

lim
ε→0+

L?ε
ln 1

ε

=
1√

1− θ
,

as it can be inferred from the last line in Table 1.

θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6

sm 1.11 1.20 1.24 1.32 1.43 1.57√
1− θsm 1.05 1.07 1.04 1.02 1.01 0.99

Table 1: Ignition nonlinearity. Measured slopes sm of the linear fit of L?ε as a function of
ln 1

ε together with their rescaled values
√

1− θsm. See Figure 1 (left). Note that
√

1− θsm ' 1
appears to be independent of θ.

Bistable nonlinearity. We present our results for the bistable nonlinearity function

f(u) = u(u− θ)(1− u), u ∈ [0, 1],

for several values of θ ∈ (0, 1/2). Numerically computed values of L?ε are plotted in Figure 1
(right) as a function of ln 1

ε together with a corresponding linear fit for several representative

12
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Figure 1: Numerically computed values of L?ε as a function of ln 1
ε for several values of θ for

the ignition nonlinearity (left) and bistable nonlinearity (right). We also superimposed in
plane line a linear fit whose slopes sm are reported in Table 1 for the ignition nonlinearity
(resp. in Table 2 for the bistable nonlinearity).

values of θ. Measured slopes are presented in Table 2 for a larger range of θ ranging from
0.1 to 0.4. As predicted by our main Theorem 1.3, we observe that

√
θ(1− θ)sm ∈ [1, 2].

Contrary to the ignition case, it seems that
√
θ(1− θ)sm does depend on θ and, moreover, in

a nonlinear fashion. Our measured values did not allow us to conjecture an elaborated guess
for this dependence. We report in Figure 2 the numerically computed values of

√
θ(1− θ)sm

for several values of θ ∈ (0, 1/2).

θ = 0.1 θ = 0.15 θ = 0.2 θ = 0.25 θ = 0.3 θ = 0.35 θ = 0.4

sm 5.12 4.43 4.04 3.78 3.62 3.52 3.45√
θ(1− θ)sm 1.53 1.58 1.61 1.63 1.66 1.67 1.69

Table 2: Bistable nonlinearity. Measured slopes sm of the linear fit of L?ε as a function of
ln 1

ε together with their rescaled values
√
θ(1− θ)sm. See Figures 1 (right) and 2. Note that√

θ(1− θ)sm ∈ [1, 2] as predicted by our main Theorem 1.3.

5.2 Other dependencies – Bistable nonlinearity

Here, we report on some other dependencies of the critical threshold L? in the case of the
bistable nonlinearity

f(u) = u(u− θ)(1− u).

We have considered the following family of compactly supported initial conditions:

φL = 1[−L,L], L > 0,

such that the amplitude of the initial condition is fixed to the stable steady state 1. For each
θ ∈ (0, 1/2), we numerically computed the corresponding critical threshold L? by varying the
size L > 0 of the support. We report in Figure 3 our numerical findings. We recover that
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Figure 2: Numerically computed values of
√
θ(1− θ)sm for several values of θ ∈ (0, 1/2) as

reported in Table 2 for the bistable nonlinearity (1.8).

in the limit θ → 0+, the critical threshold L? → 0. Indeed, as θ → 0+, the nonlinearity
approaches f(u) = u2(1 − u) for which the hair trigger effect is known [3]. Our numerics
suggest that the dependence of L? near θ = 0 is linear, and we get

lim
θ→0+

L?

θ
≈ 4.85.

On the other hand, when θ → 1
2

−
, we obtain L? → +∞. In the limit, we have

∫ 1
0 f(u)du = 0,

and there does not exist any ground state (homoclinic solution to the steady state 0) to
equation (1.1). Instead, there is a one-parameter family of stationary monotone interfaces
between u = 0 and u = 1. Our numerics suggest that the dependence of L? near θ = 1

2 is
logarithmic, and we get

lim
θ→ 1

2

−

L?

ln 1
1−2θ

≈ 0.99.

6 Degenerate monostable case

In this section we consider u = u(t, x) the solution of the Cauchy problem{
ut = ∆u+ f(u), t > 0, x ∈ RN ,
u(0, x) = ε1BL(x), x ∈ RN ,

(6.1)

where ε ∈ (0, 1] and L > 0 are given parameter, and where f is a monostable degenerate
nonlinearity, that is assumed to satisfy the following set of assumptions.

Assumption 6.1 (Degenerate monostable nonlinearity f). The function f : R→ R is locally
Lipschitz continuous, satisfies f = 0 on (−∞, 0] ∪ [1,+∞),

f(u) > 0, ∀u ∈ (0, 1),
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Figure 3: Numerically computed values of L? as a function of θ for the bistable nonlinearity
and amplitude of the initial condition fixed to the stable steady state 1. We also superimposed
in plane lines a linear fit near θ = 0 (blue line) and a logarithmic fit near θ = 1/2 (red line).

The measured slope s0m of the linear fit near θ = 0 is s0m = 4.85. The measured slope s
1/2
m of

logarithmic fit of L? as a function of ln 1
1−2θ is s

1/2
m = 0.99.

and

0 < lim inf
u→0+

f(u)

up
≤ lim sup

u→0+

f(u)

up
< +∞, (6.2)

for some p > 1.

When 1 < p ≤ pF , where pF := 1 + 2
N is the so called Fujita exponent [8], it is well known

[3] that the reaction-diffusion equation ut = ∆u+ f(u) enjoys the hair trigger effect: for any
nonnegative and nontrivial initial data, the solution tends to 1 as t→ +∞, locally uniformly
in x ∈ RN . On the other hand, when p > pF , it is known [3] that some “small enough” initial
data imply extinction, whereas some “large enough” initial data imply propagation. Our goal
is here to provide some quantitative estimates on this threshold phenomenon.

The first result of this section provides an lower estimate for the radius of extinction.

Theorem 6.2 (Extinction). Let Assumption 6.1 hold with p > 1 + 2
N . Then there is a

constant C− = C−(f,N) > 0 such that for all ε ∈ (0, 1], as soon as

L <
C−

ε
p−1
2

, (6.3)

the solution to (6.1) satisfies

‖u(t, ·)‖L∞(RN ) = O
(
t−

N
2

)
, as t→ +∞. (6.4)

Proof. Throughout this proof we fix ε ∈ (0, 1] and we consider the solution v = v(t, x) of the
heat equation

vt = ∆v, t > 0, x ∈ RN ,
starting from v(0, ·) = u(0, ·) = ε1BL , so that

V (t) := ‖v(t, ·)‖L∞(RN ) =
ε

(4π)
N
2

∫
|x|< L√

t

e−
|x|2
4 dx =: εAL(t).
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Following the proof of Proposition 2.1, we seek a supersolution to (1.1) for t > 0 and x ∈ RN
in the form U(t, x) := v(t, x)ϕ(t), with ϕ(0) = 1 and ϕ(t) > 0. Since there is K > 0 such that
f(u) ≤ Kup for all u ∈ R, it is enough to have

ϕ′(t)

ϕp(t)
= Kεp−1Ap−1L (t),

which is solved as

ϕ(t) =
1(

1− (p− 1)Kεp−1
∫ t
0 A

p−1
L (s)ds

) 1
p−1

.

Since we need ϕ to be global, the condition we obtain reads as

1 > (p− 1)Kεp−1
∫ +∞

0
Ap−1L (s)ds.

Notice that, for a given L > 0, there exists some positive constant CN,L such that AL(t) ∼
CN,L

t
N
2

as t → +∞ so that the above improper integral does converge since p > 1 + 2
N . The

above condition rewrites as

1 > (p− 1)Kεp−1
1

(4π)
(p−1)N

2

∫ +∞

0

(∫
|x|< L√

s

e−
|x|2
4 dx

)p−1
ds,

or, letting s = L2t,

1 > (p− 1)Kεp−1
1

(4π)
(p−1)N

2

L2

∫ +∞

0

(∫
|x|< 1√

t

e−
|x|2
4 dx

)p−1
dt =: CL2εp−1,

for some constant C = C(p,K,N) > 0. Hence, when this condition is fulfilled, we are
equipped with a global supersolution U(t, x) = v(t, x)ϕ(t) with ϕ bounded which ensures
that (6.4) holds. This concludes the proof.

Our next result is concerned with a lower estimate for the radius leading to propagation.
Contrary to the previous result that provides an estimate valid for any ε ∈ (0, 1], here our
lower estimate is valid for 0 < ε� 1 and it reads as follows.

Theorem 6.3 (Propagation). Let Assumption 6.1 hold. Then there exist C+ = C+(f,N) > 0
and ε0 > 0 small enough such that, for all ε ∈ (0, ε0), there is Lε > 0 satisfying

Lε ∼
C+

ε
p−1
2

(
ln

1

ε

) 1
2

as ε→ 0, (6.5)

such that, for all L > Lε, the solution to (6.1) satisfies

lim
t→+∞

u(t, x) = 1 locally uniformly in RN . (6.6)

Proof. From Assumption 6.1, there are δ > 0 and r > 0 such that f(u) ≥ rup for all 0 ≤ u ≤ δ.
Up to a time-space rescaling argument we can assume, without loss of generality, that r = 1.
As a direct consequence of Proposition 1.2 (for the ignition case), Problem (6.1) enjoys the
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threshold phenomena that ensures that for any α ∈ (0, 1) there exists a radius L̃α > 0 such
that for all L ≥ L̃α the function wL = wL(t, x) defined as the resolution of (6.1) with the
initial datum w(0, x) = α1BL(x) satisfies

wL(t, x)→ 1 as t→ +∞ locally uniformly for x ∈ RN .

Now to prove Theorem 6.3, let us consider Y (τ, ξ), the solution of the ODE Cauchy
problem, where ξ ∈ R serves as a parameter,

∂τY (τ, ξ) = (Y )p+, Y (0, ξ) = ξ,

namely

Y (τ, ξ) =


ξ if τ > 0 and ξ ≤ 0,

1(
−(p−1)τ+ 1

ξp−1

) 1
p−1

if τ > 0, ξ > 0 and τ < 1
(p−1)ξp−1 .

For 0 < ε < δ we set

Tε :=
1

(p− 1)εp−1
− 1

(p− 1)δp−1
. (6.7)

And observe that one has

0 < Y (τ, ξ) < δ, ∀τ ∈ (0, T ε),∀ξ ∈ (0, ε).

Again we consider the solution v = v(t, x) of the heat equation starting from v(0, ·) = u(·, 0) =
ε1BL , and define

u−(t, x) := Y (t, v(t, x)), 0 ≤ t ≤ T ε, x ∈ RN .

For 0 < t ≤ T ε, x ∈ RN , we have

u−t −∆u− − f(u−) = Yτ + vtYξ −∆vYξ − |∇v|2Yξξ − f(Y )

≤ Yτ + vtYξ −∆vYξ − |∇v|2Yξξ − Y p

= −|∇v|2Yξξ
≤ 0,

since one can easily check that Yξξ(τ, ξ) ≥ 0 for all τ > 0, ξ > 0 with τ < 1
(p−1)ξp−1 . Hence,

for each ε ∈ (0, δ), the comparison principle applies and yields

u(Tε, x) ≥ Y (Tε, v(Tε, x)), ∀x ∈ RN . (6.8)

Next, we have

v(Tε, x) = ε− ε

(4πTε)N/2

∫
|y|≥L

e−
|x−y|2
4Tε dy.

As a result, for any k ∈ (0, 1), for all |x| ≤ kL one has, since |y| ≥ L ensures that |x| ≤ kL ≤
k|y| and |x− y| ≥ (1− k)|y|,

v(Tε, x) ≥ ε− ε

(4πTε)N/2

∫
|y|≥L

e−
(1−k)2|y|2

4Tε dy

≥ ε− ε

(1− k)NπN/2

∫
|z|≥ (1−k)L√

4Tε

e−|z|
2
dz := ξε. (6.9)
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Now fix 0 < δ′ < δ and k ∈ (0, 1). We look for a condition ensuring that, for all x ∈ BkL,
we have Y (Tε, v(Tε, x)) ≥ δ′, that reads as[

−(p− 1)Tε + ξ1−pε

] 1
1−p ≥ δ′.

Recalling the definition of Tε in (6.7) this rewrites as

ξε ≥ ε
[
1 + εp−1

[
1

(δ′)p−1
− 1

(δ)p−1

]] 1
1−p

.

Denoting C :=
[

1
(δ′)p−1 − 1

(δ)p−1

]
> 0, the above inequality becomes

ξε ≥ ε
[
1 + εp−1C

] 1
1−p = ε− εpC

p− 1
+O

(
ε2p−1

)
.

In view of (6.9) it is sufficient to have, for 0 < ε� 1,

ε

(1− k)NπN/2

∫
|z|≥ (1−k)L√

4Tε

e−|z|
2
dz ≤ εpC

p− 1
+O

(
ε2p−1

)
. (6.10)

We now select

Lε = γ

√
Tε ln

1

ε
, (6.11)

for some constant γ > 0. As in the proof of Proposition 3.1, if Iε denotes the integral in the
left hand side of (6.10), we have, as ε→ 0,

Iε ∼
AN
2

(
(1− k)

2
γ

√
ln

1

ε

)N−1
exp

(
−(1− k)2

4
γ2 ln

1

ε

)
,

for some constant AN > 0 independent of ε small enough. Using this we see that (6.10) holds
true, for 0 < ε� 1, as soon as γ > 0 is large enough so that

(1− k)2

4
γ2 > p− 1. (6.12)

We have thus proved that, for any k ∈ (0, 1) and γ > 0 such that (6.12) holds, we have
that, for all 0 < ε� 1,

min
|x|≤kLε

u(Tε, x) ≥ α′.

As a consequence, choosing ε small enough so that kLε ≥ L̃α′ , the comparison principle
ensures that (6.6) holds true, as soon as ε > 0 is sufficiently small. This completes the proof
of the theorem.

As in Section 1, introducing for each ε ∈ (0, 1] the radii Lextε and Lpropε , from Theorem 6.2
and Theorem 6.3, we immediately infer the following.

Corollary 6.4 (Threshold radii for degenerate monostable case). Let Assumption 6.1 hold
with p > 1 + 2

N . Then the threshold radii Lextε ≤ Lpropε for (6.1) satisfy

0 < lim inf
ε→0

ε
p−1
2 Lextε and lim sup

ε→0

ε
p−1
2(

ln 1
ε

) 1
2

Lpropε < +∞.
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Note that in the one dimensional case, namely N = 1, it is known that the threshold
is sharp, that is Lextε = Lpropε := L?ε for any ε ∈ (0, 1]. We refer to Du and Matano [4] for
the proof of this sharpness. We also refer to [15, Theorem 7, Theorem 8, Theorem 9] for
further results and conditions insuring that the threshold is sharp in the multi-dimensional
degenerate monostable case.

As a special case, when f(u) = rup(1− u)1[0,1](u) with p > 1 + 2
N , the threshold is sharp

(see the proof of Corollary 1.5), and the above corollary provides rather refined estimates of
this quantity in the asymptotic ε→ 0, that can be reformulated as follows.

Corollary 6.5 (Sharp threshold for prototype degnerate monostable nonlinearity). Let ε ∈
(0, 1] be given. Consider the prototype nonlinearity

f(u) = rup(1− u)1(0,1)(u), p > 1 +
2

N
,

where r > 0. Then the problem (6.1) exhibits a sharp threshold L?ε that satisfies

0 < lim inf
ε→0

ε
p−1
2 L?ε and lim sup

ε→0

ε
p−1
2(

ln 1
ε

) 1
2

L?ε < +∞.
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