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Abstract

Oxysterols are molecules derived by the oxidation of cholesterol and can be formed either by
auto-oxidation, enzymatically or by both processes. Among the oxysterols formed by auto-
oxidation, 7-ketocholesterol and 7B-hydroxycholesterol are the main forms generated. These
oxysterols, formed endogenously and brought in large quantities by certain foods, have major
cytotoxic properties. They are powerful inducers of oxidative stress, inducing dysfunction of
organelles (mitochondria, lysosomes and peroxisomes) that can cause cell death. These molecules
are often identified in increased amounts in common pathological states such as cardiovascular
diseases, certain eye conditions, neurodegenerative disorders and inflammatory bowel diseases.
To oppose the cytotoxic effects of these molecules, it is important to know their biological
activities and the signaling pathways they affect. Numerous cell models of the vascular wall, eye,
brain, and digestive tract have been used. Currently, to counter the cytotoxic effects of 7-
ketocholesterol and 7B-hydroxycholesterol, natural molecules and oils, often associated with the
Mediterranean diet, as well as synthetic molecules, have proved effective in vitro. Bioremediation
approaches and the use of functionalized nanoparticles are also promising. At the moment,
invertebrate and vertebrate models are mainly used to evaluate the metabolism and the toxicity of
7-ketocholesterol and 7B-hydroxycholesterol. The most frequently used models are mice, rats and
rabbits. In order to cope with the difficulty of transferring the results obtained in animals to
humans, the development of in vitro alternative methods such as organ / body-on-a-chip based on

microfluidic technology are hopeful integrative approaches.

Keywords: 7-ketocholesterol, 7B-hydroxycholesterol, cell models, animal models, microfluidic,

signaling pathways.



1 — Introduction

At the moment, there are several lines of evidence in numerous cell lines from different species
that 7-ketocholesterol (7KC) and 7B-hydroxycholesterol (7p-OHC) induce cytotoxic side effects
including rupture of RedOx homeostasis, inflammation and cell death defined as oxiapoptophagy
(OXldative stress + APOPTOsis + autoPHAGY). This is associated with important modifications
of the lipid profile and with organelle dysfunction (mitochondria, lysosome, peroxisome) [1]. As
increased levels of 7KC and 7p-OHC are associated in major diseases such as age-related
diseases (cardiovascular diseases, neurodegeneration, eye disorders, osteoporosis and some
cancers) and chronic diseases (bowel diseases) [2, 3], there is a need to better understand the
biological activities of these molecules not only in vitro but also in vivo in order i) to identify
pharmacological targets, and ii) to identify natural and synthetic compounds capable of
counteracting 7KC- and 7B-OHC-induced side effects, as well as iii) to develop innovative
therapeutic strategies (targeted nanotherapies [4], bioremediation [5, 6]). To overcome deficits in
animal models whose results are sometimes difficult to transfer to humans, the development of
alternative methods (“Lab on a Chip” / “Body on Chip” / organoids), perhaps combined with the
use of inducible pluripotent stem cells (iPSCs), are promising integrative approaches.

The present review will discuss the biogenesis and catabolism of 7KC and 7p-OHC; the
biological activities of these oxysterols; their signaling pathways associated with oxidative stress,
organelle dysfunction, cell death and inflammation; and the natural and synthetic compounds
capable of preventing or attenuating their cytotoxic effects. The in vitro and in vivo models used
to demonstrate these effects will be presented. Potentially suitable alternative methods to animal
models (“Lab on a Chip” / “Body on Chip” / organoids / iPSCs) allowing to study the biological
activities of 7KC and 7B-OHC and to identify molecules capable to modulate their biological

activities will also be discussed.

2 - Biogenesis and catabolism of 7-ketocholesterol and 7-hydroxycholesterol

Sterols are isoprenoid-derived molecules that have essential functions in eukaryotes, and in
higher plants. Oxysterols are oxidized derivatives of cholesterol or its precursors post lanosterol
[7-9]. They are associated with numerous major pathologies: cardiovascular diseases,

neurodegeneration, eye disorders, osteoporosis and some cancers [2, 3, 10]. The most well-
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known oxysterols are oxygenated derivatives of cholesterol which are formed by the addition of
one or more oxygenated functional groups to 27-carbon cholesterol molecule [11]. Higher plants,
algae, most fungi, and vertebrates synthesize sterols whereas insects do not. In vertebrates,
cholesterol is the major sterol, whereas a mixture of various sterols, named phytosterols, is
present in higher plants with sitosterol [(24R)-24-ethyl cholesterol] usually predominating. The
phytosterols, which are structurally similar to cholesterol, can also be oxidized to give
oxyphytosterols such as 7-ketositosterol and 7p-hydroxysitosterol [12]. Normocholesterolemic
healthy individuals contain a mixture of oxysterols in their peripheral blood, accounting for 1-5%
of total cholesterol [13]. Cholesterol oxidation can occur on the hydrocarbon rings (A, B, C and
D) of the steroid nucleus or on the side chain of the cholesterol molecule [11]. The oxysterols can
be obtained by auto-oxidation, enzymatically or by both processes [11, 14-17]. Oxysterols
formed enzymatically are often oxidized on the lateral chain and produced by cytochrome P450
enzymes with the exception of 25-hydroxycholesterol, which is formed by cholesterol 25-
hydroxylase (CH25H) [11, 13]. For the latter, there are also arguments in favor of its formation
by auto-oxidation of cholesterol [18, 19]. The double bond present on the B ring is the most
energetically favorable target of free radical attack and therefore carbon atoms at the positions of
4,5, 6 and 7 are more susceptible to free radical oxidation [15, 17]. Commonly, B-ring oxidized
oxysterols include hydroxylated compounds: 7a-hydroxycholesterol (70-OHC) and 7p-
hydroxycholesterol (7p-OHC); oxysterols with a ketone group [7-ketocholesterol (7-KC, also
named 7-oxocholesterol)]; epoxy cholesterols [5B, 6B- epoxy cholesterol (5B, 6B-epox), 5a, 6a-
epoxy cholesterol (50, 6a-epox)] and cholestan-3f, Sa, 6 triol. Among the oxysterols oxidized at
C7 [70-OHC (Systemic name: Cholest-5-en-3pB,7a-dio; CAS (Chemical Abstracts Service)
number: 566-26-7; lipid map: LMST01010013); 7B-OHC (Systemic name: 5-Cholestene-3p,7p-
diol; CAS number: 566-27-8; lipid map: LMST01010047) and 7KC (Systemic name: 7-0xo-
Cholest-5-en-3p3-ol; CAS number: 566-28-9; lipid map: LMST01010049)] (Figure 1). 7a-OHC is
formed enzymatically by the enzyme cholesterol 7a-hydroxylase (CYP7A1L), and is a precursor
of bile acids [20, 21].

The oxysterols 7KC and 7B-OHC can be ingested in certain industrial foods [22-24] and are
present in high amounts in atheromatous plaques, oxidized lipoproteins and in the retinal drusen

in patients with cardiovascular diseases and age-related macular degeneration (ARMD),



respectively. It has long been considered that these oxysterols were only formed by auto-
oxidation of cholesterol [25]. There are also arguments supporting that exogenous 7KC is rapidly
metabolized and excreted by the liver, suggesting that dietary 7KC make little or no contribution
to atherogenesis [26]. At the moment, several putative mechanisms of cholesterol auto-oxidation
are proposed [15, 16, 27, 28]. In cardiovascular diseases and ARMD, 7KC and 7B-OHC can be
formed in situ under a pro-oxidant environment [14, 29-31]. The proportion of oxysterols in
plasma of hypercholesterolemic patients is about 7KC (57%)>7p /a-OHC (21%)>5p,6p-
cholesterol epoxide (12%)>Triol (10%) while in atherosclerotic plaques it is about 7-KC
(55%) > Triol (13%)>7a /B -OHC (12%)>5B,6p / Sa,60. -cholesterol epoxide (10%) [32].
Adverse environmental conditions, such as chronic air pollution exposure, have also been

reported to favor 7-KC accumulation, foam cell formation, and atherosclerosis in mice [33].

Currently, it is also well established that 7KC can be formed via the CYP7Al enzyme from 7-
dehydrocholesterol (7-DHC), which is the precursor of Vitamin D3 (cholecalciferol), and which
IS present in high amounts in the plasma of patients with Smith Lemli Opitz syndrome who are
deficient in the enzyme 7-dehydrocholesterol reductase (DHCR7) [21, 34]. It has also been
demonstrated that the 11B-hydroxysteroid-dehydrogenase type | (11p—-HSD1 / gene HSD11B1),
which is responsible for the conversion of cortisone in cortisol, is also responsible for the
conversion of 7-KC in 78-OHC [21, 35-37]. In humans, 11—HSD1 can also catalyse the
conversion of 78-OHC into 7KC [38]. In addition, the 11B-hydroxysteroid-dehydrogenase type 11
(11B—HSD2 / gene HSD11B2), which is responsible for the conversion of cortisol in cortisone, is
also responsible for the conversion of 78-OHC in 7KC [21, 35, 39]. Of note, the activity and
reaction direction of 113—-HSD1 can be altered under conditions of 7-oxysterol excess, and could
impact upon the pathophysiology of obesity [40, 41]. How 7KC and 7B-OHC are further
metabolized is of great interest since the resulting metabolites may have important biological
activities. Oxysterols are present in vivo in different forms, namely, the esterified, sulfated, and
conjugated forms, as well as free oxysterols [42]. There are now several arguments supporting
that 7KC can give rise to numerous metabolites, which probably vary depending on the cell type
considered [21, 43]. However, little is known about the catabolism of 78-OHC. However, for this
oxysterol as well as for 7KC, regulation of its activity by sulfation via sulfotransferase 2B1b
(SULT 2B1b) cannot be excluded [44]. In addition, potential modifications of the activities of



7K C and 7B-OHC by esterification can also occur. Thus, in human retinal pigment epithelial cells
(ARPE19), it has been reported that the esterification of 7KC to fatty acids involves the
combined action of cytosolic phospholipase A2 alpha (cPLA2a) and sterol O-acyltransferase
(SOATL1) [45]. In addition, Acyl-coenzyme A, a cholesterol acyltransferase (ACAT, also
abbreviated as SOATS) which converts cholesterol to cholesteryl esters and which play key roles
in the regulation of cellular cholesterol homeostasis, is known to metabolize diverse substrates
including both sterols and certain steroids [46]. Oxysterols are substrates of SOAT1 and SOAT2.
Of note, in human promonocytic U937 cells, none of the cytotoxic effects observed with 73-OHC
and 7KC were noted with cholesterol, 78-OHC-3-oleate and 7KC-3-oleate, with the exception of
a slight increase in superoxide anion production with 7B-OHC-3-oleate [47]. The enzyme
lecithin-cholesterol acyltransferase (LCAT) also permits synthesis of monoesters of 24(S)-
hydroxycholesterol [48]. LCAT could also esterify all oxysterols as monoesters (3f-hydroxyl
group) and it has been suggested that it could also generate diesters (3B-hydroxyl group and 27-
hydroxyl group) in some cases [49]. Specifying the impact of these previously cited enzymes on
7KC and 7B-OHC, in diseases where the levels of these oxysterols are modified, could lead to the
identification of new therapeutic targets. It has also been reported on human hepatoma cells
(HepG2) that the mitochondrial sterol 27-hydroxylase (CYP27A1) was responsible from the 27-
hydroxylated product of 7KC [50].

2 — In vitro study of the biological activities of 7-ketocholesterol and 7p-hydroxycholesterol
and identification of molecules modulating their activity

The toxicity of certain oxysterols, such as 7KC and 78-OHC, and the suspected mutagenicity of
some of them, such as 5,6-epoxides [51, 52], led to study the toxic and mutagenic properties of
these molecules in different cell models. In acidic aqueous solution, 5,6-epoxides can give
cholestane-3p,5a,6p-triol (CT) as a single product [53]. Using the Ames test, no mutagenic
activity of 7KC, 7B-OHC and 5,6-epoxides was found whereas CT was slightly mutagenic [53,
54]. However, 5,6-epoxides were mutagenic at high concentration on V79 Chinese hamster lung
fibroblasts and induced the transformation of murine embryo cells [55, 56]. In addition, no
genotoxicity was observed when CHO and Indian Muntjac fibroblastic cells were exposed to 5,6-
epoxides [57]. Based on these different studies, it is currently considered unlikely that 5,6-

epoxides will be direct carcinogenic [58]. As atherosclerosis is the first pathology in which the



contribution of oxysterols, mainly 7KC and 73-OHC, was suspected several works were realized
in this field [25, 42, 59]. Subsequently, due to several studies suggesting a role of 7KC and / or
7B-OHC in certain ocular diseases (cataract, ARMD), neurodegeneration (Alzheimer's disease in
particular) [3], and bowel diseases [2], several types of cells from the eye, brain and digestive
tract were used to characterize the cytotoxicity of 7KC and 7B-OHC and to identify molecules

capable of preventing their side effects.

2.1 - In vitro models applied to the study of cardiovascular diseases and the
identification of cytoprotective compounds in this field
Atherosclerosis, which favors thrombosis, stroke and myocardial infarction, is a slow
multifactorial degenerative process involving inflammatory, oxidative and cytotoxic processes. In
the development of atherosclerosis, which is a frequent age-related disease [3], major roles are
attributed to 7KC and 7B-OHC identified at high levels in the plasma and atheroma plaques of
atheromatous patients [60]. In order to determine the biological activities of these molecules,
several cellular models have been used especially endothelial cells, smooth muscle cells and

monocytic cells.

With regard to cellular models contributing to vessel structure, endothelial cells were used like
the human umbilical vascular endothelial cells (HUVEC) [61] and some endothelial cell lines: a)
human endothelial cells Eahy926 [62], b) human aortic endothelial cells (HAECs) [63, 64]; c)
human endothelial cell line ISO-HAS [65], d) mouse endothelial cells (EOMA cells) [66], €)
mouse carotid arterial endothelial cells (CAECs) [67]. The in vitro model of arterial relaxation of
aortic rings was also used to study the impact of 7-hydroxycholesterols (7KC, 78-OHC) on
endothelial functions [68]. Endothelial cells derived from a primary rat aorta culture (rat aortic
endothelial cells (RAEC)) were also used [69].

Rat A7r5 smooth muscle cells and human aortic vascular smooth muscle aortic cells (HA-
VSMC) were used to assess the cytotoxic effects of 7-KC and/or 7-BOHC [70, 71]. Smooth
muscle cells can also be extracted from aortic tissue of patients [72]. Data obtained on primary
cultures from mice (mouse coronary arterial smooth muscle cells (CASMCs) [73] or rabbit [74])

have also been reported.



For inflammatory cells, the most commonly in vitro models used are monocytic / macrophage
cells THP-1, U937, J774, but also RAW 264.7 and preloaded macrophages (P388D1 cell line)
[47, 75-81]. Monocytes were also cultured from human peripheral blood mononuclear cells
(PBMCs) [82, 83] or harvested from the mouse peritoneal fluid (peritoneal macrophages) or from

mouse aorta (arterial macrophages) [84].
Cardiomyocytes were studied using mouse cardiac cells isolated from HL1-NB mice [85].

These different cell models were not only used to study the impact of 7KC and 7B-OHC on the
cells of the vascular wall, but also to identify natural and synthetic molecules capable of
preventing the cytotoxicity of 7-KC and 7-pOHC. In these cell models, the following data have
been reported: Vitamin E (a-tocopherol) inhibits 7KC-induced oxidative stress, and apoptosis
[86, 87]; butyrate, which belongs to a family of gut microbial metabolites, as well as short chain
fatty acids (SCFASs) decrease the formation and the activation of NIrp3 inflammasome induced by
7KC [66]; epigallocatechin 3-gallate (EGCG) inhibits 7KC-induced monocyte—endothelial cell
adhesion [65]; indicaxanthin, a bioactive pigment from cactus pear fruit, inhibits 7KC-induced
THP-1 cell apoptosis [75]; soy-leaf extract has atheroprotective effects via modulation of
Krippel-Like Factor 2 and adhesion molecules in 7KC-treated HUVECs [88] ; retinoid X
receptor a. (RXRa) modulator, K-80003, a non-steroidal anti-inflammatory drug, inhibits 7-KC-
induced RXRa cytoplasmic translocation [79]; terculic acid, cyclopropene fatty acid, antagonizes
7KC-mediated inflammation [89]; azelnidipine, a calcium channel blocker, inhibits ROS-
dependent expression of vascular cell adhesion molecule 1 (VCAM-1) induced by 7KC [90]
Aronox, an anthocyanin-rich extract from Aronia melanocarpa E, inhibits apoptosis, ROS
generation and the fall of the transmembrane mitochondrial potential induced by 7p-OHC [91];
dimethyl sulfoxide also prevents lysosomal and mitochondrial membrane permeabilization and
ROS overproduction induced by 73-OHC [92].

2.2 - In vitro models applied to the study of eye diseases and the identification of cytoprotective
compounds in this field
The eye is composed of different regions, from the cornea to the retina, allowing it to perform its

visual function. The retina is the combination of the neurosensory retina and the retinal pigment
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epithelium [93]. The neural retina is composed of several cell types, including the glia, whose
role is crucial for cholesterol biosynthesis. Cholesterol is the main sterol in the retina. It is present
at the cellular level mainly as free cholesterol, but as cholesterol esters in the extracellular
environment of the Bruch membrane. The accumulation of cholesterol esters at this level is a
marker of retinal aging and decreased retinal function. Subject to dietary influence and local
synthesis, cholesterol is also regulated through its interactions with the different cell populations
of the retina, and in particular those that involve neuron-glia communication. Age-related
macular degeneration (ARMD) is associated with the development of abnormal macromolecular
deposits called drusen. These are located in the Bruch membrane [93]. Recent investigations
concerning the nature of these deposits, their relationship to inflammatory and immune reactions
and the important role of oxidative stress have broadened the hypotheses on the
pathophysiological mechanisms leading to ARMD lesions. Many analogies with the mechanisms
involved in the genesis of atherosclerosis lesions suggest physiopathological similarities between
these two diseases [93]. Currently, several data support the concept that oxysterols, mainly 7KC,
are involved in the genesis of ARMD leading to cytotoxic, pro-oxidant and pro-inflammatory
activities [14, 94]. In addition, some oxysterols have been identified by gas chromatography in
human cataracts obtained after surgery: 7KC, 7B-OHC, 5a, 6a-epoxycholestanol, 20a-
hydroxycholesterol, and 25-hydroxycholesterol) [95]. In ARMD, 7KC seems to activate several
kinase signaling pathways via multiple transcription factors to induce cytokines and intracellular

effectors causing cell death [96].

Among the ocular pathologies studied, several of them concern ARMD and cataracts or vision
disorders associated with different pathologies such as Parkinson's disease or Smith Lemli Opitz
syndrome [16, 25, 93]. Several in vitro models have been used to study the effects of oxysterols
on the eye. The most common models are retinal pigment epithelial cells: human ARPE-19 cells
[97-100], fetal human retinal pigment epithelial cells (prepared from eyes of human fetuses) [98]
or those isolated from ox eyes [101]. Primary cultures of porcine retinal pigment epithelial cells
isolated from pigs eyes are also used [102]. Rat retinal precursor cell line R28 has been used less
frequently [103]. Microglial retinal cells have also been isolated to study the neuroinflammation
phenomena that occur in the outer retina [98, 104]. In addition, 661W photoreceptor cell lines
were used [104, 105].
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Currently, two molecules were reported to inhibit the toxic effects of 7KC and 78-OHC on retinal
epithelial cells. Sterculic acid, which is a is a cyclopropene fatty acid, antagonizes 7KC-mediated
inflammation and inhibits choroidal neovascularization [89]; and resveratrol, a polyphenol
belonging to the stilbene class used in the treatment of ARMD attenuate 7KC-induced cell death
and prevent 7KC-induced VEGF secretion [106].

2.3 - In vitro models applied to the study of neurodegenerative diseases and the identification
of cytoprotective compounds in this field

Since increased levels of 7KC and 7p-OHC were identified in the plasma and/or the
cerebrospinal fluid of patients with demyelinating and non-demyelinating neurodegenerative
diseases such as multiple sclerosis (MS) [107], X-linked adrenoleukodystrophy (X-ALD) [108],
and Niemann-Pick disease [21], the effects of 7KC and 7B-OHC were evaluated on different
types of nerve cells (neurons, glial and microglial cells). In these cells, several studies addressed
the question of whether these oxysterols can induce organelle dysfunction (mitochondria,
lysosome, peroxisome), oxidative stress, metabolic dysfunction, and cell death, which are

hallmarks of neurodegeneration.

Thus, undifferentiated and retinoic acid-differentiated human SH-SY5Y neuroblastoma cells
were used to study the biological ability of certain oxysterols such as 24S-hydroxycholesterol
(24S-OHC). In these cells, 7KC-induced cell death was attenuated by 24S-OHC [109]. Human
SK-N-BE neuroblastoma cells were also treated with 7KC at the physiopathological
concentration of 1 uM with the aim of comparing the effects of 7KC and 24S-OHC on tau
phosphorylation, and to study the abilities to modulate the SIRT1-dependent neuroprotective
pathway [110]. SK-N-BE cells were also used to compare the cytotoxicity of 7KC and 73-OHC.
In SK-N-BE cells, 7KC and 7p-OHC induce a loss of mitochondrial activity, an inhibition of cell
growth, ROS overproduction, an enhancement of antioxidant enzymes activities, and a slight
increase in Ca?" [111]. To determine how 7B-OHC could contribute to the development of
Alzheimer’s disease, the interaction between 7B-OHC and amyloid-beta (AP), whose
extracellular accumulation in neuritic plaques is one of the hallmarks of Alzheimer’s disease, was
studied [112]. It was reported that 78-OHC enhances the binding of AP to these cells by up-
regulating the expression and the synthesis of CD36 and B1-integrin receptors [112]. In rat
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pheochromocytoma PC12 cells exposed to sub-lethal concentrations of 7p-OHC, a significant
increase of cellular glutathione levels and an enhancement of cell tolerance against the
subsequent oxidative stress were observed [113]. C6 rat glioma cells were also incubated with
7B-OHC for 24 h with the purpose of evaluating its cytotoxicity and to determine the type of cell
death induced by this oxysterol [114]. In these cells, it was demonstrated that 78-OHC induces a
non-apoptotic mode of cell death associated with survival autophagy [114].

Immortalized murine glial cells (oligodendrocytes 158N) and microglial cells (BV-2) were also
used to study the cytotoxic effects of 7KC and 73-OHC in the context of demyelinating and non-
demyelinating neurodegenerative diseases. Indeed, these cells are suitable models to analyse
oxidative stress, inflammation and cell death (apoptosis and autophagy) and to study the
relationships between these different side effects [1, 115-117]. These cells constitute good
models to study the impact of 7KC and 7B8-OHC on organelle structure, topography, functions
and interactions (mitochondria, lysosome and peroxisome) [1]. They also permit to study the part
taken by the peroxisome in cell death, as well as to identify natural or synthetic molecules

capable of counteracting or attenuating 7KC- and 73-OHC-induced cytotoxicity.

To precisely define the impact of neuroinflammation in MS, organotypic hippocampal slice
cultures were incubated with BV-2 cells without and with lipopolysaccharides (LPS) [118].
Under these conditions, an accumulation of 7KC was observed in brain tissue, and an induction
of apoptosis associated with oxidative stress was reported in the BV-2 cells [118]. This
phenomenon involves the translocation of NF-xkB and the activation of poly(ADP-
ribose)polymerase-1 (PARP-1), which is essential for microglial migration and consecutively
regulates the expression of the INOS, CD1la, and ICAM-1. These latter mechanisms are
essential for the damaging activity of microglial cells [118]. Use of murine microglial BV-2 cells
permitted demonstration of the ability of oleic acid (C18:1 n-9) and docosahexaenoic acid (DHA;
C22:6 n-3), two major fatty acids present in the Mediterranean diet, to attenuate 7KC-induced
oxiapoptophagy, associated with oxidative stress and with apoptotic and autophagic
characteristics [1, 117, 119]. Currently, 158N cells are a widely used model to study the
cytotoxicity of 7KC and 7p-OHC, and to determine the effects of these oxysterols on major
myelin proteins expressed by these cells (Myelin Basic Protein (MBP), Proteo Lipid Protein
(PLP)) [115]. In 158N cells, anti-apoptotic and anti-oxidant capacities of natural or synthetic
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compounds and their ability to attenuate or to prevent toxicity of 7KC or 7p-OHC were often
evaluated. In 158N cells incubated with 7KC or 7B-OHC, the cytoprotective effect of
dimethylfumarate (DMF; Tecfidera) and biotin (vitamin B8), which are used for the treatment of
MS, have been shown [120, 121]. Natural products including argan oil, milk thistle seed oil, sea
urchin egg oil, Carpobrotus edulis ethanol-water extract also strongly attenuate 7KC and/or 73-
OHC-induced cytotoxicity [121-125].

2.3 - In vitro models applied to the study of bowel diseases and the identification of
cytoprotective compounds in this field

Oxidative stress is thought to play a key role in the development of intestinal damage in
inflammatory bowel disease, because of its primary involvement in intestinal cells aberrant
immune and inflammatory responses to dietary antigens and to the commensal bacteria [126,
127].

In this context, human intestinal Caco-2 cells are often used and cultured in the presence of an
oxysterols  mixture (7KC, Sa,6a  epoxycholesterol,  5pB,6B-epoxycholesterol, 7a-
hydroxycholesterol and 7B-OHC) [127]. In this cell model pro-oxidant and pro-inflammatory
effects of the oxysterol mixture were shown [128]. These cytotoxic effects were prevented by

wine polyphenols [129, 130], olive oil polyphenols [131] and cocoa bean shells [128].

2.4 - Interest of the yeast model, Saccharomyces cerevisiae and of the protozoa model,
Tetrahymena pyriformis, to study 7-ketocholesterol- and 7p-hydroxycholesterol-induced
cytotoxicity

The yeast, Saccharomyces cerevisae (SC), is an excellent model for studying autophagy [132] .
Due to the ability of 7-KC and 7B-OHC to induce oxiapoptophagy [119, 133], the SC model
should provide a better understanding of the characteristics of autophagy induced by 7KC and
7B-OHC. In addition, the SC model is a well recognized for studying the peroxisome, which still
remains a poorly characterized organelle [134]. The SC model should make it possible to specify
the impact of 7-KC and 7B-OHC on the peroxisome in terms of biogenesis and function,
peroxisome-mitochondria interaction [135]. The protozoan model Tetrahymena pyriformis (TP)

is an interesting tool for performing environmental toxicology analyzes [136]. Compared to
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commonly used cellular models, it is a reference model to address the impact of molecules on the
phagocytosis of nano- or microparticles; on mobility (this protozoan moves thanks to numerous
cilia); and on the relationships between organelles (mitochondria, peroxisome) and mobility. The
TP model has been successfully used for the identification of cactus (Opuntia ficus indica)
extracts capable of inhibiting 7KC-induced cell death [137]. These easy-to-implement cellular
models are also interesting tools for identifying molecules that modulate the activities of 7-KC
and 7p-OHC.

2.5 — T-ketocholesterol and 7p-hydroxycholesterol signaling pathways based on in vitro studies
The pathways involved in 7KC and 7B-OHC signaling for oxidative stress, and cell death,
characterized by apoptotic and autophagic criteria (oxiapoptophagy), and in 7KC- and 7p3-OHC-
induced inflammation (cytokine secretion, enhancement of adhesion molecule expression) have
been primarily determined on the cellular models discussed in the preceding section. It is
important to emphasize that these signaling pathways are highly conserved from one cell type to
another and seem to be independent of the species considered [25, 87].

2.5.1 - T-ketocholesterol-induced oxiapoptophagy and inflammation: associated signaling
pathways

The schematic signaling pathways presented in Figure 2 summarize the data obtained with 7KC
in cells from different types and species: promonocytic / monocytic human U937 / THP1 cells
[25, 47]; wild type human mammary tumor MCF-7 cells (caspase-3 deficient), and genetically
modified MCF-7 (MCF-7/c3: stably transfected with caspase-3) [138], human retinal pigment
epithelial cells (ARPE-19) [97, 139] and rat R28 retinal neurosensory cells [140]; murine
oligodendrocytes 158N and murine microglial BV-2 cells [3, 119, 141-145].

In A7r5 rat aortic smooth muscle cells and murine oligodendrocyte 158N cells, 7KC has been
shown to accumulate in lipid rafts [141, 146]. In U937 and BV2- cells, and based on artificial
membrane models, 7KC interacts with plasma membrane phospholipids leading to important
changes in membrane properties [25, 117, 147]. In U937, 158N and BV-2 cells, 7KC induces a
mode of cell death defined as oxiapoptophagy [47, 133]. 7KC stimulates an overproduction of
ROS: superoxide anion (O2*) and hydrogen peroxide (H202) [25]. In human aortic smooth

muscle cells, 7KC activates the NADPH oxidase (NOX-4) via endoplasmic reticulum stress

15



involving the IRE-1/JNK/AP-1 signaling pathway which contributes to overproduction of ROS,
leading to decreases in A¥m and apoptosis [148]. 7KC-induced apoptosis is characterized by an
early externalization of phosphatidylserine [149] and by the following events: (i) Ca?* influx; (ii)
activation of calmodulin and calcineurin leading to BAD dephosphorylation and subsequent
mitochondrial depolarization; (iii) mitochondrial release of cytochrome ¢, AIF and Endo-G; (iv)
activation of caspase-2, -3, -7, -8, and -9; (v) truncation of BID; (vi) lower BCL-2 levels; (vii)
cleavage of PARP; and (viii) of the DNA fragmentation factor (DFF45)/ICAD leading to the
activation of caspase activated DNase (CAD) involved in internucleosomal DNA fragmentation
[71, 138, 150-152]. In addition, 7KC-induced cell death is associated with an activation of the
P2X7 receptor (involved in Na*/Ca?* influx and K* efflux) [97, 143]. In 158N and BV-2 cells,
7KC also triggers an increased level of the voltage-gated K* (Kv) channel kv3.1b (involved in K*
efflux) protein, and an intracellular accumulation of K* [143, 144]. The cytoplasmic
accumulation of K* is positively correlated with increased plasma membrane permeability to PI,
ROS overproduction and loss of AWm [143]. In monocytes macrophages (U937, RAW264.7,
P388D1) and smooth muscle cells, it has been shown that 7KC inhibits the PDK-1/(Akt/PKB)
signaling pathway [86, 153] and triggers the formation of multilamellar cytoplasmic structures
named myelin figures [25, 154]. The ability of 7KC to induce also lysosomal modifications [122,
133, 155], formation of monodansyl cadaverine positive structures [156] and activation of LC3-I
into LC3-Il, also support that 7KC is capable of triggering autophagy. It is suggested that 7KC
could induce a protective form of autophagy [73, 157] and it is now considered that myelin
figures could be ultrastructural features of reticulophagy. Under treatment with 7KC, peroxisomal
dysfunction (decreased peroxisomal mass suggested by decreased expression of ABCD3, altered
peroxisomal B-oxidation supported by an accumulation of very long chain fatty acids) has also
been reported [158-160]]. Whereas the part taken by the peroxisome in cell death is not well
known [161], it has been demonstrated that peroxisomal dysfunctions are able to trigger oxidative
stress [162, 163]. As the peroxisome is tightly connected with the mitochondria [164, 165] which
plays key roles in 7KC-induced apoptosis [166], the contribution of the peroxisome to 7KC-
induced cell death, which is associated with a rupture of the RedOx homeostasia, cannot be
excluded [1].

It is also now well established that 7KC is a potent inducer of inflammation. This oxysterol

increases cytokine secretion (IL-8, IL-1pB) and overexpression of adhesion molecules (VCAM-1,
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ICAM-1, E-selectin). However, in U937 and THP-1 cells, the secretion of IL-1B and IL-8, and
the expression of VCAM-1, ICAM-1, and E-selectin was lower than with 78-OHC [61, 167,
168]. Currently, limited data are available on the metabolic pathway(s) contributing to 7KC-
induced inflammation. In cultured ARPE-19 cells, 7KC-induced inflammation is mediated
mostly through the TLR4 receptor, with some cross-activation of EGFR-related pathways via NF,
leading to the activation of NFkB, which is essential in mediating cytokine expression (IL-1p, IL-
6 and IL-8) [169]. In addition, the ability of 7KC to induce IL-1B-secretion suggests an activation
of the inflammasome. This hypothesis is supported by several experimental studies. Thus,
formation and activation of NIrp3 inflammasomes in bone marrow derived macrophages (BMMs)
has been reported in the presence of 7KC [170]. Sublethal concentrations of 7KC in retinal
microglia isolated from postnatal C57BL/6J mice resulted in microglial activation and
polarization to a pro-inflammatory M1 state, via NLRP3 inflammasome activation [104]. 7KC
also efficiently induces inflammasome formation in fetal human RPE (fhRPE), human ARPE-19

cells, primary human brain microglia cells, and human THP-1 monocyte cells [98].

2.5.2 - 7p-hydroxycholesterol-induced oxiapoptophagy and inflammation: associated signaling
pathway

The schematic signaling pathways presented in Figure 3 summarize the data obtained with 7f3-
OHC on cells from different types and species: promonocytic / monocytic human U937 / THP1
cells [25, 47]; vascular cells (endothelial and smooth muscle cells) [25, 148]; wild type human
mammary tumor MCF-7 cells (caspase-3 deficient), and genetically modified MCF-7 (MCF-7/c3:
stably transfected with caspase-3) [138], human retinal pigment epithelial cells (ARPE-19) [100]
/ primary porcine retinal epithelial cells; rat C6 glioblastoma cells [171], murine oligodendrocytes
158N and murine microglial BV-2 cells [3, 114, 119, 121, 141, 142]. The different cells used
permitted determination of the signaling pathways involved in 73-OHC-induced cytotoxicity and
to define the relationships between ROS overproduction, apoptosis, autophagy and inflammation.
Distinctly from 7KC, 7B-OHC, while cytotoxic, does not accumulate in lipid rafts [141]. 7B-OHC
is a strong inducer of ROS overproduction and favors the disturbance of redox homeostasis by
increasing the formation of lipid peroxidation products (malondialdehyde (MDA), conjugated
dienes (CDs)) and of carbonylated proteins (CPs) which can further contribute to cell death [172].

An important impact on the mitochondria was also observed whatever the cells considered. In
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human monocytic THP-1, U937 cells, and MCF-7 cells, a down-regulation of Bcl-2 expression
was also detected as well as an activation of the pro-apoptotic proteins (Bid, Bax), associated
with a release of cytochrome c and an activation of caspase-9, caspase-8, caspase-3 and caspase-
7. In U937 cells, 78-OHC also induced an increase in cytosolic Ca®* concentration, associated
with a decrease of Akt activation and a mitochondrial release of various proteins such as
cytochrome c, apoptosis-inducing factor (AlIF), and endonuclease-G (Endo-G), associated with
caspase-3, -7, -8, and -9 activation, Bid cleavage and PARP degradation [25, 138]. In C6
glioblastoma cells, 7B-OHC induces apoptosis through decreased ERK signaling, transient PI3K /
Akt activation, loss of GSK3p activation and activation of p38 [171, 172]. In U937 cells, as well
as in human retinal pigment epithelial cells (ARPE-19), large myelin figures (evocating
reticulophagy) were observed [25, 100]. In ARPE-19 cells, a link between lysosome and cell
death was also established [100]. In addition to lysosomal and mitochondrial dysfunctions, in
158N and BV-2 cells, 7B-OHC also induces peroxisomal changes (morphological and
topographical changes, reduce number of peroxisome, altered metabolism). In 158N cells, the
complex mode of cell death induced by 7B-OHC (oxiapoptophagy) is characterized by a
dephosphorylation of PKB / Akt, an activation of GSK3, and by a reduced expression of Bcl-2;
altogether these events contribute to mitochondrial depolarization leading to caspase-3 activation,
PARP degradation and internucleosomal DNA fragmentation [141]. Moreover, 7p-OHC
promotes the conversion of microtubule-associated protein light chain 3 (LC3-1) to LC3-1I which
is a hallmark criterion of autophagy [119]. The ratio [LC3-11 / LC3-1] is also strongly modified by
bafilomycin acting on the autophagic flux. Rapamycin, an autophagic inducer, and 3-
methyladenine, an autophagic inhibitor, reduce and increase 7p-OHC-induced cell death,
respectively, supporting that 7B-OHC induces survival autophagy [114]. Altogether, these data
establish that 7B-OHC is a potent inducer of oxiapoptophagy through the concomittent activation
of several signaling pathways involved in oxidative stress, apoptosis and autophagy.

There is also evidence that 7B-OHC is a potent inducer of inflammation: it increases cytokine
secretion (IL-8, IL-1B) and overexpression of adhesion molecules (VCAM-1, ICAM-1, E-
selectin). Inn U937 and THP-1 cells, the secretion of cytokines and the expression of adhesion
molecules observed under treatment with 7B-OHC were higher than with 7KC [61, 167, 168].
Currently, no data are available on the relationship between 73-OHC-induced IL-1p secretion and

inflammasome activation. Of note, it has been described in several works that the PKC/ P38/
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MEK/ ERK signaling pathway constitutes a link between 7B-OHC-induced apoptosis and
inflammation [168, 171, 172].

Comparatively to 7KC, less information are available on the 7B-OHC. It is however well
established that 7p-OHC is a more potent inducer of apoptosis than 7KC and is also a more
potent inflammatory mediator. Indeed, the percentage of apoptotic cells and the level of cytokine
secretion are higher under treatment with 78-OHC than with 7KC. Although there are common
signaling pathways for both molecules, there must also be specific pathways for each of them.

2.5.3 — Contribution of Ca?* and K* in 7-ketocholesterol and 7B-hydroxycholesterol signaling
pathways

Ca?" is a universal second messenger, participating in the regulation of almost every cellular
process, from fertilization to motility, gene expression and death [173]. Consequently, the ability
of 7KC or 7B-OHC to modify intracellular Ca?* concentrations in diverse cell-types of the
vascular wall, with a range of downstream consequences, have been studied. In HUVECs,
incubation with 150 uM 7KC for 2 h elevated resting cytosolic Ca?* levels and enhanced Ca?*
responses to histamine [174]. In mouse aortic endothelial cells, micromolar concentrations of
7KC elicited a transient increase in cytoplasmic Ca?* within seconds of addition, via a
mechanism partially dependent on Ca?* release from intracellular pools, since it persisted in Ca?*-
free extracellular medium. This transitory rise in Ca®* promoted reactive oxygen species (ROS)
formation, with subsequent apoptotic cell-death [175]. In contrast, low micromolar
concentrations of 78-OHC promoted survival of HUVECSs, increasing the phosphorylation of
extracellular signal-regulated kinases (ERKSs). These effects are probably mediated by a store-
operated Ca?* entry mechanism, since they are blocked by 2-aminoethyl diphenylborinate and by
gadolinium ions [176]. In human aortic smooth muscle cells, within a few minutes of addition,
micromolar 7B-OHC triggered oscillations in cytoplasmic Ca?* concentrations, followed by
depletion of intracellular Ca?* stores sensitive to thapsigargin, an inhibitor of sarco-/endoplasmic
reticulum Ca®*-ATPase (SERCA) pumps. These changes were associated with activation of
ERK1/2 within minutes and with apoptotic cell death over 72 h [177]. In the same cell type, 7KC
elicited similar Ca?* oscillations, enhanced activity of the NAD(P)H oxidase Nox-4, increasing
ROS production and induced the ER unfolded protein response [148]. In human coronary artery

smooth muscle cells, 7KC caused a rise in cytoplasmic Ca?* followed by caspase-3 dependent
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apoptosis. Both the ER stress response and caspase-3 activation could be partially inhibited by
submicromolar concentrations of nifedipine, an antagonist of L-type voltage-gated Ca?*-channels
(VGCCs) [178]. In mouse coronary artery smooth muscle cells, 7KC stimulated rises in
cytoplasmic Ca?* that enhanced ROS formation, promoting differentiation via activation of
nuclear factor erythroid 2-related factor 2 (NRF2). As revealed in smooth muscle cells from
CD38-/- transgenic mice [179], these Ca?* elevations were dependent on CD38, an enzyme that
can generate second messengers promoting Ca?* release via ER/SR ryanodine receptors (by
cyclic ADP ribose), or from lysosomal Ca?* stores (by nicotinic acid adenine dinucleotide
phosphate) [180]. In the A7r5 rat aortic smooth muscle cell-line, incubation with 7KC or 7p3-
OHC for 24 h elevated resting cytosolic Ca?* concentrations and suppressed responses to
bradykinin, or arginine vasopressin, peptide hormones linked to Ca?" mobilization via the
phospholipase C-inositol 1,4,5-trisphosphate (IP3) pathway. In this system, 7B-OHC led to a
decrease in the levels of the type 1 IP3 receptor/Ca?*-release channel protein, in a manner that
could be abolished by co-incubation with an inhibitor of the proteasomal pathway [181]. In the
THP1 monocyte/macrophage cell-line, 7KC stimulated Ca?* increases that were partially
inhibited by micromolar concentrations of the L-type VGCC inhibitors verapamil and nifedipine
[152]. These elevations in cytoplasmic Ca?* exerted diverse and opposing effects on cell-death
pathways: activating calcineurin to stimulate Bcl-2-associated death promoter (BAD) [152];
causing the release of pro-apoptotic Bim-LC8 from the microtubule-associated dynein motor
complex; and activating the tyrosine kinase PYK2, thereby inhibiting apoptosis via the ERK
pathway [182]. In this cell-line, 7B-OHC also triggered Ca?* influx dependent on VGCCs,
promoted cell survival through the ERK pathway; and stimulated transcription and secretion of
interleukin-8 [183]. In differentiated U937 cells, 7-BOHC, but not B-epoxide, caused gradual
increases in cytoplasmic Ca?* concentration that lasted for at least 15 minutes and were inhibited
by nifedipine, or by removal of extracellular Ca?*. In these cells, nifedipine also reduced cell-
death caused by 73-OHC [184].

The molecular mechanism(s) by which 7KC or 7B-OHC alter cytoplasmic Ca?* levels are unclear
[185]. Most of these responses are too rapid to require changes in gene expression, excluding
roles for liver X receptor (LXR)- or sterol regulatory element binding protein (SREBP)-
dependent oxysterol sensing pathways. Cell-type and congener-specificity indicates that these

effects are probably not dependent on biophysical modification of lipid membranes by oxysterols,
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instead requiring specific, protein-based receptors. The intracellular oxysterol-binding protein
related proteins ORP4L [186], ORP5 and ORP8 [187] modulate Ca?" signaling at membrane
contact sites. In radioligand binding assays using heterologous expressed proteins, 7KC displaced
25-hydroxycholesterol bound to ORP4L [188]. In hepatoma cell-lines, ORP8 is required for the
cytotoxicity of various oxysterols, including that of 7KC and 7p-OHC, demonstrating that it can
act as an effector for these cholesterol oxidation products [189]. To better understand the
mechanisms of intracellular Ca?* modulation by 7KC and 7B-OHC, it could be interesting to
study the impact of these oxysterols on the inhibition of the catalytic subunit D8D71 of
cholesterol epoxide hydrolase (ChEH) [190]. Indeed, 7KC and 7B-OHC are potent inhibitors of
ChEH [190], the subunit called 3B-hydroxysterol-A8-A’-isomerase (D8D71) has been
characterized as a Ca?" binding protein [191], and it is not excluded that 7KC could inhibit
D8D7I activity [192]. In addition, at least two types of G-protein coupled receptor (GPR) are
activated by oxysterols. The repression of the GPR Smoothened by the Sonic hedgehog peptide,
thereby removing the inhibitory effect of Patched, increases cytoplasmic Ca?* levels in rat gastric
mucosal cells [193]. In NIH 3T3 fibroblasts, 20S-hydroxycholesterol potently activated
Smoothened, but 7-BOHC was without detectable effect [194]. A distinct GPR, Epstein-Barr
virus-induced G-protein coupled receptor 2 (EBI2) or GRP183, was activated by nanomolar
levels of 7a, 25-dihydroxycholesterol when heterologous expressed in CHO-K1 cells, causing
Ca?* release from intracellular stores [195]. Although 7p-OHC is a very weak agonist of this
receptor, both it and 7KC can be converted into more active congeners by the actions of 25-
hydroxylase and 11B-hydroxysteroid dehydrogenases [196]. The mechanisms by with 73-OHC

and 7KC can influence Ca?* signaling are summarized in Figure 4.

Of note, whereas the cells of the vascular wall display rapid Ca?* responses to oxysterols, such
effects were not observed on nerve cells. For example, although both 7KC and 78-OHC promote
oxiapoptophagy in mouse 158N oligodendrocytes, they did not detectably alter cytoplasmic Ca?*
concentrations over a 10 minutes time period [141]. These oxysterols did not detectably alter
cytoplasmic Ca?* levels in the SK-N-BE neuroblastoma cell-line within 10 minutes of addition,
but increased the formation of calcium deposits within 24 hours, as revealed using von Kossa
staining [144].
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Other mechanisms that potential link 7KC and 7B-OHC to Ca?" signaling have not been
completely defined. These mechanisms include P2X7 purinoreceptor cation channels [97], CD38
[179], and the voltage-gated K* channel Ky1.3b, which modulates membrane potential and
thereby VGCC opening [144]. In human retinal cells, 7KC-induced toxicity has been reported to
activate the P2X7 receptor which leads to Na* and Ca?* influx, and K* efflux [97]. Activation of
P2X7 receptor triggers the formation of large nonselective membranes pores which results in
inflammation through the inflammasome, oxidative stress and, ultimately, cell death especially
by apoptosis [97]. In 158N cells, the voltage-gated K* (Kv) channels (Kv3.1) designed for high-
frequency repetitive firing and expressed by different types of nerve cells in the CNS is affected
by 7KC. Increased levels of Kv3.1b protein were shown in 158N cells under treatment with 7KC,
and positive correlations between Kv3.1b levels and the intracellular K* concentration ([K*]i)
were observed [144]. Under treatment with 7KC, the simultaneous increased of [K*]i and of the
level of Kv3.1b along with increasing percentage cells with depolarized mitochondria, ROS
overproduction and markers of death [144]. This lead to speculation that K retention could
contribute to 7KC-induced cytotoxic effects and that enhanced expression of Kv3.1b could occur
as a compensatory mechanism, contributing to prevention of 7KC cytotoxicity. This hypothesis is
supported by the fact that the blockage of Kv channels with 4-aminopyridine exacerbated 7KC-
induced cell dysfunction on 158N murine oligodendrocytes and microglial murine BV-2 cells
[143].

3 — Contribution of bacteria for the identification of new strategies to prevent 7-
ketocholesterol-induced cytotoxicity: biodegradation of 7-ketocholesterol by bacterial cells
and enzymes

Inherent metabolic insufficiency of the human body increases with age, which can lead to the
accumulation of pathogenic compounds like 7KC in senile cells, causing deleterious functions
and cell death. Alternatively, utilizing exogenous microbial enzymes for targeting cytotoxic
compounds enabling subsequent degradation is a promising substitute to endogenous enzymes.
Microbes have long been proven to be remarkable in catabolizing toxic xenobiotic compounds
like pesticides, solvents and hydrocarbons, which have found application in the remediation of

polluted environments [197-199]. In general, the biodegradation process involves microbial use
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of the organic compounds as a carbon/energy source, breaking down of complex organic
structures, assimilation or release of the degradation products, and subsequent mineralization to
carbon dioxide and water. ‘Medical bioremediation’ as a novel strategy, has been proposed to
remediate cytotoxicity of 7KC which involves screening of microbes capable of catabolizing
7KC, identification of relevant enzymes, overproduction of these enzymes, and delivery into
targeted organelle of diseased cells [5, 6, 200, 201]. The enzymes could also have application in
food productions to remediate 7KC in its dietary sources. In fact, use of such systems against
toxic molecules has been reported in amyloid-p degradation by insulin-degrading enzyme [202]
and mycoplasma cells [203]; cleavage of bisretinoid lipofuscin (A2E) by horseradish-peroxidase
[204]; and hydrolysis of blood cholesterol and triglycerides by Pseudomonas gessardii lipase
[205].

The earliest studies on 7KC degradation identified several bacterial and actinobacterial strains
isolated from soil and activated sludge, namely Nocardia nova, Proteobacterium Y-134,
Sphingomonas sp. JEM-1, Rhodococcus jostii RHAL and Pseudomonas aeruginosa having the
potential to mineralize 7KC, using it as a sole-carbon and energy source. The first four strains
were also found to release COz in minimal salt media with 0.1% 7KC [206]. Additional studies
by the same group conducted transcriptomic analysis of genes expressed by Rhodococcus jostii
RHAL in presence of 7KC and cholesterol revealed 363 differentially expressed in presence of
7KC compared to cholesterol. In fact, 7KC was found to induce a larger number of steroid
catabolism genes, mostly belonging to three or four putative clusters. The genes included those
responsible for the catabolism of the steroid rings such as kstD, kshA, hsaABCDEFG, or their
homologs. The steroid uptake system Mce4 was also found essential for uptake of 7KC into the
cell. Other genes identified include hsaC coding for a dioxygenase which cleaves the ring A of
cholesterol and Cyp125 which initiates side-chain degradation. However, none of these clusters
code for a complete 7KC degradation pathway. It seems that cholesterol and 7KC degradation
follows a common pathway until the hsaC step and the degradation of the side chains occur
simultaneously with that of the rings. Several metabolites of the pathway such as 3,4,7-
trihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione propionic acid (3,4,7-THSAP), 3,4-
dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione propionic acid (3,4-DHSAP), 3,4,7-
trihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3,4,7-THSA) and 3,4-dihydroxy-9,10-
seconandrost-1,3,5(10)-triene-9,17-dione  (3,4-DHSA) were identified, along with the
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involvement of enzymes such as dioxygenase (hsaC), 7-keto reductase and dehydratase [207].
Subsequent studies on Pseudomonas aeruginosa PseA and Rhodococcus erythropolis MTCC
3951 reported respectively 88% and 93% degradation, of an initial 7KC concentration of 1 g/L
(1000 ppm), with a high growth of biomass. The extracellular extracts of the bacterial strains
were capable of degrading 0.1 g/L (100 ppm) 7KC to a very high extent (65% in case of P.
aeruginosa and 98% in R. erythropolis) within 72 hours, pointing to the involvement of
enzymatic systems in the degradation process. Cholesterol oxidase was assayed as the main
enzyme responsible for the first reaction pertaining to conversion of 7KC to 4-cholesten-3, 7-
dione. In P. aeruginosa, cholesta-3, 5-dien-7-one/cholesta-4, 6-dien-3-one were found to be the
next intermediate products, while in case of R. erythropolis, chol-5-en-3,7-dione and androsta-4-
ene-3,7,17-trione were found to be formed downstream in the pathway. Here, the side-chain
degradation precedes that of the ring-cleavage of 7KC. Lipase, reductase and dehydrogenase
were the other identified enzymes secreted by the microbes in presence of 7KC [208, 209]. More
recently, environmental samples such as soil, sea water sediment and manure piles have been
explored for the presence of 7KC degrading microbes. Alcanivorax jadensis IP4 isolated from sea
water sediment, Streptomyces auratus IP2 and Serratia marcescens IP3 isolated from soil
samples and Thermobifida fusca IP1 isolated from manure piles proved to be potent strains
capable of using 7KC (1 mg/L) as a sole carbon source and to subsequently mineralize it. Out of
these, A. jadensis IP4, followed by T. fusca IP1 were most efficient in degrading 7KC, with 100%
degradation of 1 mg/L concentration achieved within 12 days. Intracellular extracts of A. jadensis
IP4 were able to degrade 65% of same concentration of 7KC within 72 hours [210, 211].

As in the case of storage diseases, bulk of the 7KC absorbed by the cell is localized to lysosomes.
Thus, in spite of the reason that several enzymes such as 27-hydroxylase (CYP27A1), 11p-
Hydroxysteroid dehydrogenase, cholesterol sulfotransferase (SULT2B1b) and Acyl-CoA
cholesterol acyltransferase (ACAT) have been known to act on 7KC, their unavailability in
lysozymes, prevents the attenuation of its cytotoxicity. In liver cells, 1lbeta-hydroxysteroid
dehydrogenase type 1 converts 7KC to 7B-OHC, which is then transformed by the hepatic
metabolism [212]. A plasmid construct of pEGFP-N3, harboring the Chromobacterium DS-1
cholesterol oxidase gene fused with the signal sequence and transmembrane domain of the
lysosomal membrane protein LAMP1 (named as pEGFP-COXL1) was found to be localized

within the lysosome. Human fibroblast cells transfected with this plasmid were able to withstand
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up to 50 uM concentration of 7KC, compared to the control, proving the cytoprotective effect of
the enzyme [213]. The role of cholesterol oxidase in 7KC biotransformation was further proved
in another application study, where the enzyme immobilized on magnetic Iron (11, 111) oxide
nanoparticles was able to convert cholesterol and 7KC to 4-cholesten-3-one and 4-cholesten-3, 7-
dione respectively, which could be used as steroid precursors or anti-obesity drugs [214]. An
interesting investigation reports the ability of growing and resting cells of Lactobacillus casei
ATCC334 in removing oxysterols from solution, probably through binding to the cell surface or
by membrane incorporation. The resting cells were most efficient in removal (37 to 61%) of
oxysterols such as 7KC followed by 70/7B-OHC, cholestanetriol, 5,6B/5,6a-epoxycholesterol
and 25-hydroxycholesterol respectively. Being probiotics, L. casei may find application in

inhibiting the intestinal absorption of harmful oxysterols [215].

Thus, microbial biodegradation and consequent mining of therapeutic enzymes may provide a
promising route to remediate oxysterol-mediated cytotoxicity, especially that of 7KC and
7B-OHC.

4 — Animal models and analysis of the biological activities of 7-ketocholesterol and 7p-
hydroxycholesterol

Currently, the biological activities of 7KC and 73-OHC have mainly been evaluated in animal
models developed to study atherosclerosis. In this context, numerous animal models are
available. At the opposite extreme, only a few animal models are described to determine the

incidence of these oxysterols in eye, neurodegenerative and bowel diseases.

4.1 — Mouse transgenic models

To address the incidence of oxysterols in different pathologies, murine transgenic animal models
have been developed when the relevant oxysterols considered are enzymatically produced. This is
mainly the case for oxysterols oxidized on the lateral chain, which do not include 7KC and 7f-
OHC. Indeed, the oxysterols oxidized on the lateral chain interact with the Liver X Receptors
(LXRo/B) [216]. LXR deficient transgenic mice have contributed to demonstrate the importance

of LXR in the fertility and development of prostate cancer) [217-219]. LXR} is also involved in
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amyloidogenesis associated with neurodegeneration in Alzheimer’s disease [220]. On the other
hand, CYP46Al is mainly expressed in the central nervous system neurons and allows the
production of 24S-hydroxycholesterol (24S-OHC) [221]. The use of CYP46A1-deficient mice
permitted to demonstrate the importance of this enzyme and 24S-OHC in major
neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's
disease [222-225]. As for the enzyme CYP27A1 which makes it possible to produce 27-
hydroxycholesterol (27-OHC) from cholesterol essentially at the peripheral level, the use of
CYP47AL1 deficient mice has demonstrated the importance of this enzyme and of 27-OHC in
cancer development (breast cancer, melanoma) [226, 227].

Unlike oxysterols oxidized on the lateral chain such as 24S-OHC and 27-OHC, 7KC and 7f-
OHC are essentially formed by auto-oxidation of cholesterol in different tissues (vascular wall,
retina, brain) under the influence of an environmental oxidative stress [25]. They also accumulate
in the vascular wall, and this process is favored by a diet rich in oxysterols even if these latter are
metabolized by the liver [25].

ApoE deficient mice were used to determine the vascular effects of 7p-OHC [228]. CX3C
chemokine receptor 1 (CX3CR1®™*) mice were also successfully used to demonstrate that
retinal microglia have a prominent chemotropism to 7KC and internalize 7KC. Sub-lethal
concentrations of 7KC resulted in microglial activation and polarization to a pro-inflammatory
M1 state via NLRP3 inflammasome activation. In addition, microglia exposed to 7KC reduced
expression of neurotrophic growth factors but increased expression of angiogenic factors,
transitioning to a neurotoxic and pro-angiogenic phenotype [104]. Since the enzyme 11B-
HSD11BI1 has been shown to convert 7KC to 73-OHC, mouse models deficient for this enzyme,
that also converts cortisone to cortisol, have been developed to study atherosclerosis and
metabolic syndrome [36, 37, 229-231]. In the context of obesity (with or without metabolic
syndrome, and type 2 diabetes ), the role of 113-HSD11B1 and 113-HSD11B2 in ob/ob mice is a
subject of new research [232, 233]. Mice deficient in the enzyme 7-dehydrocholesterol reductase
used, as a model of Smith-Lemli-Opitz syndrome, are also available to address the conversion of
7-dehydrocholesterol to 7KC in this disease [234]. In addition, ApoE-deficient mice are of
interest in clarifying the role of 7KC and 73-OHC in atherogenesis [84].

4.2 — Non transgenic invertebrate and vertebrate animal models
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Due to the identification of 7KC and 7p-OHC in large quantities in different types of foods, the in
vivo effects of these molecules have been studied in animal models, in order to determine their
effects on diseases associated with poor eating habits, such as cardiovascular diseases. To this
end, several models (pigeon, mouse, rat, hamster, rabbit and pig) were used (Figure 5). Among
these models, some of them were also employed to study the impact of 7KC in aged related

diseases, and in this context the Caenorhabditis elegans model was recently developed.

4.2.1. Caenorhabditis elegans

With the use of the nematode Caenorhabditis elegans as model organism, the toxicity of 7KC
was investigated [235]. The effects of 7KC on life span, on reproduction, thermotolerance,
germline apoptosis, and ROS generation resulting from C. elegans exposure to 7KC were
investigated at concentrations ranging from 0 to 200 pug/mL. In these conditions, 7KC reduced
reproductive capacity, shortened the life span in a concentration-dependent manner, and impaired
thermotolerance of the adult nematode. 7KC also induced germline apoptotic cell death and
increased ROS generation. It is suggested that the model C. elegans could be suitable for

assessment of the bioactivity of 7KC in aging.

4.2.2. Pigeon

The pigeon model has been one of the first to examine the effects of tobacco smoking and of a
diet enriched in cholesterol on the development of atherosclerosis [236, 237]. The toxicity of
oxysterols was also studied in experiments performed on White Carneau pigeons. When the
pigeons were feed with a diet supplemented with 0.05% pure cholesterol (control group); 0.05%
pure cholesterol plus cholestane-34,5a,64- triol (which can be present in powered milk in
quantity as high as 7KC [238], total aortic cholesterol, aortic cholesterol ester, and the ratio
(aortic cholesterol ester / aortic cholesterol) were similar among pigeons from both groups,
whereas an accumulation of calcium in the aortas of pigeons fed with cholesterol plus cholestane-
3f,5a,6(- triol was observed [239].

4.2.3. Golden Syrian hamster
Syrian hamster is a widely used experimental pharmacological model to identify natural and

synthetic anti-atherosclerotic drugs [199, 240-244]. In addition, the effect of dietary oxysterols on
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coronary atherosclerosis was also studied in golden Syrian hamsters fed for 3 months with three
different diets: a normolipidaemic diet containing corn oil plus fish oil (group low L); a
hyperlipidaemic diet composed of the normolipidaemic diet supplemented with cholesterol
(group High L); a third diet, similar to the hyperlipidaemic diet, in which cholesterol was
replaced by a mixture of oxysterols: 5a,6a-epoxycholesterol, 5B,6B-epoxycholesterol, 7a-
hydroxycholesterol, 7-OHC, 7KC and trace amounts of 7-hydroperoxycholesterols (group High
L + OS) [245]. Feeding the high-lipid diet (group High L) increased the plasma level of 73-OHC,
7KC and cholestanetriol. The presence of oxysterols in the diet (group High L+OS) further
increased the concentrations of 7B-OHC and 7KC in the plasma. 7KC was increased in
myocardial lipids of groups (High L) and (High L+OS). However, as evidenced by myocardial
Ca?", acyl-CoA cholesterol acyl transferase (ACAT) activity and coronary reactivity to sodium

nitroprusside, severe atherosclerosis did not develop during the 3-month enriched lipid diet.

4.2.4. Mouse

Wild type mice treated with oxysterols, which are oxidized on the side chain or steroid nucleus,
are used to mimic inflammatory bowel diseases [2]. In mice, 7KC and 7B-OHC are often
incorporated into a mixture of oxysterols (7KC, 5a,6a-epoxicholesterol, 5B,6B-epoxicholesterol,
7a-hydroxycholesterol and 78-OHC) to mimic food leading to inflammation of the intestinal wall
to identify cytoprotective molecules; in the mouse, this oxysterol mixture induces TLR-2 and
TLR4 over-expression and activation together with cytokine induction [128].

Anti-tumor properties of 7KC have also been described in mice [246] as well as anti-tumor
activity of 7p-OHC against Krebs Il ascitic carcinoma transplanted on mice [247]. Anti-tumor
activity of the water-soluble monophosphoric acid diesters of 73-OHC on mastocytoma P815 in
the mouse model has also been reported [248]. The pioneering work realized by Bischoff et al.
concerning the cytotoxic and anti-tumor activity of some oxysterols, including 7B-OHC, lead to
the suggestion that some oxysterols could constitute potent anti-tumoral molecules [249]. There
are now several lines of evidence that 7KC and 73-OHC have major impacts on the metabolism
of cancer cells [250], supporting the concept that chemotherapies targeting metabolism offer

promising perspectives for cancer treatment.

4.2.5. Rat
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The rat model has been used to study the metabolism of 7KC [26, 50, 251], to identify molecules
capable of preventing cardiovascular injuries [252] and to determine the impact of some nutrients
and aliments on the biogenesis of oxysterols formed by auto-oxidation including 7KC and 7f-
OHC [253-255]. In addition, using 7KC-containing implants inserted into the anterior chamber of
the rat eye, it has been demonstrated that the cytokinic inflammation induced by 7KC mostly
occurs through the TLR4 receptor [169]. A significant increase in vascular endothelial growth
factor (VEGF) was also observed in the rat eye with 7KC-containing implants by fluorescent
immunolabeling and by immunoblot of the agueous humor [256]. To define the role of 7KC in
Smith-Lemli-Opitz syndrome, intra-vitreal injection of 7KC into a normal rat eye rapidly induced
panretinal degeneration [257]. Strong impacts of 7KC and 7B-OHC were also observed when
these compounds were injected into the rat prefrontal cortex, based on the analysis of RNA
extracted from this brain region at 24 hours post-injection [258]. Microarray analyses identified
1365 genes, whose expression were affected by these two oxysterols: down-regulated genes
outnumbered up-regulated genes. Pathway analysis showed that down-regulated genes had roles
in carbohydrate metabolism, cell signaling and nucleic acid metabolism; and that the majority of
these encode G-protein coupled receptors (GPRs) involved in the synaptic function [258]. On
tumors induced by C6 cells in the rat brain cortex, it has also been reported that the intra-tumoral

injection of liposomes containing 73-OHC ether or ester inhibited tumor growth [259].

4.2.6. Rabbit

The rabbit is an animal model used for several years for the study of atherosclerosis [260, 261].
One of the oldest studies to address the in vivo toxicity of 7KC was conducted in the rabbit in
1949 by Cox and Spencer [262]. It was also established in the rabbit that 7KC inhibits cholesterol
uptake by the arterial wall, and that this oxysterol can bind to the lipoproteins [263, 264]. In
1980, experimental evidence of the toxicity of 7KC were described in the rabbit: it was shown
that the rate constant determining tissue uptake of 7KC was higher than tissue efflux, and
suggested that the red cells and peripheral tissues act as a reservoir for the oxygenated sterol
[265]. The rabbit is also a source of vascular cells and pioneering works supporting cytotoxic
effects of 7KC and 7B-OHC were performed on cultured rabbit aortic smooth muscle cells [266].
In addition, ex-vivo experiments on rabbit aortic segments demonstrated that 7KC and 73-OHC

were able to prevent arterial relaxation [267].
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4.2.7. Pig

The domestic pig and mini-pig are conventional models of study in pharmacology, imaging and
cardiovascular surgery [74, 268]. The pig is often a source of vascular wall and ocular cells that
have made it possible to characterize the effects of different oxysterols, such as 7KC and 7p-
OHC. In smooth muscle cells of porcine aorta, it has been shown that the cytotoxicity of
oxidized Low Density Lipoprotein (LDL) was associated with 7KC and 78-OHC [102, 269]. The
use of pig in the mechanical ventilation of the lungs made it also possible to establish that 7KC
was probably an important player in pulmonary inflammation associated with respiratory support
[270].

4.2.8 Monkey

11B-hydroxysteroid dehydrogenase type 1 (11B-HSD1) catalyzes the conversion of cortisone to
cortisol and controls a key pathway in the regulation of stress [271]. 11p-HSD1 also converts
7KC to 7B-OHC; these two oxysterols are at increased levels in the brain of Alzheimer’s patients
[110, 272]. F18-radiolabeled ligands have been developed to determine the topographical
expression of 113-HSD1 in the brain of rhesus monkey (Macaca mulatta) [273]. The authors had
previously developed [*'C] AS2471907 PET radiotracer for imaging 11B-HSD1 in the brain, but
their syntheses were not reliable, so they developed new probes and optimized the synthesis.
Pharmacokinetic analyses and verification of the binding specificity of the new probes were
performed in monkeys. The developed probes have a heterogeneous distribution, binding
specificity and longer half-life than the previous developed probes as well as easier production,
making them efficient and suitable PET radiotracer for 113-HSD1 brain imaging.

5 - Alternatives to animal models for the study of 7-ketocholesterol- and 7p-
hydroxycholesterol: organoids and microfluidic associated technologies

There are now evidence that whatever the relevance of models used to evaluate the biological
activities of natural or synthetic compounds, it is difficult to anticipate their biological activities
in humans. So, there is a need to develop new models including several parameters and
mimicking the complexity of an organ or of the whole organism. These approaches constitute an

important biotechnological challenge to prevent and cure major diseases (such as cardiovascular
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diseases and neurodegeneration), where no efficient treatments are available. These new cell
culture technologies include organoids, as well as organ-on-a-chip and multi-organ
microphysiological system models, also named body on-a-chip, based on a microfluidic
technology [274].

v Organoids mimicking the respiratory system, bowel or brain have already been made and
can be produced from various sources such as primary cells [275], pluripotent stem cells
[276, 277], embryonic [278] or adult stem cells [279], and patient-derived induced
pluripotent stem cells [276, 280]. Although several studies have been carried out using
established cell lines or primary cells, the use of stem cells is increasing because of the
tremendous potential to model various disease models or biological systems.

v Organ-on-a-chip strategies are based on microfluidic cell systems to model physiological
functions of tissues, or organs. To this end different types of stem cells can be used.
Currently, the focus is not to rebuild a whole living organ, but to mimic minimal
functional units that recapitulate tissue and organ level functions. Precise control of stem
cell differentiation in the microfluidic microenvironment makes tissue engineering and
organ-on-a-chip developments highly promising [281]. To date, a number of proof-of-
concept, organ-on-a-chip systems using cells differentiated from stem cells have been
described [282, 283]. Patient-derived and genetically engineered iPSCs with tissue
engineering to elucidate the pathophysiology underlying the cardiovascular diseases have
been combined through ‘heart-on chip’ for modeling the mitochondrial cardiopathy of
Barth syndrome [284]. These microfluidic organ-on-a-chip models can recapitulate
important organ-level functions, multicellular microarchitecture, and environment
dynamics. Therefore, the engineered novel heart- and vasculature-on-a-chip systems
could contribute to the development of suitable high-throughput platforms for drug
development and disease modeling of major cardiovascular diseases [285]. Furthermore,
organ-on-a-chip platforms have also the potential to strongly impact and improve the drug
screening process for neurodegenerative diseases. Patient-derived neurons from different
regions of the brain can be directly grown and differentiated on a brain-on-a-chip device
in where the disease development, progression and pharmacological treatments can be
studied and monitored in real time for Alzheimer's and Parkinson's diseases [286-288].

v Personalized multi-organ microphysiological system models, body on-a-chip, based on
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patient-derived iPSCs represent also a promising approach to elucidate physiopathology
and therapies [282, 289]. The technology of multi-organs can mimic complex biological
processes involving organ-organ interaction, system homeostasis and pharmacokinetics
[290, 291].

These organoids and on chip models based on microfluidic technologies could be very useful to
study 7KC- and 7B-OHC-induced biological activities on different organs and to identify new

molecules and new strategies capable to prevent their side effects.

6 — Conclusion

The potential implications of 7KC and 7B-OHC in many common and disabling diseases
(cardiovascular diseases, cataract, ARMD, neurodegenerative diseases, inflammatory bowel
diseases) are well documented. However, the demonstration of direct or indirect involvement of
these molecules in these diseases still requires significant work on cells, animal models and / or
alternatives to animal models. These different approaches will make it possible to better
understand the biological activities of 7KC and 7p-OHC, and to identify natural or synthetic
molecules, or mixtures of molecules, capable of preventing their deleterious effects in fatal and/or

strongly debilitating diseases, with important societal impacts.
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Figure Legends

Figure 1: Oxysterols oxidized at C7. Oxysterols oxidized at C7 (7a-hydroxycholesterol, 7[3-
hydroxycholesterol, and 7-ketocholesterol (also named 7-oxocholesterol)) are formed either by
auto-oxidation of cholesterol or enzymatically: 7a-hydroxycholesterol is formed via the enzyme
CYP7A1; 7p-hydroxycholesterol and 7-ketocholesterol are formed by auto-oxidation. 7-
ketocholesterol can be converted in 7B-hydroxycholesterol via the enzyme 11B-HSD1 (the
enzyme works less efficiently to convert 7B-hydroxycholesterol in 7-ketocholesterol) and 7p-

hydroxycholesterol can be converted in 7-ketocholesterol via the enzyme 113-HSD2 [41, 292].

Figure 2: Signaling pathways associated with 7-ketocholesterol-induced oxiapoptophagy
and inflammation. The schematic signaling pathways associated with 7KC-induced
oxiapoptophagy and inflammation are obtained from cells of different types and of different
species. 7KC, which accumulates in lipid rafts and triggers phosphatidylserine externalization,
modulates the activity of Ca?*, K* and Na'/K* channels such as P2X7 and Kv3.1 receptors. This
favours an intracellular accumulation of Ca?* and K*. 7KC also activates endoplasmic reticulum
stress and oxidative stress (ROS overproduction) which contributes to organelle dyfunctions
(mitochondria, peroxisome, lysosome). In addition, the ability of 7KC to inhibit the PI3-
K/PKB/Akt signaling pathway participates to the loss of transmembrane mitochondrial potential
(A¥m). Altogether, these different effects induce autophagy and apoptosis. The simultaneous
induction of oxidative stress, apoptosis and autophagy is defined as oxiapoptophagy. 7KC is also
a pro-inflammatory molecule which triggers inflammation via the activation of TLR4 receptor.

Figure 3: Signaling pathways associated with 7B-hydroxycholesterol-induced
oxiapoptophagy and inflammation. The schematic signaling pathways associated with 7[3-
OHC-induced oxiapoptophagy and inflammation are obtained from cells of different types and of
different species. 7p-OHC, which does not accumulates in lipid rafts, favors phophatidylserine

externalization. It also favors an intracellular accumulation of Ca?*, and inhibits the PI3-

33



K/PKB/ALkt signalling pathway; this later participates to the loss of transmembrane mitochondrial
potential (AWm). In addition, 7B-OHC is also a potent inducer of oxidative stress (ROS
oversproduction; enhanced levels of conjugated dienes (CDs), malondialdehyde (MDA) and
carbonylated proteins (CPs)) wich contributes to organelle dysfunctions (mitochondria,
peroxisome, lysosome) and to the induction of cell death defined as oxiapoptophagy. As 7p-OHC
and 7KC are two potent inducers of oxiapoptophagy some signaling pathways are similar.
However, as 7p-OHC is a stronger inducer of apoptosis and inflammation than 7KC, this suggests
some differences between these two oxysterols. In addition, the activation of the PKC/ P38/
MEK/ ERK signaling pathway constitutes a link between 7B-OHC-induced apotosis and 7p3-
OHC-induced inflammation allowing thus to rely oxiapoptophagy and inflammation.

Figure 4 Mechanisms by which 7-ketocholesterol and 7p-hydroxycholesterol can modulate
Ca?* signal transduction in mammalian cells. Both oxysterols (7KC, 7B-OHC) can be
metabolized to 7a, 25-hydroxycholesterol, a potent agonist of the G-protein coupled receptor
EBI-2/GPR183 that mobilizes Ca?* from the endoplasmic reticulum (ER) by gating inositol
1,4,5-trisphosphate receptors (IP3R). The enzyme CD38 is activated by 7KC or 73-OHC via an
undetermined mechanism, generating the second messengers cyclic ADP ribose (cADPr),
stimulating Ca?* release from the ER or smooth reticulum via ryanodine receptor (RyR) channels,
and nicotinic acid adenine dinucleotide phosphate (NAADP), that mobilizes Ca®** from the
lysosome via transient receptor potential mucolipin (TRPML) and two-pore (TPC) channels.
Both 7KC and 7B-OHC also promote Ca?' influx by activating multiple families of
plasmalemmal cation channels: voltage-gated calcium channels (VGCC); store-operated calcium
channels (SOCE); transient receptor potential (TRP) channels; and the purinoceptor 2X7 (P2X7).
By increasing the levels and function of potassium channels such as K 1.3b, oxysterols alter

membrane potential, thereby modifying the gating of VGCCs.

Figure 5: Animal models used to evaluate the biological activities of 7-ketocholesterol and
7B-hydroxycholesterol. Among these models transgenic and wild type mice have been widely

used. The other animal models mainly concern wild type animals.
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