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Abstract 

Oxysterols are molecules derived by the oxidation of cholesterol and can be formed either by 

auto-oxidation, enzymatically or by both processes. Among the oxysterols formed by auto-

oxidation, 7-ketocholesterol and 7β-hydroxycholesterol are the main forms generated. These 

oxysterols, formed endogenously and brought in large quantities by certain foods, have major 

cytotoxic properties. They are powerful inducers of oxidative stress, inducing dysfunction of 

organelles (mitochondria, lysosomes and peroxisomes) that can cause cell death. These molecules 

are often identified in increased amounts in common pathological states such as cardiovascular 

diseases, certain eye conditions, neurodegenerative disorders and inflammatory bowel diseases. 

To oppose the cytotoxic effects of these molecules, it is important to know their biological 

activities and the signaling pathways they affect. Numerous cell models of the vascular wall, eye, 

brain, and digestive tract have been used. Currently, to counter the cytotoxic effects of 7-

ketocholesterol and 7β-hydroxycholesterol, natural molecules and oils, often associated with the 

Mediterranean diet, as well as synthetic molecules, have proved effective in vitro. Bioremediation 

approaches and the use of functionalized nanoparticles are also promising. At the moment, 

invertebrate and vertebrate models are mainly used to evaluate the metabolism and the toxicity of 

7-ketocholesterol and 7β-hydroxycholesterol. The most frequently used models are mice, rats and 

rabbits. In order to cope with the difficulty of transferring the results obtained in animals to 

humans, the development of in vitro alternative methods such as organ / body-on-a-chip based on 

microfluidic technology are hopeful integrative approaches. 

 

Keywords: 7-ketocholesterol, 7β-hydroxycholesterol, cell models, animal models, microfluidic, 

signaling pathways. 
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1 – Introduction 

At the moment, there are several lines of evidence in numerous cell lines from different species 

that 7-ketocholesterol (7KC) and 7β-hydroxycholesterol (7β-OHC) induce cytotoxic side effects 

including rupture of RedOx homeostasis, inflammation and cell death defined as oxiapoptophagy 

(OXIdative stress + APOPTOsis + autoPHAGY). This is associated with important modifications 

of the lipid profile and with organelle dysfunction (mitochondria, lysosome, peroxisome) [1]. As 

increased levels of 7KC and 7β-OHC are associated in major diseases such as age-related 

diseases (cardiovascular diseases, neurodegeneration, eye disorders, osteoporosis and some 

cancers) and chronic diseases (bowel diseases) [2, 3], there is a need to better understand the 

biological activities of these molecules not only in vitro but also in vivo in order i) to identify 

pharmacological targets, and ii) to identify natural and synthetic compounds capable of 

counteracting 7KC- and 7β-OHC-induced side effects, as well as iii) to develop innovative 

therapeutic strategies (targeted nanotherapies [4], bioremediation [5, 6]). To overcome deficits in 

animal models whose results are sometimes difficult to transfer to humans, the development of 

alternative methods (“Lab on a Chip” / “Body on Chip” / organoids), perhaps combined with the 

use of inducible pluripotent stem cells (iPSCs), are promising integrative approaches.  

The present review will discuss the biogenesis and catabolism of 7KC and 7β-OHC; the 

biological activities of these oxysterols; their signaling pathways associated with oxidative stress, 

organelle dysfunction, cell death and inflammation; and the natural and synthetic compounds 

capable of preventing or attenuating their cytotoxic effects. The in vitro and in vivo models used 

to demonstrate these effects will be presented. Potentially suitable alternative methods to animal 

models (“Lab on a Chip” / “Body on Chip” / organoids / iPSCs) allowing to study the biological 

activities of 7KC and 7β-OHC and to identify molecules capable to modulate their biological 

activities will also be discussed. 

 

2 - Biogenesis and catabolism of 7-ketocholesterol and 7β-hydroxycholesterol 

Sterols are isoprenoid-derived molecules that have essential functions in eukaryotes, and in 

higher plants. Oxysterols are oxidized derivatives of cholesterol or its precursors post lanosterol 

[7-9]. They are associated with numerous major pathologies: cardiovascular diseases, 

neurodegeneration, eye disorders, osteoporosis and some cancers [2, 3, 10]. The most well-
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known oxysterols are oxygenated derivatives of cholesterol which are formed by the addition of 

one or more oxygenated functional groups to 27-carbon cholesterol molecule [11]. Higher plants, 

algae, most fungi, and vertebrates synthesize sterols whereas insects do not. In vertebrates, 

cholesterol is the major sterol, whereas a mixture of various sterols, named phytosterols, is 

present in higher plants with sitosterol [(24R)-24-ethyl cholesterol] usually predominating. The 

phytosterols, which are structurally similar to cholesterol, can also be oxidized to give 

oxyphytosterols such as 7-ketositosterol and 7β-hydroxysitosterol [12]. Normocholesterolemic 

healthy individuals contain a mixture of oxysterols in their peripheral blood, accounting for 1–5% 

of total cholesterol [13]. Cholesterol oxidation can occur on the hydrocarbon rings (A, B, C and 

D) of the steroid nucleus or on the side chain of the cholesterol molecule [11]. The oxysterols can 

be obtained by auto-oxidation, enzymatically or by both processes [11, 14-17]. Oxysterols 

formed enzymatically are often oxidized on the lateral chain and produced by cytochrome P450 

enzymes with the exception of 25-hydroxycholesterol, which is formed by cholesterol 25-

hydroxylase (CH25H) [11, 13]. For the latter, there are also arguments in favor of its formation 

by auto-oxidation of cholesterol [18, 19]. The double bond present on the B ring is the most 

energetically favorable target of free radical attack and therefore carbon atoms at the positions of 

4, 5, 6 and 7 are more susceptible to free radical oxidation [15, 17]. Commonly, B-ring oxidized 

oxysterols include hydroxylated compounds: 7α-hydroxycholesterol (7α-OHC) and 7β-

hydroxycholesterol (7β-OHC); oxysterols with a ketone group [7-ketocholesterol (7-KC, also 

named 7-oxocholesterol)]; epoxy cholesterols [5β, 6β- epoxy cholesterol (5β, 6β-epox), 5α, 6α- 

epoxy cholesterol (5α, 6α-epox)] and cholestan-3β, 5α, 6β triol. Among the oxysterols oxidized at 

C7 [7α-OHC (Systemic name: Cholest-5-en-3β,7α-dio; CAS (Chemical Abstracts Service) 

number: 566-26-7; lipid map: LMST01010013); 7β-OHC (Systemic name: 5-Cholestene-3β,7β-

diol; CAS number: 566-27-8; lipid map: LMST01010047) and 7KC (Systemic name: 7-oxo-

Cholest-5-en-3β-ol; CAS number: 566-28-9; lipid map: LMST01010049)] (Figure 1). 7α-OHC is 

formed enzymatically by the enzyme cholesterol 7α-hydroxylase (CYP7A1), and is a precursor 

of bile acids [20, 21].  

 

The oxysterols 7KC and 7β-OHC can be ingested in certain industrial foods [22-24] and are 

present in high amounts in atheromatous plaques, oxidized lipoproteins and in the retinal drusen 

in patients with cardiovascular diseases and age-related macular degeneration (ARMD), 
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respectively. It has long been considered that these oxysterols were only formed by auto-

oxidation of cholesterol [25]. There are also arguments supporting that exogenous 7KC is rapidly 

metabolized and excreted by the liver, suggesting that dietary 7KC make little or no contribution 

to atherogenesis [26]. At the moment, several putative mechanisms of cholesterol auto-oxidation 

are proposed [15, 16, 27, 28]. In cardiovascular diseases and ARMD, 7KC and 7β-OHC can be 

formed in situ under a pro-oxidant environment [14, 29-31]. The proportion of oxysterols in 

plasma of hypercholesterolemic patients is about 7KC (57%) > 7β /α-OHC (21%) > 5β,6β-

cholesterol epoxide (12%) > Triol (10%) while in atherosclerotic plaques it is about 7-KC 

(55%) > Triol (13%) > 7α /β -OHC (12%) > 5β,6β / 5α,6α -cholesterol epoxide (10%) [32]. 

Adverse environmental conditions, such as chronic air pollution exposure, have also been 

reported to favor 7-KC accumulation, foam cell formation, and atherosclerosis in mice [33].  

 

Currently, it is also well established that 7KC can be formed via the CYP7A1 enzyme from 7-

dehydrocholesterol (7-DHC), which is the precursor of Vitamin D3 (cholecalciferol), and which 

is present in high amounts in the plasma of patients with Smith Lemli Opitz syndrome who are 

deficient in the enzyme 7-dehydrocholesterol reductase (DHCR7) [21, 34]. It has also been 

demonstrated that the 11β-hydroxysteroid-dehydrogenase type I (11β–HSD1 / gene HSD11B1), 

which is responsible for the conversion of cortisone in cortisol, is also responsible for the 

conversion of 7-KC in 7β-OHC [21, 35-37]. In humans, 11β–HSD1 can also catalyse the 

conversion of 7β-OHC into 7KC [38]. In addition, the 11β-hydroxysteroid-dehydrogenase type II 

(11β–HSD2 / gene HSD11B2), which is responsible for the conversion of cortisol in cortisone, is 

also responsible for the conversion of 7β-OHC in 7KC [21, 35, 39]. Of note, the activity and 

reaction direction of 11β–HSD1 can be altered under conditions of 7-oxysterol excess, and could 

impact upon the pathophysiology of obesity [40, 41]. How 7KC and 7β-OHC are further 

metabolized is of great interest since the resulting metabolites may have important biological 

activities. Oxysterols are present in vivo in different forms, namely, the esterified, sulfated, and 

conjugated forms, as well as free oxysterols [42]. There are now several arguments supporting 

that 7KC can give rise to numerous metabolites, which probably vary depending on the cell type 

considered [21, 43]. However, little is known about the catabolism of 7β-OHC. However, for this 

oxysterol as well as for 7KC, regulation of its activity by sulfation via sulfotransferase 2B1b 

(SULT 2B1b) cannot be excluded [44]. In addition, potential modifications of the activities of 
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7KC and 7β-OHC by esterification can also occur. Thus, in human retinal pigment epithelial cells 

(ARPE19), it has been reported that the esterification of 7KC to fatty acids involves the 

combined action of cytosolic phospholipase A2 alpha (cPLA2α) and sterol O-acyltransferase 

(SOAT1) [45]. In addition, Acyl-coenzyme A, a cholesterol acyltransferase (ACAT, also 

abbreviated as SOATs) which converts cholesterol to cholesteryl esters and which play key roles 

in the regulation of cellular cholesterol homeostasis, is known to metabolize diverse substrates 

including both sterols and certain steroids [46]. Oxysterols are substrates of SOAT1 and SOAT2. 

Of note, in human promonocytic U937 cells, none of the cytotoxic effects observed with 7β-OHC 

and 7KC were noted with cholesterol, 7β-OHC-3-oleate and 7KC-3-oleate, with the exception of 

a slight increase in superoxide anion production with 7β-OHC-3-oleate [47]. The enzyme 

lecithin-cholesterol acyltransferase (LCAT) also permits synthesis of monoesters of 24(S)-

hydroxycholesterol [48]. LCAT could also esterify all oxysterols as monoesters (3β-hydroxyl 

group) and it has been suggested that it could also generate diesters (3β-hydroxyl group and 27-

hydroxyl group) in some cases [49]. Specifying the impact of these previously cited enzymes on 

7KC and 7β-OHC, in diseases where the levels of these oxysterols are modified, could lead to the 

identification of new therapeutic targets. It has also been reported on human hepatoma cells 

(HepG2) that the mitochondrial sterol 27-hydroxylase (CYP27A1) was responsible from the 27-

hydroxylated product of 7KC [50]. 

 

2 – In vitro study of the biological activities of 7-ketocholesterol and 7β-hydroxycholesterol 

and identification of molecules modulating their activity 

The toxicity of certain oxysterols, such as 7KC and 7β-OHC, and the suspected mutagenicity of 

some of them, such as 5,6-epoxides [51, 52], led to study the toxic and mutagenic properties of 

these molecules in different cell models. In acidic aqueous solution, 5,6-epoxides can give 

cholestane-3β,5α,6β-triol (CT) as a single product [53]. Using the Ames test, no mutagenic 

activity of 7KC, 7β-OHC and 5,6-epoxides was found whereas CT was slightly mutagenic [53, 

54]. However, 5,6-epoxides were mutagenic at high concentration on V79 Chinese hamster lung 

fibroblasts and induced the transformation of murine embryo cells [55, 56]. In addition, no 

genotoxicity was observed when CHO and Indian Muntjac fibroblastic cells were exposed to 5,6-

epoxides [57]. Based on these different studies, it is currently considered unlikely that 5,6-

epoxides will be direct carcinogenic [58]. As atherosclerosis is the first pathology in which the 



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Vejux, A. (Auteur de correspondance), Abed Vieillard, D., Hajji, K., Zarrouk, A., Mackrill, J.

J., Ghosh, S., Nury, T., Yammine, A., Zaibi, M., Mihoubi, W., Bouchab, H., Nasser, B.,
Grosjean, Y., Lizard, G. (Auteur de correspondance) (2019). 7-ketocholesterol and

7-hydroxycholesterol: in vitro and animal models used to characterize their activities and to identify molecules
preventing their toxicity. Biochemical Pharmacology, Journal Pre-proof. , DOI : 10.1016/j.bcp.2019.113648

9 
 

contribution of oxysterols, mainly 7KC and 7β-OHC, was suspected several works were realized 

in this field [25, 42, 59]. Subsequently, due to several studies suggesting a role of 7KC and / or 

7β-OHC in certain ocular diseases (cataract, ARMD), neurodegeneration (Alzheimer's disease in 

particular) [3], and bowel diseases [2], several types of cells from the eye, brain and digestive 

tract were used to characterize the cytotoxicity of 7KC and 7β-OHC and to identify molecules 

capable of preventing their side effects.  

 

 2.1 - In vitro models applied to the study of cardiovascular diseases and the 

identification of cytoprotective compounds in this field 

Atherosclerosis, which favors thrombosis, stroke and myocardial infarction, is a slow 

multifactorial degenerative process involving inflammatory, oxidative and cytotoxic processes. In 

the development of atherosclerosis, which is a frequent age-related disease [3], major roles are 

attributed to 7KC and 7β-OHC identified at high levels in the plasma and atheroma plaques of 

atheromatous patients [60]. In order to determine the biological activities of these molecules, 

several cellular models have been used especially endothelial cells, smooth muscle cells and 

monocytic cells.  

With regard to cellular models contributing to vessel structure, endothelial cells were used like 

the human umbilical vascular endothelial cells (HUVEC) [61] and some endothelial cell lines: a) 

human endothelial cells Eahy926 [62], b) human aortic endothelial cells (HAECs) [63, 64]; c) 

human endothelial cell line ISO-HAS [65], d) mouse endothelial cells (EOMA cells) [66], e) 

mouse carotid arterial endothelial cells (CAECs) [67]. The in vitro model of arterial relaxation of 

aortic rings was also used to study the impact of 7-hydroxycholesterols (7KC, 7β-OHC) on 

endothelial functions [68]. Endothelial cells derived from a primary rat aorta culture (rat aortic 

endothelial cells (RAEC)) were also used [69].  

Rat A7r5 smooth muscle cells and human aortic vascular smooth muscle aortic cells (HA-

VSMC) were used to assess the cytotoxic effects of 7-KC and/or 7-βOHC [70, 71]. Smooth 

muscle cells can also be extracted from aortic tissue of patients [72]. Data obtained on primary 

cultures from mice (mouse coronary arterial smooth muscle cells (CASMCs) [73] or rabbit [74]) 

have also been reported. 
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For inflammatory cells, the most commonly in vitro models used are monocytic / macrophage 

cells THP-1, U937, J774, but also RAW 264.7 and preloaded macrophages (P388D1 cell line) 

[47, 75-81]. Monocytes were also cultured from human peripheral blood mononuclear cells 

(PBMCs) [82, 83] or harvested from the mouse peritoneal fluid (peritoneal macrophages) or from 

mouse aorta (arterial macrophages) [84]. 

Cardiomyocytes were studied using mouse cardiac cells isolated from HL1-NB mice [85]. 

These different cell models were not only used to study the impact of 7KC and 7β-OHC on the 

cells of the vascular wall, but also to identify natural and synthetic molecules capable of 

preventing the cytotoxicity of 7-KC and 7-βOHC. In these cell models, the following data have 

been reported: Vitamin E (α-tocopherol) inhibits 7KC-induced oxidative stress, and apoptosis 

[86, 87]; butyrate, which belongs to a family of gut microbial metabolites, as well as short chain 

fatty acids (SCFAs) decrease the formation and the activation of Nlrp3 inflammasome induced by 

7KC [66]; epigallocatechin 3-gallate (EGCG) inhibits 7KC-induced monocyte–endothelial cell 

adhesion [65]; indicaxanthin, a bioactive pigment from cactus pear fruit, inhibits 7KC-induced 

THP-1 cell apoptosis [75]; soy-leaf extract has atheroprotective effects via modulation of 

Krüppel-Like Factor 2 and adhesion molecules in 7KC-treated HUVECs [88] ; retinoid X 

receptor α (RXRα) modulator, K-80003, a non-steroidal anti-inflammatory drug, inhibits 7-KC-

induced RXRα cytoplasmic translocation [79]; terculic acid, cyclopropene fatty acid, antagonizes 

7KC-mediated inflammation [89]; azelnidipine, a calcium channel blocker, inhibits ROS-

dependent expression of vascular cell adhesion molecule 1 (VCAM-1) induced by 7KC [90] 

Aronox, an anthocyanin-rich extract from Aronia melanocarpa E, inhibits apoptosis, ROS 

generation and the fall of the transmembrane mitochondrial potential induced by 7β-OHC [91]; 

dimethyl sulfoxide also prevents lysosomal and mitochondrial membrane permeabilization and 

ROS overproduction induced by 7β-OHC [92]. 

 

2.2 - In vitro models applied to the study of eye diseases and the identification of cytoprotective 

compounds in this field 

The eye is composed of different regions, from the cornea to the retina, allowing it to perform its 

visual function. The retina is the combination of the neurosensory retina and the retinal pigment 
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epithelium [93]. The neural retina is composed of several cell types, including the glia, whose 

role is crucial for cholesterol biosynthesis. Cholesterol is the main sterol in the retina. It is present 

at the cellular level mainly as free cholesterol, but as cholesterol esters in the extracellular 

environment of the Bruch membrane. The accumulation of cholesterol esters at this level is a 

marker of retinal aging and decreased retinal function. Subject to dietary influence and local 

synthesis, cholesterol is also regulated through its interactions with the different cell populations 

of the retina, and in particular those that involve neuron-glia communication. Age-related 

macular degeneration (ARMD) is associated with the development of abnormal macromolecular 

deposits called drusen. These are located in the Bruch membrane [93]. Recent investigations 

concerning the nature of these deposits, their relationship to inflammatory and immune reactions 

and the important role of oxidative stress have broadened the hypotheses on the 

pathophysiological mechanisms leading to ARMD lesions. Many analogies with the mechanisms 

involved in the genesis of atherosclerosis lesions suggest physiopathological similarities between 

these two diseases [93]. Currently, several data support the concept that oxysterols, mainly 7KC, 

are involved in the genesis of ARMD leading to cytotoxic, pro-oxidant and pro-inflammatory 

activities [14, 94]. In addition, some oxysterols have been identified by gas chromatography in 

human cataracts obtained after surgery: 7KC, 7β-OHC, 5α, 6α-epoxycholestanol, 20α-

hydroxycholesterol, and 25-hydroxycholesterol) [95]. In ARMD, 7KC seems to activate several 

kinase signaling pathways via multiple transcription factors to induce cytokines and intracellular 

effectors causing cell death [96]. 

 

Among the ocular pathologies studied, several of them concern ARMD and cataracts or vision 

disorders associated with different pathologies such as Parkinson's disease or Smith Lemli Opitz 

syndrome [16, 25, 93]. Several in vitro models have been used to study the effects of oxysterols 

on the eye. The most common models are retinal pigment epithelial cells: human ARPE-19 cells 

[97-100], fetal human retinal pigment epithelial cells (prepared from eyes of human fetuses) [98] 

or those isolated from ox eyes [101]. Primary cultures of porcine retinal pigment epithelial cells 

isolated from pigs eyes are also used [102]. Rat retinal precursor cell line R28 has been used less 

frequently [103]. Microglial retinal cells have also been isolated to study the neuroinflammation 

phenomena that occur in the outer retina [98, 104]. In addition, 661W photoreceptor cell lines 

were used [104, 105]. 
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Currently, two molecules were reported to inhibit the toxic effects of 7KC and 7β-OHC on retinal 

epithelial cells. Sterculic acid, which is a is a cyclopropene fatty acid, antagonizes 7KC-mediated 

inflammation and inhibits choroidal neovascularization [89]; and resveratrol, a polyphenol 

belonging to the stilbene class used in the treatment of ARMD attenuate 7KC-induced cell death 

and prevent 7KC-induced VEGF secretion [106]. 

 

2.3 - In vitro models applied to the study of neurodegenerative diseases and the identification 

of cytoprotective compounds in this field 

Since increased levels of 7KC and 7β-OHC were identified in the plasma and/or the 

cerebrospinal fluid of patients with demyelinating and non-demyelinating neurodegenerative 

diseases such as multiple sclerosis (MS) [107], X-linked adrenoleukodystrophy (X-ALD) [108], 

and Niemann-Pick disease [21], the effects of 7KC and 7β-OHC were evaluated on different 

types of nerve cells (neurons, glial and microglial cells). In these cells, several studies addressed 

the question of whether these oxysterols can induce organelle dysfunction (mitochondria, 

lysosome, peroxisome), oxidative stress, metabolic dysfunction, and cell death, which are 

hallmarks of neurodegeneration. 

Thus, undifferentiated and retinoic acid-differentiated human SH-SY5Y neuroblastoma cells 

were used to study the biological ability of certain oxysterols such as 24S-hydroxycholesterol 

(24S-OHC). In these cells, 7KC-induced cell death was attenuated by 24S-OHC [109]. Human 

SK-N-BE neuroblastoma cells were also treated with 7KC at the physiopathological 

concentration of 1 µM with the aim of comparing the effects of 7KC and 24S-OHC on tau 

phosphorylation, and to study the abilities to modulate the SIRT1-dependent neuroprotective 

pathway [110]. SK-N-BE cells were also used to compare the cytotoxicity of 7KC and 7β-OHC. 

In SK-N-BE cells, 7KC and 7β-OHC induce a loss of mitochondrial activity, an inhibition of cell 

growth, ROS overproduction, an enhancement of antioxidant enzymes activities, and a slight 

increase in Ca2+ [111]. To determine how 7β-OHC could contribute to the development of 

Alzheimer’s disease, the interaction between 7β-OHC and amyloid-beta (Aβ), whose 

extracellular accumulation in neuritic plaques is one of the hallmarks of Alzheimer’s disease, was 

studied [112]. It was reported that 7β-OHC enhances the binding of Aβ to these cells by up-

regulating the expression and the synthesis of CD36 and β1-integrin receptors [112]. In rat 
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pheochromocytoma PC12 cells exposed to sub-lethal concentrations of 7β-OHC, a significant 

increase of cellular glutathione levels and an enhancement of cell tolerance against the 

subsequent oxidative stress were observed [113]. C6 rat glioma cells were also incubated with 

7β-OHC for 24 h with the purpose of evaluating its cytotoxicity and to determine the type of cell 

death induced by this oxysterol [114]. In these cells, it was demonstrated that 7β-OHC induces a 

non-apoptotic mode of cell death associated with survival autophagy [114]. 

Immortalized murine glial cells (oligodendrocytes 158N) and microglial cells (BV-2) were also 

used to study the cytotoxic effects of 7KC and 7β-OHC in the context of demyelinating and non-

demyelinating neurodegenerative diseases. Indeed, these cells are suitable models to analyse 

oxidative stress, inflammation and cell death (apoptosis and autophagy) and to study the 

relationships between these different side effects [1, 115-117]. These cells constitute good 

models to study the impact of 7KC and 7β-OHC on organelle structure, topography, functions 

and interactions (mitochondria, lysosome and peroxisome) [1]. They also permit to study the part 

taken by the peroxisome in cell death, as well as to identify natural or synthetic molecules 

capable of counteracting or attenuating 7KC- and 7β-OHC-induced cytotoxicity. 

To precisely define the impact of neuroinflammation in MS, organotypic hippocampal slice 

cultures were incubated with BV-2 cells without and with lipopolysaccharides (LPS) [118]. 

Under these conditions, an accumulation of 7KC was observed in brain tissue, and an induction 

of apoptosis associated with oxidative stress was reported in the BV-2 cells [118]. This 

phenomenon involves the translocation of NF-κB and the activation of poly(ADP-

ribose)polymerase-1 (PARP-1), which is essential for microglial migration and consecutively 

regulates the expression of the iNOS, CD11a, and ICAM-1. These latter mechanisms are 

essential for the damaging activity of microglial cells [118]. Use of murine microglial BV-2 cells 

permitted demonstration of the ability of oleic acid (C18:1 n-9) and docosahexaenoic acid (DHA; 

C22:6 n-3), two major fatty acids present in the Mediterranean diet, to attenuate 7KC-induced 

oxiapoptophagy, associated with oxidative stress and with apoptotic and autophagic 

characteristics [1, 117, 119]. Currently, 158N cells are a widely used model to study the 

cytotoxicity of 7KC and 7β-OHC, and to determine the effects of these oxysterols on major 

myelin proteins expressed by these cells (Myelin Basic Protein (MBP), Proteo Lipid Protein 

(PLP)) [115]. In 158N cells, anti-apoptotic and anti-oxidant capacities of natural or synthetic 
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compounds and their ability to attenuate or to prevent toxicity of 7KC or 7β-OHC were often 

evaluated. In 158N cells incubated with 7KC or 7β-OHC, the cytoprotective effect of 

dimethylfumarate (DMF; Tecfidera) and biotin (vitamin B8), which are used for the treatment of 

MS, have been shown [120, 121]. Natural products including argan oil, milk thistle seed oil, sea 

urchin egg oil, Carpobrotus edulis ethanol-water extract also strongly attenuate 7KC and/or 7β-

OHC-induced cytotoxicity [121-125].  

 

2.3 - In vitro models applied to the study of bowel diseases and the identification of 

cytoprotective compounds in this field 

Oxidative stress is thought to play a key role in the development of intestinal damage in 

inflammatory bowel disease, because of its primary involvement in intestinal cells aberrant 

immune and inflammatory responses to dietary antigens and to the commensal bacteria [126, 

127]. 

 

In this context, human intestinal Caco-2 cells are often used and cultured in the presence of an 

oxysterols mixture (7KC, 5α,6α epoxycholesterol, 5β,6β-epoxycholesterol, 7α-

hydroxycholesterol and 7β-OHC) [127]. In this cell model pro-oxidant and pro-inflammatory 

effects of the oxysterol mixture were shown [128]. These cytotoxic effects were prevented by 

wine polyphenols [129, 130], olive oil polyphenols [131] and cocoa bean shells [128].  

 

2.4 - Interest of the yeast model, Saccharomyces cerevisiae and of the protozoa model, 

Tetrahymena pyriformis, to study 7-ketocholesterol- and 7β-hydroxycholesterol-induced 

cytotoxicity 

The yeast, Saccharomyces cerevisae (SC), is an excellent model for studying autophagy [132] . 

Due to the ability of 7-KC and 7β-OHC to induce oxiapoptophagy [119, 133], the SC model 

should provide a better understanding of the characteristics of autophagy induced by 7KC and 

7β-OHC. In addition, the SC model is a well recognized for studying the peroxisome, which still 

remains a poorly characterized organelle [134]. The SC model should make it possible to specify 

the impact of 7-KC and 7β-OHC on the peroxisome in terms of biogenesis and function, 

peroxisome-mitochondria interaction [135]. The protozoan model Tetrahymena pyriformis (TP) 

is an interesting tool for performing environmental toxicology analyzes [136]. Compared to 
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commonly used cellular models, it is a reference model to address the impact of molecules on the 

phagocytosis of nano- or microparticles; on mobility (this protozoan moves thanks to numerous 

cilia); and on the relationships between organelles (mitochondria, peroxisome) and mobility. The 

TP model has been successfully used for the identification of cactus (Opuntia ficus indica) 

extracts capable of inhibiting 7KC-induced cell death [137]. These easy-to-implement cellular 

models are also interesting tools for identifying molecules that modulate the activities of 7-KC 

and 7β-OHC. 

 

2.5 – 7-ketocholesterol and 7β-hydroxycholesterol signaling pathways based on in vitro studies 

The pathways involved in 7KC and 7β-OHC signaling for oxidative stress, and cell death, 

characterized by apoptotic and autophagic criteria (oxiapoptophagy), and in 7KC- and 7β-OHC-

induced inflammation (cytokine secretion, enhancement of adhesion molecule expression) have 

been primarily determined on the cellular models discussed in the preceding section. It is 

important to emphasize that these signaling pathways are highly conserved from one cell type to 

another and seem to be independent of the species considered [25, 87]. 

 

2.5.1 - 7-ketocholesterol-induced oxiapoptophagy and inflammation: associated signaling 

pathways 

The schematic signaling pathways presented in Figure 2 summarize the data obtained with 7KC 

in cells from different types and species: promonocytic / monocytic human U937 / THP1 cells 

[25, 47]; wild type human mammary tumor MCF-7 cells (caspase-3 deficient), and genetically 

modified MCF-7 (MCF-7/c3: stably transfected with caspase-3) [138], human retinal pigment 

epithelial cells (ARPE-19) [97, 139] and rat R28 retinal neurosensory cells [140]; murine 

oligodendrocytes 158N and murine microglial BV-2 cells [3, 119, 141-145].  

In A7r5 rat aortic smooth muscle cells and murine oligodendrocyte 158N cells, 7KC has been 

shown to accumulate in lipid rafts [141, 146]. In U937 and BV2- cells, and based on artificial 

membrane models, 7KC interacts with plasma membrane phospholipids leading to important 

changes in membrane properties [25, 117, 147]. In U937, 158N and BV-2 cells, 7KC induces a 

mode of cell death defined as oxiapoptophagy [47, 133]. 7KC stimulates an overproduction of 

ROS: superoxide anion (O2
●-) and hydrogen peroxide (H2O2) [25]. In human aortic smooth 

muscle cells, 7KC activates the NADPH oxidase (NOX-4) via endoplasmic reticulum stress 
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involving the IRE-1/JNK/AP-1 signaling pathway which contributes to overproduction of ROS, 

leading to decreases in ΔΨm and apoptosis [148]. 7KC-induced apoptosis is characterized by an 

early externalization of phosphatidylserine [149] and by the following events: (i) Ca2+ influx; (ii) 

activation of calmodulin and calcineurin leading to BAD dephosphorylation and subsequent 

mitochondrial depolarization; (iii) mitochondrial release of cytochrome c, AIF and Endo-G; (iv) 

activation of caspase-2, -3, -7, -8, and -9; (v) truncation of BID; (vi) lower BCL-2 levels; (vii) 

cleavage of PARP; and (viii) of the DNA fragmentation factor (DFF45)/ICAD leading to the 

activation of caspase activated DNase (CAD) involved in internucleosomal DNA fragmentation 

[71, 138, 150-152]. In addition, 7KC-induced cell death is associated with an activation of the 

P2X7 receptor (involved in Na+/Ca2+ influx and K+ efflux) [97, 143]. In 158N and BV-2 cells, 

7KC also triggers an increased level of the voltage-gated K+ (Kv) channel kv3.1b (involved in K+ 

efflux) protein, and an intracellular accumulation of K+ [143, 144]. The cytoplasmic 

accumulation of K+ is positively correlated with increased plasma membrane permeability to PI, 

ROS overproduction and loss of ΔΨm [143]. In monocytes macrophages (U937, RAW264.7, 

P388D1) and smooth muscle cells, it has been shown that 7KC inhibits the PDK-1/(Akt/PKB) 

signaling pathway [86, 153] and triggers the formation of multilamellar cytoplasmic structures 

named myelin figures [25, 154]. The ability of 7KC to induce also lysosomal modifications [122, 

133, 155], formation of monodansyl cadaverine positive structures [156] and activation of LC3-I 

into LC3-II, also support that 7KC is capable of triggering autophagy. It is suggested that 7KC 

could induce a protective form of autophagy [73, 157] and it is now considered that myelin 

figures could be ultrastructural features of reticulophagy. Under treatment with 7KC, peroxisomal 

dysfunction (decreased peroxisomal mass suggested by decreased expression of ABCD3, altered 

peroxisomal β-oxidation supported by an accumulation of very long chain fatty acids) has also 

been reported [158-160]]. Whereas the part taken by the peroxisome in cell death is not well 

known [161], it has been demonstrated that peroxisomal dysfunctions are able to trigger oxidative 

stress [162, 163]. As the peroxisome is tightly connected with the mitochondria [164, 165] which 

plays key roles in 7KC-induced apoptosis [166], the contribution of the peroxisome to 7KC-

induced cell death, which is associated with a rupture of the RedOx homeostasia, cannot be 

excluded [1]. 

It is also now well established that 7KC is a potent inducer of inflammation. This oxysterol 

increases cytokine secretion (IL-8, IL-1β) and overexpression of adhesion molecules (VCAM-1, 
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ICAM-1, E-selectin). However, in U937 and THP-1 cells, the secretion of IL-1β and IL-8, and 

the expression of VCAM-1, ICAM-1, and E-selectin was lower than with 7β-OHC [61, 167, 

168]. Currently, limited data are available on the metabolic pathway(s) contributing to 7KC-

induced inflammation. In cultured ARPE-19 cells, 7KC-induced inflammation is mediated 

mostly through the TLR4 receptor, with some cross-activation of EGFR-related pathways via NF, 

leading to the activation of NFκB, which is essential in mediating cytokine expression (IL-1β, IL-

6 and IL-8) [169]. In addition, the ability of 7KC to induce IL-1β-secretion suggests an activation 

of the inflammasome. This hypothesis is supported by several experimental studies. Thus, 

formation and activation of Nlrp3 inflammasomes in bone marrow derived macrophages (BMMs) 

has been reported in the presence of 7KC [170]. Sublethal concentrations of 7KC in retinal 

microglia isolated from postnatal C57BL/6J mice resulted in microglial activation and 

polarization to a pro-inflammatory M1 state, via NLRP3 inflammasome activation [104]. 7KC 

also efficiently induces inflammasome formation in fetal human RPE (fhRPE), human ARPE-19 

cells, primary human brain microglia cells, and human THP-1 monocyte cells [98]. 

 

2.5.2 - 7β-hydroxycholesterol-induced oxiapoptophagy and inflammation: associated signaling 

pathway 

The schematic signaling pathways presented in Figure 3 summarize the data obtained with 7β-

OHC on cells from different types and species: promonocytic / monocytic human U937 / THP1 

cells [25, 47]; vascular cells (endothelial and smooth muscle cells) [25, 148]; wild type human 

mammary tumor MCF-7 cells (caspase-3 deficient), and genetically modified MCF-7 (MCF-7/c3: 

stably transfected with caspase-3) [138], human retinal pigment epithelial cells (ARPE-19) [100] 

/ primary porcine retinal epithelial cells; rat C6 glioblastoma cells [171], murine oligodendrocytes 

158N and murine microglial BV-2 cells [3, 114, 119, 121, 141, 142]. The different cells used 

permitted determination of the signaling pathways involved in 7β-OHC-induced cytotoxicity and 

to define the relationships between ROS overproduction, apoptosis, autophagy and inflammation.  

Distinctly from 7KC, 7β-OHC, while cytotoxic, does not accumulate in lipid rafts [141]. 7β-OHC 

is a strong inducer of ROS overproduction and favors the disturbance of redox homeostasis by 

increasing the formation of lipid peroxidation products (malondialdehyde (MDA), conjugated 

dienes (CDs)) and of carbonylated proteins (CPs) which can further contribute to cell death [172]. 

An important impact on the mitochondria was also observed whatever the cells considered. In 
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human monocytic THP-1, U937 cells, and MCF-7 cells, a down-regulation of Bcl-2 expression 

was also detected as well as an activation of the pro-apoptotic proteins (Bid, Bax), associated 

with a release of cytochrome c and an activation of caspase-9, caspase-8, caspase-3 and caspase-

7. In U937 cells, 7β-OHC also induced an increase in cytosolic Ca2+ concentration, associated 

with a decrease of Akt activation and a mitochondrial release of various proteins such as 

cytochrome c, apoptosis-inducing factor (AIF), and endonuclease-G (Endo-G), associated with 

caspase-3, -7, -8, and -9 activation, Bid cleavage and PARP degradation [25, 138]. In C6 

glioblastoma cells, 7β-OHC induces apoptosis through decreased ERK signaling, transient PI3K / 

Akt activation, loss of GSK3β activation and activation of p38 [171, 172]. In U937 cells, as well 

as in human retinal pigment epithelial cells (ARPE-19), large myelin figures (evocating 

reticulophagy) were observed [25, 100]. In ARPE-19 cells, a link between lysosome and cell 

death was also established [100]. In addition to lysosomal and mitochondrial dysfunctions, in 

158N and BV-2 cells, 7β-OHC also induces peroxisomal changes (morphological and 

topographical changes, reduce number of peroxisome, altered metabolism). In 158N cells, the 

complex mode of cell death induced by 7β-OHC (oxiapoptophagy) is characterized by a 

dephosphorylation of PKB / Akt, an activation of GSK3, and by a reduced expression of Bcl-2; 

altogether these events contribute to mitochondrial depolarization leading to caspase-3 activation, 

PARP degradation and internucleosomal DNA fragmentation [141]. Moreover, 7β-OHC 

promotes the conversion of microtubule-associated protein light chain 3 (LC3-I) to LC3-II which 

is a hallmark criterion of autophagy [119]. The ratio [LC3-II / LC3-I] is also strongly modified by 

bafilomycin acting on the autophagic flux. Rapamycin, an autophagic inducer, and 3-

methyladenine, an autophagic inhibitor, reduce and increase 7β-OHC-induced cell death, 

respectively, supporting that 7β-OHC induces survival autophagy [114]. Altogether, these data 

establish that 7β-OHC is a potent inducer of oxiapoptophagy through the concomittent activation 

of several signaling pathways involved in oxidative stress, apoptosis and autophagy.  

There is also evidence that 7β-OHC is a potent inducer of inflammation: it increases cytokine 

secretion (IL-8, IL-1β) and overexpression of adhesion molecules (VCAM-1, ICAM-1, E-

selectin). Inn U937 and THP-1 cells, the secretion of cytokines and the expression of adhesion 

molecules observed under treatment with 7β-OHC were higher than with 7KC [61, 167, 168]. 

Currently, no data are available on the relationship between 7β-OHC-induced IL-1β secretion and 

inflammasome activation. Of note, it has been described in several works that the PKC/ P38/ 
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MEK/ ERK signaling pathway constitutes a link between 7β-OHC-induced apoptosis and 

inflammation [168, 171, 172].  

Comparatively to 7KC, less information are available on the 7β-OHC. It is however well 

established that 7β-OHC is a more potent inducer of apoptosis than 7KC and is also a more 

potent inflammatory mediator. Indeed, the percentage of apoptotic cells and the level of cytokine 

secretion are higher under treatment with 7β-OHC than with 7KC. Although there are common 

signaling pathways for both molecules, there must also be specific pathways for each of them. 

 

2.5.3 – Contribution of Ca2+ and K+ in 7-ketocholesterol and 7β-hydroxycholesterol signaling 

pathways 

Ca2+ is a universal second messenger, participating in the regulation of almost every cellular 

process, from fertilization to motility, gene expression and death [173].  Consequently, the ability 

of 7KC or 7β-OHC to modify intracellular Ca2+ concentrations in diverse cell-types of the 

vascular wall, with a range of downstream consequences, have been studied. In HUVECs, 

incubation with 150 M 7KC for 2 h elevated resting cytosolic Ca2+ levels and enhanced Ca2+ 

responses to histamine [174]. In mouse aortic endothelial cells, micromolar concentrations of 

7KC elicited a transient increase in cytoplasmic Ca2+ within seconds of addition, via a 

mechanism partially dependent on Ca2+ release from intracellular pools, since it persisted in Ca2+-

free extracellular medium. This transitory rise in Ca2+ promoted reactive oxygen species (ROS) 

formation, with subsequent apoptotic cell-death [175]. In contrast, low micromolar 

concentrations of 7β-OHC promoted survival of HUVECs, increasing the phosphorylation of 

extracellular signal-regulated kinases (ERKs). These effects are probably mediated by a store-

operated Ca2+ entry mechanism, since they are blocked by 2-aminoethyl diphenylborinate and by 

gadolinium ions [176]. In human aortic smooth muscle cells, within a few minutes of addition, 

micromolar 7β-OHC triggered oscillations in cytoplasmic Ca2+ concentrations, followed by 

depletion of intracellular Ca2+ stores sensitive to thapsigargin, an inhibitor of sarco-/endoplasmic 

reticulum Ca2+-ATPase (SERCA) pumps. These changes were associated with activation of 

ERK1/2 within minutes and with apoptotic cell death over 72 h [177]. In the same cell type, 7KC 

elicited similar Ca2+ oscillations, enhanced activity of the NAD(P)H oxidase Nox-4, increasing 

ROS production and induced the ER unfolded protein response [148]. In human coronary artery 

smooth muscle cells, 7KC caused a rise in cytoplasmic Ca2+ followed by caspase-3 dependent 
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apoptosis. Both the ER stress response and caspase-3 activation could be partially inhibited by 

submicromolar concentrations of nifedipine, an antagonist of L-type voltage-gated Ca2+-channels 

(VGCCs) [178]. In mouse coronary artery smooth muscle cells, 7KC stimulated rises in 

cytoplasmic Ca2+ that enhanced ROS formation, promoting differentiation via activation of 

nuclear factor erythroid 2–related factor 2 (NRF2). As revealed in smooth muscle cells from 

CD38-/- transgenic mice [179], these Ca2+ elevations were dependent on CD38, an enzyme that 

can generate second messengers promoting Ca2+ release via ER/SR ryanodine receptors (by 

cyclic ADP ribose), or from lysosomal Ca2+ stores (by nicotinic acid adenine dinucleotide 

phosphate) [180]. In the A7r5 rat aortic smooth muscle cell-line, incubation with 7KC or 7β-

OHC for 24 h elevated resting cytosolic Ca2+ concentrations and suppressed responses to 

bradykinin, or arginine vasopressin, peptide hormones linked to Ca2+ mobilization via the 

phospholipase C-inositol 1,4,5-trisphosphate (IP3) pathway. In this system, 7β-OHC led to a 

decrease in the levels of the type 1 IP3 receptor/Ca2+-release channel protein, in a manner that 

could be abolished by co-incubation with an inhibitor of the proteasomal pathway [181]. In the 

THP1 monocyte/macrophage cell-line, 7KC stimulated Ca2+ increases that were partially 

inhibited by micromolar concentrations of the L-type VGCC inhibitors verapamil and nifedipine 

[152]. These elevations in cytoplasmic Ca2+ exerted diverse and opposing effects on cell-death 

pathways: activating calcineurin to stimulate Bcl-2-associated death promoter (BAD) [152]; 

causing the release of pro-apoptotic Bim-LC8 from the microtubule-associated dynein motor 

complex; and activating the tyrosine kinase PYK2, thereby inhibiting apoptosis via the ERK 

pathway [182]. In this cell-line, 7β-OHC also triggered Ca2+ influx dependent on VGCCs, 

promoted cell survival through the ERK pathway; and stimulated transcription and secretion of 

interleukin-8 [183]. In differentiated U937 cells, 7-βOHC, but not -epoxide, caused gradual 

increases in cytoplasmic Ca2+ concentration that lasted for at least 15 minutes and were inhibited 

by nifedipine, or by removal of extracellular Ca2+. In these cells, nifedipine also reduced cell-

death caused by 7β-OHC [184]. 

The molecular mechanism(s) by which 7KC or 7β-OHC alter cytoplasmic Ca2+ levels are unclear 

[185]. Most of these responses are too rapid to require changes in gene expression, excluding 

roles for liver X receptor (LXR)- or sterol regulatory element binding protein (SREBP)-

dependent oxysterol sensing pathways. Cell-type and congener-specificity indicates that these 

effects are probably not dependent on biophysical modification of lipid membranes by oxysterols, 
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instead requiring specific, protein-based receptors. The intracellular oxysterol-binding protein 

related proteins ORP4L [186], ORP5 and ORP8 [187] modulate Ca2+ signaling at membrane 

contact sites. In radioligand binding assays using heterologous expressed proteins, 7KC displaced 

25-hydroxycholesterol bound to ORP4L [188]. In hepatoma cell-lines, ORP8 is required for the 

cytotoxicity of various oxysterols, including that of 7KC and 7β-OHC, demonstrating that it can 

act as an effector for these cholesterol oxidation products [189]. To better understand the 

mechanisms of intracellular Ca2+ modulation by 7KC and 7β-OHC, it could be interesting to 

study the impact of these oxysterols on the inhibition of the catalytic subunit D8D7I of 

cholesterol epoxide hydrolase (ChEH) [190]. Indeed, 7KC and 7β-OHC are potent inhibitors of 

ChEH [190], the subunit called 3β-hydroxysterol-Δ8-Δ7-isomerase (D8D7I) has been 

characterized as a Ca2+ binding protein [191], and it is not excluded that 7KC could inhibit 

D8D7I activity [192]. In addition, at least two types of G-protein coupled receptor (GPR) are 

activated by oxysterols. The repression of the GPR Smoothened by the Sonic hedgehog peptide, 

thereby removing the inhibitory effect of Patched, increases cytoplasmic Ca2+ levels in rat gastric 

mucosal cells [193]. In NIH 3T3 fibroblasts, 20S-hydroxycholesterol potently activated 

Smoothened, but 7-βOHC was without detectable effect [194]. A distinct GPR, Epstein-Barr 

virus-induced G-protein coupled receptor 2 (EBI2) or GRP183, was activated by nanomolar 

levels of 7, 25-dihydroxycholesterol when heterologous expressed in CHO-K1 cells, causing 

Ca2+ release from intracellular stores [195]. Although 7β-OHC is a very weak agonist of this 

receptor, both it and 7KC can be converted into more active congeners by the actions of 25-

hydroxylase and 11β-hydroxysteroid dehydrogenases [196]. The mechanisms by with 7-OHC 

and 7KC can influence Ca2+ signaling are summarized in Figure 4. 

Of note, whereas the cells of the vascular wall display rapid Ca2+ responses to oxysterols, such 

effects were not observed on nerve cells. For example, although both 7KC and 7β-OHC promote 

oxiapoptophagy in mouse 158N oligodendrocytes, they did not detectably alter cytoplasmic Ca2+ 

concentrations over a 10 minutes time period [141]. These oxysterols did not detectably alter 

cytoplasmic Ca2+ levels in the SK-N-BE neuroblastoma cell-line within 10 minutes of addition, 

but increased the formation of calcium deposits within 24 hours, as revealed using von Kossa 

staining [144].  
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Other mechanisms that potential link 7KC and 7β-OHC to Ca2+ signaling have not been 

completely defined. These mechanisms include P2X7 purinoreceptor cation channels [97], CD38 

[179], and the voltage-gated K+ channel Kv1.3b, which modulates membrane potential and 

thereby VGCC opening [144]. In human retinal cells, 7KC-induced toxicity has been reported to 

activate the P2X7 receptor which leads to Na+ and Ca2+ influx, and K+ efflux [97]. Activation of 

P2X7 receptor triggers the formation of large nonselective membranes pores which results in 

inflammation through the inflammasome, oxidative stress and, ultimately, cell death especially 

by apoptosis [97]. In 158N cells, the voltage-gated K+ (Kv) channels (Kv3.1) designed for high-

frequency repetitive firing and expressed by different types of nerve cells in the CNS is affected 

by 7KC. Increased levels of Kv3.1b protein were shown in 158N cells under treatment with 7KC, 

and positive correlations between Kv3.1b levels and the intracellular K+ concentration ([K+]i) 

were observed [144]. Under treatment with 7KC, the simultaneous increased of [K+]i and of the 

level of Kv3.1b along with increasing percentage cells with depolarized mitochondria, ROS 

overproduction and markers of death [144]. This lead to speculation that K+ retention could 

contribute to 7KC-induced cytotoxic effects and that enhanced expression of Kv3.1b could occur 

as a compensatory mechanism, contributing to prevention of 7KC cytotoxicity. This hypothesis is 

supported by the fact that the blockage of Kv channels with 4-aminopyridine exacerbated 7KC-

induced cell dysfunction on 158N murine oligodendrocytes and microglial murine BV-2 cells 

[143].  

 

3 – Contribution of bacteria for the identification of new strategies to prevent 7-

ketocholesterol-induced cytotoxicity: biodegradation of 7-ketocholesterol by bacterial cells 

and enzymes  

Inherent metabolic insufficiency of the human body increases with age, which can lead to the 

accumulation of pathogenic compounds like 7KC in senile cells, causing deleterious functions 

and cell death. Alternatively, utilizing exogenous microbial enzymes for targeting cytotoxic 

compounds enabling subsequent degradation is a promising substitute to endogenous enzymes. 

Microbes have long been proven to be remarkable in catabolizing toxic xenobiotic compounds 

like pesticides, solvents and hydrocarbons, which have found application in the remediation of 

polluted environments [197-199]. In general, the biodegradation process involves microbial use 
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of the organic compounds as a carbon/energy source, breaking down of complex organic 

structures, assimilation or release of the degradation products, and subsequent mineralization to 

carbon dioxide and water. ‘Medical bioremediation’ as a novel strategy, has been proposed to 

remediate cytotoxicity of 7KC which involves screening of microbes capable of catabolizing 

7KC, identification of relevant enzymes, overproduction of these enzymes, and delivery into 

targeted organelle of diseased cells [5, 6, 200, 201]. The enzymes could also have application in 

food productions to remediate 7KC in its dietary sources. In fact, use of such systems against 

toxic molecules has been reported in amyloid-β degradation by insulin-degrading enzyme [202] 

and mycoplasma cells [203]; cleavage of bisretinoid lipofuscin (A2E) by horseradish-peroxidase 

[204]; and hydrolysis of blood cholesterol and triglycerides by Pseudomonas gessardii lipase 

[205]. 

The earliest studies on 7KC degradation identified several bacterial and actinobacterial strains 

isolated from soil and activated sludge, namely Nocardia nova, Proteobacterium Y-134, 

Sphingomonas sp. JEM-1, Rhodococcus jostii RHA1 and Pseudomonas aeruginosa having the 

potential to mineralize 7KC, using it as a sole-carbon and energy source. The first four strains 

were also found to release CO2 in minimal salt media with 0.1% 7KC [206]. Additional studies 

by the same group conducted transcriptomic analysis of genes expressed by Rhodococcus jostii 

RHA1 in presence of 7KC and cholesterol revealed 363 differentially expressed in presence of 

7KC compared to cholesterol. In fact, 7KC was found to induce a larger number of steroid 

catabolism genes, mostly belonging to three or four putative clusters. The genes included those 

responsible for the catabolism of the steroid rings such as kstD, kshA, hsaABCDEFG, or their 

homologs. The steroid uptake system Mce4 was also found essential for uptake of 7KC into the 

cell. Other genes identified include hsaC coding for a dioxygenase which cleaves the ring A of 

cholesterol and Cyp125 which initiates side-chain degradation. However, none of these clusters 

code for a complete 7KC degradation pathway. It seems that cholesterol and 7KC degradation 

follows a common pathway until the hsaC step and the degradation of the side chains occur 

simultaneously with that of the rings. Several metabolites of the pathway such as 3,4,7-

trihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione propionic acid (3,4,7-THSAP), 3,4-

dihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione propionic acid (3,4-DHSAP), 3,4,7-

trihydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione (3,4,7-THSA) and 3,4-dihydroxy-9,10-

seconandrost-1,3,5(10)-triene-9,17-dione (3,4-DHSA) were identified, along with the 
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involvement of enzymes such as dioxygenase (hsaC), 7-keto reductase and dehydratase [207]. 

Subsequent studies on Pseudomonas aeruginosa PseA and Rhodococcus erythropolis MTCC 

3951 reported respectively 88% and 93% degradation, of an initial 7KC concentration of 1 g/L 

(1000 ppm), with a high growth of biomass. The extracellular extracts of the bacterial strains 

were capable of degrading 0.1 g/L (100 ppm) 7KC to a very high extent (65% in case of P. 

aeruginosa and 98% in R. erythropolis) within 72 hours, pointing to the involvement of 

enzymatic systems in the degradation process. Cholesterol oxidase was assayed as the main 

enzyme responsible for the first reaction pertaining to conversion of 7KC to 4-cholesten-3, 7-

dione. In P. aeruginosa, cholesta-3, 5-dien-7-one/cholesta-4, 6-dien-3-one were found to be the 

next intermediate products, while in case of R. erythropolis, chol-5-en-3,7-dione and androsta-4-

ene-3,7,17-trione were found to be formed downstream in the pathway. Here, the side-chain 

degradation precedes that of the ring-cleavage of 7KC. Lipase, reductase and dehydrogenase 

were the other identified enzymes secreted by the microbes in presence of 7KC [208, 209]. More 

recently, environmental samples such as soil, sea water sediment and manure piles have been 

explored for the presence of 7KC degrading microbes. Alcanivorax jadensis IP4 isolated from sea 

water sediment, Streptomyces auratus IP2 and Serratia marcescens IP3 isolated from soil 

samples and Thermobifida fusca IP1 isolated from manure piles proved to be potent strains 

capable of using 7KC (1 mg/L) as a sole carbon source and to subsequently mineralize it. Out of 

these, A. jadensis IP4, followed by T. fusca IP1 were most efficient in degrading 7KC, with 100% 

degradation of 1 mg/L concentration achieved within 12 days. Intracellular extracts of A. jadensis 

IP4 were able to degrade 65% of same concentration of 7KC within 72 hours [210, 211].  

As in the case of storage diseases, bulk of the 7KC absorbed by the cell is localized to lysosomes. 

Thus, in spite of the reason that several enzymes such as 27-hydroxylase (CYP27A1), 11β-

Hydroxysteroid dehydrogenase, cholesterol sulfotransferase (SULT2B1b) and Acyl-CoA 

cholesterol acyltransferase (ACAT) have been known to act on 7KC, their unavailability in 

lysozymes, prevents the attenuation of its cytotoxicity. In liver cells, 11beta-hydroxysteroid 

dehydrogenase type 1 converts 7KC to 7β-OHC, which is then transformed by the hepatic 

metabolism [212]. A plasmid construct of pEGFP‐N3, harboring the Chromobacterium DS-1 

cholesterol oxidase gene fused with the signal sequence and transmembrane domain of the 

lysosomal membrane protein LAMP1 (named as pEGFP-COXL1) was found to be localized 

within the lysosome. Human fibroblast cells transfected with this plasmid were able to withstand 
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up to 50 µM concentration of 7KC, compared to the control, proving the cytoprotective effect of 

the enzyme [213]. The role of cholesterol oxidase in 7KC biotransformation was further proved 

in another application study, where the enzyme immobilized on magnetic Iron (II, III) oxide 

nanoparticles was able to convert cholesterol and 7KC to 4-cholesten-3-one and 4-cholesten-3, 7-

dione respectively, which could be used as steroid precursors or anti-obesity drugs [214]. An 

interesting investigation reports the ability of growing and resting cells of Lactobacillus casei 

ATCC334 in removing oxysterols from solution, probably through binding to the cell surface or 

by membrane incorporation. The resting cells were most efficient in removal (37 to 61%) of 

oxysterols such as 7KC followed by 7α/7β‐OHC, cholestanetriol, 5,6β/5,6α‐epoxycholesterol 

and 25‐hydroxycholesterol respectively. Being probiotics, L. casei may find application in 

inhibiting the intestinal absorption of harmful oxysterols [215].  

Thus, microbial biodegradation and consequent mining of therapeutic enzymes may provide a 

promising route to remediate oxysterol-mediated cytotoxicity, especially that of 7KC and 

7β‐OHC. 

 

4 – Animal models and analysis of the biological activities of 7-ketocholesterol and 7β-

hydroxycholesterol  

Currently, the biological activities of 7KC and 7β‐OHC have mainly been evaluated in animal 

models developed to study atherosclerosis. In this context, numerous animal models are 

available. At the opposite extreme, only a few animal models are described to determine the 

incidence of these oxysterols in eye, neurodegenerative and bowel diseases.  

 

4.1 – Mouse transgenic models 

To address the incidence of oxysterols in different pathologies, murine transgenic animal models 

have been developed when the relevant oxysterols considered are enzymatically produced. This is 

mainly the case for oxysterols oxidized on the lateral chain, which do not include 7KC and 7β-

OHC. Indeed, the oxysterols oxidized on the lateral chain interact with the Liver X Receptors 

(LXRα/β) [216]. LXR deficient transgenic mice have contributed to demonstrate the importance 

of LXR in the fertility and development of prostate cancer) [217-219]. LXRβ is also involved in 
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amyloidogenesis associated with neurodegeneration in Alzheimer’s disease [220]. On the other 

hand, CYP46A1 is mainly expressed in the central nervous system neurons and allows the 

production of 24S-hydroxycholesterol (24S-OHC) [221]. The use of CYP46A1-deficient mice 

permitted to demonstrate the importance of this enzyme and 24S-OHC in major 

neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's 

disease [222-225]. As for the enzyme CYP27A1 which makes it possible to produce 27-

hydroxycholesterol (27-OHC) from cholesterol essentially at the peripheral level, the use of 

CYP47A1 deficient mice has demonstrated the importance of this enzyme and of 27-OHC in 

cancer development (breast cancer, melanoma) [226, 227]. 

Unlike oxysterols oxidized on the lateral chain such as 24S-OHC and 27-OHC, 7KC and 7β-

OHC are essentially formed by auto-oxidation of cholesterol in different tissues (vascular wall, 

retina, brain) under the influence of an environmental oxidative stress [25]. They also accumulate 

in the vascular wall, and this process is favored by a diet rich in oxysterols even if these latter are 

metabolized by the liver [25].  

ApoE deficient mice were used to determine the vascular effects of 7β-OHC [228]. CX3C 

chemokine receptor 1 (CX3CR1GFP/+) mice were also successfully used to demonstrate that 

retinal microglia have a prominent chemotropism to 7KC and internalize 7KC. Sub-lethal 

concentrations of 7KC resulted in microglial activation and polarization to a pro-inflammatory 

M1 state via NLRP3 inflammasome activation. In addition, microglia exposed to 7KC reduced 

expression of neurotrophic growth factors but increased expression of angiogenic factors, 

transitioning to a neurotoxic and pro-angiogenic phenotype [104]. Since the enzyme 11β-

HSD11B1 has been shown to convert 7KC to 7β-OHC, mouse models deficient for this enzyme, 

that also converts cortisone to cortisol, have been developed to study atherosclerosis and 

metabolic syndrome [36, 37, 229-231]. In the context of obesity (with or without metabolic 

syndrome, and type 2 diabetes ), the role of 11β-HSD11B1 and 11β-HSD11B2 in ob/ob mice is a 

subject of new research [232, 233]. Mice deficient in the enzyme 7-dehydrocholesterol reductase 

used, as a model of Smith-Lemli-Opitz syndrome, are also available to address the conversion of 

7-dehydrocholesterol to 7KC in this disease [234]. In addition, ApoE-deficient mice are of 

interest in clarifying the role of 7KC and 7β-OHC in atherogenesis [84]. 

 

4.2 – Non transgenic invertebrate and vertebrate animal models 
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Due to the identification of 7KC and 7β-OHC in large quantities in different types of foods, the in 

vivo effects of these molecules have been studied in animal models, in order to determine their 

effects on diseases associated with poor eating habits, such as cardiovascular diseases. To this 

end, several models (pigeon, mouse, rat, hamster, rabbit and pig) were used (Figure 5). Among 

these models, some of them were also employed to study the impact of 7KC in aged related 

diseases, and in this context the Caenorhabditis elegans model was recently developed. 

 

4.2.1. Caenorhabditis elegans 

With the use of the nematode Caenorhabditis elegans as model organism, the toxicity of 7KC 

was investigated [235]. The effects of 7KC on life span, on reproduction, thermotolerance, 

germline apoptosis, and ROS generation resulting from C. elegans exposure to 7KC were 

investigated at concentrations ranging from 0 to 200 μg/mL. In these conditions, 7KC reduced 

reproductive capacity, shortened the life span in a concentration-dependent manner, and impaired 

thermotolerance of the adult nematode. 7KC also induced germline apoptotic cell death and 

increased ROS generation. It is suggested that the model C. elegans could be suitable for 

assessment of the bioactivity of 7KC in aging. 

 

4.2.2. Pigeon  

The pigeon model has been one of the first to examine the effects of tobacco smoking and of a 

diet enriched in cholesterol on the development of atherosclerosis [236, 237]. The toxicity of 

oxysterols was also studied in experiments performed on White Carneau pigeons. When the 

pigeons were feed with a diet supplemented with 0.05% pure cholesterol (control group); 0.05% 

pure cholesterol plus cholestane-3β,5α,6β- triol (which can be present in powered milk in 

quantity as high as 7KC [238], total aortic cholesterol, aortic cholesterol ester, and the ratio 

(aortic cholesterol ester / aortic cholesterol) were similar among pigeons from both groups, 

whereas an accumulation of calcium in the aortas of pigeons fed with cholesterol plus cholestane-

3β,5α,6β- triol was observed [239].  

 

4.2.3. Golden Syrian hamster 

Syrian hamster is a widely used experimental pharmacological model to identify natural and 

synthetic anti-atherosclerotic drugs [199, 240-244]. In addition, the effect of dietary oxysterols on 
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coronary atherosclerosis was also studied in golden Syrian hamsters fed for 3 months with three 

different diets: a normolipidaemic diet containing corn oil plus fish oil (group low L); a 

hyperlipidaemic diet composed of the normolipidaemic diet supplemented with cholesterol 

(group High L); a third diet, similar to the hyperlipidaemic diet, in which cholesterol was 

replaced by a mixture of oxysterols: 5α,6α-epoxycholesterol, 5β,6β-epoxycholesterol, 7α-

hydroxycholesterol, 7β-OHC, 7KC and trace amounts of 7-hydroperoxycholesterols (group High 

L + OS) [245]. Feeding the high-lipid diet (group High L) increased the plasma level of 7β-OHC, 

7KC and cholestanetriol. The presence of oxysterols in the diet (group High L+OS) further 

increased the concentrations of 7β-OHC and 7KC in the plasma. 7KC was increased in 

myocardial lipids of groups (High L) and (High L+OS). However, as evidenced by myocardial 

Ca2+, acyl-CoA cholesterol acyl transferase (ACAT) activity and coronary reactivity to sodium 

nitroprusside, severe atherosclerosis did not develop during the 3-month enriched lipid diet.  

 

4.2.4. Mouse 

Wild type mice treated with oxysterols, which are oxidized on the side chain or steroid nucleus, 

are used to mimic inflammatory bowel diseases [2]. In mice, 7KC and 7β-OHC are often 

incorporated into a mixture of oxysterols (7KC, 5α,6α-epoxicholesterol, 5β,6β-epoxicholesterol, 

7α-hydroxycholesterol and 7β-OHC) to mimic food leading to inflammation of the intestinal wall 

to identify cytoprotective molecules; in the mouse, this oxysterol mixture induces TLR-2 and 

TLR4 over-expression and activation together with cytokine induction [128].  

Anti-tumor properties of 7KC have also been described in mice [246] as well as anti-tumor 

activity of 7β-OHC against Krebs II ascitic carcinoma transplanted on mice [247]. Anti-tumor 

activity of the water-soluble monophosphoric acid diesters of 7β-OHC on mastocytoma P815 in 

the mouse model has also been reported [248]. The pioneering work realized by Bischoff et al. 

concerning the cytotoxic and anti-tumor activity of some oxysterols, including 7β-OHC, lead to 

the suggestion that some oxysterols could constitute potent anti-tumoral molecules [249]. There 

are now several lines of evidence that 7KC and 7β-OHC have major impacts on the metabolism 

of cancer cells [250], supporting the concept that chemotherapies targeting metabolism offer 

promising perspectives for cancer treatment. 

 

4.2.5. Rat 
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The rat model has been used to study the metabolism of 7KC [26, 50, 251], to identify molecules 

capable of preventing cardiovascular injuries [252] and to determine the impact of some nutrients 

and aliments on the biogenesis of oxysterols formed by auto-oxidation including 7KC and 7β-

OHC [253-255]. In addition, using 7KC-containing implants inserted into the anterior chamber of 

the rat eye, it has been demonstrated that the cytokinic inflammation induced by 7KC mostly 

occurs through the TLR4 receptor [169]. A significant increase in vascular endothelial growth 

factor (VEGF) was also observed in the rat eye with 7KC-containing implants by fluorescent 

immunolabeling and by immunoblot of the aqueous humor [256]. To define the role of 7KC in 

Smith-Lemli-Opitz syndrome, intra-vitreal injection of 7KC into a normal rat eye rapidly induced 

panretinal degeneration [257]. Strong impacts of 7KC and 7β-OHC were also observed when 

these compounds were injected into the rat prefrontal cortex, based on the analysis of RNA 

extracted from this brain region at 24 hours post-injection [258]. Microarray analyses identified 

1365 genes, whose expression were affected by these two oxysterols: down-regulated genes 

outnumbered up-regulated genes. Pathway analysis showed that down-regulated genes had roles 

in carbohydrate metabolism, cell signaling and nucleic acid metabolism; and that the majority of 

these encode G-protein coupled receptors (GPRs) involved in the synaptic function [258]. On 

tumors induced by C6 cells in the rat brain cortex, it has also been reported that the intra-tumoral 

injection of liposomes containing 7β-OHC ether or ester inhibited tumor growth [259]. 

 

4.2.6. Rabbit 

The rabbit is an animal model used for several years for the study of atherosclerosis [260, 261]. 

One of the oldest studies to address the in vivo toxicity of 7KC was conducted in the rabbit in 

1949 by Cox and Spencer [262]. It was also established in the rabbit that 7KC inhibits cholesterol 

uptake by the arterial wall, and that this oxysterol can bind to the lipoproteins [263, 264]. In 

1980, experimental evidence of the toxicity of 7KC were described in the rabbit: it was shown 

that the rate constant determining tissue uptake of 7KC was higher than tissue efflux, and 

suggested that the red cells and peripheral tissues act as a reservoir for the oxygenated sterol 

[265]. The rabbit is also a source of vascular cells and pioneering works supporting cytotoxic 

effects of 7KC and 7β-OHC were performed on cultured rabbit aortic smooth muscle cells [266]. 

In addition, ex-vivo experiments on rabbit aortic segments demonstrated that 7KC and 7β-OHC 

were able to prevent arterial relaxation [267].  
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4.2.7. Pig 

The domestic pig and mini-pig are conventional models of study in pharmacology, imaging and 

cardiovascular surgery [74, 268]. The pig is often a source of vascular wall and ocular cells that 

have made it possible to characterize the effects of different oxysterols, such as 7KC and 7β-

OHC. In smooth muscle cells of porcine aorta,  it has been shown that the cytotoxicity of 

oxidized Low Density Lipoprotein (LDL) was associated with 7KC and 7β-OHC [102, 269]. The 

use of pig in the mechanical ventilation of the lungs made it also possible to establish that 7KC 

was probably an important player in pulmonary inflammation associated with respiratory support 

[270]. 

 

4.2.8 Monkey 

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of cortisone to 

cortisol and controls a key pathway in the regulation of stress [271]. 11β-HSD1 also converts 

7KC to 7β-OHC; these two oxysterols are at increased levels in the brain of Alzheimer’s patients 

[110, 272]. F18-radiolabeled ligands have been developed to determine the topographical 

expression of 11β-HSD1 in the brain of rhesus monkey (Macaca mulatta) [273]. The authors had 

previously developed [11C] AS2471907 PET radiotracer for imaging 11β-HSD1 in the brain, but 

their syntheses were not reliable, so they developed new probes and optimized the synthesis. 

Pharmacokinetic analyses and verification of the binding specificity of the new probes were 

performed in monkeys. The developed probes have a heterogeneous distribution, binding 

specificity and longer half-life than the previous developed probes as well as easier production, 

making them efficient and suitable PET radiotracer for 11β-HSD1 brain imaging. 

 

5 - Alternatives to animal models for the study of 7-ketocholesterol- and 7β-

hydroxycholesterol: organoids and microfluidic associated technologies 

There are now evidence that whatever the relevance of models used to evaluate the biological 

activities of natural or synthetic compounds, it is difficult to anticipate their biological activities 

in humans. So, there is a need to develop new models including several parameters and 

mimicking the complexity of an organ or of the whole organism. These approaches constitute an 

important biotechnological challenge to prevent and cure major diseases (such as cardiovascular 
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diseases and neurodegeneration), where no efficient treatments are available. These new cell 

culture technologies include organoids, as well as organ-on-a-chip and multi-organ 

microphysiological system models, also named body on-a-chip, based on a microfluidic 

technology [274]. 

 Organoids mimicking the respiratory system, bowel or brain have already been made and 

can be produced from various sources such as primary cells [275], pluripotent stem cells 

[276, 277], embryonic [278] or adult stem cells [279], and patient-derived induced 

pluripotent stem cells [276, 280]. Although several studies have been carried out using 

established cell lines or primary cells, the use of stem cells is increasing because of the 

tremendous potential to model various disease models or biological systems. 

 Organ-on-a-chip strategies are based on microfluidic cell systems to model physiological 

functions of tissues, or organs. To this end different types of stem cells can be used. 

Currently, the focus is not to rebuild a whole living organ, but to mimic minimal 

functional units that recapitulate tissue and organ level functions. Precise control of stem 

cell differentiation in the microfluidic microenvironment makes tissue engineering and 

organ-on-a-chip developments highly promising [281]. To date, a number of proof-of-

concept, organ-on-a-chip systems using cells differentiated from stem cells have been 

described [282, 283]. Patient-derived and genetically engineered iPSCs with tissue 

engineering to elucidate the pathophysiology underlying the cardiovascular diseases have 

been combined through ‘heart-on chip’ for modeling the mitochondrial cardiopathy of 

Barth syndrome [284]. These microfluidic organ-on-a-chip models can recapitulate 

important organ-level functions, multicellular microarchitecture, and environment 

dynamics. Therefore, the engineered novel heart- and vasculature-on-a-chip systems 

could contribute to the development of suitable high-throughput platforms for drug 

development and disease modeling of major cardiovascular diseases [285]. Furthermore, 

organ-on-a-chip platforms have also the potential to strongly impact and improve the drug 

screening process for neurodegenerative diseases. Patient-derived neurons from different 

regions of the brain can be directly grown and differentiated on a brain-on-a-chip device 

in where the disease development, progression and pharmacological treatments can be 

studied and monitored in real time for Alzheimer's and Parkinson's diseases [286-288].  

 Personalized multi-organ microphysiological system models, body on-a-chip, based on 
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patient-derived iPSCs represent also a promising approach to elucidate physiopathology 

and therapies [282, 289]. The technology of multi-organs can mimic complex biological 

processes involving organ-organ interaction, system homeostasis and pharmacokinetics 

[290, 291]. 

These organoids and on chip models based on microfluidic technologies could be very useful to 

study 7KC- and 7β-OHC-induced biological activities on different organs and to identify new 

molecules and new strategies capable to prevent their side effects. 

 

6 – Conclusion  

The potential implications of 7KC and 7β-OHC in many common and disabling diseases 

(cardiovascular diseases, cataract, ARMD, neurodegenerative diseases, inflammatory bowel 

diseases) are well documented. However, the demonstration of direct or indirect involvement of 

these molecules in these diseases still requires significant work on cells, animal models and / or 

alternatives to animal models. These different approaches will make it possible to better 

understand the biological activities of 7KC and 7β-OHC, and to identify natural or synthetic 

molecules, or mixtures of molecules, capable of preventing their deleterious effects in fatal and/or 

strongly debilitating diseases, with important societal impacts. 
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Figure Legends 

Figure 1: Oxysterols oxidized at C7. Oxysterols oxidized at C7 (7α-hydroxycholesterol, 7β-

hydroxycholesterol, and 7-ketocholesterol (also named 7-oxocholesterol)) are formed either by 

auto-oxidation of cholesterol or enzymatically: 7α-hydroxycholesterol is formed via the enzyme 

CYP7A1; 7β-hydroxycholesterol and 7-ketocholesterol are formed by auto-oxidation. 7-

ketocholesterol can be converted in 7β-hydroxycholesterol via the enzyme 11β-HSD1 (the 

enzyme works less efficiently to convert 7β-hydroxycholesterol in 7-ketocholesterol) and 7β-

hydroxycholesterol can be converted in 7-ketocholesterol via the enzyme 11β-HSD2 [41, 292].  

 

Figure 2: Signaling pathways associated with 7-ketocholesterol-induced oxiapoptophagy 

and inflammation. The schematic signaling pathways associated with 7KC-induced 

oxiapoptophagy and inflammation are obtained from cells of different types and of different 

species. 7KC, which accumulates in lipid rafts and triggers phosphatidylserine externalization, 

modulates the activity of Ca2+, K+ and Na+/K+ channels such as P2X7 and Kv3.1 receptors. This 

favours an intracellular accumulation of Ca2+ and K+. 7KC also activates endoplasmic reticulum 

stress and oxidative stress (ROS overproduction) which contributes to organelle dyfunctions 

(mitochondria, peroxisome, lysosome). In addition, the ability of 7KC to inhibit the PI3-

K/PKB/Akt signaling pathway participates to the loss of transmembrane mitochondrial potential 

(ΔΨm). Altogether, these different effects induce autophagy and apoptosis. The simultaneous 

induction of oxidative stress, apoptosis and autophagy is defined as oxiapoptophagy. 7KC is also 

a pro-inflammatory molecule which triggers inflammation via the activation of TLR4 receptor.  

 

Figure 3: Signaling pathways associated with 7β-hydroxycholesterol-induced 

oxiapoptophagy and inflammation. The schematic signaling pathways associated with 7β-

OHC-induced oxiapoptophagy and inflammation are obtained from cells of different types and of 

different species. 7β-OHC, which does not accumulates in lipid rafts, favors phophatidylserine 

externalization. It also favors an intracellular accumulation of Ca2+, and inhibits the PI3-
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K/PKB/Akt signalling pathway; this later participates to the loss of transmembrane mitochondrial 

potential (ΔΨm). In addition, 7β-OHC is also a potent inducer of oxidative stress (ROS 

oversproduction; enhanced levels of conjugated dienes (CDs), malondialdehyde (MDA) and 

carbonylated proteins (CPs)) wich contributes to organelle dysfunctions (mitochondria, 

peroxisome, lysosome) and to the induction of cell death defined as oxiapoptophagy. As 7β-OHC 

and 7KC are two potent inducers of oxiapoptophagy some signaling pathways are similar. 

However, as 7β-OHC is a stronger inducer of apoptosis and inflammation than 7KC, this suggests 

some differences between these two oxysterols. In addition, the activation of the PKC/ P38/ 

MEK/ ERK signaling pathway constitutes a link between 7β-OHC-induced apotosis and 7β-

OHC-induced inflammation allowing thus to rely oxiapoptophagy and inflammation. 

 

Figure 4 Mechanisms by which 7-ketocholesterol and 7β-hydroxycholesterol can modulate 

Ca2+ signal transduction in mammalian cells. Both oxysterols (7KC, 7β-OHC) can be 

metabolized to 7, 25-hydroxycholesterol, a potent agonist of the G-protein coupled receptor 

EBI-2/GPR183 that mobilizes Ca2+ from the endoplasmic reticulum (ER) by gating inositol 

1,4,5-trisphosphate receptors (IP3R).  The enzyme CD38 is activated by 7KC or 7-OHC via an 

undetermined mechanism, generating the second messengers cyclic ADP ribose (cADPr), 

stimulating Ca2+ release from the ER or smooth reticulum via ryanodine receptor (RyR) channels, 

and nicotinic acid adenine dinucleotide phosphate (NAADP), that mobilizes Ca2+ from the 

lysosome via transient receptor potential mucolipin (TRPML) and two-pore (TPC) channels. 

Both 7KC and 7-OHC also promote Ca2+ influx by activating multiple families of 

plasmalemmal cation channels: voltage-gated calcium channels (VGCC); store-operated calcium 

channels (SOCE); transient receptor potential (TRP) channels; and the purinoceptor 2X7 (P2X7). 

By increasing the levels and function of potassium channels such as K v1.3b, oxysterols alter 

membrane potential, thereby modifying the gating of VGCCs. 

 

Figure 5: Animal models used to evaluate the biological activities of 7-ketocholesterol and 

7β-hydroxycholesterol. Among these models transgenic and wild type mice have been widely 

used. The other animal models mainly concern wild type animals. 
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