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BAIRE THEOREM AND HYPERCYCLIC ALGEBRAS

FRÉDÉRIC BAYART, FERNANDO COSTA JÚNIOR, AND DIMITRIS PAPATHANASIOU

Abstract. The question of whether a hypercyclic operator T acting on a Fréchet al-
gebra X admits or not an algebra of hypercyclic vectors (but 0) has been addressed in
the recent literature. In this paper we give new criteria and characterizations in the con-
text of convolution operators acting on H(C) and backward shifts acting on a general
Fréchet sequence algebra. Analogous questions arise for stronger properties like frequent
hypercyclicity. In this trend we give a sufficient condition for a weighted backward shift
to admit an upper frequently hypercyclic algebra and we find a weighted backward shift
acting on c0 admitting a frequently hypercyclic algebra for the coordinatewise product.
The closed hypercyclic algebra problem is also covered.

1. Introduction

Among the many problems in linear dynamics, understanding the structure of the set of
hypercyclic vectors is a major one. Let us introduce the relevant definitions. Let (X,T )
be a linear dynamical system, namely X is a topological vector space and T is a bounded
linear operator on X. A vector x ∈ X with dense orbit under T is called a hypercyclic
vector, and we denote by HC(T ) the set of hypercyclic vectors for T :

HC(T ) = {x ∈ X : {x, Tx, T 2x, . . . } is dense in X}.
This set HC(T ) possesses interesting properties. When X is a Baire space, its nonempty-
ness implies its residuality, preventing it from being a non-trivial proper linear subspace
of X. However, it is well known that, whenever HC(T ) is nonempty, then HC(T ) ∪ {0}
contains a dense linear manifold (see [15]). In many cases (not always) HC(T ) ∪ {0} con-
tains a closed, infinite dimensional linear subspace (see [8, 21, 22, 20]). These properties
reflect that we are working in a linear space.

Suppose now that X has a richer structure: it is an F -algebra, namely a metrizable
and complete topological algebra. It is natural to ask whether HC(T ) ∪ {0} also contains
a non-trivial subalgebra of X. Such an algebra will be called a hypercyclic algebra. The
pioneering work in that direction has been done independently by Shkarin in [22] and by
Bayart and Matheron in [5]: they showed that the derivation operator D : f 7→ f ′, acting
on the Fréchet algebra H(C) of entire functions endowed with the pointwise multiplication,
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supports a hypercyclic algebra. However, this is not the case for all hypercyclic operators
acting on an F -algebra: for instance, as pointed out in [3], the translation operators, acting
on H(C), do not support a hypercyclic algebra. Recent papers (see e.g. [4, 9, 10, 11, 16, 17])
give other examples of operators admitting a hypercyclic algebra.

Our aim, in this paper, is to shed new light on this problem and to study how it interacts
with popular problems arising in linear dynamics. We are particularly interested in two
questions.

1.1. Existence of hypercyclic algebras. All examples in the literature of operators
supporting a hypercyclic algebra are generalizations of D. There are several ways to
extend it. You may see D as a special convolution operator acting on H(C). By [19], such
an operator may be written φ(D), where φ is an entire function with exponential type; if
φ is not constant, then φ(D) is hypercyclic. When |φ(0)| < 1, the existence of hypercyclic
algebras is well-understood since [4]: such an algebra does exist if and only if φ is not a
multiple of an exponential function. When |φ(0)| = 1, sufficient conditions are given in [4]
or in [12] but almost nothing, except a very specific example, is known when |φ(0)| > 1.
We partly fill this gap by proving the existence of a hypercyclic algebra when φ goes to
zero along some half-line.

Theorem 1.1. Let φ be a nonconstant entire function with exponential type, not a multiple
of an exponential function. Assume that |φ(0)| > 1 and that there exists some w ∈ C such
that |φ(tw)| → 0 as t→ +∞. Then φ(D) supports a hypercyclic algebra.

In particular, we shall see that if φ(z) = P (z)ez for some non-constant polynomial P ,
then φ(D) supports a hypercyclic algebra.

Another way to generalize D is to see it as a weighted backward shift acting on H(C)
considered as a sequence space. This was explored in [16]. The general context is that
of a Fréchet sequence algebra X. Precisely we assume that X is a subspace of the space
ω = CN0 of all complex sequences, whose topology is induced by a non-decreasing sequence
of seminorms (‖ ·‖q)q≥1 and that X is endowed with a product · such that, for all x, y ∈ X,
all q ≥ 1,

‖x · y‖q ≤ ‖x‖q × ‖y‖q.
There are two natural products on a Fréchet sequence space: the coordinatewise product
and the convolution or Cauchy product. It is clear that `p and c0 are Fréchet sequence
algebras for the coordinatewise product, and that `1 is also a Fréchet sequence algebra for
the convolution product. Endowing H(C) with∥∥∥∥∥∑

n≥0

anz
n

∥∥∥∥∥
q

=
∑
n≥0

|an|qn

and ω with

‖(xn)‖q =

q∑
n=0

|xn|,



BAIRE THEOREM AND HYPERCYCLIC ALGEBRAS 3

we also obtain that H(C) and ω are Fréchet sequence algebras for both products (on H(C),
the Cauchy product of f and g is nothing else but the product of the two functions f and
g). Another interesting source of examples for us will be the sequence spaces X = {(xn) ∈
ω : γnxn → 0} endowed with ‖x‖ = supn γn|xn|, where (γn) ∈ RN0

+ . Provided γn ≥ 1 for all
n, X is a Fréchet sequence algebra for the coordinatewise product.

Given a sequence of nonzero complex numbers w = (wn)n∈N, the (unilateral) weighted
backward shift Bw with weight w is defined by

Bw(x0, x1, . . . ) = (w1x1, w2x2, . . . ).

The weight w will be called admissible (for X) if Bw is a bounded operator on X. It is
known that, provided the canonical basis (en) is a Schauder basis of X, Bw is hypercyclic
if and only if there exists a sequence (nk) such that for all l ∈ N,

(
(wl+1 · · ·wnk+l)−1enk+l

)
goes to zero.

Let us first assume that X is a Fréchet algebra under the coordinatewise product. Under
a supplementary technical condition on X, a sufficient condition on w is given in [16] so
that Bw supports a hypercyclic algebra. It turns out that we shall give a very natural
characterization of this property when X admits a continous norm. We recall that a
Fréchet space (X, (‖ · ‖q)) admits a continuous norm if there exists a norm ‖ · ‖ : X → R
that is continuous for the topology of X, namely there exists q ∈ N and C > 0 with
‖x‖ ≤ C‖x‖q for all x ∈ X. In particular, for any q large enough, ‖ · ‖q itself is a norm.

Theorem 1.2. Let X be a Fréchet sequence algebra for the coordinatewise product and
with a continuous norm. Assume that (en) is a Schauder basis for X. Let also Bw be a
bounded weighted shift on X. The following assumptions are equivalent.

(i) Bw supports a dense and not finitely generated hypercyclic algebra.
(ii) There exists a sequence of integers (nk) such that for all γ > 0, for all l ∈ N,(

(wl+1 · · ·wnk+l)−γenk+l
)

tends to zero.

In particular, this theorem implies that on `p or c0, any hypercyclic weighted shift
supports a hypercyclic algebra.

When X is a Fréchet algebra for the Cauchy product, it is shown in [16] that, under
additional technical assumptions on X, Bw supports a hypercyclic algebra as soon as it is
mixing, namely as soon as (w1 · · ·wn)−1en tends to zero. We shall improve that theorem by
showing that any hypercyclic backward shift on a Fréchet sequence algebra for the Cauchy
product supports a hypercyclic algebra. We will only require a supplementary assumption
on X (to be regular) which is less strong than the assumption required in [16].

Theorem 1.3. Let X be a regular Fréchet sequence algebra for the Cauchy product and
let Bw be a bounded weighted shift on X. The following assertions are equivalent.

(i) Bw is hypercyclic.
(ii) Bw supports a dense and not finitely generated hypercyclic algebra.

In particular, if we compare this statement with Theorem 1.2, we see that, for the
convolution product, we do not need extra assumptions on the weight, which was not the
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case for the coordinatewise product. Even if the proofs of Theorems 1.2, 1.3 share some
similarities (the latter one being much more difficult), they also have strong differences,
the main one being that, under the coordinatewise product, any power of x ∈ ω keeps the
same support, which is far from being the case if we work with the Cauchy product.

We also point out that this detailed study of the existence of hypercyclic algebras for
weighted shifts has interesting applications. For instance, working with a bilateral shift, it
will allow us to exhibit an invertible operator on a Banach algebra supporting a hypercyclic
algebra and such that its inverse does not (see Example 4.12).

1.2. Frequently and upper frequently hypercyclic algebras. Another fruitful sub-
ject in linear dynamics is frequent and upper frequent hypercyclicity. We say that T is
frequently hypercyclic (resp. upper frequently hypercyclic) if there exists a vector x ∈ X
such that, for all U ⊂ X open and non-empty, the set {n ∈ N : T nx ∈ U} has positive
lower density (resp. positive upper density). Again, linearity allows to give a nice criterion
to prove that an operator is (upper) frequently hypercyclic and gives rise to nice examples.
For instance, if X is a Fréchet sequence space and Bw is a bounded weighted shift acting
on X, it is known that the unconditional convergence of

∑
n≥1(w1 · · ·wn)−1en implies that

Bw is frequently hypercyclic. Moreover, in some spaces (for instance, on `p-spaces), this
condition is even necessary for the upper frequent hypercyclicity of Bw.

Of course, it is natural to ask if a (upper) frequently hypercyclic operator defined on an
F -algebra X admits a (upper) frequently hypercyclic algebra, namely an algebra consisting
only, except 0, of (upper) frequently hypercyclic vectors. Falcó and Grosse-Erdmann have
shown recently ([17]) that this is not always the case: for instance, λB, λ > 1, acting on
any `p space (1 ≤ p < +∞) or on c0, endowed with the coordinatewise product, does not
admit a frequently hypercyclic algebra. Nevertheless, this leaves open the possibility for
λB, λ > 1, to admit an upper frequently hypercyclic algebra.

We shall give two general results implying that a weighted shift on a Fréchet sequence
algebra admits an upper frequently hypercyclic algebra. The first one deals with Fréchet
sequence algebras endowed with the coordinatewise product. In view of Theorem 1.2, the
natural extension of the above result for the existence of an upper frequently hypercyclic
vector is to ask now for the unconditional convergence of the series

∑
n≥1(w1 · · ·wn)−1/men

for all m ≥ 1. This is sufficient!

Theorem 1.4. Let X be a Fréchet sequence algebra for the coordinatewise product and
with a continuous norm. Assume that (en) spans a dense subspace of X. Let also Bw be
a bounded weighted shift on X such that, for all m ≥ 1,

∑
n≥1(w1 · · ·wn)−1/men converges

unconditionally. Then Bw admits an upper frequently hypercyclic algebra.

In particular, for λ > 1, λB admits on any `p-space (1 ≤ p < +∞) and on c0 an upper
frequently hypercyclic algebra. This last result was independently obtained by Falcó and
Grosse-Erdmann in [17] in a different context (they concentrate themselves on λB but
allow different notions of hypercyclicity) and with a completely different proof.

Regarding Fréchet sequence algebras endowed with the convolution product, we also
have been able to get a general statement (see the forthcoming Theorem 5.7). Its main
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feature is that we will only need the unconditional convergence of
∑

n≥1(w1 · · ·wn)−1en and
a technical condition to ensure the existence of an upper frequently hypercyclic algebra.
As a corollary, we can state the following.

Corollary 1.5. (i) Let X = `1 endowed with the convolution product and let λ > 1.
Then λB admits an upper frequently hypercyclic algebra.

(ii) Let X = H(C) endowed with the convolution product. Then D admits an upper
frequently hypercyclic algebra.

Coming back to our initial problem, we show that it is possible to exhibit a weighted shift
supporting a frequently hypercyclic algebra. The place to do this will be c0 endowed with
the coordinatewise product; of course, the weight sequence will be much more complicated
than that of the Rolewicz operator.

Theorem 1.6. There exists a weight (wn) such that Bw, acting on c0 endowed with the
coordinatewise product, supports a frequently hypercyclic algebra.

The proof of this theorem will need the construction of disjoint subsets of N with positive
lower density and with some other extra properties, which seems interesting by itself.

1.3. Organization of the paper. Up to now, there were two ways to produce hypercyclic
algebras: by a direct construction (this is the method devised in [22] and in [16]) or by
using a Baire argument (this method was initiated in [5]). In this paper, we improve
the latter. We first give in Section 2.1 a general result for the existence of a hypercyclic
algebra, enhancing the main lemma proved in [5]. This general theorem will be suitable
to our new examples of operators supporting a hypercyclic algebra. Next, we adapt the
Baire argument to produce upper frequently hypercyclic algebras as well. Since the set of
frequently hypercyclic vectors is always meagre, Theorem 1.6 cannot be proved using such
an argument; it follows from a careful construction both of the weight and of the algebra.

We finish in the last section by making some remarks and asking some questions. In
particular, we give a negative answer to a question raised by Shkarin about the existence
of a closed hypercyclic algebra for the derivation operator.

1.4. Notations. The symbol N will stand for the set of positive integers, whereas N0 =
N ∪ {0}. We shall denote by Pf (A) the set of finite subsets of a given set A.

For x =
∑+∞

n=0 xnen ∈ ω, the support of x is equal to supp(x) = {n ∈ N0 : xn 6= 0}. The
notation c00 will denote the set of sequences in ω with finite support.

For u ∈ Xd and α ∈ Nd
0, u

α will mean uα1
1 · · ·u

αd
d . If z is any complex number and

m ∈ N, z1/m will denote any mth root of z.
When working on a Fréchet space (X, ‖ · ‖p), it is often convenient to endow X with an

F -norm ‖ · ‖ defining the topology of X (see [18, Section 2.1]). Such an F -norm can be
defined by the formula

‖x‖ =
+∞∑
p=1

1

2p
min(1, ‖x‖p).
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In particular, an F -norm satisfies the triangle inequality and the inequality

(1) ∀λ ∈ C, ∀x ∈ X, ‖λx‖ ≤ (|λ|+ 1)‖x‖,
a property which replaces the positive homogeneity of the norm.

We finally recall some results on unconditional convergence in Fréchet spaces (see for
instance [18, Appendix A]). A series

∑+∞
n=0 xn in a Fréchet space X is called unconditionally

convergent if for any bijection π : N0 → N0, the series
∑+∞

n=0 xπ(n) is convergent. This
amounts to saying that, for any ε > 0, there is some N ∈ N such that, whenever supn |αn| ≤
1, the series

∑+∞
n=0 αnxn converges and∥∥∥∥∥

+∞∑
n=N

αnxn

∥∥∥∥∥ < ε.

2. A general criterion

2.1. A transitivity criterion to get hypercyclic algebras. We first give a general
statement which may be thought of as a Birkhoff transitivity theorem for hypercyclic
algebras. This criterion will be the main ingredient for the results from Section 3.1 and
some from Section 4. A different version of this approach will give rise to a new criterion
for the existence of upper frequently hypercyclic algebras in Section 5.1.

Theorem 2.1. Let T be a continuous operator on a separable commutative F -algebra
X and let d ≥ 1. Assume that for any A ⊂ Nd

0\{(0, . . . , 0)} finite and non-empty, for
any non-empty open subsets U1, . . . , Ud, V of X, for any neighbourhood W of 0, there exist
u = (u1, . . . , ud) ∈ U1×· · ·×Ud, β ∈ A and N ≥ 1 such that TN(uβ) ∈ V and TN(uα) ∈ W
for all α ∈ A, α 6= β. Then the set of d-tuples that generate a hypercyclic algebra for T is
residual in Xd. Moreover, if the assumptions are satisfied for all d ≥ 1, then T admits a
dense and not finitely generated hypercyclic algebra.

Proof. Let (Vk) be a basis of open neighbourhoods of X. For A ∈ Pf (Nd
0), A 6= ∅,

(0, . . . , 0) /∈ A, for s, k ≥ 1, for β ∈ A, define

E(A, β, s) =

{∑
α∈A

P̂ (α)zα ∈ C[z1, . . . , zd] : P̂ (β) = 1 and sup
α∈A
|P̂ (α)| ≤ s

}
A(A, β, s, k) =

{
u ∈ Xd : ∀P ∈ E(A, β, s), ∃N ≥ 1, TN(P (u)) ∈ Vk

}
.

The sets E(A, β, s) are compact subsets of C[z1, . . . , zd]. By continuity of the maps
(u, P ) 7→ TN(P (u)), this implies that each set A(A, β, s, k) is open. Let us show that,
for all A, k and s,

⋃
β∈AA(A, β, s, k) is dense in Xd. Indeed, pick U1, . . . , Ud non-empty

open subsets of X. Let V ⊂ Vk and W = B(0, ε) be a neighbourhood of 0 such that
V + B

(
0, (s + 1)card(A)ε

)
⊂ Vk. The assumptions of the proposition give the existence

of u = (u1, . . . , ud) ∈ U1 × · · · × Ud, β ∈ A and N ≥ 1. We claim that u belongs to
A(A, β, s, k). Indeed,

TNP (u) =
∑
α6=β

P̂ (α)TN(uα) + TN(uβ) ∈ V +B
(
0, (s+ 1)card(A)ε

)
⊂ Vk
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(observe that we have used (1)). Hence,
⋂
A,s,k

⋃
β A(A, β, s, k) is a residual subset of Xd.

Pick u ∈
⋂
A,s,k

⋃
β A(A, β, s, k).

We show that for all non-zero polynomials P ∈ C[z1, . . . , zd] with P (0) = 0, P (u) belongs

to HC(T ). We set A =
{
α : P̂ (α) 6= 0

}
and we first prove that

⋃
β∈A Orb

(
T, 1

P̂ (β)
P (u)

)
is dense. Let us fix some k and let us set s = supα,β∈A |P̂ (α)|/|P̂ (β)|. Let β ∈ A be such

that u ∈ A(A, β, s, k). Define Q = P/P̂ (β). Then Q belongs to E(A, β, s) so that there
exists N ≥ 1 satisfying

TN

(
1

P̂ (β)
P (u)

)
= TN

(
Q(u)

)
∈ Vk.

By the Bourdon-Feldman theorem, we deduce that there is some β0 ∈ A such that

Orb
(
T, 1

P̂ (β0)
P (u)

)
is dense in X. Since any non-zero multiple of a hypercyclic vector

remains hypercyclic, we finally deduce that P (u) is a hypercyclic vector for T .
The modification to obtain dense and infinitely generated algebras is easy. For A ∈
Pf (Nd

0), A 6= ∅, (0, . . . , 0) /∈ A, we now let

A(A, β, s, k) =
{
u ∈ XN : ∀P ∈ E(A, β, s), ∃N ≥ 1, TN(P (u)) ∈ Vk

}
and we still consider the set

⋂
A,s,k

⋃
β∈AA(A, β, s, k) where now the intersection runs over

all non-empty and finite sets A ⊂ Nd\{(0, . . . , 0)} with d ≥ 1 arbitrary. This intersection is
still residual in XN. We also know from [11] that the set of u in XN that induce a dense alge-
bra in X is residual in XN. Hence we may pick u ∈ XN belonging to

⋂
A,s,k

⋃
β A(A, β, s, k)

and inducing a dense algebra in X. It is plain that for any non-zero polynomial P with
P (0) = 0, P (u) is hypercyclic for T .

It remains to show that the algebra generated by u is not finitely generated. Assume on
the contrary that it is generated by a finite number of P1(u), . . . , Pp(u). In particular, it is
generated by a finite number of u1, . . . , uq. Then there exists a polynomial Q ∈ C[z1, . . . , zq]
such that Q(0) = 0 and uq+1 = Q(u1, . . . , uq). Define P (z) = zq+1 − Q(z). Then P is a
non-zero polynomial with P (0) = 0. Nevertheless, P (u) = 0, which contradicts the fact
that P (u) is a hypercyclic vector for T . �

Remark 2.2. Theorem 2.1 remains true if the algebra is not commutative. This is clear
if d = 1. For the remaining cases, we have to replace in the proof polynomials in d
commutative variables by polynomials in d non-commutative variables. Details are left to
the reader.

We point out that, unlike [11, Lemma 3.1], in the previous theorem, the index β may
depend on A, U1, . . . , Ud, V and W . We will never use this possibility: we will only need
that β may depend on A and we will denote β = βA. For this particular case, we could
give an easier proof avoiding the use of the Bourdon-Feldman theorem (see the proof of
[11, Lemma 3.1]).

Let us give a couple of corollaries. The first one comes from [5, Remark 5.28] and was
the key lemma in [5], [10] or [4] to get hypercyclic algebras.
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Corollary 2.3. Let T be a continuous operator on a separable F -algebra X. Assume that,
for any pair (U, V ) of non-empty open sets in X, for any open neighbourhood W of zero,
and for any positive integer m, one can find u ∈ U and an integer N such that TN(un) ∈ W
for all n < m and TN(um) ∈ V . Then T admits a hypercyclic algebra.

Proof. It is straightforward to show that the assumptions of Theorem 2.1 with d = 1 and
βA = maxA are satisfied. �

In this work, we will often use the inverse choice for βA.

Corollary 2.4. Let T be a continuous operator on a separable F -algebra X. Assume that,
for any pair (U, V ) of non-empty open sets in X, for any open neighbourhood W of zero,
and for any positive integers m0 < m1, one can find u ∈ U and an integer N such that
TN(um) ∈ W for all m ∈ {m0+1, . . . ,m1} and TN(um0) ∈ V . Then T admits a hypercyclic
algebra.

Proof. This is now Theorem 2.1 with d = 1 and βA = minA. �

2.2. Countably generated, free hypercyclic algebras. The conclusion of Theorem 2.1
about infinitely generated hypercyclic algebras does not prevent the possibility for such an
algebra to be contained in a finitely generated algebra. Furthermore, it is well known that
every at least two generated algebra contains an infinitely generated subalgebra. For all of
the examples of this paper we may avoid this scenario thanks to the following result. We
notice that due to [11, Corollary 2.7], a countably generated free algebra is not contained
in a finitely generated one.

Corollary 2.5. Let X be a separable commutative F -algebra that contains a dense freely
generated subalgebra. Let T be a continuous operator on X and let d ≥ 1. Assume
that for any A ⊂ Nd

0\{(0, . . . , 0)} finite and non-empty, for any non-empty open sub-
sets U1, . . . , Ud, V of X, for any neighbourhood W of 0, there exist u = (u1, . . . , ud) ∈
U1 × · · · × Ud, β ∈ A and N ≥ 1 such that TN(uβ) ∈ V and TN(uα) ∈ W for all α ∈ A,
α 6= β. Then T admits a d-generated, free hypercyclic algebra. Moreover, if the assump-
tions are satisfied for all d ≥ 1, then T admits a dense, countably generated, free hypercyclic
algebra.

Proof. By Theorem 2.1 the set of d-tuples generating a hypercyclic algebra for T is residual
in Xd. By [11, Proposition 2.4], the set of u in Xd that induce a d-generated, free algebra
is residual in Xd. For the conclusion we just need to pick an element in the intersection of
those two sets.

For the second claim, we consider XN endowed with the product topology. By the
assumption, for each N ∈ N, the set

HN = {(un) ∈ XN : (u1, . . . , uN) generates a hypercyclic algebra for T}
is residual in XN and hence, by the Baire category theorem, the set H =

⋂∞
N=1HN is

residual as well. The algebra generated by any u ∈ H is hypercyclic for T . Furthermore,
by [11, Proposition 2.4], the set of sequences of XN which generate a dense and free algebra
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is also residual. The conclusion follows by one more application of the Baire category
theorem. �

Hence, we need to provide for our examples a dense and freely generated subalgebra. This
is quite easy for a Fréchet sequence algebra endowed with the Cauchy product: provided
span(en) is dense, it always contain a dense and freely generated subalgebra, namely the
unital algebra generated by the sequence e1. This covers the case of H(C) and of the disc
algebra. This is slightly more difficult for a Fréchet sequence algebra endowed with the
coordinatewise product.

Lemma 2.6. Let X be a Fréchet sequence algebra, endowed with the pointwise product,
and for which the sequence (en) is a Schauder basis. Then X has a dense freely generated
subalgebra.

Proof. Let (bn) ⊂ (0, 1) be such that the series
∑∞

n=0 bn‖en‖n converges. Consider the
sequence of natural numbers (an) such that a0 = 0 and an = an−1 + n, n ∈ N and define
cn := minl∈[am−1,am) bl, if n ∈ [am−1, am). The series

∑∞
n=0 cnen converges absolutely since

cn ≤ bn, n ∈ N.
Define a sequence (λn) ⊂ (0, 1) inductively as follows: choose λ0 ∈ (0, 1) and, for n ∈ N,

take λn ∈ (0, 1)\{λp00 . . . λ
pn−1

n−1 : p0, . . . , pn−1 ∈ Q}. Observe that if λ = (λ0, . . . , λp), p ∈ N0

and α 6= β ∈ Np
0, then λα 6= λβ. Let now, for each n ∈ N0,

gn = en +
∞∑
k=1

λn+kn cn+ken+k,

where the convergence of the series is ensured by the convergence of
∑+∞

n=0 bn‖en‖n and
the inequality λn+kn cn+k < bn+k. We claim that the algebra generated by the gn, n ∈ N is
dense and free.

First, we show that the sequence {gn : n ∈ N} is algebraically independent. For that
reason, let

(2)
∑
α∈A

aαg
α = 0,

where A = {α(1), . . . , α(q)} ⊂ Np
0, g = (g1, . . . , gp) ∈ Xp, and p ∈ N. If we consider the

coordinate N = n+ k in equation (2), we get the following equation which holds for all N
sufficiently large.

(3)

q∑
i=1

aα(i)(λ
N
1 cN)α1(i) . . . (λNp cN)αp(i) = 0.

Now we may choose N sufficiently big such that N, . . . , N + q − 1 ∈ [am−1, am) for some
m, which means that cN = · · · = cN+q−1 = bm. Equation (3) then becomes

q∑
i=1

aα(i)(λ
M
1 bm)α1(i) . . . (λMp bm)αp(i) = 0,
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where M ranges over N, . . . , N + q − 1. Setting A the matrix (λN1 bm)α1(1) · · · (λNp bm)αp(1) . . . (λN1 bm)α1(q) · · · (λNp bm)αp(q)

...
. . .

...

(λN+q−1
1 bm)α1(1) · · · (λN+q−1

p bm)αp(1) . . . (λN+q−1
1 bm)α1(q) · · · (λN+q−1

p bm)αp(q)

 ,
we find the matrix equality

A

aα(1)...
aα(q)

 = 0.

The determinant of the square matrix A, after making use of the Vandermonde identity, is
q∏
i=1

p∏
j=1

(bmλ
N
j )αj(i)

∏
i>j

[(λ
α1(i)
1 . . . λαp(i)p )− (λ

α1(j)
1 . . . λαp(j)p )] 6= 0.

Hence, we get that aα(i) = 0 for all i = 1, . . . , q.
Next, we show that the algebra generated by {gn : n ∈ N} is dense in X. We will show

that the elements en, n ∈ N, are in the closure of this algebra. Let us fix n ∈ N and observe
that, for all p ∈ N,

gpn − en =
∞∑
k=1

λ(n+k)pn cpn+ken+k.

Fix q ∈ N and let ε > 0. There exists N ≥ q such that, for all p ∈ N,∥∥∥∥∥∑
k>N

λ(n+k)pn cpn+ken+k

∥∥∥∥∥
q

≤
∑
k>N

bn+k‖en+k‖q < ε.

Since furthermore
N∑
k=1

λ(n+k)pn cpn+ken+k −−−→p→∞
0,

we conclude that gpn −−−→
p→∞

en. �

We conclude this subsection by comparing Corollary 2.5 with [11, Remark 3.4]. Corollary
2.5 allows the index β to depend on A,U1, . . . , Ud, V and W providing, at least theoretically,
an extra flexibility and range of application for the result. Practically, throughout the
paper, β will depend only on A in which case Corollary 2.5 and [11, Remark 3.4] coincide.
We were unable to find an example where Corollary 2.5 applies while [11, Remark 3.4] does
not.

3. Convolution operators with |φ(0)| > 1

3.1. Operators with many eigenvectors. In this section we shall deduce Theorem 1.1
from a more general assertion on operators having many eigenvalues. As Theorem 2.1 does
for Corollary 2.3, this generalized statement also includes [4, Theorem 2.1] as a particular
case. Before stating and proving it, let us add some notation.
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Given p, d ∈ N, we denote each set {1, ..., p} by Ip, each d-tuple (j1, ..., jd) ∈ Idp by the

multi-index j ∈ Idp and each product aj1 · · · ajm by the symbol aj. We allow d = 0 with the
convention that, in this case, aj = 1.

Theorem 3.1. Let X be an F -algebra and let T ∈ L(X). Assume that there exist a
function E : C→ X and an entire function φ : C→ C satisfying the following assumptions:

(a) for all λ ∈ C, TE(λ) = φ(λ)E(λ);
(b) for all λ, µ ∈ C, E(λ)E(µ) = E(λ+ µ);
(c) for all Λ ⊂ C with an accumulation point, the linear span of {E(λ) : λ ∈ Λ} is dense

in X;
(d) φ is not a multiple of an exponential function;
(e) for all I ∈ Pf (N)\{∅}, there exist m ∈ I and a, b ∈ C such that |φ(mb)| > 1 and, for

all n ∈ I and d ∈ {0, ..., n}, with (n, d) 6= (m,m), |φ(db+ (n− d)a)| < |φ(mb)|d/m.
Then T supports a hypercyclic algebra.

The proof of this result follows the lines of that of Theorem 2.1 in [4], replacing Corollary
2.3 by the more general Theorem 2.1. For the sake of completeness, we include the details.

Proof. Let (U, V,W ) be a triple of non-empty open sets in X, with 0 ∈ W , and let I ∈
Pf (N)\{∅}. By the hypothesis there are m ∈ I and a, b ∈ C satisfying (e). Define
w0 := mb and let δ > 0 be small enough and w1, w2 ∈ B(w0, δ) so that

(i) |φ| > 1 on B(w0, δ);
(ii) t 7→ log |φ(tw1 + (1 − t)w2)| is strictly convex (the existence of w1, w2 ∈ B(w0, δ)

comes from [4, Lemma 2.2] and is a consequence of (d));
(iii) for all n ∈ I and d ∈ {0, ..., n}, with (n, d) 6= (m,m), and for all λ1, ..., λd ∈ B(w0, δ)

and γ1, ..., γn−d ∈ B(a, δ),

(4)

∣∣∣∣φ(λ1 + · · ·+ λd
m

+ γ1 + · · ·+ γn−d

)∣∣∣∣ < (|φ(λ1)| × · · · × |φ(λd)|)1/m .

The last condition can be satisfied because

λ1 + · · ·+ λd
m

+ γ1 + · · ·+ γn−d = db+ (n− d)a+ z,

where the size of z can be controlled through δ. Now, since B(a, δ) and [w1, w2] have
accumulation points, we can find p, q ∈ N, a1, ..., ap, b1, ..., bq ∈ C, γ1, ..., γp ∈ B(a, δ) and
λ1, ..., λq ∈ [w1, w2] with

p∑
l=1

alE(γl) ∈ U and

q∑
j=1

bjE(λj) ∈ V.

For some big N ∈ N (which will be determined later in the proof) and each j ∈ {1, ..., q},
let cj := cj(N) be any complex number satisfying

cmj (N) =
bj

φ(λj)N
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and define

u := u(N) =

p∑
l=1

alE(γl) +

q∑
j=1

cjE

(
λj
m

)
.

For the powers of u we have the formula

(5) un =
n∑
d=0

∑
l∈In−dp

j∈Idq

α(l, j, d, n)alcjE

(
γl1 + · · ·+ γln−d +

λj1 + · · ·+ λjd
m

)
.

We claim that, if N is taken large enough, u = u(N) satisfies the conditions of the general
criterion with d = 1, what will complete the proof.

That u ∈ U for large N is clear since, from (i), cj(N)→ 0 as N →∞. Applying TN to
un we see that we need to study the behaviour (as N grows) of

(6) cj(N)

[
φ

(
γl1 + · · ·+ γln−d +

λj1 + · · ·+ λjd
m

)]N
.

For n ∈ I\{m} we have that (6) goes to 0 as N grows by the inequality (4) and the
definition of cj, j = 1, ..., q. This way we get TN(un) ∈ W for all n ∈ I\{m} if N is large
enough. Now let us consider the case n = m. We have

um =
m−1∑
d=0

∑
l∈Im−dp

j∈Idq

α(l, j, d,m)alcjE

(
γl1 + · · ·+ γlm−d +

λj1 + · · ·+ λjd
m

)

+
∑

j∈Imq \Dq

α(j,m)cjE

(
λj1 + · · ·+ λjm

m

)

+

q∑
j=1

cmj E(λj)

=: v1 + v2 + v3,

where

v1 :=
m−1∑
d=0

∑
l∈Im−dp

j∈Idq

α(l, j, d,m)alcjE

(
γl1 + · · ·+ γlm−d +

λj1 + · · ·+ λjd
m

)
,

v2 :=
∑

j∈Imq \Dq

α(j,m)cjE

(
λj1 + · · ·+ λjm

m

)
, v3 :=

q∑
j=1

cmj E(λj)

and Dq is the diagonal of Imq , that is, the set of all m-tuples (j, ..., j) with 1 ≤ j ≤ q. Again

we have TN(v1)→ 0 as N →∞ from (4). Furthermore, since t ∈ [0, 1] 7→ log |φ(tw1 + (1−
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t)w2)| is strictly convex, we have∣∣∣∣φ(λj1 + · · ·+ λjm
m

)∣∣∣∣< |φ(λj1)|1/m · · · |φ(λjm)|1/m.

From this we conclude that

|cj(N)| ·

∣∣∣∣∣φ
(
λj1 + · · ·+ λjm

m

)∣∣∣∣∣
N

=

∣∣∣∣∣ b
1/m
j

|φ(λj1)|N/m · · · |φ(λjn)|N/m

∣∣∣∣∣ ·
∣∣∣∣∣φ
(
λj1 + · · ·+ λjm

m

)∣∣∣∣∣
N

=
∣∣b1/mj

∣∣·
∣∣∣∣∣∣

φ
(
λj1+···+λjm

m

)
|φ(λj1)|1/m · · · |φ(λjm)|1/m

∣∣∣∣∣∣
N

→ 0 as N →∞,

what shows that TN(v2) also tends to 0 as N → ∞. Finally, by the definition of cj,
j = 1, ..., q, we get

TNv3 =

q∑
j=1

bjE(λj) ∈ V

for all N ∈ N. This completes the proof. �

We now deduce a more readable corollary, when the entire function φ is “well behaved”
in some half-line of the complex plane (like in the Figure 1 for example).

Corollary 3.2. Let X be an F -algebra and let T ∈ L(X). Assume that there exist a
function E : C→ X and an entire function φ : C→ C satisfying the following assumptions:

(a) for all λ ∈ C, TE(λ) = φ(λ)E(λ);
(b) for all λ, µ ∈ C, E(λ)E(µ) = E(λ+ µ);
(c) for all Λ ⊂ C with an accumulation point, the linear span of {E(λ) : λ ∈ Λ} is dense

in X;
(d) φ is not a multiple of an exponential function;
(e) there exist v ∈ C and a real number p > 0 such that |φ(v)| > 1 and |φ(tv)| ≤ 1 for all

t > p.

Then T supports a hypercyclic algebra.

For the proof of Corollary 3.2, we are going to need the following simple lemma.

Lemma 3.3. Let φ be entire and Λ ⊂ R have an accumulation point in it. If |φ(t)| = 1
for all t ∈ Λ then |φ(t)| = 1 for all t ∈ R.

Proof. Since |φ(t)| = 1 for all t ∈ Λ ⊂ R, we have φ(t) · φ(t) = φ(t) · φ(t) = 1, hence

φ(t) = φ(t)−1, ∀t ∈ Λ ⊂ R.
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Figure 1. Graph of t 7→ |φ(tv)|

Since this is a holomorphic equality (t 7→ φ(t) is entire), it extends to the whole complex
plane. In particular it holds for all t ∈ R, that is,

φ(t) = φ(t) = φ(t)−1,∀t ∈ R,
thus

|φ(t)| = 1,∀t ∈ R,
as we wanted. �

Proof of Corollary 3.2. We may assume without loss of generality that v = 1. Let t0 > 0
be the smallest positive real number such that |φ(t)| ≤ 1 for all t ≥ t0. We just need to
prove that condition (e) of Theorem 3.1 is satisfied. So let I ∈ Pf (N)\{∅} be arbitrary and
set m = min I. We can find t1 < t0 near enough to t0 so that |φ(t1)| > 1 and t1 + t1

m
> t0.

Letting b := t1
m

we have |φ(mb)| > 1. Now fix a0 > t0 and take ε ∈ (0, 1/2) such that
a0 − ε > t0. There exists a ∈ [a0 − ε, a0 + ε] such that |φ(db + (n − d)a)| < 1 for all
n ∈ I and d ∈ {0, ..., n} with (n, d) 6= (m,m). In fact, if this is not the case then, for each
a ∈ [a0 − ε, a0 + ε], we can find a point ta = dab+ (na − da)a, with na ∈ I, da ∈ {0, ..., na}
and (na, da) 6= (m,m), such that |φ(ta)| ≥ 1. Since m = min(I), b = t1/m and a > t0, we
get ta > t0 so that |φ(ta)| ≤ 1. This way, varying a ∈ [a0− ε, a0 + ε] we find infinitely many
points ta within [t0,max I(a0 + ε)] in which |φ| assumes the value 1. The set Λ composed
by these points is infinite, closed and subset of the compact [t0,max(I)(α0 + ε)], hence Λ
has an accumulation point. By Lemma 3.3 we conclude that |φ(t)| = 1 for all t ∈ R, which
contradicts the fact that |φ(t1)| > 1. This completes the proof. �

3.2. Applications to convolution operators. We now observe that we may apply
Corollary 3.2 to convolution operators φ(D) with |φ(0)| > 1, where E(λ)(z) = eλz. This
yields immediately Theorem 1.1. We may also apply Corollary 3.2 to handle the case
|φ(0)| = 1.

Corollary 3.4. Let P ∈ C[z] be a non-constant polynomial and let φ(z) = P (z)ez. Then
φ(D) supports a hypercyclic algebra.

Proof. The case |P (0)| < 1 is done in [4], the case |P (0)| > 1 is settled by Theorem 1.1.
It remains to consider the case |P (0)| = 1. Since |P (it)| tends to +∞ as t tends to +∞,
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there exists t0 ∈ R such that |φ(it0)| > 1. By continuity of |φ|, there exists v = |v|eiθ with
θ ∈ (π/2, 3π/2) such that |φ(v)| > 1. Now, because v lies in the left half-plane, |φ(tv)|
tends to 0 as t tends to +∞. We may conclude with Corollary 3.2. �

We finish this section by pointing out that Theorem 3.1 can also handle functions which
do not satisfy the properties described above.

Example 3.5. The convolution operator induced by φ(z) = 1
2
ez + eiz − 1

4
supports a

hypercylic algebra (let us observe that |φ(0)| > 1 and that φ does not tend to 0 along any
ray). Indeed, for any I ∈ Pf (N)\{∅} we choose m = max(I) and take a = k(2πi) and
b = k2π for some large integer k. Let n ∈ I and d ∈ {0, . . . , n} with (n, d) 6= (m,m). Then

φ(db+ (n− d)a) =
1

2
e2dkπ + e−2(n−d)kπ − 1

4
.

In particular,

|φ(mb)| = 1

2
e2mkπ +

3

4
> 1.

When d = 0,

|φ(na)| =
∣∣∣∣e−2nkπ +

1

4

∣∣∣∣ < 1.

Finally,

|φ(db+ (n− d)a)| ≤ 1

2
e2dkπ +

3

4
and we have, for all d = 1, . . . ,m− 1,(

1

2
e2dkπ +

3

4

)m
≤
(

1

2
e2mkπ +

3

4

)d
if k is large enough.

Remark 3.6. Combining the previous arguments with that of [4, Section 6], under the
assumptions of Theorem 1.1, φ(D) admits a dense, countably generated, free hypercyclic
algebra.

4. Weighted shifts on Fréchet sequence algebras

4.1. Fréchet sequence algebras with the coordinatewise product. We begin with
the proof of Theorem 1.2. We first explain where the property of admitting a continuous
norm comes into play.

Lemma 4.1. Let X be a Fréchet sequence algebra for the coordinatewise product and with
a continuous norm. Then the sequence (en) is bounded below.

Proof. Let q ≥ 1 be such that ‖ · ‖q is a norm on X. Then for all n ∈ N0,

0 < ‖en‖q = ‖en · en‖q ≤ ‖en‖2q
which shows that ‖en‖q ≥ 1. �

We shall prove the following precised version of Theorem 1.2.
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Theorem 4.2. Let X be a Fréchet sequence algebra for the coordinatewise product and
with a continuous norm. Assume that (en) is a Schauder basis for X. Let also Bw be a
bounded weighted shift on X. The following assumptions are equivalent.

(i) Bw supports a dense, countably generated, free hypercyclic algebra.
(ii) Bw supports a hypercyclic algebra.

(iii) For all m ≥ 1, there exists x ∈ X such that xm is a hypercyclic vector for Bw.
(iv) For all m ≥ 1, for all L ∈ N, there exists a sequence of integers (nk) such that, for

all l = 0, . . . , L, ((wl+1 · · ·wnk+l)−1/menk+l) tends to zero.
(v) There exists a sequence of integers (nk) such that, for all γ > 0 and for all l ∈ N,(

(wl+1 · · ·wnk+l)−γenk+l
)

tends to zero.

Proof. The implications (i) =⇒ (ii) and (ii) =⇒ (iii) are trivial. The proof of
(iii) =⇒ (iv) mimics that of the necessary condition for hypercyclicity. Let m ≥ 1 and
x ∈ X be such that xm ∈ HC(Bw). Write x =

∑+∞
n=0 xnen. Since (en) is a Schauder

basis, the sequence (xnen) goes to zero. Moreover, there exists a sequence of integers (nk)
such that (Bnk

w (xm))k goes to e0 + · · ·+ eL. Since convergence in X implies coordinatewise
convergence, for all l = 0, . . . , L, (wl+1 · · ·wnk+lxmnk+l) converges to 1. Hence the sequences(
(wl+1 · · ·wnk+l)1/mxnk+l

)
are bounded below. Writing

(wl+1 · · ·wnk+l)−1/menk+l =
1

(wl+1 · · ·wnk+l)1/mxnk+l
· xnk+lenk+l

we get the result.
To prove that (iv) =⇒ (v), observe that a diagonal argument ensure the existence of a

sequence (nk) such that, for allm ≥ 1 and all l ∈ N, the sequence ((wl+1 · · ·wnk+l)−1/menk+l)
tends to zero. Now we can conclude by observing that, since the sequence (en) is bounded
below, if

(
(wl+1 · · ·wnk+l)−1/menk+l

)
tends to zero for some m, then (wl+1 · · ·wnk+l) tends

to +∞ and, in particular,
(
(wl+1 · · ·wnk+l)−γenk+l

)
tends to zero for all γ ≥ 1/m.

It remains to prove the most difficult implication, (v) =⇒ (i). We start by fixing a
sequence of integers (nk) such that for all γ > 0 and for all l ∈ N,

(
(wl+1 · · ·wnk+l)−γenk+l

)
goes to zero. We intend to apply Theorem 2.1. Thus, let d ≥ 1 and A ⊂ Nd

0\{(0, . . . , 0)} be

finite and non-empty. For α ∈ A we define the linear form Lα on Rd by Lα(κ) =
∑d

j=1 αjκj.

Since Lα and Lα′ coincide only on a hyperplane for α 6= α′, there exist κ ∈ (0,+∞)d and
β = βA ∈ A such that 0 < Lβ(κ) < Lα(κ) for all α 6= β, α ∈ A. Without loss of generality,
we may assume that Lβ(κ) = 1.

Let now U1, . . . , Ud, V be non-empty open subsets of X and let W be a neighbourhood
of zero. Let x1, . . . , xd belonging respectively to U1, . . . , Ud with finite support and let
y =

∑p
l=0 ylel belonging to V . We set, for j = 1, . . . , d,

uj := uj(nk) = xj +

p∑
l=0

y
κj
l

(wl+1 · · ·wnk+l)κj
enk+l.

Our assumption implies that, provided nk is large enough, uj belongs to Uj for all j =
1, ..., d. Moreover, again if nk is large enough (larger than the size of the support of each
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xj), for all α ∈ A,

Bnk
w (uα) =

p∑
l=0

y
Lα(κ)
l

(wl+1 · · ·wnk+l)Lα(κ)−1
el.

In particular, for α = β, Bnk
w (uβ) = y ∈ V whereas, for α 6= β, since Lα(κ) − 1 > 0 and

since the sequences (wl+1 · · ·wnk+l) tend to +∞, we get Bnk
w (uα) ∈ W provided nk is large

enough. Hence, Bw admits a dense and not finitely generated hypercyclic algebra. �

As recalled in the introduction, the hypercyclicity of Bw on X is equivalent to the
existence of a sequence (nk) such that, for all l ∈ N, ((wl+1 · · ·wnk+l)−1enk+l) tends to zero.
It is well known that this last condition is equivalent to the following one, which seems
much weaker: there exists a sequence of integers (nk) such that ((w1 · · ·wnk)−1enk) tends
to zero. In view of this and of Theorem 4.2, it is tempting to conjecture that Bw supports
a hypercyclic algebra if and only if there exists a sequence of integers (nk) such that, for
all γ > 0, ((w1 · · ·wnk)−γenk) tends to zero. Unfortunately, this is not the case, as the
following example points out.

Example 4.3. Let X = {(xn) ∈ ω : |xn|an → 0} where a2n = 1 and a2n+1 = 2n en-
dowed with ‖x‖ = supn |xn|an and let w be the weight such that w1 · · ·w2n = 2n−1 and
w1 · · ·w2n+1 = 22n. Then w is an admissible weight on X, ((w1 · · ·w2n)−γe2n) tends to zero
for all γ > 0 but Bw does not admit a hypercyclic algebra.

Proof. We first observe that, endowed with the coordinatewise product, X is a Fréchet
sequence algebra (since an ≥ 1 for all n). To prove that w is admissible, it suffices to
observe that wk‖ek−1‖ ≤ 2‖ek‖ for all k. The construction of w ensures that w2n = 2−(n−1)

and w2n+1 = 2n+1. Hence the previous inequality is clearly satisfied if we separate the case
k even and k odd. Moreover for all γ > 0,

(w1 · · ·w2n)−γ‖e2n‖ = 2−γ(n−1)
n→+∞−−−−→ 0.

To prove that Bw does not support a hypercyclic algebra, it suffices to observe that, for
all n ≥ 1, (w1 · · ·w2n+1)

−1/2‖e2n+1‖ = 1, which implies that condition (v) of Theorem 4.2
cannot be satisfied. �

Nevertheless, if we add an extra assumption on X, then we get the expected result.

Corollary 4.4. Let X be a Fréchet sequence algebra for the coordinatewise product and
with a continuous norm. Assume that (en) is a Schauder basis for X. Assume also that,
for all admissible weights w, for all γ > 0, wγ is admissible. Let Bw be a bounded weighted
shift on X. The following assumptions are equivalent.

(i) Bw supports a hypercyclic algebra.
(ii) For all γ > 0, there exists a sequence (nk) such that ((w1 · · ·wnk)−γenk) tends to zero.

Proof. We assume that (ii) is satisfied and we show that, for all γ > 0 and for all L ∈ N,
there exists a sequence (mk) such that ((w1 · · ·wmk+l)−γemk+l) tends to zero. An application
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of Theorem 4.2 will then allow to conclude. It is easy to get this sequence mk. Indeed, it
is sufficient to set mk = nk − L, since in that case

(w1 · · ·wmk+l)−γemk+l = (Bwγ )
L−l ((w1 · · ·wnk)−γenk

)
which goes to zero by continuity of Bwγ . �

We may observe that our favorite sequence spaces (namely unweighted `p-spaces or
H(C)) satisfy the assumptions of the last corollary. We may also observe that on un-
weighted `p-spaces as well as on any Fréchet sequence algebra with a continuous norm such
that (en) is bounded, the convergence of

(
(w1 · · ·wnk)−γenk

)
to zero is equivalent to the

convergence of (w1 · · ·wnk) to +∞. Hence, we may formulate the following corollary.

Corollary 4.5. Let X be a Fréchet sequence algebra for the coordinatewise product and
with a continuous norm. Assume that (en) is a Schauder basis for X and that (en) is
bounded. Assume also that, for all admissible weights w, for all γ > 0, wγ is admissible.
Let Bw be a bounded weighted shift on X. The following assumptions are equivalent.

(i) Bw supports a hypercyclic algebra.
(ii) Bw is hypercyclic.

(iii) There exists a sequence (nk) such that (w1 · · ·wnk) tends to +∞.

Remark 4.6. On H(C), the sequence (zn) is unbounded. Nevertheless, any hypercyclic
weighted shift Bw on H(C) supports a hypercyclic algebra. Indeed, for a sequence of
integers (nk),

(w1 · · ·wnk)−1znk tends to 0 in H(C)

⇐⇒ ∀q ≥ 1, (w1 · · ·wnk)−1qnk tends to 0

⇐⇒ ∀q ≥ 1, ∀γ > 0, (w1 · · ·wnk)−γqnk tends to 0

⇐⇒ ∀γ > 0, (w1 · · ·wnk)−γznk tends to 0 in H(C).

Remark 4.7. Theorem 4.2 points out one difficulty when dealing with hypercyclic algebras:
to admit a hypercyclic algebra is not a property preserved by similarity. Indeed, let X =
{(xn) ∈ ω : |xn|2n → 0} endowed with ‖x‖ = supn |xn|2n and let w be the weight such that
w1 · · ·wn = n ·2n for all n ≥ 1. Then (w1 · · ·wn)−12n goes to zero whereas (w1 · · ·wn)−1/22n

tends to +∞, showing that Bw is hypercyclic but that no square vector x2 belongs to
HC(Bw).

Let now (ρn) be defined by ρ1 = 1 and ρn = n/(n − 1) for n ≥ 2. Then Bw acting on
X is similar to Bρ acting on c0, the similarity being given by S : X → c0, (xn) 7→ (2nxn).
But Bρ admits a hypercyclic algebra, which is not the case of Bw. Of course, the problem
is that S is not a morphism of algebra.

When X does not admit a continuous norm, one cannot apply Theorem 4.2. The space
ω is the prototypal example of a Fréchet space without a continuous norm (in fact, by a
result of Bessaga and Pelczinski [13], a Fréchet space fails to admit a continous norm if
and only if it has a subspace isomorphic to ω) and we shall now concentrate on this space.
On ω, for all weight sequences w = (wn), the weighted shift Bw is bounded, hypercyclic
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and satisfies (iv). If the sequences (wl · · ·wn+l) converge to +∞ for all ` ≥ 0, then an
easy modification of the proof of the previous theorem shows that Bw admits a hypercyclic
algebra. On the other hand, if the sequences (wl · · ·wn+l) converge to 0 for all ` ≥ 0,
then we may modify the previous proof using Corollary 2.3 instead of Corollary 2.4 to
prove that Bw still admits a hypercyclic algebra. A completely different case is that of the
unweighted shift B. It is a hypercyclic multiplicative operator on ω. By [10, Theorem 16],
B supports a hypercyclic algebra if and only if for each nonconstant polynomial P ∈ C[X]
with P (0) = 0, the map P̃ : ω → ω, x 7→ P (x) has dense range. This is clearly true.

We now show that every weighted shift on ω admits a hypercyclic algebra showing that,
coordinate by coordinate, Bw behaves like one of the three previous models.

Theorem 4.8. Every weighted shift Bw on ω endowed with the coordinatewise product
supports a hypercyclic algebra.

Proof. For V a non-empty open subset of ω, I ⊂ N finite and non-empty and s > 0, let us
define

E(I, s) =
{
P ∈ C[z] : |P̂ (min I)| ≥ 1/s, |P̂ (max I)| ≥ 1/s,

|P̂ (n)| ≤ s for all n ∈ N,

P̂ (n) = 0 when n /∈ I
}

A(I, s, V ) =
{
u ∈ ω : ∀P ∈ E(I, s), ∃N ≥ 1, TN(P (u)) ∈ V

}
.

As in the proof of Theorem 2.1, it is enough to prove that each set A(I, s, V ) is dense and
open. The last property follows easily from the compactness of E(I, s). Thus, let us fix I, s
and V and let us prove that A(I, s, V ) is dense. We set m0 = min(I) and m1 = max(I).
Let U be a non-empty open subset of ω. Let p ∈ N0, u0, . . . , up, v0, . . . , vp ∈ C and ε > 0
be such that, for all x, y ∈ ω,

|xl − ul| < ε for all l = 0, . . . , p implies x ∈ U,

|yl − vl| < ε for all l = 0, . . . , p implies y ∈ V.
Let us first look at the sequence (w1 · · ·wn). Three possibilities (which are not mutually
exclusive) can occur:

• either (w1 · · ·wn) is bounded and bounded below;
• or it admits a subsequence going to zero;
• or it admits a subsequence going to +∞.

Thus, we get the existence of a subsequence (w1 · · ·wnk) going to a0 ∈ [0,+∞]. We then
do the same with (w2 · · ·wnk+1) and so on. By successive extractions, we get the existence
of a sequence of integers (nk) (we can assume that nk+1 − nk > p for all k and that
n0 > p) and of a0, . . . , ap ∈ [0,+∞] such that, for all l = 0, . . . , p, (wl+1 · · ·wnk+l) tends
to al. We set A1 = {l ∈ {0, . . . , p} : al = +∞}, A2 = {l ∈ {0, . . . , p} : al = 0} and
A3 = {l ∈ {0, . . . , p} : al ∈ (0,+∞)}.
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We fix now (α(k)), (β(k)) two sequences of non-zero complex numbers and (z(k)) a
sequence in Cp+1 such that (α(k), β(k), z(k)) is dense in Cp+3. We set

x = u+
+∞∑
k=0

y(k)

where, for l = 0, . . . , p,

ynk+l(k) =



v
1/m0

l

α(k)1/m0(wl+1 · · ·wnk+l)1/m0
provided l ∈ A1,

v
1/m1

l

β(k)1/m1(wl+1 · · ·wnk+l)1/m1
provided l ∈ A2,

zl(k) provided l ∈ A3

and yi(k) = 0 if i 6= nk, . . . , nk + p.
We claim that x ∈ U ∩ A(I, s, V ). The definition of ε and p ensure that x ∈ U . Let

P ∈ E(I, s). There exists an increasing function φ : N → N such that α(φ(k)) → P̂ (m0),

β(φ(k)) → P̂ (m1) and alP (zl(φ(k))) → vl for all l ∈ A3. We claim that (B
nφ(k)
w (P (x)))

belongs to V provided k is large enough. It suffices to prove that for l = 0, . . . , p, the l-th
coordinate of B

nφ(k)
w (P (x)) tends to vl. Assume first that l ∈ A1. This l-th coordinate is

equal to

wl+1 · · ·wnφ(k)+lP

(
v
1/m0

l

α(φ(k))1/m0(wl+1 · · ·wnφ(k)+l)1/m0

)
.

Now, since wl+1 · · ·wnφ(k)+l tends to +∞, and m0 = min(I),

wl+1 · · ·wnφ(k)+lP

(
v
1/m0

l

α(φ(k))1/m0(wl+1 · · ·wnφ(k)+l)1/m0

)
= P̂ (m0)

vl
α(φ(k))

+ o(1)

and this tends to vl. When l ∈ A2, the proof is similar since now, because wl+1 · · ·wnφ(k)+l
tends to 0, and m1 = max(I),

wl+1 · · ·wnφ(k)+lP

(
v
1/m1

l

β(φ(k))1/m1(wl+1 · · ·wnφ(k)+l)1/m1

)
= P̂ (m1)

vl
β(φ(k))

+ o(1)

and this also goes to vl. Finally, when l ∈ A3, the l-th coordinate of B
nφ(k)
w (P (x)) is equal

to wl+1 · · ·wnφ(k)+lP (zl(φ(k))) which tends again to vl. �

Theorem 4.8 has an analogue (with a completely different proof!) if we endow ω with
the Cauchy product: see [16, Corollary 3.9]. We also point out that the existence of a
continuous norm is an important assumption in several problems in linear dynamics, for
instance for the existence of a closed infinite dimensional subspace of hypercyclic vectors
(see [20]).
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4.2. Bilateral shifts on Fréchet sequence algebras with the coordinatewise prod-
uct. In this section, we investigate the case of bilateral shifts on a Fréchet sequence algebra
X on Z; namely, X is a subset of CZ endowed with the coordinatewise product under which
it is an F -algebra. We intend to give an analogue of Theorem 4.2 for bilateral shifts on X.
The statement and the methods are close to what happens for unilateral shifts. Since we
do not want to give an exhaustive list of examples in this work, there is an extra interest for
looking at bilateral shifts: a small subtility appears in this case, since the condition that
appears is not symmetric for the positive part of the weight and for the negative one. This
will lead us to an interesting example of a hypercyclic operator T supporting a hypercyclic
algebra such that T−1 does not.

Theorem 4.9. Let X be a Fréchet sequence algebra on Z for the coordinatewise product,
with a continuous norm. Assume that (en)n∈Z is a Schauder basis for X. Let also Bw be
a bounded bilateral shift on X such that, for all γ ∈ (0, 1), Bwγ is bounded. The following
assertions are equivalent.

(i) Bw supports a hypercyclic algebra.
(ii) For all m ≥ 1, for all L ∈ N, there exists a sequence of integers (nk) such that, for all

l = −L, . . . , L,
(
(wl+1 · · ·wnk+l)−1/menk+l

)
and

(
wl · · ·w−nk+l+1e−nk+l

)
tend to zero.

Proof. (ii) =⇒ (i). We intend to apply Corollary 2.4. Let 1 ≤ m0 < m1, let U, V be
nonempty open subsets of X and let W be a neighbourhood of zero. Let x, y belonging to
U and V respectively, with finite support contained in [−p, p]. Write y =

∑p
l=−p ylel and

let (nk) be the sequence given in (ii) for m = m0 and L = p. Define

u := u(nk) = x+

p∑
l=−p

y
1/m0

l

(wl+1 · · ·wnk+l)1/m0
enk+l.

Provided k is large enough, u belongs to U . Moreover, for m ∈ {m0, . . . ,m1},

Bnk
w (um) =

p∑
l=−p

wl · · ·w−nk+l+1x
m
l e−nk+l +

p∑
l=−p

y
m/m0

l

(wl+1 · · ·wnk+l)
m
m0
−1 el.

For all values of m, it is clear that
p∑

l=−p

wl · · ·w−nk+l+1x
m
l e−nk+l

k→+∞−−−−→ 0.

Hence, for m = m0 and provided k is large enough, Bnk
w (um0) belongs to V . Furthermore,

if m > m0, since each sequence (wl+1 · · ·wnk+l)−1 goes to zero (recall that (en) is bounded
below), then Bnk

w (um) belongs to W for large values of k, showing that Bw admits a
hypercyclic algebra.

(i) =⇒ (ii). The proof is slightly more difficult than for unilateral shifts. Fix m
and L and let x ∈ X be such that xm ∈ HC(Bw). Let (sk) be an increasing sequence
of integers such that Bsk

w (xm) tends to e−L + · · · + eL. We fix some s ∈ N (which can be
taken equal to some sk0) such that, for all l = −L, . . . , L, the l-th coordinate of Bs

w(x) is
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not equal to zero. We then consider y ∈ X defined by yl = (wl+1 · · ·wl+s)1/mxl+s (namely,
y = Bs

w1/m(x)) and we set nk = sk−s. It is easy to check that Bnk
w (ym) = Bsk

w (xm). Hence,
it goes to e−L + · · ·+ eL. This implies that

• for all l = −L, · · · , L,

wl · · ·w−nk+l+1y
m
l e−nk+l tends to 0.

• for all l = −L, · · · , L,

wl+1 · · ·wnk+lymnk+l tends to 1.

We conclude as in the unilateral case, using that yl is never equal to zero for l = −L, · · · , L.
�

We can then state corollaries similar to what happens in the unilateral case.

Corollary 4.10. Let X be a Fréchet sequence algebra on Z for the coordinatewise product
and with a continuous norm. Assume that (en)n∈Z is a Schauder basis for X. Assume also
that, for all admissible weights w, for all γ ∈ (0, 1), wγ is admissible. Let Bw be a bounded
bilateral weighted shift on X. The following assumptions are equivalent.

(i) Bw supports a hypercyclic algebra.
(ii) For all γ > 0, there exists a sequence (nk) such that ((w1 · · ·wnk)−γenk) tends to zero

and (w−1 · · ·w−nke−nk) tends to 0.

Corollary 4.11. Let X be a Fréchet sequence algebra on Z for the coordinatewise product
and with a continuous norm. Assume that (en) is a Schauder basis for X and that (en)
is bounded. Assume also that, for all admissible weights w, for all γ ∈ (0, 1), wγ is
admissible. Let Bw be a bounded bilateral weighted shift on X. The following assumptions
are equivalent.

(i) Bw supports a hypercyclic algebra.
(ii) Bw is hypercyclic.

(iii) There exists a sequence (nk) such that (w1 · · ·wnk) and (w−1 · · ·w−nk) tend to +∞.

On the contrary, the nonsymmetry of the conditions in (ii) of Theorem 4.9 proves to be
useful to get the following example.

Example 4.12. There exists an invertible operator T on a Banach algebra such that T
supports a hypercyclic algebra and T−1 does not.

Proof. Let

X =
{
x ∈ CZ : xn(|n|+ 1)

n→±∞−−−−→ 0
}
,

endowed with
‖x‖ = sup

n
|xn|(|n|+ 1).

Equipped with the coordinatewise product, X is a Fréchet sequence algebra. Let w be the
weight defined by w0 = 1, wn = 2 and w−n = n2/(n + 1)2 for n > 0. For all γ > 0, the
weighted shift Bwγ is bounded on X. Moreover, it satisfies the assumptions of Theorem
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4.9 with (nk) equal to the whole sequence of integers. In particular, w−1 · · ·w−n‖e−n‖ =
(n+ 1)−1 tends to zero.

It is plain that Bw is invertible and that its inverse is the forward shift Fρ, defined by
Fρ(en) = ρn+1en+1 with ρn = 1/wn. Assume that Fρ supports a hypercyclic algebra. Then
we apply the symmetrized version of Theorem 4.9 adapted to forward shifts with m = 2
to get the existence of a sequence (nk) such that (ρ−1 · · · ρ−nk)−1/2e−nk tends to zero. This
is impossible since ∥∥(ρ−1 · · · ρ−nk)−1/2e−nk

∥∥ ∼k→+∞
nk

n
2×1/2
k

= 1.

�

4.3. Fréchet sequence algebras for the convolution product. This subsection is
devoted to the proof of Theorem 1.3. We first have to give the meaning of a regular
Fréchet sequence algebra. Let (X, (‖ · ‖q)) be such a Fréchet sequence algebra for the
Cauchy product. We will say that X is regular provided that it satisfies the following three
properties:

(a) X admits a continuous norm;
(b) (en) is a Schauder basis of X;
(c) for any r ≥ 1, there exists q ≥ 1 and C > 0 such that, for all n, k ≥ 0,

‖en‖r · ‖ek‖r ≤ C‖en+k‖q.

Let us make some comments on these assumptions. Conditions (a) and (b) are standard
in this work. We shall use (a) by assuming that ‖en‖q > 0 for all n ∈ N0 and all q > 0.
Regarding (c), it should be thought as a reverse inequality for the continuity of the product
in X. Observe also that H(C) and `1 are clearly regular. However, this is not the case
of all Fréchet sequence algebras for the Cauchy product. Pick for instance any sequence
(an) of positive real numbers such that, for all n, p, q ∈ N0, with n = p + q, an ≤ ap · aq
and a2n/a2n → +∞ (the sequence an = 1/n! does the job). Then the Banach space
X = {x ∈ ω : ‖x‖X =

∑
n≥0 an|xn| < +∞} is a Fréchet sequence algebra for the Cauchy

product which does satisfy (c).
A consequence of (c) is the following technical lemma which will be crucial later.

Lemma 4.13. Let X be a regular Fréchet sequence algebra for the Cauchy product and
let (wn) be an admissible weight sequence on X. Then, for all M ≥ 1, for all r ≥ 1, and
for all ρ ≥ 0, there exist C > 0 and q ≥ r such that, for all n ≥ M , for all u < v in
{n−M, . . . , n}, for all k ∈ {n−M + ρ, . . . , n+ ρ}v−u,

(7)
v−u∏
j=1

wkj‖eu‖r ≤ C‖ev‖q.

Before to proceed with the proof, let us comment the statement of Lemma 4.13. The
inequality (7) is nothing else than the continuity of Bw if we assume that kj = u + j for
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j = 1, . . . , v − u. The regularity of X (and more precisely the third condition) will imply
that we may slightly move the indices kj.

Proof. Let us fix M ≥ 1 and observe that v− u may only take the values 1, . . . ,M . Then,
upon doing a finite induction and taking suprema, we need only to prove that, for all
r ≥ 1, and for all ρ ≥ 0, there exist C > 0 and q ≥ r such that, for all n ≥ M , for all
u ∈ {n−M, . . . , n− 1}, for all k ∈ {n−M + ρ, . . . , n+ ρ},
(8) wk‖eu‖r ≤ C‖eu+1‖q,
a property which should be thought as a strong version of the continuity of Bw. Assume
first that u ≥ k − 1. Then, writing eu = ek−1 · eu−(k−1) and using the continuity of the
product and of Bw, we get the existence of C > 0 and q1 ≥ r such that

wk‖eu‖r ≤ wk‖ek−1‖r · ‖eu−(k−1)‖r
≤ C1‖ek‖q1 · ‖eu−(k−1)‖q1 .

We now use property (c) for r = q1 to deduce the existence of C2 > 0 and q2 ≥ q1 such
that

wk‖eu‖r ≤ C1C2‖eu+1‖q2 .
Hence, (8) is proved for q = q2 and C = C1C2. If we assume that u < k − 1, then the
argument is completely similar by exchanging the place where we use the continuity of the
product and property (c). Precisely,

wk‖eu‖r = wk
‖eu‖r · ‖e(k−1)−u‖r
‖e(k−1)−u‖r

≤ C1wk
‖ek−1‖q1
‖e(k−1)−u‖r

≤ C1C2
‖ek‖q2

‖ek−(u+1)‖r

≤ C1C2

‖ek−(u+1)‖q2
‖ek−(u+1)‖r

‖eu+1‖q2 .

Hence, (8) is proved for q = q2 and

C = max

{
C1C2

‖el‖q2
‖el‖r

: 1 ≤ l ≤M + ρ− 1

}
.

�

Lemma 4.13 will be used through the following more particular form.

Corollary 4.14. Let X be a regular Fréchet sequence algebra for the Cauchy product and
let (wn) be an admissible weight sequence on X. Then, for all m ≥ 1, for all N ≥ 1, for
all r ≥ 1, and for all ρ ≥ 0, there exist C > 0 and q ≥ 1 such that, for all n ≥ mN , for all
s ∈ {1, . . . , N},

(wn−s+1+ρ)
m−1 · · · (wn−1+ρ)m−1(wn+ρ)m−1‖en−ms+mρ‖r ≤ C‖en−s+ρ‖q.
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Proof. We apply the previous lemma with M = mN to get q′ ≥ r and C ′ > 0 such that

(wn−s+1+ρ)
m−1 · · · (wn−1+ρ)m−1(wn+ρ)m−1‖en−ms‖r ≤ C ′‖en−s‖q′ .

Now, using property (c) and the continuity of the product on a Fréchet algebra, we get
q ≥ q′ ≥ r and C ′′ > 0 with

(wn−s+1+ρ)
m−1 · · · (wn−1+ρ)m−1(wn+ρ)m−1‖en−ms+mρ‖r
≤ (wn−s+1+ρ)

m−1 · · · (wn−1+ρ)m−1(wn+ρ)m−1‖en−ms‖r‖eρ‖r‖e(m−1)ρ‖r
≤ C ′‖en−s‖q′‖eρ‖q′‖e(m−1)ρ‖r
≤ C ′C ′′‖en−s+ρ‖q‖e(m−1)ρ‖r
= C‖en−s+ρ‖q,

where C = C ′C ′′‖e(m−1)ρ‖r. �

Before proceeding with the proof of Theorem 1.3, let us make some comments on the
difference between the coordinatewise product and the convolution product. Let P (z) =∑

m∈I P̂ (m)zm be a nonzero polynomial, x, y with finite support. The work done in Section
2.1 shows that it is important for us to find u close to x and N such that BN

w (P (u)) is
close to y. In both cases, u will be of the form u = x + z, where z has finite support
and min(supp(z)) � max(supp(x)). For the coordinatewise product, each um has the
same support as u. Moreover, since z has to be small, zm becomes smaller as m increases.
Hence, in P (u), the most important term was um0 , where m0 = min(I) (we assume P̂ (m) 6=
0 ⇐⇒ m ∈ I) and it was natural to apply Corollary 2.4.

Regarding the convolution product, the support of um is now moving to the right:
max(supp(um+1)) ≥ max(supp(um)). By using a specific translation term (an idea com-
ing from [22] and [17]), we will arrange the choice of N such that BN

w (um) = 0 when
m < m1 := max(I) and BN

w (um1) is close to y. This explains why we will rather use
Corollary 2.3.

Proof of Theorem 1.3. We start with a hypercyclic weighted shift Bw and prove that Bw

supports a dense hypercyclic algebra which is not contained in a finitely generated algebra.
Let d ≥ 1, A ∈ Pf (Nd

0)\{∅} and U1, ..., Ud, V,W ⊂ X be open and non-empty, with
0 ∈ W . We choose β = maxA under the lexicographical order, say β = (m,β2, ..., βd).
Upon interchanging the coordinates in Nd, we may and will assume that m > 0. Let
x1, ..., xd belonging respectively to U1, ..., Ud and let y =

∑p
l=0 ylel belonging to V . We can

find r ≥ 1, δ > 0 and a ball B ⊂ W for the seminorm ‖ · ‖r and with radius δ such that
y +B ⊂ V and xi +B ⊂ Ui, for all i = 1, ..., d.

Since β > α for all α ∈ A\{β} under the lexicographical order, we may find integers
s1, . . . , sd with si > 4p such that

(9) (m− α1)s1 + (β2 − α2)s2 + · · ·+ (βd − αd)sd > 3p, for all α ∈ A \ {β}.
The procedure to do this is the following. First find sd such that (βd − αd)sd > 3p, for
all αd < βd, αd ∈ πd(A). Next, find sd−1 such that (βd−1 − αd−1)sd−1 + (βd − αd)sd > 3p,
for all αd−1 < βd−1 ∈ πd−1(A) and αd ∈ πd(A). Continuing inductively, after finitely
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many steps we define s2 such that (β2 − α2)s2 + · · · + (βd − αd)sd > 3p, for all α2 < β2,
α2 ∈ π2(A), and αi ∈ πi(A), for i = 3, . . . , d. Finally we chose s1 large enough so that
(m− α1)s1 + (β2 − α2)s2 + · · ·+ (βd − αd)sd > 3p, for all α1 < m, α1 ∈ π1(A), αi ∈ πi(A),
for i = 2, . . . , p. This way we get (9).

These si being fixed, we now choose positive real numbers η2, . . . , ηd such that

(10) ‖ηiesi‖r < δ, for all i = 2, ..., d.

We will distinguish two cases in order to apply Corollary 2.5. The most difficult one is
m > 1, an assumption that we now make. We set ρ = β2s2 + · · ·+ βdsd and we consider a
sequence (Jk) going to +∞ such that, for all l = 0, . . . , p,

(w1 · · ·wmJk−3p+l+ρ)−1emJk−3p+l+ρ
k→+∞−−−−→ 0.

Indeed, let (mk) be a sequence of integers such that (w1 · · ·wmk)−1emk goes to zero and
mk ≥ m+ρ for all k. Define Jk as the single integer such that mk−m < mJk−2p+ρ ≤ mk.
Then, for all l = 0, . . . , p,

(w1 · · ·wmJk−3p+ρ+l)−1emJk−3p+ρ+l = Bmk−mJk+3p−ρ−l
w

(
(w1 · · ·wmk)−1emk

)
which tends to zero by the continuity of Bw and because

0 ≤ mk −mJk + 3p− ρ− l ≤ m+ p.

We now proceed with the construction of the vectors u1, . . . , ud required to apply Corol-
lary 2.5. We set, for k large enough, N = mJk − 3p+ ρ and

ε = max
0≤l≤p

(
‖eJk−3p+l‖r

w1 · · ·wmJk−3p+l+ρ

) 1
2(m−1)

×min

(
1

‖eJk‖r
,

1

(w1 · · ·wmJk+ρ)1/m

) 1
2

,

dj =
w1 · · ·wjyj

ηβ22 · · · η
βd
d mε

m−1w1 · · ·wmJk−3p+j+ρ
.

We also define

u1 = x1 +

p∑
j=0

djeJk−3p+j + εeJk ,

ui = xi + ηiesi , for i = 2, ..., d.

Let us postpone the proof of the following facts.

ε‖eJk‖r → 0 as k → +∞,(11)

|dj| · ‖eJk−3p+j+ρ‖r → 0 as k → +∞, for all j = 0, ..., p,(12)

εmw1 · · ·wmJk+ρ → 0 as k → +∞.(13)

From (11) and (12) we get u1 ∈ U1 if k is large enough and from (10) we get ui ∈ U for
i = 2, ..., d. We claim that uα ∈ kerBN

w for all α ∈ A with α 6= β. In fact, for a given
α ∈ A\{β}, say α = (α1, ..., αd), we have

max (supp(uα)) ≤ α1Jk + α2s2 + · · ·+ αdsd,
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so the claim follows by (9) since α1 ≤ m and for k large enough, Jk ≥ s1. Finally, for the
main power β we write

uβ = z +

p∑
j=0

ηβ22 · · · η
βd
d mε

m−1djemJk−3p+j+ρ + εmηβ22 · · · η
βd
d emJk+ρ,

where the maximum of the support of z is less than N = mJk − 3p+ ρ. Indeed, a term in
z can come

• either from a term in uβ11 with support in [0,mJk− 4p] so that the maximum of the
support of this term is at most mJk − 4p+ ρ < N ;
• or from a term in some uβii , i = 2, . . . , d, with support in [0, (βi − 1)si + p]. The

maximum of the support of such a term is then at most mJk + ρ+ p− si < N since
si > 4p.

Hence, we get

BN
w u

β = y +
εmηβ22 · · · η

βd
d w1 · · ·wmJk+ρ

w1 · · ·w3p

e3p,

which belongs to V by (13) if k is big enough. It remains now to show that properties
(11), (12) and (13) hold true.

Let us first prove (11). By property (c) and an easy induction, there exist q ≥ 1 and
C > 0 (depending on r and m) such that, for all k ≥ 1 and all l ∈ {0, . . . , p},

‖eJk−3p+l‖
1

2(m−1)
r · ‖eJk‖r
‖eJk‖

1
2
r

=
(‖eJk−3p+l‖r · ‖eJk‖m−1r · ‖eρ‖r)

1
2(m−1)

‖eρ‖
1

2(m−1)
r

≤ C‖emJk−3p+l+ρ‖
1

2(m−1)
q .

Hence,

ε‖eJk‖r ≤ C max
0≤l≤p

(
‖emJk−3p+l+ρ‖q

w1 · · ·wmJk−3p+l+ρ

) 1
2(m−1)

and this goes to zero as k tends to +∞.
Regarding (12), we first write

|dj| · ‖eJk−3p+j+ρ‖r ≤ C
‖eJk−3p+j+ρ‖r

w1 · · ·wmJk−3p+j+ρ
× min

0≤l≤p

(
w1 · · ·wmJk−3p+l+ρ
‖eJk−3p+l‖r

) 1
2

×max
(
‖eJk‖r, (w1 · · ·wmJk+ρ)

1
m

)m−1
2

≤ C
‖eρ‖

1
2
r · ‖eJk−3p+j+ρ‖

1
2
r

(w1 · · ·wmJk−3p+j+ρ)
1
2

×max
(
‖eJk‖r, (w1 · · ·wmJk+ρ)

1
m

)m−1
2
,
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where the last line comes from the continuity of the product, more precisely from

‖eJk−3p+l+ρ‖r ≤ ‖eJk−3p+l‖r · ‖eρ‖r.

Assume first that the maximum is attained for ‖eJk‖r. In that case, using (c) in a similar
way we write

‖eJk−3p+j+ρ‖r
w1 · · ·wmJk−3p+j+ρ

‖eJk‖m−1r ≤ C
‖emJk−3p+j+ρ‖q

w1 · · ·wmJk−3p+j+ρ
and the last parcel goes to zero. If the maximum is attained for (w1 · · ·wmJk+ρ)

1
m , we now

write

‖eJk−3p+j+ρ‖r(w1 · · ·wmJk+ρ)
m−1
m

w1 · · ·wmJk−3p+j+ρ
=

(
‖eJk−3p+j+ρ‖mr (w1 · · ·wmJk+ρ)m−1

) 1
m

w1 · · ·wmJk−3p+j+ρ

≤ C1

(
(w1 · · ·wmJk+ρ)m−1‖emJk−m(3p−j)+mρ‖q

) 1
m

w1 · · ·wmJk−3p+j+ρ
.

Now, using Corollary 4.14 for n = mJk, N = 3p and s = 3p − j, we get the existence of
C2 > 0 and q′ ≥ q (which does not depend on k) such that

(w1 · · ·wmJk+ρ)m−1‖emJk−m(3p−j)+mρ‖q ≤ C2(w1 · · ·wmJk−3p+j+ρ)m−1

× ‖emJk−3p+j+ρ‖q′

so that

‖eJk−3p+j+ρ‖r(w1 · · ·wmJk+ρ)
m−1
m

w1 · · ·wmJk−3p+jρ
≤ C1C

1
m
2

(
‖emJk−3p+j+ρ‖q′
w1 · · ·wmJk−3p+j+ρ

) 1
m

and this goes to zero.
Finally, let us prove (13). The proof is very similar. Indeed, for all l = 0, . . . , p,(

‖eJk−3p+l+ρ‖r
w1 · · ·wmJk−3p+l+ρ

) m
2(m−1)

(w1 · · ·wmJk+ρ)
1
2

≤ (‖eJk−3p+l+ρ‖mr (w1 · · ·wmJk+ρ)m−1)
1

2(m−1)

(w1 · · ·wmJk−3p+l+ρ)
m

2(m−1)

≤ C1

(
‖emJk−m(3p−l)+mρ‖q(w1 · · ·wmJk+ρ)m−1

) 1
2(m−1)

(w1 · · ·wmJk−3p+l+ρ)
m

2(m−1)

≤ C1C
1

2(m−1)

2

(‖emJk−3p+l+ρ‖q′(w1 · · ·wmJk−3p+l+ρ)m−1)
1

2(m−1)

(w1 · · ·wmJk−3p+l+ρ)
m

2(m−1)

≤ C1C
1

2(m−1)

2

(
‖emJk−3p+l+ρ‖q′
w1 · · ·wmJk−3p+l+ρ

) 1
2(m−1)

,

which achieves the proof of (13).
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We now sketch briefly the proof when m = 1. We still set ρ = β2s2 + · · ·+ βdsd and we
now consider a sequence (Jk) satisfying

(w1 · · ·wJk+l+ρ)−1eJk+l+ρ
k→+∞−−−−→ 0

for all l = 0, . . . , p. We define

u1 = x1 +

p∑
j=0

djeJk+j+ρ,

ui = xi + ηiesi , for i = 2, ..., d,

where
dj =

yjw1 . . . wj
ηs22 . . . ηsdd w1 . . . wJk+j+ρ

.

Setting N = Jk + ρ for k sufficiently large, it is easy to check that ui ∈ Ui, i = 1, . . . , d,
BN
w (uα) = 0 if α ∈ A \ {β}, and BN

w (uβ) ∈ V , which concludes the proof. �

85

5. Frequently and upper frequently hypercyclic algebras

5.1. How to get upper frequently hypercyclic algebras. In [14], following the proof
made in [6] that the set of upper frequently hypercyclic vectors is either empty or resid-
ual, the authors gave an analogue to Birkhoff’s transitivity theorem for upper frequent
hypercyclicity. We adapt it in order to get upper frequently hypercyclic algebras.

Proposition 5.1. Let T be a continuous operator on an F -algebra X satisfying the follow-
ing condition: for each I ∈ Pf (N)\{∅}, there exists m0 ∈ I such that, for each non-empty
open subset V of X and each neighbourhood W of the origin, there is δ > 0 such that for
each non-empty open subset U and each N0 ∈ N, there is u ∈ U and N ≥ N0 satisfying

1

N + 1
card {p ≤ N : T p(um) ∈ W for m ∈ I\{m0} and T p(um0) ∈ V } > δ.

Then T admits an upper frequently hypercyclic algebra.

Proof. Let (Vk)k be a basis for the topology of X and let (Wj)j be a basis of open neighbour-
hoods of the origin. By the assumption for each I ∈ Pf (N)\{∅}, there exists m0 = m0(I)
such that, for each k, j, there is δk,j,I > 0 such that for each non-empty open subset U and
each N0 ∈ N, there is u ∈ U and N ≥ N0 satisfying

1

N + 1
card {p ≤ N : T p(um) ∈ Wj for m ∈ I\{m0} and T p(um0) ∈ Vk} > δk,j,I .

We set

A =
⋂

k,j,I,N0≥1

⋃
N≥N0

{
u ∈ X :

1

N + 1
card

{
p ≤ N : T p(um) ∈ Wj for m ∈ I\{m0}

and T p(um0) ∈ Vk
}
> δk,j,I

}
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and show that A is residual.
For fixed k, j, I, N0 the set

⋃
N≥N0

{
u ∈ X :

1

N + 1
card

{
p ≤ N : T p(um) ∈ Wj for m ∈ I\{m0} and

T p(um0) ∈ Vk
}
> δk,j,I

}
is clearly open, and the definition of δk,j,I implies that it is also dense. By the Baire
category theorem A is residual.

Next, we check that if u belongs to A and if P ∈ C[z] is not constant, with P (0) = 0,

then P (u) ∈ UFHC(T ). We write P (z) =
∑

m∈I P̂ (m)zm for some I ∈ Pf (N)\{∅} and

P̂ (m) 6= 0 for all m ∈ I. Since UFHC(T ) is invariant under multiplication by a scalar

we may assume that P̂ (m0) = 1. Let V be a non-empty open set and find k, j such that

Vk + (card(I)− 1)‖P̂‖∞Wj ⊂ V . For each N0 ∈ N there is N ≥ N0 such that

1

N + 1
card {p ≤ N : T p(um) ∈ Wj for m ∈ I\{m0} and T p(um0) ∈ Vk} > δk,j,I .

But if T p(um) ∈ Wj for m ∈ I\{m0} and T p(um0) ∈ Vk, then T p(P (u)) ∈ V . Therefore,

1

N + 1
card {p ≤ N : T p(P (u)) ∈ V } > δk,j,I

which yields that dens({p ∈ N : T p(P (u)) ∈ V }) > δk,j,I > 0. �

We will apply this lemma either for m0(I) = min(I) or m0 = max(I). The proposition
gets the simpler forms:

Corollary 5.2. Let X be an F -algebra. If for each nonempty subset V of X, for each
neighbourhood W of the origin, for any positive integers m0 < m1, there is δ > 0 such that
for each nonempty open subset U and each N0 ∈ N, there is u ∈ U and N ≥ N0 satisfying

1

N + 1
card {p ≤ N : T p(um) ∈ W for m ∈ {m0 + 1, . . . ,m1} and T p(um0) ∈ V } > δ

then T admits an upper frequently hypercyclic algebra.

Corollary 5.3. Let X be an F -algebra. If for each nonempty subset V of X, for each
neighbourhood W of the origin, for any positive integer m, there is δ > 0 such that for each
nonempty open subset U and each N0 ∈ N, there is u ∈ U and N ≥ N0 satisfying

1

N + 1
card {p ≤ N : T p(un) ∈ W for n ∈ {1, . . . ,m− 1} and T p(um) ∈ V } > δ

then T admits an upper frequently hypercyclic algebra.
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5.2. Existence of upper frequently hypercyclic algebras for weighted backward
shifts - coordinatewise products. We intend to apply the previous method to back-
ward shift operators and prove Theorem 1.4. The unconditional convergence of the series∑

n≥1(w1 · · ·wn)−1en will be used throughout the following lemma.

Lemma 5.4. Let (wn) be a weight sequence such that
∑

n≥1(w1 · · ·wn)−1en converges un-
conditionally. Then, for all ε > 0, for all p > 0, for all M > 0, there exists N ≥ p such
that, for each sequence of complex numbers (y(n, l))n≥N, 0≤l≤p with |y(n, l)| ≤ M for all
n, l, then ∥∥∥∥∥∑

n≥N

p∑
l=0

y(n, l)

wl+1 · · ·wn+l
en+l

∥∥∥∥∥ ≤ ε.

Proof. We first observe that the convergence of the series involved follows from the uncon-
ditional convergence of each series

∑
n≥1(wl+1 · · ·wn+l)−1en+l. Setting z(n, l) = y(n, l)/M

and using the triangle inequality, the (almost) homogeneity of the F−norm implies that∥∥∥∥∥∑
n≥N

p∑
l=0

y(n, l)

wl+1 · · ·wn+l
en+l

∥∥∥∥∥ ≤ (M + 1)

p∑
l=0

∥∥∥∥∥∑
n≥N

z(n, l)

wl+1 · · ·wn+l
en+l

∥∥∥∥∥ .
The existence of an N such that the last term is less than ε now follows directly from the
unconditional convergence of the series

∑
n(wl+1 · · ·wn+l)−1en+l (see the introduction). �

Proof of Theorem 1.4. Let m0 < m1 be two positive integers. Let V,W ⊂ X be open and
non-empty with 0 ∈ W . Let p ≥ 0, ε > 0 and v =

∑p
l=0 vlel be such that B(v, ε) ⊂ V and

B(0, 2ε) ⊂ W . We also set M = max(1, ‖v‖∞)m1/m0 . Let N ∈ N be given by Lemma 5.4
for these values of ε, p and M . Without loss of generality, we may assume N > p. We set
δ = 1

2N
. Let U ⊂ X be open and non-empty and let x ∈ U with finite support. We also

define, for k ≥ 0,

v(k) =

p∑
l=0

v
1/m0

l

(wl+1 · · ·wk+l)1/m0
ek+l.

Let N1 be very large (precise conditions on it will be given later; for the moment we just
assume that N1 is bigger than the maximum of the support of x). We finally set

u = x+
∑
k≥N1

v(Nk).

The unconditional convergence of the series
∑

k(wl+1 · · ·wk+l)−1/m0ek+l ensures that u is
well-defined and that ‖u−x‖ < ε provided N1 is large enough. Let now m ∈ {m0, · · · ,m1}
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and j ≥ N1. Then, since x and the v(kN), k ≥ N1, have pairwise disjoint support,

BNj
w um =

p∑
l=0

v
m/m0

l

(wl+1 · · ·wjN+l)
m
m0
−1 el

+
∑
k>j

p∑
l=0

v
m/m0

l w(k−j)N+l+1 · · ·wkN+l

(wl+1 · · ·wkN+l)
m
m0

e(k−j)N+l

=: z(1, j,m) + z(2, j,m).

If m = m0, then z(1, j,m) = v whereas, if m ∈ {m0 + 1, . . . ,m1}, then since |vl|m/m0 ≤M
and since the sequences (wl+1 · · ·wl+n)n go to +∞ (recall that X has a continuous norm),
we may adjust N1 so that ‖z(1, j,m)‖ < ε for all j ≥ N1. On the other hand, we may
write

z(2, j,m) =
∑
n≥N

p∑
l=0

y(j, n, l,m)

wl+1 · · ·wn+l
en+l

where, for s = k − j ≥ 1, l = 0, . . . , p,

y(j, sN, l,m) =
v
m/m0

l

(wl+1 · · ·w(s+j)N)
m
m0
−1

and y(j, n, l,m) = 0 if n is not a multiple of N . Again taking N1 large enough guarantees
that |y(j, n, l,m)| ≤ M for all j ≥ N1, all n ≥ N , all l = 0, . . . , p and all m = m0, . . . ,m1.
By the choice of N , we get ‖z(2, j,m)‖ < ε for all j ≥ N1. Summarizing, we have proved
that, for all j ≥ N1, B

Nj
w um0 ∈ V and BNj

w um ∈ W for all m ∈ {m0 + 1, . . . ,m1}. Hence
we may apply Corollary 5.2 to prove that Bw supports an upper frequently hypercyclic
algebra. �

The Theorem 1.4 can be applied to the following examples: λB on `p for λ > 1, λD on
H(C) for λ > 0 or Bw on c0 with wn = 1 + λ/n, λ > 0. Regarding this last weight, on
`p, Bw is upper frequently hypercyclic if and only if λ > 1/p. However we do not know
the answer to the following question because of the divergence of

∑
n(w1 · · ·wn)−1/men for

m > λp.

Question 5.5. Let X = `p and wn = 1 + λ/n for λ > 1/p. Does Bw supports an upper
frequently hypercyclic algebra?

On `p, it is known thatBw is (upper) frequently hypercyclic if and only if
∑

n(w1 · · ·wn)−p

is convergent (see [6]).

Question 5.6. Let X = `p endowed with the coordinatewise product and let w = (wn) be
an admissible weight sequence. Assume that Bw supports an upper frequently hypercyclic
algebra. Does this imply that

∑
n(w1 · · ·wn)−γ is convergent for all γ > 0?



BAIRE THEOREM AND HYPERCYCLIC ALGEBRAS 33

5.3. Existence of upper frequently hypercyclic algebras for weighted backward
shifts - convolution product. We now study the existence of an upper frequently hyper-
cyclic algebra for weighted backward shifts when the underlying Fréchet algebra is endowed
with the convolution product. We shall give a general statement encompassing the case of
the multiples of the backward shift and of the derivation operator.

Theorem 5.7. Let X be a regular Fréchet sequence algebra for the Cauchy product and
let (wn) be an admissible weight sequence. Assume that

(a)
∑

n≥1(w1 · · ·wn)−1en converges unconditionally.
(b) for all m ≥ 2, there exists c ∈ (0, 1) such that

lim
σ→+∞

sup
z∈c00∩B`∞

∥∥∥∥∥∑
n≥cσ

zn(w1 · · ·wmσ)(m−1)/m

w1 · · ·w(m−1)σ+n
en

∥∥∥∥∥ = 0.

Then Bw admits an upper frequently hypercyclic algebra.

Proof. We shall prove that the assumptions of Corollary 5.3 are satisfied. For m = 1, this
follows from condition (a) which implies that T admits a dense set of (upper) frequently
hypercyclic vectors. Thus, let us assume that m ≥ 2 and let c ∈ (0, 1) be given by (b).
We also consider d ∈ (c, (1 + c)/2) ⊂ (0, 1). Let V be a non-empty open subset of X, W a
neighbourhood of 0, y =

∑p
l=0 ylel ∈ V and η > 0 such that B(0, 2η) + y ⊂ V . Let finally

q > p be such that, for all z ∈ `∞ with ‖z‖∞ ≤ ‖y‖∞
(

max(1, w1, . . . , wp)
)p+1

,∥∥∥∥∥∑
n≥q

zn
w1 · · ·wn

en

∥∥∥∥∥ < η.

We intend to prove that, for each non-empty open subset U and each N0 ∈ N, there is
u ∈ U and N ≥ N0 satisfying

1

N + 1
card {s ≤ N : Bs

w(un) ∈ W for n < m and Bs
w(um) ∈ V } ≥ d− c

2
(
(m− 1)q + qd

) .
More precisely, we shall prove that, for all σ large enough, setting

Eσ = {(m− 1)qσ + qj : cσ ≤ j < dσ} ,

there exists u ∈ U such that, for all s ∈ Eσ, Bs
w(un) = 0 for n < m and Bs

w(um) ∈ V . Since

lim
σ→+∞

card(Eσ)

max(Eσ)
=

d− c
(m− 1)q + qd

,

we will get the claimed result.
We thus fix x ∈ U with finite support (we denote by p′ the maximum of the support of

x) and let σ > 0 be such that p′ < cσ. Inspired by the proof of Theorem 1.3, we set

u = x+
dσ−1∑
j=cσ

p∑
l=0

dj,leqj+l + εeqσ



34 F. BAYART, F. COSTA JÚNIOR, AND D. PAPATHANASIOU

where

ε =
1

(w1 · · ·wmqσ)1/m

dj,l =
yl

mεm−1wl+1 · · ·w(m−1)qσ+qj+l
.

Let us first prove that, provided that σ is large enough, u belongs to U . Let r ≥ 1. Since
X is regular, there exists ρ ≥ r and C > 0 such that

‖εeqσ‖r ≤
C

(w1 · · ·wmqσ)1/m
‖emqσ‖1/mρ

σ→+∞−−−−→ 0.

Furthermore,∥∥∥∥∥
dσ−1∑
j=cσ

p∑
l=0

dj,leqj+l

∥∥∥∥∥ =

∥∥∥∥∥
dσ−1∑
j=cσ

p∑
l=0

ylw1 · · ·wl(w1 · · ·wmqσ)(m−1)/m

mw1 · · ·w(m−1)qσ+qj+l
eqj+l

∥∥∥∥∥
=

∥∥∥∥∥ ∑
n≥cqσ

zn(w1 · · ·wmqσ)(m−1)/m

w1 · · ·w(m−1)qσ+n
en

∥∥∥∥∥
for some eventually null sequence (zn) such that

‖z‖∞ ≤ ‖y‖∞
(

max(1, w1, . . . , wp)
)p
/m.

Assumption (b) allows us to conclude that
∑dσ−1

j=cσ

∑p
l=0 dj,leqj+l tends to zero as σ goes to

+∞.
Observe now that, for n < m, the support of un is contained in [0, nqσ] so that, for

s ∈ Eσ, Bs
w(un) = 0. On the other hand,

um = z +mεm−1
dσ−1∑
j=cσ

p∑
l=0

dj,le(m−1)qσ+qj+l + εmemqσ

with supp(z) ⊂ [0, (m − 2)qσ + 2qdσ] ∪ [0, (m − 1)qσ + p′]. It is not difficult to see that,
because d < (1 + c)/2, max(supp(z)) ≤ (m− 1)qσ+ qcσ for σ large enough. Thus, for any
s = (m− 1)qσ + qk ∈ Eσ,

Bs
w(um) = y +

dσ−1∑
j=k+1

p∑
l=0

yl
wl+1 · · ·wq(j−k)+l

eq(j−k)+l +
1

w1 · · ·wqσ−qk
eqσ−qk.

We handle the second term of the right hand side of the equality by writing

dσ−1∑
j=k+1

p∑
l=0

yl
wl+1 · · ·wq(j−k)+l

eq(j−k)+l =
∑
n≥q

zn
w1 · · ·wn

en

for some sequence (zn) such that ‖z‖∞ ≤ ‖y‖∞
(

max(1, w1, . . . , wp)
)p

. By our choice of
q, this has F -norm less than η. Finally, ‖eqσ−qk‖/(w1 · · ·wqσ−qk) becomes also less than η
provided σ, and thus qσ − qdσ, becomes large enough. �
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Assumption (a) in Theorem 5.7 is what we need to get an (upper) frequently hypercyclic
vector. Assumption (b) is also an assumption around unconditional convergence of the
series

∑
n≥1(w1 · · ·wn)−1en. This looks clearer by writing∑
n≥cσ

zn(w1 · · ·wmσ)(m−1)/m

w1 · · ·wn+(m−1)σ
en =

∑
n≥cσ

zn(w1 · · ·wmσ)(m−1)/m

wn+1 · · ·wn+(m−1)σ
× en
w1 · · ·wn

.

Although it looks quite technical, it is satisfied by three natural examples (where we always
endow the F -algebra with the Cauchy product).

Example 5.8. Let X = `1 and wn = λ > 1 for all n ∈ N. Then Bw supports an upper
frequently hypercyclic algebra.

Proof. The situation is very simple here because, for all n ≥ 1,

(w1 · · ·wmσ)(m−1)/m

wn+1 · · ·wn+(m−1)σ
= 1,

so that (b) is clearly satisfied. �

Example 5.9. Let X = `1 and w1 · · ·wn = exp(nα) for all n ∈ N and some α ∈ (0, 1).
Then Bw supports an upper frequently hypercyclic algebra.

Proof. That (b) is satisfied follows from the classical asymptotic behavior

(14)
∑
n≥N

exp (−nα) ∼N→+∞
1

α
N1−α exp(−Nα).

Assuming (14) is true, we just write∥∥∥∥∥∑
n≥cσ

zn(w1 · · ·wmσ)(m−1)/m

w1 · · ·w(m−1)σ+n
en

∥∥∥∥∥
= exp

(
m− 1

m
mασα

)∑
n≥cσ

exp (− ((m− 1)σ + n)α)

∼+∞ Cσ1−α exp

((
m− 1

m
mα − (m− 1 + c)α

)
σα
)
.

Assumption (b) is satisfied for c close enough to 1, since in that case

(m− 1 + c)α >
(m− 1)mα

m
.

For the sake of completeness, we just mention that (14) follows from the formula of inte-
gration by parts:∫ +∞

N

exp(−xα)dx =
1

α
N1−α exp(−Nα) +

1− α
α

∫ +∞

N

x−α exp(−xα)dx.

�
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Example 5.10. The derivation operator D supports an upper frequently hypercyclic al-
gebra on H(C).

Proof. It is sufficient to verify (b) replacing ‖ · ‖ by any seminorm ‖ · ‖r. Now,∥∥∥∥∥∑
n≥cσ

zn(w1 · · ·wmσ)(m−1)/m

w1 · · ·w(m−1)σ+n
en

∥∥∥∥∥
r

=
∑
n≥cσ

(mσ)!(m−1)/m

((m− 1)σ + n)!
rn

=
(mσ)!(m−1)/m

r(m−1)σ

∑
n≥cσ

r(m−1)σ+n

((m− 1)σ + n)!

≤ Crcσ
(mσ)!(m−1)/m

(m− 1 + c)σ
.

Since for all ε > 0 Stirling’s formula implies

(mσ)!(m−1)/m ≤ Cεσ
(m−1+ε)σ

((m− 1 + c)σ)! ≥ Cεσ
(m−1+c−ε)σ,

choosing ε < 2c it follows that, for all c ∈ (0, 1) and all r ≥ 1, we have∥∥∥∥∥∑
n≥cσ

zn(w1 · · ·wmσ)(m−1)/m

w1 · · ·w(m−1)σ+n
en

∥∥∥∥∥
r

≤ C
rcσ

σ(c−2ε)σ
σ→+∞−−−−→ 0.

Hence, assumption (b) is verified. �

Another natural operator that could admit an upper frequently hypercyclic algebra is
the backward shift Bw with wn =

(
1 + λ

n

)
, λ > 1, acting over `1 with the convolution

product. Unfortunately, for this weight, the assumptions in Theorem 5.7 are not verified.

Question 5.11. Let X = `1 endowed with the convolution product and wn =
(
1 + λ

n

)
,

λ > 1. Does Bw admit an upper frequently hypercyclic algebra?

We can ask a similar question for convolution operators φ(D) on H(C), |φ(0)| < 1, which
are frequently hypercyclic and admit a hypercyclic algebra.

Question 5.12. Let X = H(C) and let φ : C → C be a nonconstant entire function with
exponential type, not a multiple of an exponential function, with |φ(0)| < 1. Does φ(D)
supports an upper frequently hypercyclic algebra?

5.4. Weighted shifts with a frequently hypercyclic algebra on ω. Despite the re-
sult of Falcó and Grosse-Erdmann, it is not so difficult to exhibit operators supporting a
frequently hypercyclic algebra if we work on the big space ω.

Theorem 5.13. Let w = (wn)n≥1 be a weight sequence such that (w1 · · ·wn) either tends
to +∞ or to 0. Then Bw, acting on ω endowed with the coordinatewise product, supports
a frequently hypercyclic algebra.
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Proof. We first assume that (w1 · · ·wn) tends to +∞ and observe that this clearly implies
that, for all l ≥ 0, (wl+1 · · ·wn+l) tends to +∞. Let (v(p),m(p)) be a dense sequence
in ω × N, where each v(p) has finite support contained in [0, p]. We then write v(p) =∑p

l=0 vl(p)el. For (n, p) ∈ N2, we define

y(n, p) =

p∑
l=0

vl(p)
1/m(p)

(wl+1 · · ·wn+l)1/m(p)
en+l.

By [5, Lemma 6.19] (see the forthcoming Lemma 5.14), there exists a sequence (A(p)) of
pairwise disjoint subsets of N, with positive lower density, and such that |n−n′| ≥ p+q+1
whenever n 6= n′ and (n, n′) ∈ A(p) × A(q). In particular, the vectors y(n, p) for p ∈ N
and n ∈ A(p) have disjoint support. Hence, we may define u =

∑
p∈N
∑

n∈A(p) y(n, p) and
we claim that u generates a frequently hypercyclic algebra.

Indeed, let P ∈ C[z] be non-constant with P (0) = 0, P (z) =
∑m1

m=m0
P̂ (m)zm, P̂ (m0) 6=

0, and let V be a non-empty open subset of ω. Let p ∈ N, ε > 0 be such that m(p) = m0

and any vector x ∈ ω satisfying |xl − P̂ (m0)vl(p)| < ε for all l = 0, . . . , p belongs to V .
Now, for l = 0, . . . , p and n ∈ A(p),(

Bn
wP (u)

)
l
= P̂ (m0)vl(p) +

m1∑
m=m0+1

P̂ (m)vl(p)
m
m0

(wl+1 · · ·wn+l)
m
m0
−1 .

Since (wl+1 · · ·wn+l) tends to +∞ for all l, Bn
wP (u) belongs to V for all n in a cofinite

subset of A(p). Hence, P (u) is a frequently hypercyclic vector for Bw.
The proof is completely similar if we assume that (w1 · · ·wn) tends to 0. The only

difference is that the dominant term is now given by the term of highest degree of P ,
namely we choose p such that m(p) = m1 and we write

(
Bn
wP (u)

)
l
= P̂ (m1)vl(p) +

m1−1∑
m=m0

P̂ (m)vl(p)
m
m1

(wl+1 · · ·wn+l)
m
m1
−1 .

We will conclude because, for m < m1, (wl+1 · · ·wn+l)
m
m1
−1

tends to +∞. Details are left
to the reader. �

The unweighted backward shift on ω (still endowed with the coordinatewise product)
supports a frequently hypercyclic algebra. Indeed, more generally, let T be a multiplicative
operator on an F -algebra X with the property that for every non-zero polynomial P
vanishing at the origin, the map

P̃ : X → X, x 7→ P (x)

has dense range. Then if T is frequently hypercyclic, it supports a frequently hypercyclic
algebra. The reason for that is the simple observation that if U is a non-empty open set
of X and P a non-zero polynomial vanishing at the origin,

{n ∈ N : T n(P (x)) ∈ U} =
{
n ∈ N : T nx ∈ P̃−1(U)

}
.
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From the same observation we may conclude that the translation operators Ta acting
on C∞(R,C) for a ∈ R, a 6= 0, admit a frequently hypercyclic algebra. The fact that
C∞(R,C) has the above mentioned property is proven in [10, Proposition 20].

5.5. A sequence of sets with positive lower density which are very far away from
each other. The remaining part of this section is devoted to the proof of Theorem 1.6.
The starting point to exhibit frequently hypercyclic vectors is the following lemma on the
existence of subsets of N with positive lower density which are sufficiently separated.

Lemma 5.14 (Lemma 6.19 in [5]). Let (a(p)) be any sequence of positive real numbers.
Then one can find a sequence (A(p)) of pairwise disjoint subsets of N such that

(i) each set A(p) has positive lower density;
(ii) minA(p) ≥ a(p) and |n−n′| ≥ a(p)+a(q) whenever n 6= n′ and (n, n′) ∈ A(p)×A(q).

To produce a frequently hypercyclic algebra for a weighted shift on c0, we will need a
refined version of this lemma where we add new conditions of separation.

Theorem 5.15. Let (a(p)) be any sequence of positive real numbers. Then one can find a
sequence (A(p)) of pairwise disjoint subsets of N such that

(i) each set A(p) has positive lower density;
(ii) minA(p) ≥ a(p) and |n−n′| ≥ a(p)+a(q) whenever n 6= n′ and (n, n′) ∈ A(p)×A(q).

(iii) for all C > 0, there exists κ > 0 such that, for all (n, n′) ∈ A(p) × A(q) with p 6= q
and max(n, n′) ≥ κ, then |n− n′| ≥ C.

The proof of this theorem is rather long. The strategy is to construct a sequence of sets
satisfying only (i) and (iii), and then to modify them to add (ii). We begin with two sets.

Lemma 5.16. Let E ⊂ N be a set with positive lower density. There exist A,B ⊂ E
disjoint, with positive lower density, and such that, for all C > 0, there exists κ > 0 such
that, for all n ∈ A and all n′ ∈ B with max(n, n′) ≥ κ, then |n− n′| ≥ C.

Proof. We write E = {nj : j ∈ N} in an increasing order. We set, for k ≥ 1, uk = k,

vk = b
√
kc. We define sequences (Mk), (Nk), (Pk) and (Qk) by setting M1 = 1 and, for

k ≥ 1,

Nk = Mk + uk, Pk = Nk + vk, Qk = Pk + uk, Mk+1 = Qk + vk.

We then define

I =
⋃
k

[Mk, Nk), J =
⋃
k

[Pk, Qk),

A = {nj : j ∈ I} , B = {nj : j ∈ J} .

The sets I and J have positive lower density. Indeed, for N ∈ N, let k be such that
N ∈ [Mk,Mk+1). Then

card(I ∩ [1, . . . , N ])

N
≥ u1 + · · ·+ uk−1

2(u1 + · · ·+ uk + v1 + · · ·+ vk)
≥ 1

4
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provided k is large enough. The same is true for J . Since E has positive lower density,
this yields that A and B have positive lower density. Moreover, let C > 0. There exists
k ≥ 0 such that vk−1 ≥ C. We set κ = nMk

. Let (n, n′) ∈ A × B with max(n, n′) ≥ κ.
Assume for instance that n ≥ nMk

and write n = nj, n
′ = nj′ . Then j ≥ Mk and the

construction of the sets I and J ensure that j′ does not belong to [j−vk−1, j+vk−1]. Thus,
|n− n′| ≥ |j − j′| ≥ C. �

It is not difficult to require that (ii) in Theorem 5.15 holds when we restrict ourselves
to p = q.

Lemma 5.17. Let A ⊂ N with positive lower density and a > 0. There exists B ⊂ A with
positive lower density, min(B) ≥ a and |n− n′| ≥ a for all n, n′ ∈ B, n 6= n′.

Proof. Write A = {nj : j ∈ N} in an increasing order and define B = {nka : k ∈ N}. �

We then go inductively from two sets to a sequence of sets.

Lemma 5.18. There exists a sequence (A(p)) of pairwise disjoint subsets of N such that

(i) each set A(p) has positive lower density;
(ii) for all C > 0, there exists κ > 0 such that, for all (n, n′) ∈ A(p) × A(q) with p 6= q

and max(n, n′) ≥ κ, then |n− n′| ≥ C.

Proof. We shall construct by induction two sequences of sets (A(p)) and (B(p)) and a
sequence of integers (κk) such that, at each step r,

(a) for all 1 ≤ p ≤ r, A(p) and B(p) are disjoint and have positive lower density.
(b) for all 1 ≤ p < q ≤ r, A(q) ⊂ B(p) and B(q) ⊂ B(p).
(c) for all C > 0, there exists κ > 0 such that, for all 1 ≤ p ≤ q ≤ r, for all n ∈ A(p) and

n′ ∈ B(q), max(n, n′) ≥ κ =⇒ |n− n′| ≥ C.
(d) for all k ∈ {1, . . . , r}, for all 1 ≤ p ≤ q ≤ r, for all n ∈ A(p) and n′ ∈ B(q),

max(n, n′) ≥ κk =⇒ |n′ − n| ≥ k.

It is straightforward to check that the resulting sequence (A(p)) satisfies the conclusions
of Lemma 5.18. Observe nevertheless that it is condition (d) together with the inclusion
A(q) ⊂ B(p) for q > p which gives (ii) in this lemma (which is uniform with respect to p
and q). Condition (c) is only helpful for the induction hypothesis.

We initialize the construction by applying Lemma 5.16 to E = N. We set A(1) = A
and B(1) = B which satisfy (a), (b) and (c). In particular, applying (c) for C = 1 we find
some κ that we call κ1.

Assume now that the construction has been done until step r and let us perform it for
step r + 1. Let E be a subset of B(r) with positive lower density and |n − n′| ≥ r + 1
provided n 6= n′ are in E. We apply Lemma 5.16 to this set E and we set A(r + 1) = A
and B(r+1) = B, so that (a) and (b) are clearly satisfied. Upon taking a maximum, (c) is
also easily satisfied: indeed, the only case which is not settled by the induction hypothesis
is p = q = r + 1 (when p < r + 1 and q = r + 1, use B(q) ⊂ B(r)); this case is solved by
the construction of A(r + 1) and B(r + 1).

The proof of (d) is slightly more delicate. For k = 1, . . . , r, we have to verify that
for 1 ≤ p ≤ r + 1, n ∈ A(p) and n′ ∈ B(r + 1), max(n, n′) ≥ κk =⇒ |n − n′| ≥ k.
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When p ≤ r, again this follows from B(r + 1) ⊂ B(r). For p = r + 1, this follows from
A(r+ 1), B(r+ 1) ⊂ E and the fact that distinct elements of E have distance greater than
or equal to r + 1. Finally, applying (c) for C = k + 1, we define κk+1. �

We need now to ensure property (ii) in Theorem 5.15. This will be done again inductively,
the main step being the following lemma.

Lemma 5.19. Let (A(p)) be a sequence of pairwise disjoint subsets of N with positive
lower density and let (a(p)) be a sequence of positive real numbers. There exists a sequence
(B(p)) of subsets of N with positive lower density such that each B(p) is contained in A(p)
and, for all n ∈ B(1), for all n′ ∈ B(p), p ≥ 2, |n− n′| ≥ a(1) + a(p).

Proof. Since A(1) has positive lower density, there exists N ∈ N and δ > 0 such that, for
all n ≥ N ,

card
(
A(1) ∩ [0, . . . , n]

)
n+ 1

≥ δ.

For p ≥ 2, let B(p) be a subset of A(p) such that, for all n ∈ N,

card
(
(B(p) + [−a(1)− a(p), a(1) + a(p)]) ∩ [0, . . . , n]

)
n+ 1

<
δ

2p

but B(p) still has positive lower density. This is possible if, writing A(p) = {nj; j ∈
N}, we set B(p) = {nka; k ≥ 1} for some sufficiently large a. We then define B(1) =
A(1)\

⋃
p≥2
(
B(p) + [−a(1)− a(p), a(1) + a(p)]

)
. Then, for all n ∈ B(1) and all n′ ∈ B(p),

p ≥ 2, one clearly has |n− n′| ≥ a(1) + a(p) whereas, for all n ≥ N ,

card
(
B(1) ∩ [0, . . . , n]

)
n+ 1

≥ δ −
∑
p≥2

δ

2p
≥ δ

2

so that B(1) still has positive lower density. �

Proof of Theorem 5.15. Applying Lemmas 5.18 and 5.17, we start from a sequence (A(p))
of pairwise disjoint subsets of N, satisfying properties (i) and (iii) of Theorem 5.15 and
property (ii) when p = q. We construct by induction on r sets B(1), . . . , B(r), Ar(k) for
k ≥ r + 1 such that

• B(k) ⊂ A(k) for all k ≤ r, Ar(k) ⊂ A(k) for all k ≥ r + 1;
• B(k) and Ar(k) have positive lower density;
• for all p ∈ {1, . . . , r}, for all q ≥ p + 1, for all n ∈ A(p), for all n′ ∈ B(q) if q ≤ r,

for all n′ ∈ Ar(q) if q ≥ r + 1, |n− n′| ≥ a(p) + a(q).

The sequence (B(p)) that we get at the end will answer the problem. Now the construction
is easily done by successive applications of Lemma 5.19 first with the sequence (A(p))p≥1,
then with the sequence (A1(p))p≥2, and so on. �
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5.6. A weighted shift with a frequently hypercyclic algebra on c0. Let us now
define a weight (wn) such that Bw, acting on c0 endowed with the coordinatewise product,
supports a frequently hypercyclic algebra. We start with the sequence (A(p))p≥1 given by
Theorem 5.15 for ap = p. We then construct inductively a sequence of integers (Mk) such
that, for all (n, n′) ∈ A(p)×A(q) with p 6= q, max(n, n′) ≥Mk+1 =⇒ |n−n′| ≥Mk. This
follows directly from property (iii) of Theorem 5.15, applied successively with C = M1 = 1
to get M2, C = M2 to get M3, and so on. We may also assume that the sequence
(Mk+1 −Mk) is non-decreasing.

We define the weight (wn)n≥1 by the following inductive formulas:

• wn = 2 for all n ≤M2;
• for all k ≥ 2, for all n ∈ {Mk + 1, . . . ,Mk+1},

wn = (w1 · · ·wMk
)

1
k(Mk+1−Mk)

so that, and this is the crucial point,

wMk+1 · · ·wMk+1
= (w1 · · ·wMk

)
1
k .

Let us summarize the properties of the weight which will be useful later.

Lemma 5.20. The weight (wn) satisfies the following properties:

• for all n ≥ 1, wn ≥ 1;
• (wn) is non-increasing;
• (w1 · · ·wn) tends to +∞;

• for all α > 0, for all l ≥ 0,
wMk−1+l+1 · · ·wMk+1+l(
wl+1 · · ·wMk+1+l

)α k→+∞−−−−→ 0.

Proof. The first property is clear. For the second one, it suffices to prove that if n ∈
{Mk + 1, . . . ,Mk+1} and n′ ∈ {Mk+1 + 1, . . . ,Mk+2} for some k, then wn′ ≤ wn. We now
write

wn′ =
(
w1 · · ·wMk+1

) 1
(k+1)(Mk+2−Mk+1)

= (w1 · · ·wMk
)

1
(k+1)(Mk+2−Mk+1)

(
wMk+1 · · ·wMk+1

) 1
(k+1)(Mk+2−Mk+1)

= (w1 · · ·wMk
)

1
k(Mk+2−Mk+1)

≤ wn.

To prove that (w1 · · ·wn) tends to +∞, we just observe that, for all k ≥ 2,

w1 · · ·wMk
= (w1 · · ·wM2)

∏k−1
j=2(1+ 1

j ),
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and this goes to +∞ as k tends to +∞. Finally, since (wn) is bounded and bounded below,
we need only to prove the last property for l = 0. Now we write

wMk−1+1 · · ·wMk+1
= wMk−1+1 · · ·wMk

(w1 · · ·wMk
)1/k

=
(
wMk−1+1 · · ·wMk

)1+ 1
k
(
w1 · · ·wMk−1

) 1
k

=
(
w1 · · ·wMk−1

) 1
k−1(1+ 1

k)+
1
k

=
(
w1 · · ·wMk−1

) 2
k−1

so that

wMk−1+1 · · ·wMk+1(
w1 · · ·wMk+1

)α ≤ 1(
w1 · · ·wMk−1

)α− 2
k−1

which indeed tends to zero. �

We now prove that the operator Bw acting on c0 endowed with the coordinatewise
product supports a frequently hypercyclic algebra. Let (v(p),m(p)) be a sequence dense
in c0 × N such that each v(p) has finite support contained in [0, p]. We shall need a last
technical lemma involving all the objects we constructed until now.

Lemma 5.21. There exists a sequence of integers (N(r))r≥1 satisfying the following prop-
erties:

(i) for all r ≥ 1,

sup
n≥N(r), l=0,...,r

∣∣∣∣∣ vl(r)

(wl+1 · · ·wn+l)
1

m(r)+1

∣∣∣∣∣
1

m(r)

<
1

r
.

(ii) for all r ≥ 2, for all s ∈ {1, . . . , r − 1}, for all (j, j′) ∈ A(r) × A(s) with j ≥ N(r),

for all l ∈ {0, . . . , r}, for all α ≥ min
(

1
m(r)

, 1
m(s)

)
,

j > j′ =⇒
∣∣∣∣wl+(j−j′)+1 · · ·wj+lvl(r)α

(wl+1 · · ·wj+l)α
∣∣∣∣ < 1

r

j′ > j =⇒
∣∣∣∣wl+(j′−j)+1 · · ·wj′+lvl(s)α

(wl+1 · · ·wj′+l)α
∣∣∣∣ < 1

r
.

Proof. Let r ≥ 1 be fixed, We first observe that it is easy to ensure (i), just by assuming that
N(r) is large enough. Let us choose N(r) to ensure (ii). Upon taking a supremum, we may

fix s and l and to simplify the notations, we will assume l = 0. Let α0 = min
(

1
m(r)

, 1
m(s)

)
and C = max(1, |v0(r)|, |v0(s)|). We define three integers N0, k0 and k1 satisfying the
following three conditions:

n ≥ N0 =⇒ C2

w1 · · ·wn
<

1

r
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n ≥Mk0 =⇒ C2

w1 · · ·wn
<

1

r

k ≥ k1 =⇒
wMk−1+1 · · ·wMk+1

C(
w1 · · ·wMk+1

)α0
<

1

r
.

We set N(r) = max(N0,Mk0+1,Mk1). Let (j, j′) ∈ A(r)× A(s) with j ≥ N(r). To fix the
ideas, we assume that j > j′. If α ≥ 2, then∣∣∣∣w(j−j′)+1 · · ·wjv0(r)α

(w1 · · ·wj)α
∣∣∣∣ ≤ w(j−j′)+1 · · ·wj

w1 · · ·wj
×
∣∣∣∣ v0(r)

2

w1 · · ·wj

∣∣∣∣α/2 < 1×
(

1

r

)α
2

≤ 1

r
.

If α ∈ [1, 2], then ∣∣∣∣w(j−j′)+1 · · ·wjv0(r)α

(w1 · · ·wj)α
∣∣∣∣ ≤ C2

w1 · · ·wj−j′
.

Since j ≥ N(r), j − j′ ≥ Mk0 so that the last term is less than 1/r. For α < 1, since
j ≥ N(r) ≥ Mk1 , there exists a single integer k ≥ k1 such that j ∈ [Mk,Mk+1). Then
j − j′ ≥Mk−1 and ∣∣∣∣w(j−j′)+1 · · ·wjv0(r)α

(w1 · · ·wj)α
∣∣∣∣ ≤ wMk−1+1 · · ·wjC

(w1 · · ·wj)α0

≤
wMk−1+1 · · ·wMk+1

C(
w1 · · ·wMk+1

)α0

<
1

r
.

�

Proof of Theorem 1.6. We are now ready for the proof that Bw supports a frequently hy-
percyclic algebra. By Lemma 5.17, for each p ≥ 1, let B(p) be a subset of A(p) with positive
lower density such that min(B(p)) ≥ N(p) and |n− n′| ≥ N(p) for all n 6= n′ ∈ B(p). We
set

u(p) =
∑

n∈B(p)

p∑
l=0

1

(wl+1 · · ·wn+l)1/m(p)
vl(p)

1/m(p)en+l.

Since (w1 · · ·wn) tends to +∞, u(p) belongs to c0. Moreover, the choice of N(p) (here,
(i) of Lemma 5.21) ensures that ‖u(p)‖ < 1/p. We also observe that the u(p) have pairwise
disjoint support. Hence we may define u =

∑
p≥1 u(p) which still belongs to c0. We claim

that the following property is true: for all p ≥ 1, for all q 6= p, for all n ∈ B(p),

(15)
∥∥Bn

wu(p)m(p) − v(p)
∥∥ < 1

p
,

(16) ∀m > m(p), ‖Bn
wu(p)m‖ < 1

p
,

(17) ∀m ≥ m(p), ‖Bn
wu(q)m‖ < 1

p
.
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Assume that these properties have been proved. Let P be a non-constant polynomial with
P (0) = 0 and write it P (z) =

∑m1

m=m0
P̂ (m)zm with P̂ (m0) 6= 0. We aim to prove that

P (u) is a frequently hypercyclic vector for Bw. Without loss of generality, we can assume

P̂ (m0) = 1. Let V be a non-empty open subset of c0. There exists p ≥ 1 such that

B
(
v(p),

(
2 +

∑m1

m=m0+1 |P̂ (m)|
)
/p
)
⊂ V and m(p) = m0. Then, for all n ∈ B(p),

‖Bn
wP (u)− v(p)‖ ≤

∥∥Bn
wu(p)m(p) − v(p)

∥∥+

∥∥∥∥∥∑
q 6=p

Bn
wu(q)m(p)

∥∥∥∥∥
+

m1∑
m=m0+1

|P̂ (m)|

∥∥∥∥∥∑
q≥1

Bn
wu(q)m

∥∥∥∥∥
≤

2 +
∑m1

m=m0+1 |P̂ (m)|
p

,

where the last inequality follows from (15), (16), (17) and the fact that the Bn
wu(q) have

pairwise disjoint support. Therefore, for all n in a set of positive lower density, Bn
wP (u)

belongs to V , showing that P (u) is a frequently hypercyclic vector for Bw. Hence, it
remains to prove (15), (16) and (17). We first observe that

Bn
wu(p)m(p) − v(p) =

∑
n′∈B(p)
n′≥n

p∑
l=0

vl(p)

wl+1 · · ·w(n′−n)+l
e(n′−n)+l.

Since n′ − n > N(p) for all n′ > n, n′ ∈ B(p), (15) follows from (i) in Lemma 5.21. Next,
for m > m(p), we may write Bn

wu(p)m as

∑
n′∈B(p)
n′≥n

p∑
l=0

vl(p)
m
m(p)(

wl+1 · · ·w(n′−n)+l
) m
m(p)

(
w(n′−n)+l+1 · · ·wn′+l

) m
m(p)

−1 e(n′−n)+l.
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There is an additional difficulty since now we may have n′ = n. We overcome this difficulty
by writing ∣∣∣∣∣ vl(p)

m
m(p)(

wl+1 · · ·w(n′−n)+l
) m
m(p)

(
w(n′−n)+l+1 · · ·wn′+l

) m
m(p)

−1

∣∣∣∣∣
≤

∣∣∣∣∣ vl(p)
m
m(p)

(wl+1 · · ·wn′+l)
m
m(p)

−1

∣∣∣∣∣
≤

∣∣∣∣∣ vl(p)
1

m(p)

(wl+1 · · ·wn′+l)
1

m(p)
− 1
m

∣∣∣∣∣
m

≤

∣∣∣∣∣ vl(p)
1

m(p)

(wl+1 · · ·wn′+l)
1

m(p)(m(p)+1)

∣∣∣∣∣
m

<
1

p
.

Finally, for m ≥ m(p) and q 6= p, we write

Bn
wu(q)m =

∑
n′∈B(q)
n′>n

q∑
l=0

wl+(n′−n)+1 · · ·wn′+l
(wl+1 · · ·wn′+l)

m
m(q)

vl(q)
m
m(q) e(n′−n)+l.

For q > p, we apply (ii) of Lemma 5.21 with r = q, s = p, j = n′, j′ = n and α = m/m(q).
For q < p, we apply (ii) of Lemma 5.21 with r = p, s = q, j = n, j′ = n′ and α = m/m(q).
In both cases, we immediately find that all the coefficients of Bn

wu(q)m are smaller than
1/p, yielding

‖Bn
wu(q)m‖ < 1

p
.

This closes the proof of Theorem 1.6. �

This technical construction leads to an example over the not so difficult space c0, but
the following question remains open.

Question 5.22. Does there exist a weighted shift on `p endowed with the pointwise product
admitting a frequently hypercyclic algebra?

Of course, it would also be nice to get simpler examples! On the other hand, for se-
quence spaces endowed with the convolution product, we have neither positive nor negative
examples. For instance, it would be very interesting to solve the following questions.

Question 5.23. Does B on ω endowed with the convolution product support a frequently
hypercyclic algebra?

Question 5.24. Does 2B on `1 endowed with the convolution product support a frequently
hypercyclic algebra?
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6. Concluding remarks and open questions

6.1. Closed hypercyclic algebras. As pointed out in the introduction, provided T is
hypercyclic, HC(T )∪{0} always contains a dense subspace. When moreover T satisfies the
hypercyclicity criterion, there is a necessary and sufficient condition to determine whether
HC(T )∪{0} contains an infinite-dimensional closed subspace (see for instance [5]). In our
context, it is natural to ask whether, for some of our examples, HC(T ) ∪ {0} contains a
closed non-trivial algebra (we will say that T supports a closed hypercyclic algebra).

The third author and K. Grosse-Erdmann have shown that it is the case if T is a transla-
tion operator acting on the space C∞(R,C). The fact that T is an algebra homomorphism
plays an important role here. We now give several negative results. The first one solves a
question of [22].

Proposition 6.1. No convolution operator P (D) induced by a nonconstant polynomial
P ∈ C[z] admits a closed hypercyclic algebra.

Proof. We write P (z) =
∑t

s=0 P̂ (s)zs, with P̂ (t) 6= 0, and let f ∈ HC(P (D)). We shall
prove that the closed algebra generated by f contains a non-zero and non-hypercyclic
vector. Write f(z) = a0 +

∑
n≥p anz

n, with ap 6= 0. Without loss of generality, we may

assume that ap = 1. We shall construct by induction a sequence of complex numbers (bk)
such that

|bk| ≤

(
|P̂ (0)|+ 1

|P̂ (t)|

)kp

× 1

(ktp)!

for all k and, setting Pk(z) =
∑k

l=1 bl(z − a0)lt, then

|P (D)lp(Pk ◦ f)(0)| ≥ (|P̂ (0)|+ 1)lp

for all 1 ≤ l ≤ k. The conclusion follows easily. In fact, (Pk) converges uniformly on
compact subsets of C to some entire function g. From the uniformity of the convergence,
we conclude that the function g ◦ f satisfies∣∣P (D)lp(g ◦ f)(0)

∣∣ ≥ (|P̂ (0)|+ 1)lp

for all l ≥ 1. Let us set h = g− g(0). The function h ◦ f , which is in the algebra generated
by f , satisfies ∣∣P (D)lp(h ◦ f)(0)

∣∣ ≥ ∣∣P (D)lp(g ◦ f)(0)
∣∣− ∣∣P (D)lp(g(0))

∣∣
≥ (|P̂ (0)|+ 1)lp − |P̂ (0)|lp|g(0)|
l→+∞−−−−→ +∞.

Hence, h ◦ f is nonzero and it cannot be hypercyclic for P (D)p. In particular, since
HC(P (D)) ⊂

⋂
n≥1HC(P (D)n) (see [1, Theorem 1]), h ◦ f cannot be hypercyclic for

P (D) as well.
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For the proof we will use the formula

P (D)q =
∑
j∈Iq

(
q

j

)
P̂ (0)j0 · · · P̂ (t)jtDj1+2j2+···+tjt ,

where Iq = {j = (j0, ..., jt) ∈ Nt+1
0 : j0 + · · · + jt = q} and

(
q
j

)
denote the multinomial

coefficient (
q

j0, . . . , jt

)
=

q!

j0! · · · jt!
.

Let us set P0(z) = 0 and let us assume that the construction has been done until step
k − 1. Then

Pk−1 ◦ f + b(f − a0)kt = Pk−1 ◦ f + b(zp + ap+1z
p+1 + · · · )kt

= Pk−1 ◦ f + bzktp +
∑

j≥ktp+1

cjz
j.

Hence, for 1 ≤ l ≤ k,

P (D)lp(Pk−1 ◦ f + b(f − a0)kt)(0) = P (D)lp(Pk−1 ◦ f)(0) + P (D)lp(b(f − a0)kt)(0)

= P (D)lp(Pk−1 ◦ f)(0) + gl(0),

where

gl(z) = P (D)lp

(
bzktp +

∑
j≥ktp+1

cjz
j

)
.

If l ≤ k − 1 then degP lp ≤ (k − 1)tp < ktp, hence gl(0) = 0. By the induction hypothesis
it follows that

|P (D)lp(Pk−1 ◦ f + b(f − a0)kt)(0)| = |P (D)lp(Pk−1 ◦ f)(0) + gl(0)|

= |P (D)lp(Pk−1 ◦ f)(0)| ≥ (|P̂ (0)|+ 1)lp

whatever the value of b is. On the other hand, if l = k, then

gk(z) = bP̂ (t)kp(ktp)!

+
∑

j∈Ikp\{(0,...,0,kp)}

(
kp

j

)
P̂ (0)j0 · · · P̂ (t)jtDj1+2j2+···+tjt

(
bzktp +

∑
j≥ktp+1

cjz
j

)
,

hence gk(0) = bP̂ (t)kp(ktp)!, that is,

|P (D)kp(Pk−1 ◦ f + b(f − a0)kt)(0)| = |P (D)kp(Pk−1 ◦ f)(0) + gk(0)|

= |P (D)kp(Pk−1 ◦ f)(0) + bP̂ (t)kp(ktp)!|,
so we can find b satisfying

|b| ≤

(
|P̂ (0)|+ 1

|P̂ (t)|

)kp

× 1

(ktp)!
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such that
|P (D)lp(Pk−1 ◦ f + b(f − a0)kt)(0)| ≥ (|P̂ (0)|+ 1)lp.

The proof is now done by taking bk = b. �

Question 6.2. Does there exist an entire function φ of exponential type such that φ(D)
supports a closed hypercyclic algebra?

Proposition 6.3. Let X = `p, X = c0 or X = ω, endowed with the coordinatewise product.
No backward shift on X supports a closed hypercyclic algebra.

Proof. We first consider the case X = c0. Let x ∈ X be a non-zero sequence, and let
D ⊂ C be a compact disc centered at the origin and omitting at least one of the terms
of x. For each n ∈ N, consider the compact set Kn as in Figure 2 and f a holomorphic
function defined on a neighbourhood of Kn and satisfying that f(z) = 0 if z ∈ D and
f(z) = 1 if z ∈ Kn \D.

Figure 2

By Runge’s approximation theorem we get a polynomial Pn such that ‖Pn − f‖Kn < 1
n
.

We end up with a sequence of polynomials (Pn), satisfying that Pn(z) → 0 uniformly on
D, and Pn(z)→ 1 pointwise on C \D. Redefining Pn by Pn − Pn(0), we may also assume
that Pn(0) = 0, for every n ∈ N.

Since x ∈ c0, it follows that eventually all the terms of x belong to D which yields that
Pn(x)→ y = (yk) in c0, where yk = 0, if xk ∈ D and yk = 1 otherwise. We conclude, that
y is a non-zero element in the closed algebra generated by x which is not hypercyclic for
any weighted backward shift on c0.

Let now X = `p, p ≥ 1. Consider an x ∈ X, x 6= 0, and D and (Pn) defined as above.
Cauchy’s formula ensures that P ′n → 0 uniformly on 1

2
D. Let

C = sup

{
|P ′n(z)| : n ∈ N, z ∈ 1

2
D

}
.
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Fix ε > 0 and let k0 ∈ N be such that, for k > k0, xk ∈ 1
2
D and

2pCp
∑
k>k0

|xk|p <
ε

2
.

Find N ∈ N such that for all m,n ≥ N ,

k0∑
k=1

|Pm(xk)− Pn(xk)|p <
ε

2
.

We have

‖Pm(x)− Pn(x)‖pp ≤
k0∑
k=1

|Pm(xk)− Pn(xk)|p +
∑
k>k0

(|Pm(xk)|+ |Pn(xk)|)p

≤
k0∑
k=1

|Pm(xk)− Pn(xk)|p + 2pCp
∑
k>k0

|xk|p < ε.

That means that the sequence (Pn(x)) is Cauchy in `p and the conclusion follows exactly
as in the previous case.

Finally, we consider the case X = ω. Letting D = {0} and Kn be as above, and by
using Runge’s approximation theorem, we get a sequence of polynomials (Qn) such that
Qn(0) = 0, for every n ∈ N and Qn(z) → 1 for each z ∈ C \ {0}. If x ∈ ω is a non-zero
sequence, then Qn(x) → y = (yk), where yk = 0 if xk = 0, and yk = 1 otherwise. It is
immediate that y is a non-zero element in the closed algebra generated by x which fails to
be hypercyclic for any weighted backward shift on ω. �

Question 6.4. Does there exist a weight (wn) such that Bw, acting on `1 endowed with the
Cauchy product, supports a closed hypercyclic algebra?

6.2. Hypercyclic algebras in the ideal of compact operators. Beyond the examples
given in that paper, there are other examples where the existence of a hypercyclic algebra
would be natural. One of them is given by hypercyclic operators acting on separable ideals
of operators. For instance, assume that H is a separable Hilbert space and denote by
X = K(H) the (non-commutative) algebra of compact operators in H, endowed with the
norm topology.

For T ∈ L(H), denote by LT the operator of left multiplication by T , defined on K(H).
It is known (see for instance [5, Chapter 8]) that if T satisfies the hypercyclicity criterion,
then LT is a hypercyclic operator on K(H). This latter space being an algebra, it is
natural to study whether LT supports a hypercyclic algebra. We do not know the answer
to this question, but we point out that a positive answer would require different techniques.
Indeed, Theorem 2.1 can never be applied to these operators.

Proposition 6.5. Let T ∈ L(H). Then LT , acting on K(H), does not satisfy the assump-
tions of Theorem 2.1 even for d = 1.
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Proof. We fix x ∈ H, x∗ ∈ H∗ with x∗(x) = 1, ‖x‖ = 1, ‖x∗‖ = 1. Using the notations of
Theorem 2.1, let A = {1, 2},

U = V = {u ∈ L(H) : ‖u− x∗ ⊗ x‖ < 1/4} ,
W = {u ∈ L(H) : ‖u‖ < 1/8} .

Assume first that β = 1 and that there exist u ∈ U , N ∈ N with TNu ∈ V and TNu2 ∈ W .
Then we know that ∥∥TNu2(x)− x∗(u(x))x

∥∥ < ‖u(x)‖
4

since TNu ∈ V . Now, ‖u(x)−x‖ < 1/4 so that ‖u(x)‖ < 5/4 and |x∗(u(x))| > 3/4. Hence,∥∥TNu2(x)
∥∥ > 3

4
− 5

16
>

1

8
.

This contradicts TNu2 ∈ W .
If we assume that β = 2 and that there exist u ∈ U , N ∈ N with TNu ∈ W and

TNu2 ∈ V , then we get successively∥∥TNu2(x)− x
∥∥ < 1

4
(since TNu2 ∈ V )∥∥TNu2(x)

∥∥ < 1

8
‖u(x)‖ (since TNu ∈ W )

‖u(x)− x‖ < 1

4
.

These three inequalities yield easily a contradiction. �

6.3. Further question and remark. As independently shown by Ansari in [2] and later-
on by Bernal-Gonzáles in [7], every separable Banach space supports a hypercyclic operator.
In the context of algebras a natural question arises.

Question 6.6. Is it true that every separable Banach algebra supports a hypercyclic oper-
ator admitting a hypercyclic algebra?

In all known results, the set of generators for hypercyclic algebras is either empty or
residual. We observe below that this set can be non-empty and meager.

Remark 6.7. For every pair (X,T ) where X is a Banach space and T a hypercyclic operator
with a non-hypercyclic vector, we may define a product on X turning it into a commutative
Banach algebra and such that the set of generators for a hypercyclic algebra for T is non-
empty and nowhere dense.

Proof. Let x ∈ HC(T ) and y a non-hypercyclic vector for T with ‖y‖ = 1. Consider
f ∈ X∗ with ‖f‖ = 1 and such that f(x) = 0 and f(y) = 1. We define the product

z · w = f(z)f(w)y, with z, w ∈ X
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and observe that it turns X into a commutative Banach algebra. Now, x2 = 0 so A(x) =
span(x), and thus x is a generator for a hypercyclic algebra for T . Moreover, it is easy to
check that the following holds,

{x ∈ X : A(x) \ {0} ⊂ HC(T )} = HC(T ) ∩Ker(f).

Since Ker(f) is a proper, closed hyperplane of X, we conclude that the set of generators
for a hypercyclic algebra for T is non-empty and nowhere dense. �
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[5] F. Bayart and É. Matheron. Dynamics of linear operators, volume 179 of Cambridge Tracts in Math.
Cambridge University Press, 2009.

[6] F. Bayart and I. Ruzsa. Difference sets and frequently hypercyclic weighted shifts Ergodic Theory
Dynam. Systems, 35: 691–709 (2015).
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