
Requirements to Models of Automotive Software:
Application to the Automatic Park Assist function

Assioua Yasmine
Renault Software Labs

France
yasmine.assioua@renault.com

Ameur-Boulifa Rabea
LTCI, Télécom Paris, Institut polytechnique de Paris

France
rabea.ameur-boulifa@telecom-paris.fr

Guitton-Ouhamou Patricia
Renault Software Labs

France
patricia.guitton-ouhamou@renault.com

Abstract—In the software development lifecycle, errors and
flaws can be introduced in the different phases and lead to
failures. Establishing a set of functional requirements helps
producing safe software. However, ensuring that the (being)
developed software is compliant with those requirements is a
challenging task due to the lack of automatic and formal means
to lead this verification. In this paper, we present our approach
that aims at analysing a collection of automotive requirements
by using formal methods. The proposed approach for formal
verification is evaluated by the application to the Automatic Park
Assist (APA) function.

Index Terms—Requirements analysis, reliable systems, model-
based design.

I. INTRODUCTION

Usually, software project involves a huge set of require-
ments, that can be written by different stakeholders (soft-
ware and requirements engineers, etc). These requirements
are usually expressed in natural language which arises a
problem with the expressiveness, the completeness, and the
accuracy. The design problem in system engineering is to
ensure that the relevant functional and safety requirements
are respected at all stages during the development phase.
Within that context, many efforts have been done in the
processes of software development and in particular in the
validation phase. However, although methodologies and tools
have been proposed for that purpose, very few works have
been devoted to supporting rigorous design, in particular to
provide a systematic stepwise design approach for building a
validated design model. Such an approach would be valuable
for software developer, it should provide confidence that the
requirements are consistent and realizable.

The idea behind this paper is to propose a rigorous model-
based process leading from requirements to correct implemen-
tations. The advocated approach is applied for designing soft-
ware for reliable autonomous vehicles, will provide assistance
and guidance to the developer in the development phase to
assess the correctness of his design. Indeed, our methodology
allows to early specify and validate a system design from a
collection of functional requirements. In order to highlight and
assess our methodology, we applied it on a real industrial case
study, that is the the APA (Automatic Park Assists) function.
This function is implemented into the vehicle so it can park
itself. Inside this function, there is many sub-functions which
have different autonomous levels. From the HFP (Hand Free

Parking) function, the system only controls the steering wheel
to the RPK (Remote Park) function where the driver is outside
the vehicle and the system controls all the elements involved in
parking the car. The systems requirements are specified in an
excel file called a System Technical Requirement Component
(STRComp, for short). This file involves all the requirements
(functional and safety) and the definitions of a given system. In
this particular instance, the APA’s STRComp consists of 327
requirements among them functional requirements and safety
requirements.

II. FRAMEWORK – FROM REQUIREMENTS TO FORMAL
MODELS

Our goal is to use formal methods both to increase the
quality of the systems developed at Renault through enhancing
the verification activity, and to prevent unnecessary tests. We
propose a general model-based approach for the software
development activity, that aims to the systematic development
of a design solution for a set of system requirements. The big
picture of the proposed approach is shown in Figure 1, high-
lighting the relevant steps towards fulfilling the transformation
of requirements written in natural language into exploitable
design models that can be automatically verified for errors
and validated against behavioural properties.

Step1. Requirements Analysis: Aiming to provide assis-
tance and guidance to the engineers to ensure the quality
of their developed software with respect to functional and
safety requirements. Our methodology requires proceeding
with the specification of the identified requirements. Actually,
the analysis is naturally focused on the requirements with
clear relevance to the system under design (software under
development). A system is defined by a collection of states and
the set of relevant requirements are those that can affect states
of the collection. Starting from those requirements described
in an informal manner, we proceed by analysing them for
gathering knowledge and extracting the key elements/key-
concepts from their textual description. Parsing requirements
is not a trivial task, as those requirements, are often written by
different engineers in various style, and use natural language
that is inherently ambiguous, as it is not tied to a formal
semantics. This activity should be conducted together with
domain experts (requirements engineers). At this final parsing
stage unambiguous specification of requirements are derived.



Fig. 1. Framework for the formal analysis of requirements

The specification are patterns formalized in the following
form:

IF [Initial State] AND [Condition] THEN [Final State]
where IF, AND, and THEN are fixed syntax terms, while
Initial State, Condition, and Final State are attributes of the
requirement. Initial State and Final State express a source
state and a target state resp. of the system under design,
and [Condition] expresses the condition that enables/disables
a change of state. Thus, through the parsing analysis a set of
states and transitions are generated.

Step2. Model Construction: Once all the requirements
of a system (software or architecture) have been analysed and
the patterns generated, an initial design model is automatically
built from all the patterns. Actually, patterns bring a set of
states and transitions between them. So the design model in
its initial form is a state machine built from all the set of
obtained states and transitions. However, as requirements may
be incorrect, missing and conflicting, so the set of states may
be incomplete and not sound. For instance, some requirement
patterns specify only the target state (source state is lacking),
so the state machine should be completed, in a first step so
that this state is potentially accessible from all other states
of the state machine. In a second step, the plausibility of the
additional information is checked by using to the priority table
– this table is provided by requirement engineers that provides
the forbidden transitions by specifying the final states. If the
extra-transitions are not coherent with the priority table, we
correct the design model. After that, if inconsistencies remain
the system software engineer role is required, he can choose
among the transitions those that make sense for creating design
model that satisfy a set of properties. So the design model
is progressively revised and completed until a coherent and
complete design model has been obtained.

Step3. Verification: This step aims at automating the
systematic verification of compliance with requirements. The
model checking method is applied to determine the error-free
design of the generated state machine model and automatically
find the logical errors. The strength of this method [4] is
returning a feasible sequence through a counter-example and
simultaneously verifying its correctness using properties. To
facilitate the production of tool chains the popular model

checker UPPAAL [6] has been used to verify the generated
design models. If assumed properties are satisfied, then so is
the whole set of requirements; otherwise, the design model
should be refined or certain unsatisfied requirements have to
be revised.

III. CASE STUDY

The APA system is related to the ADAS (Advanced Driver
Assistance System) ECU system. This system assists the driver
during the parking maneuver. The automatic park assist con-
tains various sub-functions with different level of autonomy.
We have developed an early version of the parser, it has been
implemented in Python language.

1) Requirement analysis. An initial step in the parsing is
to extract information about states and conditions are
extracted from the set of analysed requirements. For our
case study we identified six states: Safe State 1, Safe
State 2, Safe State 3, Safe State 4, Idle State and Ramp
State. The last two states they are also called out of
maneuver state and in maneuver state resp. elsewhere in
the STRComp document.

2) Requirements selection. When the process of gathering
knowledge has been completed, the set of collected
states is submitted to an expert. He will select ac-
cordingly the set of most relevant requirements for the
analysis. Actually, the set of relevant requirements are
all the requirements that can affect the list of provided
states. For the analysed system, only 15 functional
and safety requirements are kept. Let us consider the
following two example requirements:
REQ1: IF (ADAS ECU is in ”APA ADAS ECU
Safe State 1” AND Standstill is Activated AND

pgen PLC ParkingSequenceRequest=vgen stop2) THEN

(ADAS ECU shall continuously request Standstill AND set
pgen PLC SequenceStatus to vgen PLC Move Ready).
REQ2: IF (ADAS ECU is in ”APA ADAS ECU Safe state 1”
AND pgen PLC ParkingSequenceRequest=vgen PLCRamp)
THEN ADAS ECU shall switch to Ramp state.
The two requirements concern the same function APA
ADAS ECU within the function ADAS ECU. Both REQ1
and REQ2 refer to selected states Safe State 1 and Ramp
state, but as one can notice REQ1 causes no change of



states whereas REQ2 do. So, only REQ2 is kept for the
rest of the analysis.

3) Completion. The requirement REQ2 is defined in a
complete manner, it provides an initial state, a final state,
and a condition enabling the transition. However, some
requirements are incomplete, the source state or the
destination state are not specified. As for the following
requirement:
REQ3: IF ADAS receives: -pgen APA Failure= vgen Fail
THEN the ADAS ECU shall switch to ”APA ADAS ECU
Safe State 3”.
This requirement describes that the function should
switch to Safe State 3, so specifying only the target
state and making no mention of source state; So, this
incomplete requirement generates a state on the initial
model that should be completed in the next step. Indeed,
in the model construction phase a transition will be
added from each state of the predefined list.

4) Check the plausibility. However, the transitions added
are not all semantically correct. The model construction
relies on the priority table to cut out the meaningfulness
and undesirable transitions. For the example we are
considering, the priority table reveals that the transitions
from Safe State 2 to Safe State 3, and Safe State 4
to Safe State 3 are not plausible, so the model is
modified accordingly. In this way, the plausibility rules
are incrementally applied to the design model. These
rules are those defined in the priority table or provided
by software engineer.

5) Model Generation. Where there is more rule to apply,
the final design model is generated. We use the UPPAAL
model checker tool to display the obtained design model,
and especially to verify safety properties that can be ex-
pressed as logical formulas [5] or simply as observer au-
tomata [9]. Fig. 2 shows the resulting automaton of our
use case, with 6 reachable states and guarded transitions.
To improve the readability of the generated models, we
code the names of states and the names of the variables
used over transitions in a concise manner. Indeed in
practice, during the parsing phase for each identified
variable and associated values, a new variable name is
created and inserted in a table together with the domain
from where it gets its value. Such that for each variable
encountered the table is initially consulted to check
whether the variable exists or not. More specifically, we
simplify the case study encoding in Fig. 2, as shown
by denoting the state Safe State with SS and the vari-
able pgen PLC ParkingSequenceStatus with Pstatus.
Additionally, as the pgen PLC ParkingSequenceStatus
variable can take 7 different values vgen PLCIdle,
vgen PLCRamp, vgen PCLStanby, vgen MovePause,
etc, we encode these values using numerical numbers
0, 1, 3, etc.
It is also noted that, still for the sake of readability we
encode some conditions by these practical meaning, for
instance the condition pgen APA Failure = vgen Fail

corresponds to a failed situation, so we denote it by Fail
predicate over the associated transition.

Fig. 2. The final model for the APA case study

IV. RELATED WORKS

In the last decade, companies, in particular in the area
of aeronautics and aerospace have made great efforts to
reduce their development times and to improve the quality
of their products. Indeed, for developing complex systems,
they are increasingly adopting model-based design tools in
system development, e.g. Simulink [2] and SCADE suite [1].
However, the various tools have been developed with the
aim of improving the specifications development are mostly
focused on requirements management and trace-ability. Un-
fortunately, even if there is a great interest about the use of
formal methods for early validation of system requirements,
e.g., [7] and [8], there are very few requirements validation
tools available for checking their correctness and functional
consistency before any design or coding fulfills. Among them
Argosim [3] that provides practical tool for debugging the
requirements, and modelling and simulation capabilities for the
validation of systems, from functional requirements engineer-
ing to automatic test-case generation. Similarly to the Argosim
approach our work aims at a design process that allows
for the early validation of system requirements. Important
differences from the existing approaches are (i) our solution is
automotive-specific. The approach focuses on functional and
safety requirements coming from the automotive domain. This
means that the validated models can be optimally adapted
to automotive projects; (ii) and furthermore, the adoption of
formal methods in the analysis process. Indeed, the model
checking technique is used as a validation technique in order
to verify the correction of system requirements, otherwise to
guide their revision.



V. CONCLUSION

This paper introduces a systematic process for building
design model from functional and safety requirements with the
aim of reducing the validation testing during the late stages
of the software development lifecycle. The design model
provides an early assurance that the requirements specification
are complete, correct and realizable. This first effort led to a
formalisation of a set of requirements the APA function, and
we showed a first proof-of-concept regarding the feasibility
of our approach that aims at the exhaustive verification of
the generated model; the correctness of the model is proved
by using the model checking technique. Naturally, our next
goals is to propose a requirements specific language for the
expression of requirements that can fit the specific automotive
domain. This language with constrained grammar and well-
defined semantics will lead to express system requirements
in a language close to the natural language, and will make
possible to prove formally their correctness.

REFERENCES

[1] Anonymous. SCADE Suite - Esterel Technologies Home Page. Available
at https://www.ansys.com/products/embedded-software

[2] Anonymous. The MathWorks Home Page. Available at
https://fr.mathworks.com/products/simulink.html

[3] Anonymous. The Argosim Home Page. Available at
https://www.argosim.com/

[4] C. Baier, J. Katoen. it Principles of model checking. MIT Press, 2008
[5] Clarke, E. M.; Emerson, E. A. and Sistla, A. P. Automatic verification of

finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 1986

[6] K.GLarsen, P. Pettersson, and Wang Yi. UPPAAL in a nutshell. Journal
of Software Tools for Technology Transfer, 1(1-2):134-152,1997

[7] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Panagiotis
Katsaros, Konstantinos Mokos, Viet Yen Nguyen, Thomas Noll, Bart
Postma, and Marco Roveri. Spacecraft early design validation using
formal methods. Reliability Engineering & System Safety, 132:20-35,
2014.

[8] Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats P. E.
Heimdahl. Proving the shalls: Early validation of requirements through
formal methods. Journal of Software Tools for Technology Transfer,
8(4):303-319, August 2006.

[9] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Syn-
chronous observers and the verification of reactive systems. In Pro-
ceedings 26 of the Third International Conference on Methodology and
Software Technology: Algebraic Methodology and Software Technol-
ogy, AMAST’93, pages 83-96, London, UK, UK, 1994. Springer-Verlag.


