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VARIATIONAL SOLUTIONS TO AN EVOLUTION MODEL FOR MEMS

WITH HETEROGENEOUS DIELECTRIC PROPERTIES

PHILIPPE LAURENÇOT AND CHRISTOPH WALKER

ABSTRACT. The existence of weak solutions to the obstacle problem for a nonlocal semilinear

fourth-order parabolic equation is shown, using its underlying gradient flow structure. The model

governs the dynamics of a microelectromechanical system with heterogeneous dielectric properties.

1. INTRODUCTION

The existence of variational solutions is shown for an evolution problem describing the space-

time dynamics of a microelectromechanical system (MEMS) with heterogeneous dielectric prop-

erties. Specifically, a MEMS device such a switch is made of a thin rigid conducting plate above

which a thin conducting elastic plate is suspended and clamped at its boundary. The shape of the

undeformed elastic plate is identical to that of of the rigid one. Holding the two plates at different

electrostatic potentials generates a deformation of the top elastic plate to compensate the induced

electrostatic force. It is by now well-known that a sufficiently large potential difference can lead to

a pull-in instability or touchdown, a situation which corresponds to the top plate coming into con-

tact with the bottom one and results in a short circuit due to the potential difference [2,4,11,16,17].

Clearly, such a phenomenon may alter the properties or the operating conditions of the MEMS de-

vice. However, it can be prevented, for instance, by covering the ground plate with an insulating

layer of positive thickness [2, 4, 13, 14]. We consider this situation herein and thus assume that

the bottom plate is covered by a non-deformable layer of positive thickness, possibly having het-

erogeneous dielectric properties characterized by a permittivity σ1 > 0, which differs from the

constant permittivity σ2 > 0 of the surrounding medium. Touchdown may still occur, in the sense

that the top plate may come into contact with the upper side of the insulating layer. However, such

a situation does not generate a singularity, as the top plate cannot penetrate the layer. Assuming

further that the physical state of the MEMS device is fully described by the deformation u of the

top plate and the electrostatic potential ψu between the two plates, the dynamics of the MEMS is

then governed by the competition between mechanical and electrostatic forces, and is given by a

time relaxation towards critical points of the total energy, the latter including mechanical, contact,

and electrostatic contributions.

To convert this rough description of the model into mathematical equations, we assume that

there is no variation in one of the two horizontal directions and consider a two-dimensional

MEMS device in which the rigid ground plate and the undeformed elastic plate have the same

one-dimensional shape D := (−L,L), L > 0, the former being located at height z = −H − d,
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FIGURE 1. Geometry of Ω(u) for a state u = v with empty coincidence set (green).

H > 0, d > 0, while the latter is clamped at its boundary (±L, 0). The bottom plate is then

D × {−H − d} and it is covered by an insulating layer

Ω1 := D × (−H − d,−H)

of positive thickness d. The dielectric properties of Ω1 are characterized by the permittivity σ1 > 0
which may vary with the horizontal coordinate x ∈ D and the height z ∈ (−H − d,−H). As

for the elastic top plate, we assume that the relevant physical framework is restricted to small

deformations and, denoting the vertical deformation of the top plate by u, the top plate is given by

G(u) := {(x, z) ∈ D × R : z = u(x)} .
Recalling that the top plate cannot deformed beyond the surface Σ := D×{−H} of the insulated

layer Ω1, the deformation u is bounded from below by −H . The region Ω2(u) between the top

plate and the surface of the insulating layer is defined by

Ω2(u) := {(x, z) ∈ D × R : −H < z < u(x)} .
The dielectric permittivity is assumed to be a positive constant σ2 > 0 in Ω2(u) and differs

in general from σ1(·,−H), so that there is a jump discontinuity of the permittivity across the

interface

Σ(u) := {(x,−H) : x ∈ D and u(x) > −H} ,
separating Ω1 and Ω2(u). Observe that Ω2(u) is an open subset of D × (−H,∞), which is

connected when the coincidence set

C(u) := {x ∈ D : u(x) = −H} . (1.1)

is empty, while it is disconnected and non-Lipschitz (if u is smooth enough) otherwise. The two

situations are depicted in Figure 1 and Figure 2, respectively. Independent of whether or not C(u)
is empty, the domain

Ω(u) := Ω1 ∪Σ(u) ∪ Ω2(u) ,

is Lipschitz (again if u is smooth enough).
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FIGURE 2. Geometry of Ω(u) for a state u = w with non-empty coincidence set (blue).

The total energy E(u) of the MEMS device is given by

E(u) = Em(u) + Ec(u) + Ee(u) , (1.2)

where

– the mechanical energy is

Em(u) :=
β

2
‖∂2xu‖22 +

(τ

2
+
a

4
‖∂xu‖22

)

‖∂xu‖22 ,

including contributions from bending (β > 0), stretching due to axial tension (τ > 0), and

self-stretching due to elongation (a > 0). Here, ‖ · ‖2 denotes the norm in L2(D);
– the contact energy is

Ec(u) :=

∫

D
I[−H,∞)(u) dx ,

where I[−H,∞) denotes the indicator function of the interval [−H,∞);
– the electrostatic energy is

Ee(u) := −1

2

∫

Ω(u)
σ|∇ψu|2 d(x, z)

with ψu ∈ H1(Ω(u)) denoting the electrostatic potential given as the variational solution

to the transmission problem

div(σ∇ψu) = 0 in Ω(u) , (1.3a)

JψuK = Jσ∂zψuK = 0 on Σ(u) , (1.3b)

ψu = hu on ∂Ω(u) , (1.3c)

with σ = σ1 in Ω1 and σ = σ2 in Ω2(u). In (1.3b), J·K denotes the jump across the

interface Σ(u), while (1.3c) indicates that ψu satisfies non-homogeneous Dirichlet bound-

ary conditions prescribed by a given function hu with an explicit dependence upon the

deformation u, see (2.3) below. The latter is such that hu ≡ 0 along the bottom plate
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D×{−H − d} and hu ≡ V along the elastic top plate G(u) with positive potential value

V > 0 (see assumption (2.3e) below).

The modeling assumption is then that the evolution of u is governed (at least formally) by the

gradient flow associated with E, which reads

∂tu+ ∂uE(u) = 0 , t > 0 , u(0) = u0 , (1.4)

supplemented with clamped boundary conditions; that is,

u(t) ∈ H2
D(D) :=

{

v ∈ H2(D) : v(±L) = ∂xv(±L) = 0
}

, t ≥ 0 .

As already noted in [12, Section 5], where we studied the existence of minimizers of E, the

interpretation of equation (1.4) needs some care for several reasons:

First, the contact energy involves a non-smooth convex function and it is rather the notion of

subdifferential which is appropriate and requires a suitable functional setting. Specifically, we

define

S0 :=
{

v ∈ H2
D(D) : v > −H in D

}

, S̄0 :=
{

v ∈ H2
D(D) : v ≥ −H in D

}

,

and recall that S̄0 is a closed convex set in H2
D(D). The “derivative” of Ec with respect to u is

then given by the subdifferential ∂IS̄0
(u) of the indicator function IS̄0

of the set S̄0. It is a subset

of the dual space

H−2(D) :=
(

H2
D(D)

)′

of H2
D(D) and, for v ∈ S̄0, it is given by:

ξ ∈ ∂IS̄0
(v) ⇐⇒ 〈ξ, w − v〉H2

D

≤ 0 , w ∈ S̄0 ,

where 〈·, ·〉H2
D

denotes the duality pairing between H−2(D) and H2
D(D).

Second, the electrostatic energy Ee(u) depends on u not only through the integral over Ω(u)
but also through the solution ψu to the transmission problem (1.3). Its differentiability is then a

tricky and by no means obvious issue but can be handled with the help of shape optimization tools.

It follows from the analysis performed in [12] that the functional Ee at u ∈ S̄0 has a directional

derivative g(u) given by

g(u)(x) :=











σ2
2

(

1 + (∂xu(x))
2
)(

∂zψu,2(x, u(x))
)2
, x ∈ D \ C(u) ,

σ1(x,−H)2

2σ2

(

∂zψu,1(x,−H)
)2
, x ∈ C(u) ,

(1.5)

where ψu,1 := ψu|Ω1
and ψu,1 := ψu|Ω2(u). In fact, g(u) corresponds to the electrostatic force

acting on the elastic plate. It is worth emphasizing here that the derivation of this result owes much

to the book by Henrot & Pierre [10] (and its french version [9]), which has been a constant source

of inspiration in our studies of differentiability properties of the electrostatic energy involved in

the modeling of MEMS. In fact, for u ∈ S0, the coincidence set C(u) defined in (1.1) is empty and

the functional Ee is actually Fréchet differentiable at u, a feature which is proved along the lines

of [10, Sections 5.3.3-5.3.4], see [12, Proposition 4.2]. The formula (1.5) for g(u) then reduces

to its first line. The situation is strikingly different when the coincidence set C(u) is non-empty,

which corresponds to u ∈ S̄0 \ S0. In that situation, the trace of the solution ψu to (1.3) at a point

(x,−H), x ∈ D, is given either by the transmission condition (1.3b) (if x ∈ D \ C(u)) or by the

Dirichlet boundary condition (1.3c) ( if x ∈ C(u)) and both cases may alternate infinitely often

while x ranges in D. Identifying the derivative of Ee at such a function u requires a rather delicate

analysis, see [12, Corollary 4.3] and Lemma 3.3 below for a precise statement. Let us finally point
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out that the functional g(u) involves the traces of ∂zψu on G(u) and C(u) × {−H}, which are

well-defined only if ψu is sufficiently regular. However, since Ω(u) is only a Lipschitz domain

while Ω2(u) might be even non-Lipschitz when C(u) 6= ∅, the H2(Ω1)-regularity of ψu,1 and the

H2(Ω2(u))-regularity of ψu,2 are not straightforward and a large part of the analysis performed

in [12] is devoted to this regularity issue.

Since the computation of the derivative of the mechanical energy with respect to u is classical,

collecting the outcome of the above discussion yields the following parabolic variational inequality

for u:

∂tu+ β∂4xu− (τ + a‖∂xu‖22)∂2xu+ ∂IS̄0
(u) ∋ −g(u) in (0,∞) ×D , (1.6a)

supplemented with the constraint

u(t) ∈ S̄0 , t ≥ 0 , (1.6b)

and the initial condition

u(0) = u0 , x ∈ D . (1.6c)

Assuming β > 0, we note that (1.6a) is a fourth-order parabolic variational inequality and the

main purpose of this paper is to investigate the existence of weak solutions to (1.6) for a suitable

class of boundary data hu occurring in (1.3c), see (2.3) below. In the following, we interpret ∂4xv
for v ∈ S̄0 as an element of H−2(D) by virtue of

〈∂4xv, φ〉H2
D

:=

∫

D
∂2xv∂

2
xφdx , φ ∈ H2

D(D) .

A definition of a weak solution to (1.6) is then as follows.

Definition 1.1. Let β > 0 and u0 ∈ S̄0. A weak solution to (1.6) is a function

u ∈ C([0,∞),H1(D)) ∩ L∞,loc([0,∞),H2
D(D)) ∩H1

loc([0,∞), L2(D))

satisfying (1.6b), (1.6c), the weak formulation
∫

D

(

u(t)− u0
)

v dx = −
∫ t

0

∫

D

{

g
(

u(s)
)

− (τ + a‖∂xu(s)‖22)∂2xu(s)
}

v dxds

−
∫ t

0

∫

D
β∂2xu(s)∂

2
xv dxds−

∫ t

0
〈ζ(s), v〉H2

D
(D) ds

for any t > 0 and v ∈ H2
D(D), where

ζ := −∂tu− β∂4xu+
(

τ + a‖∂xu‖22
)

∂2xu− g(u) ∈ L2,loc([0,∞),H−2(D)) (1.7)

with

ζ(t) ∈ ∂IS̄0

(

u(t)
)

for a.a. t ≥ 0 , (1.8)

and the energy inequality

1

2

∫ t

0
‖∂tu(s)‖22 ds+ E

(

u(t)
)

≤ E
(

u0
)

, t > 0 . (1.9)

The main result of this paper is then the following existence result.

Theorem 1.2. Let β > 0 and τ, a ≥ 0. Suppose that the functions σ and h satisfy, respectively,

(2.1) and (2.3) below. Then, given u0 ∈ S̄0, there is a weak solution to (1.6) in the sense of

Definition 1.1.
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Owing to the variational structure (1.4) of (1.6), the proof of Theorem 1.2 is performed with

the help of a time implicit Euler scheme. Given a time step δ > 0, we construct by induction

a sequence (uδn)n≥0 such that uδ0 := u0 and, for n ≥ 0, uδn+1 is a minimizer of the auxiliary

functional

F δ
n(v) :=

1

2δ
‖v − uδn‖2 + E(v) , v ∈ S̄0 .

Since F δ
n includes a negative contribution from the electrostatic energy Ee, we begin the proof

by showing that F δ
n is bounded below, provided δ ∈ (0, δ0) is sufficiently small, the smallness

condition depending only on D, the parameters H , d,β, τ , a, the permittivity σ, and the function

h defining the boundary data in (1.3c). The existence of a minimizer uδn+1 of F δ
n on S̄0 then relies

on the lower semicontinuity of the convex part Em + Ec of the energy and the properties of the

electrostatic energy Ee established in [12]. As a consequence of uδn+1 being a minimizer of F δ
n on

S̄0, we further derive a handful of estimates on (uδn)n≥1, which allows us to show that the family

(uδ)δ∈(0,δ0) of piecewise constant functions in time defined by

uδ(t) :=

∞
∑

n=0

uδn1[nδ,(n+1)δ)(t) , t ≥ 0 ,

has the right compactness properties, so that its cluster points as δ → 0 are weak solutions to (1.6)

in the sense of Definition 1.1. Here again, a key ingredient in the proof is the continuity of the

functional g defined in (1.5), which we established in [12], see Lemma 3.2 below.

Finally, we address the regularity of the distribution ζ ∈ ∂IS̄0
(u) associated with a weak so-

lution u to (1.6) and given by (1.7)-(1.8). As already mentioned, since β > 0, equation (1.6) is

a fourth-order parabolic variational inequality and, as such, the regularity of ζ(t) stemming from

(1.8) is that it is a distribution in H−2(D) for a.e. t > 0. In fact, since the seminal work [5], reg-

ularity for the obstacle problem for the biharmonic parabolic equation has received less attention

than the same issue for the obstacle problem for second-order parabolic equations. The only reg-

ularity result regarding the obstacle problem for the biharmonic parabolic equation we are aware

of is [15], whereas [6, 8, 18, 19] are devoted to the elliptic analogue. As in [15], we can prove that

−ζ(t) is actually a non-negative bounded Radon measure on D for a.e. t > 0.

Corollary 1.3. Let the assumptions of Theorem 1.2 be satisfied. If u is a weak solution to (1.6)

in the sense of Definition 1.1, then u ∈ L2,loc([0,∞),Hs(D)) for s ∈ (2, 7/2) and −ζ ∈
L2,loc([0,∞),M+(D)), where M+(D) is the positive cone of the space M(D) = C0(D)′ of

bounded Radon measures on D.

Let us finally describe the contents of this paper: in the next section, we state the assumptions on

the permittivity σ and the boundary data hu in (1.3c). In Section 3, we recall the well-posedness of

the transmission problem (1.3) and the regularity of its solution established in [12], along with the

properties ofEe and g from [12] which are needed for the analysis performed below. We also show

in this section the existence of a minimizer uδn+1 of the functional F δ
n on S̄0 for sufficiently small

values of the time step δ > 0. After this preparation, we are in a position to prove Theorem 1.2 in

Section 4 and Corollary 1.3 in Section 5.

2. ASSUMPTIONS

We provide now the detailed assumptions we put on the permittivity σ and the boundary data

hu occurring in the transmission problem (1.3). As already mentioned, the dielectric properties of
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the device are accounted for by the permittivity σ, which is defined by

σ(x, z) :=

{

σ1(x, z) for (x, z) ∈ Ω1 ,

σ2 for (x, z) ∈ D × (−H,∞) ,

where

σ1 ∈ C2
(

Ω1

)

with σ1 > 0 in Ω1 , σ2 ∈ (0,∞) . (2.1)

In particular, there are 0 < σmin < σmax such that

σmin ≤ σ(x, z) ≤ σmax , (x, z) ∈ D̄ × [−H,∞) . (2.2)

We fix C2-functions

h1 : D̄ × [−H − d,−H]× [−H,∞) → [0,∞) (2.3a)

and

h2 : D̄ × [−H,∞)× [−H,∞) → [0,∞) (2.3b)

satisfying

h1(x,−H,w) = h2(x,−H,w) , (x,w) ∈ D × [−H,∞) , (2.3c)

σ1(x,−H)∂zh1(x,−H,w) = σ2∂zh2(x,−H,w) , (x,w) ∈ D × [−H,∞) . (2.3d)

Moreover, we assume that

h1(x,−H − d,w) = h2(x,w,w) − V = 0 , (x,w) ∈ D̄ × [−H,∞) , (2.3e)

where V > 0, and that there are constants mi > 0, i = 1, 2, 3, such that

|∂xh1(x, z, w)| + |∂zh1(x, z, w)| ≤
√

m1 +m2w2 , |∂wh1(x, z, w)| ≤
√
m3 , (2.3f)

for (x, z, w) ∈ D̄ × [−H − d,−H]× [−H,∞) and

|∂xh2(x, z, w)| + |∂zh2(x, z, w)| ≤
√

m1 +m2w2

H + w
, |∂wh2(x, z, w)| ≤

√

m3

H + w
, (2.3g)

for (x, z, w) ∈ D̄ × [−H,∞)× [−H,∞).
A typical example for a function h satisfying the assumptions (2.3) above was given in [12,

Example 5.5] which we recall now.

Example 2.1. Let us consider the situation where σ1 does not depend on the vertical variable z;

that is, σ1 = σ1(x). In that case, we set

h1(x, z, w) := V
σ2(H + z + d)

σ2d+ σ1(x)(H + w)
, (x, z, w) ∈ D̄ × [−H − d,−H]× [−H,∞) ,

and

h2(x, z, w) := V
σ2d+ σ1(x)(H + z)

σ2d+ σ1(x)(H + w)
, (x, z, w) ∈ D̄ × [−H,∞)× [−H,∞) .

Then assumptions (2.3) are easily checked.

For a given function v ∈ S̄0 we then define

hv(x, z) :=

{

hv,1(x, z) := h1(x, z, v(x)) , (x, z) ∈ Ω1 ,
hv,2(x, z) := h2(x, z, v(x)) , (x, z) ∈ D̄ × [−H,∞) .

(2.4)
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Let us point out that assumption (2.3c)-(2.3d) guarantee that hv defined in (2.4) satisfies the

transmission conditions (1.3b), that is,

JhvK = Jσ∂zhvK = 0 on Σ(v) ,

while assumption (2.3e) along with (1.3c) entails that the electrostatic potential ψv equals zero

on the bottom plate D × {−H − d} and equals V along the elastic plate G(u). Assumptions

(2.3f)-(2.3g) are required to guarantee the coercivity of the total energy E(v).
Throughout the paper, c and (ci)i≥1 denote positive constants depending only on D, H , d, β, τ ,

a, σ, (mi)1≤i≤3, and u0. The dependence upon additional parameters will be indicated explicitly.

3. AUXILIARY RESULTS

We first recall some results that were derived in [12] and begin with the well-posedness of (1.3).

Lemma 3.1. [12, Theorem 1.1] Suppose (2.3). For each v ∈ S̄0, there is a unique variational

solution ψv ∈ hv +H1
0 (Ω(v)) to (1.3). Moreover, ψv,1 := ψv|Ω1

∈ H2(Ω1), ψv,2 := ψv|Ω2(v) ∈
H2(Ω2(v)), and ψv is a strong solution to the transmission problem (1.3) satisfying σ∂zψv ∈
H1(Ω(v)).

The regularity of ψv stated in Lemma 3.1 guarantees that g(v) defined in (1.5) is meaningful

for v ∈ S̄0. We collect in the next result some properties of g established in [12].

Lemma 3.2. Suppose (2.3).

(a) If v ∈ S̄0 and (vj)j≥1 ⊂ S̄0 are such that vj ⇀ v in H2(D), then

lim
j→∞

‖g(vj)− g(v)‖2 = 0 and lim
j→∞

Ee(vj) = Ee(v) .

(b) The mapping g : S̄0 → L2(D) is continuous and bounded on bounded sets, the set S̄0
being endowed with the topology of H2(D).

Proof. Since weak convergence inH2(D) implies boundedness inH2(D) and strong convergence

in H1(D), part (a) is shown in [12, Proposition 3.17 & Corollary 3.12]. As for part (b), the

continuity of g : S̄0 → L2(D) follows from [12, Theorem 1.4], while the boundedness of g on

bounded sets is a consequence of [12, Corollary 3.14 & Lemma 3.16] and the continuity of the

trace from H1(Ω1) to Lp(D × {−H}) for all p ∈ [1,∞). �

We next turn to differentiability properties of Ee. As observed in [12], Ee need not be Fréchet

differentiable for all u ∈ S̄0 but it has always directional derivatives.

Lemma 3.3. [12, Proposition 5.6] Suppose (2.3). Let v ∈ S̄0 and w ∈ S0. Then

lim
s→0+

1

s

(

Ee(v + s(w − v))− Ee(v)
)

=

∫

D
g(v)(w − v) dx .

We also derive a lower bound on E.

Lemma 3.4. Suppose (2.3). There is a constant c1 > 0 such that

E(v) ≥ β

4
‖∂2xv‖22 − c1

(

1 + ‖v‖22
)

, v ∈ S̄0 .
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Proof. For the sake of completeness, we recall the proof performed in [12, Theorem 5.1]. Since

ψv is a variational solution to (1.3), it follows from (2.2), (2.3), and Young’s inequality that

−Ee(v) =
1

2

∫

Ω(v)
σ|∇ψv|2 d(x, z) ≤

1

2

∫

Ω(v)
σ|∇hv |2 d(x, z)

≤
∫

Ω(v)
σ
[

(∂xh(x, z, v(x)))
2 + (∂wh(x, z, v(x)))

2 (∂xv(x))
2
]

d(x, z)

+
1

2

∫

Ω(v)
σ (∂zh(x, z, v(x)))

2 d(x, z)

≤ (d+ 1)σmax

∫

D

[

3

2
(m1 +m2v(x)

2) +m3(∂xv(x))
2

]

dx .

We next use Poincaré’s inequality

‖w‖2 ≤ |D|‖∂xw‖2 , w ∈ H1
0 (D) , (3.1)

and the interpolation inequality

‖∂xw‖22 ≤ ‖w‖2‖∂2xw‖2 , w ∈ H2(D) ∩H1
0 (D) , (3.2)

to obtain

−Ee(v) ≤ c
(

1 + ‖∂xv‖22
)

≤ c
(

1 + ‖v‖2‖∂2xv‖2
)

.

Consequently, Young’s inequality and the above upper bound yield

E(v) ≥ β

2
‖∂2xv‖22 − c− c‖v‖2‖∂2xv‖2 ≥

β

4
‖∂2xv‖22 − c− c‖v‖22 ,

and the proof is complete. �

We next provide the basis for the time implicit scheme used later in order to construct a solution

to (1.6).

Lemma 3.5. Set δ0 := min{1, (16c1)−1} > 0. Then, for any δ ∈ (0, δ0) and f ∈ S̄0, there is

v ∈ S̄0 such that

−1

δ
(v − f)− β∂4xv + (τ + a‖∂xv‖22)∂2xv − g(v) ∈ ∂IS̄0

(v) .

Moreover,
1

2δ
‖v − f‖22 + E(v) ≤ E(f) .

Proof. The proof relies on the direct method of calculus of variations. Consider δ ∈ (0, δ0) and

f ∈ S̄0 and define

F(v) :=
1

2δ
‖v − f‖22 + E(v) , v ∈ S̄0 .

Then, by Lemma 3.4 and Young’s inequality,

F(v) ≥ 1

2δ

(‖v‖22
2

− ‖f‖22
)

+
β

4
‖∂2xv‖22 − c1

(

1 + ‖v‖22
)

≥ β

4
‖∂2xv‖22 +

(

1

4δ
− c1

)

‖v‖22 − c1 −
‖f‖22
2δ

≥ β

4
‖∂2xv‖22 + 3c1‖v‖22 − c1 −

‖f‖22
2δ
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for all v ∈ S̄0. Thus, F is bounded from below on S̄0 and there is a minimizing sequence (vj)j≥1

in S̄0 satisfying

µ := inf
v∈S̄0

{F(v)} ≤ F(vj) ≤ µ+
1

j
, j ≥ 1 . (3.3)

Moreover, the previous lower bound on F guarantees that (vj)j≥1 is bounded in H2
D(D). There-

fore, there is v ∈ H2
D(D) such that (up to a subsequence)

vj ⇀ v in H2(D) , (3.4a)

vj −→ v in H1
0 (D) . (3.4b)

Clearly, (3.4a) ensures that v ∈ S̄0 since S̄0 is closed and convex in H2
D(D). It then follows from

(3.4a) and Lemma 3.2 (a) that

Ee(v) = lim
j→∞

Ee(vj) ,

while (3.4) and the weak lower semicontinuity of the L2-norm readily imply that

Em(v) ≤ lim inf
j→∞

Em(vj) .

Consequently,

F(v) ≤ lim inf
j→∞

F(vj) = µ ,

and we conclude that v ∈ S̄0 is a minimizer of F on S̄0. This property, in turn, guarantees that,

for w ∈ S0,

0 ≤ lim inf
s→0+

1

s

(

F(v + s(w − v))−F(v)
)

.

It then follows from Lemma 3.3 that

0 ≤
∫

D

{

v − f

δ
(w − v) + β∂2xv ∂

2
x(w − v)−

(

τ + a‖∂xv‖22
)

∂xv∂x(w − v)

}

dx

+

∫

D
g(v)(w − v) dx

for all w ∈ S0. Since S0 is dense in S̄0, this inequality also holds for any w ∈ S̄0. Therefore,

−1

δ
(v − f)− β∂4xv + (τ + a‖∂xv‖22)∂2xv − g(v) ∈ ∂IS̄0

(v) .

Finally, since f ∈ S̄0, we have F(v) ≤ F(f), which completes the proof. �

4. PROOF OF THEOREM 1.2

Fix u0 ∈ S̄0. For δ ∈ (0, δ0), we set uδ0 := u0 and, using Lemma 3.5, we construct by induction

a sequence (uδn, ζ
δ
n)n≥1 in S̄0 ×H−2(D) such that

ζδn+1 := −Aδ
n+1 − β∂4xu

δ
n+1 + (τ + a‖∂xuδn+1‖22)∂2xuδn+1 − g(uδn+1) ∈ ∂IS̄0

(uδn+1) , (4.1)

where

Aδ
n+1 :=

1

δ
(uδn+1 − uδn) ∈ H2

D(D) ,

and
1

2δ
‖uδn+1 − uδn‖22 + E(uδn+1) ≤ E(uδn) (4.2)
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for n ≥ 0. Let us first note that (4.2) implies

1

2δ

n
∑

j=0

‖uδj+1 − uδj‖22 + E
(

uδn+1

)

≤ E(u0) , n ≥ 0 . (4.3)

A first consequence of (4.3) is anL2-estimate on (uδn)n≥1, which is adapted from [3, Lemma 3.2.2].

More precisely, it follows from Hölder’s and Young’s inequalities that, for n ≥ 0,

‖uδn+1‖22 − ‖u0‖22 =
n
∑

j=0

(

‖uδj+1‖22 − ‖uδj‖22
)

=
n
∑

j=0

∫

D

(

uδj+1 − uδj

)(

uδj+1 + uδj

)

dx

≤
n
∑

j=0

‖uδj+1 − uδj‖2‖uδj+1 + uδj‖2

≤ 1

4c1δ

n
∑

j=0

‖uδj+1 − uδj‖22 + c1δ

n
∑

j=0

‖uδj+1 + uδj‖22 .

We then infer from Lemma 3.4 and (4.3) that

‖uδn+1‖22 − ‖u0‖22 ≤ E(u0)− E(uδn+1)

2c1
+ 2c1δ

n
∑

j=0

(

‖uδj+1‖22 + ‖uδj‖22
)

≤ E(u0) + c1 + c1‖uδn+1‖22
2c1

+ 2c1δ‖u0‖22 + 4c1δ

n+1
∑

j=1

‖uδj‖22 .

Hence,

‖uδn+1‖22 ≤ (2 + 4c1δ)‖u0‖22 + 1 +
E(u0)

c1
+ 8c1δ

n+1
∑

j=1

‖uδj‖22 , n ≥ 0 .

Since δ ∈ (0, δ0), we have 8c1δ < 1/2 < 1 and we are thus in a position to apply a discrete

version of Gronwall’s lemma, see [3, Lemma 3.2.4], to conclude that

‖uδn+1‖22 ≤
(

6‖u0‖22 + 2 +
2E(u0)

c1

)

e16c1(n+1)δ , n ≥ 0 . (4.4)

We next use again Lemma 3.4 and (4.3), along with (4.4), to obtain that, for n ≥ 0,

1

2δ

n
∑

j=0

‖uδj+1 − uδj‖22 +
β

4
‖∂2xuδn+1‖22

≤ 1

2δ

n
∑

j=0

‖uδj+1 − uδj‖22 + E
(

uδn+1

)

+ c1

(

1 + ‖uδn+1‖22
)

≤ E(u0) + c1

(

1 + ‖uδn+1‖22
)

≤ c2e
16c1nδ .
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Owing to the functional inequalities (3.1) and (3.2), we end up with

1

2δ

n
∑

j=0

‖uδj+1 − uδj‖22 + ‖uδn+1‖2H2 ≤ c3e
16c1nδ , n ≥ 0 . (4.5)

We next define the functions uδ, Aδ : [0,∞) → H2
D(D) and ζδ : [0,∞) → H−2(D) by

uδ(t) :=
∑

n≥0

uδn1[nδ,(n+1)δ)(t) , t ≥ 0 ,

Aδ(t) :=
∑

n≥1

Aδ
n1[nδ,(n+1)δ)(t) , t ≥ 0 ,

and

ζδ(t) :=
∑

n≥1

ζδn1[nδ,(n+1)δ)(t) , t ≥ 0 ,

respectively.

Lemma 4.1. There are a sequence δℓ → 0 and

u ∈ C([0,∞),H1(D)) ∩ L∞((0,∞),H2
D(D)) ∩H1

loc([0,∞), L2(D))

with u(0) = u0 such that

u(t) ∈ S̄0 , t ≥ 0 , (4.6)

and, for all t > 0,

uδℓ(t) → u(t) in H1(D) , (4.7a)

uδℓ ⇀ u in L2((0, t),H
2
D(D)) , (4.7b)

g
(

uδℓ
)

→ g(u) in L2((0, t), L2(D)) , (4.7c)

Aδℓ ⇀ ∂tu in L2((0, t), L2(D)) . (4.7d)

In particular,

ζδℓ ⇀ ζ in L2((0, t),H
−2(D))

for any t > 0 and

ζ := −∂tu− β∂4xu+
(

τ + a‖∂xu‖22
)

∂2xu− g(u) ∈ L2,loc([0,∞),H−2(D)) . (4.8)

Proof. Given 0 ≤ t1 < t2 there are integers n1 ≤ n2 such that ti ∈ [niδ, (ni + 1)δ), i = 1, 2.

Either n1 = n2 and uδ(t2) = uδ(t1). Or n1 < n2 and we infer from (4.5) and Hölder’s inequality

that

‖uδ(t2)− uδ(t1)‖2 = ‖uδn2
− uδn1

‖2 ≤
n2−1
∑

j=n1

‖uδj+1 − uδj‖2

≤ √
n2 − n1





n2−1
∑

j=n1

‖uδj+1 − uδj‖22





1/2

≤
√
2c3

√

n2δ − n1δ e
8c1n2δ .

Thus,

‖uδ(t2)− uδ(t1)‖2 ≤
√
2c3

√

t2 − t1 + δ e8c1t2 , 0 ≤ t1 < t2 . (4.9)
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Moreover, for t > 0, there is an integer n ≥ 0 such that t ∈ [nδ, (n + 1)δ) and, either n = 0 and

uδ(t) = u0, or, again by (4.5), ‖uδ(t)‖2H2 ≤ c3e
16c1t. Consequently,

‖uδ(t)‖H2 ≤ c4e
16c1t , t ≥ 0 . (4.10)

Since H2(D) embeds compactly in L2(D), we infer from (4.9) and (4.10) that we may apply a

variant of the Arzelà-Ascoli theorem, see [3, Proposition 3.3.1], and a diagonal argument to obtain

the existence of a sequence (δℓ)ℓ≥1, δℓ → 0, and

u ∈ C([0,∞), L2(D)) ∩ L∞,loc([0,∞),H2
D(D))

such that

uδℓ(t) → u(t) in L2(D) , t ≥ 0 , (4.11)

and

uδℓ ⇀ u in L2((0, T ),H
2
D(D)) , T > 0 .

We have thus proved (4.7b). Next, an interpolation argument, together with (4.10) and (4.11),

yields (4.7a) and the stated time continuity of u inH1(D). Furthermore, combining (4.7a), (4.10),

and Lemma 3.2 allows one to apply Lebesgue’s theorem to deduce (4.7c). Also, since uδ(0) = u0
and uδ(t) ∈ S̄0 for t ≥ 0 and δ ∈ (0, δ0), we readily deduce from (4.11) that u(0) = u0 and

u(t) ∈ S̄0 for t ≥ 0.

Next, for t > 0, there is nℓ ≥ 0 such that t ∈ [nℓδℓ, (nℓ + 1)δℓ) and it follows from (4.5) that

∫ t

0
‖Aδℓ(s)‖22 ds ≤

∫ (nℓ+1)δℓ

0
‖Aδℓ(s)‖22 ds =

1

δℓ

nℓ
∑

j=0

‖uδj+1 − uδj‖22 ≤ 2c3e
16c1t . (4.12)

Since

Aδ(t, x) =
uδ(t, x)− uδ(t− δ, x)

δ
, (t, x) ∈ (δ,∞) ×D ,

andAδ(t, x) = 0 for (t, x) ∈ (0, δ)×D, the sequence (Aδℓ)ℓ≥1 converges to ∂tu in D′((0,∞)×D)
as ℓ → ∞, so that the just established boundedness of (Aδℓ)ℓ≥1 in L2,loc([0,∞), L2(D)) implies

that ∂tu ∈ L2,loc([0,∞), L2(D)) and the convergence (4.7d) (up to a subsequence). The stated

convergence of
(

ζδℓ
)

ℓ≥1
and the regularity of ζ are straightforward consequences of the regularity

of u and (4.7). �

We next prove the energy inequality (1.9).

Lemma 4.2. For t > 0,

1

2

∫ t

0
‖∂tu(s)‖22 ds+ E(u(t)) ≤ E(u0) .

Proof. Given t > 0 and ℓ ≥ 0, we pick again the integer nℓ such that t ∈ [nℓδℓ, (nℓ+1)δℓ). Then,

by (4.3),

1

2δℓ

nℓ
∑

j=0

‖uδj+1 − uδj‖22 + E(uδℓ(t)) ≤ E(u0) . (4.13)

Owing to Lemma 3.2 (a), (4.7a), and (4.7b), we have

lim
ℓ→∞

Ee

(

uδℓ(t)
)

= Ee

(

u(t)
)

. (4.14)
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Since (uδℓ(t))ℓ≥0 is bounded in H2(D) according to (4.10), we may extract a further subsequence

(not relabeled), possibly depending on t, such that
(

uδℓ(t)
)

ℓ≥0
converges to u(t) weakly inH2(D)

and strongly in H1(D). Hence

Em

(

u(t)
)

≤ lim inf
ℓ→∞

Em

(

uδℓ(t)
)

,

which gives, together with (4.14),

E
(

u(t)
)

≤ lim inf
ℓ→∞

E
(

uδℓ(t)
)

. (4.15)

Moreover, due to (4.7d) and (4.12), we have

1

2

∫ t

0
‖∂tu(s)‖22 ds ≤ lim inf

ℓ→∞

1

2δℓ

nℓ
∑

j=0

‖uδℓj+1 − uδℓj ‖22 . (4.16)

Gathering (4.13), (4.15), and (4.16) completes the proof. �

Proof of Theorem 1.2. To finish off the proof, we are left with showing that u solves the variational

inequality (1.8). To this end, we recall from (4.1) that

0 ≤
∫

D

{

−Aδ
n + (τ + a‖∂xuδn‖22)∂2xuδn − g(uδn)

}

(

uδn − v
)

dx

− β

∫

D
∂2xu

δ
n∂

2
x

(

uδn − v) dx

(4.17)

for n ≥ 1, δ ∈ (0, δ0), and v ∈ S̄0. Now, consider a non-negative function φ ∈ Cc([0,∞)) and

w ∈ L2,loc([0,∞),H2(D)) such that w(t) ∈ S̄0 for a.e. t ∈ (0,∞). Then, for δ small enough,

supp φ ⊂ (δ,∞) and, by (4.17),
∫ ∞

0
φ(s)

∫

D

{

−Aδ(s) +
(

τ + a‖∂xuδ(s)‖22
)

∂2xu
δ(s)− g(uδ(s))

}

(

uδ(s)− w(s)
)

dxds

−
∫ ∞

0
φ(s)

∫

D
β∂2xu

δ(s)∂2x
(

uδ(s)− w(s)) dxds

=

∞
∑

n=1

∫ (n+1)δ

nδ
φ(s)

∫

D

{

−Aδ
n +

(

τ + a‖∂xuδn‖22
)

∂2xu
δ
n − g(uδn)

}

(

uδn − w(s)
)

dxds

−
∞
∑

n=1

∫ (n+1)δ

nδ
φ(s)

∫

D
β∂2xu

δ
n∂

2
x

(

uδn − w(s)) dxds

≥ 0 . (4.18)

On the one hand, it follows from (4.7) that

lim
ℓ→∞

∫ ∞

0
φ(s)

∫

D

{

−Aδℓ(s) + (τ + a‖∂xuδℓ(s)‖22)∂2xuδℓ(s)− g(uδℓ(s))
}

(

uδℓ(s)− w(s)
)

dxds

=

∫ ∞

0
φ(s)

∫

D

{

−∂tu(s) + (τ + a‖∂xu(s)‖22)∂2xu(s)− g(u(s))
} (

u(s)− w(s)
)

dxds .

On the other hand, we infer from (4.7b) and the non-negativity of φ that

lim
ℓ→∞

∫ ∞

0
φ(s)

∫

D
β∂2xu

δℓ(s)∂2xw(s) dxds =

∫ ∞

0
φ(s)

∫

D
β∂2xu(s)∂

2
xw(s) dxds
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and

lim inf
ℓ→∞

∫ ∞

0
φ(s)

∫

D
β|∂2xuδℓ(s)|2 dxds ≥

∫ ∞

0
φ(s)

∫

D
β|∂2xu(s)|2 dxds .

Collecting the above identities, taking δ = δℓ in (4.18), and letting ℓ→ ∞, we conclude that

∫ ∞

0
φ(s)

∫

D

{

−∂tu(s) + (τ + a‖∂xu(s)‖22)∂2xu(s)− g(u(s))
} (

u(s)− w(s)
)

dxds

−
∫ ∞

0
φ(s)

∫

D
β∂2xu(s)∂

2
x

(

u(s)− w(s)) dxds ≥ 0 .

That is, recalling the definition (4.8) of ζ ,

∫ ∞

0
φ(s) 〈ζ(s), u(s)− w(s)〉H2

D

ds ≥ 0

for any w ∈ L2,loc([0,∞),H2
D(D)) satisfying w(t) ∈ S̄0 for a.e. t ∈ (0,∞) and any non-

negative φ ∈ Cc([0,∞)). In particular, for all v ∈ S̄0 and non-negative φ ∈ Cc([0,∞)), the

choice w(t) ≡ v, t > 0, in the above inequality gives

∫ ∞

0
φ(s) 〈ζ(s), u(s)− v〉H2

D

ds ≥ 0 ,

which implies, since S̄0 is separable, that

ζ(t) ∈ ∂IS̄0

(

u(t)
)

for a.a. t ≥ 0 .

Finally, since ∂tu ∈ L2,loc([0,∞), L2(D)), it follows from the definition (4.8) of ζ that u solves

(1.6) in the sense of Definition 1.1, and the proof of Theorem 1.2 is complete. �

5. PROOF OF COROLLARY 1.3

We finally derive the additional features enjoyed by ζ as stated in Corollary 1.3.

Proof of Corollary 1.3. Let u be a weak solution to (1.6) in the sense of Definition 1.1 and define

ζ by (1.7). We introduce the set

Z := {t ∈ (0,∞) : ζ(t) ∈ ∂IS̄0

(

u(t)
)

} , (5.1)

and observe that |Z| = 0 since ζ satisfies (1.8). Moreover, since u(t) + v belongs to S̄0 for any

non-negative v ∈ C∞
c (D), it readily follows from (5.1) that

〈−ζ(t), v〉H2
D

≥ 0 , t ∈ Z . (5.2)

That is, for t ∈ Z , −ζ(t) is a non-negative distribution on D and thus a non-negative Radon

measure, see, e.g., [7, Proposition 6.6].

Next, let T > 0. According to the regularity of u,

KT := sup
t∈[0,T ]

{‖u(t)‖H2} <∞ . (5.3)
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Step 1. Let t ∈ [0, T ] and x ∈ [0, L]. Since u(t) ∈ H2
D(D), it follows from (5.3) that

u(t, x) = u(t, L) + (x− L)∂xu(t, L) +

∫ L

x
(y − x)∂2xu(t, y) dy

≥ −
∫ L

x
(y − x)|∂2xu(t, y)|dy ≥ −(L− x)3/2√

3
‖∂2xu(t)‖2

≥ −KT (L− x)3/2 .

Hence, for x ∈ [xT , L] with

xT := max

{

L−
(

H

2KT

)2/3

,
L

2

}

∈ [L/2, L) ,

we deduce that u(t, x) ≥ −H/2. Using the same argument for x ∈ [−L, 0], we end up with

u(t, x) ≥ −H
2
, x ∈ [−L,−xT ] ∪ [xT , L] , t ∈ [0, T ] . (5.4)

Now, consider t ∈ [0, T ] ∩ Z and v ∈ C∞
c (D) such that supp v ⊂ [−L,−xT ] ∪ [xT , L]. For

θ ∈ (0, 1) small enough, we infer from (5.4) that u(t)± θv belongs to S̄0, so that (1.8) entails

0 ≤ 〈ζ(t), u(t)− u(t)∓ θv〉H2
D

= ∓θ〈ζ(t), v〉H2
D

.

Since θ is positive, we conclude that 〈ζ(t), v〉H2
D

= 0. Consequently,

supp ζ(t) ⊂ [−xT , xT ] , t ∈ [0, T ] ∩ Z . (5.5)

Step 2. We now fix a non-negative function χT ∈ C∞
c (D) such that χT ≡ 1 on [−xT , xT ]. Then,

for v ∈ C∞
c (D) and t ∈ [0, T ]∩Z , the function u(t)+χT (‖v‖∞±v) belongs to S̄0 and it follows

from (5.2) and (5.5) that

0 ≤ 〈−ζ(t), χT (‖v‖∞ ± v)〉H2
D

= ‖v‖∞〈−ζ(t), χT 〉H2
D

± 〈−ζ(t), v〉H2
D

,

the identity 〈ζ(t), χT v〉H2
D

= 〈ζ(t), v〉H2
D

being guaranteed by (5.5) and the properties of χT .

Thus,
∣

∣

∣〈−ζ(t), v〉H2
D

∣

∣

∣ ≤ ‖v‖∞〈−ζ(t), χT 〉H2
D

,

and the density of C∞
c (D) in C0(D) and the already established non-negativity of −ζ ensure that

−ζ(t) belongs to M+(D) with

‖ − ζ(t)‖M ≤ 〈−ζ(t), χT 〉H2
D

, t ∈ [0, T ] ∩ Z . (5.6)

Since ζ ∈ L2((0, T ),H
−2(D)), an immediate consequence of (5.6) is that ζ ∈ L2((0, T ),M(D)).

Finally, let s ∈ (2, 7/2). According to [1, Lemma 4.1 (iii)], M(D) is continuously embedded

in Hs−4
D (D), so that the just established regularity of ζ implies that ζ ∈ L2((0, T ),H

s−4
D (D)).

Together with the regularity of u, ∂tu, and g(u), this property and (1.7) ensure that ∂4xu belongs

to L2((0, T ),H
s−4
D (D)). Consequently, it follows from elliptic regularity theory that u belongs to

L2((0, T ),H
s
D(D)). This completes the proof of Corollary 1.3. �

Remark 5.1. Since u ∈ C([0,∞) × D̄) by Theorem 1.2 and since H1(D) embeds continuously

in C(D̄), it easily follows from (1.8) (by an argument similar to that leading to (5.5)) that

supp ζ(t) ⊂ C(u(t)) for a.e. t ∈ (0,∞) ,

the coincidence set C(u(t)) being defined in (1.1).
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