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Direction of arrival estimation by a modified
orthogonal propagator method with spline

interpolation
Meng Sun, Yide Wang, Jingjing Pan

Abstract—This paper presents a modified orthogonal prop-
agator method (OPM) with spline interpolation for direction
of arrival (DoA) estimation. The conventional OPM is based
on the noise-free signal model. When noise exists, the main
contribution of noise (additive temporally and spatially white
Gaussian noise) is in the diagonal elements of the data covariance
matrix. Therefore, the influence of noise can be minimized by
restoring the noise free diagonal elements through an interpola-
tion procedure and the propagator can then be directly extracted
from the denoised data covariance matrix, which is the main
idea of the proposed method in this paper. The performance
of the proposed modified OPM is tested through numerical
simulations. Simulation results show that the proposed modified
OPM achieves low root-mean square errors (RMSEs) with small
computational load in DoA estimation.

Index Terms—Direction of arrival (DoA), orthogonal propaga-
tor method (OPM), propagator method (PM), spline interpola-
tion, denoising.

I. INTRODUCTION

Direction of arrival (DoA) estimation is an important issue
in the field of array signal processing and has been inten-
sively studied for decades [1], [2]. It is important in many
practical applications such as sonar, radar, source localization,
and wireless communication [1], [2]. A lot of methods have
been developed for DoA estimation in the literature. Among
these methods, subspace-based algorithms or high-resolution
methods such as MUSIC [3] and ESPRIT [4] have attracted
much attention due to their asymptotic infinite resolution
and unbiased estimation performance. These methods are
based on the assumption of the orthogonality between the
signal subspace and noise subspace of the received signals.
However, the above techniques require either the eigenvalue
decomposition (EVD) or singular value decomposition (SVD)
of the data covariance matrix. It may be too expensive and
time-consuming for real time applications with a large amount
of data, such as a massive Multiple-Input Multiple-Output
system with a very large number of the antennas (hundreds
or thousands). Besides, this kind of methods may have some
limitation due to the high computational complexity, in some
practical scenarios, for example, long time field work without
guaranteed electronic energy.

To solve this problem, a concept named ’propagator’ was
introduced in array signal processing. Many methods have
been proposed based on this concept, such as propagator
method (PM) [5], [6] and orthogonal propagator method
(OPM) [7]. These methods only use linear operations to find
the propagator (which can be directly extracted through the

data covariance matrix), without any EVD or SVD operation.
The propagator has been proven effective in DoA estimation.
Besides, the propagator-based methods are more suitable for
dealing with large data, which can facilitate real time applica-
tion. Nevertheless, the initial propagator-based algorithm does
not take the background noise into consideration, as its basis
relies on the noise free received signal model. Therefore, its
performance suffers from degradation in low signal to noise
ratio (SNR) scenarios. The least squares method is applicable
in the estimation of the propagator, which reduces the impact
of noise but does not eliminate it [5].

Researchers attempt to reduce the noise impact by estimat-
ing the power of the noise [8], [9], [10] or applying signal
enhancement techniques [11], [12]. Stoica et al. propose an
eigenvalue-based method [8] to estimate the noise power,
which requires the EVD on the data covariance matrix. The
noise power is estimated by calculating the average of the
eigenvalues belonging to the noise subspace. The eigenvalue
method is proven to be statistically efficient [8]. However,
it is not the focus of this paper since the major merit of
the propagator-based methods is to avoid any EVD or SVD
operation. In addition, Stoica et al. [8], Marcos and Sanchez-
Araujo [6] also propose two different linear methods. In their
methods, the noise power can be extracted from the structure
of the data covariance matrix without EVD or SVD operation.
These two linear methods are more computationally efficient,
yet less statistically efficient, compared with the eigenvalue
based methods [8].

In this paper, a new way to reduce the influence of noise
without estimating the noise power is proposed from another
point of view. The noise is assumed as an additive temporally
and spatially white Gaussian noise. The noise hence will only
affect the main diagonal elements of the data covariance ma-
trix. Therefore, we propose to restore the noise free diagonal
elements of the data covariance matrix to reduce the influence
of the noise. In a column (or line), the diagonal element can be
estimated by the other elements of this column (or line), which
could be done by an interpolation procedure. It is worth noting
that interpolation techniques have been widely used in array
signal processing. In [2], array interpolation is used to map the
sample covariance matrix of a non-uniform linear array to that
of a uniform linear array, so that root-MUSIC and ESPRIT can
be directly applied. Instead, the interpolation procedure in this
paper is used to rebuild the noise free diagonal elements of the
data covariance matrix. Moreover, when the incoming signals
are uncorrelated or independent, the data covariance matrix is a
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Toeplitz matrix, which means that the diagonal elements of this
matrix are all the same [13]. Consequently, the interpolation
needs to be performed only once to recover all the noise free
diagonal elements of the matrix. In this paper, the cubic spline
interpolation [14] is adopted. The performance of the proposed
modified OPM algorithm is evaluated on numerical data.

The remaining of this paper is organised as follows. The
narrow band received signal model in far-field is presented
in Section 2. In Section 3, the proposed modified OPM is
introduced. Section 4 gives the simulation results to show
the performance of the proposed method compared with the
conventional OPM, OPM with elimination of noise called
MPEN (method of propagator with elimination of noise) [6],
OPM with EVD [8] and MUSIC [3]. Section 5 draws the
conclusion.

II. SIGNAL MODEL

Consider a uniform linear array (ULA) with N =
2M + 1 isotropic antennas impinged by K far-field nar-
row band independent signals. The antennas are indexed
by −M, . . . , 0, . . . ,M . The received signals are corrupted
by a temporally and spatially white Gaussian noise. In the
following, the 0th element is taken as the reference point.
Then, the complex envelope of the received signal at the mth
antenna can be expressed as

rm(t) =
K∑

k=1

sk(t) exp(−j2mπ d
λ

sin θk) + nm(t) (1)

where sk(t) is the complex envelope of the kth signal re-
ceived at the reference point with corresponding DoA θk
(θk ∈ [−π/2, π/2]); nm(t) is the spatially and temporally
additive white Gaussian noise at the mth antenna with zero
mean and variance σ2; d denotes the distance between two
adjacent antenna and λ is the wavelength of the received
signals. d is equal to half of the wavelength of the incoming
signals.

Equation (1) can be written in the following vector form:

r(t) = As(t) + n(t) (2)

with the following notational definitions:

• r(t) = [r−M (t) r−M+1(t) · · · r0(t) · · · rM (t)]
T is the

(N × 1) received signal vector or the observation vector;
the superscript T denotes the transpose operation;

• A = [a(θ1) a(θ2) . . . a(θK)] is the (N×K) directional
matrix;

• a(θk) = [exp(jMπ sin θk) . . . 1 . . . exp(−jMπ sin θk)]T

is the (N × 1) directional vector;
• s(t) = [s1(t) s2(t) · · · sK(t)]

T is the (K × 1) source
vector;

• n(t) = [n−M (t) n−M+1(t) · · ·n0(t) · · · nM (t)]
T is the

(N × 1) noise vector, with zero mean and covariance
matrix σ2I, where I is the (N ×N) identity matrix.

Assuming that the noise is independent of the source signals,
the covariance matrix R can be written as:

R = E
(
r(t)rH(t)

)
= ARsA

H + σ2I (3)

where E(:) denotes the ensemble average; Rs is the (K×K)
dimensional covariance matrix of the source vector s(t) and
the superscript H denotes the complex conjugate transpose
operation.

III. MODIFIED OPM FOR DOA ESTIMATION

In order to reduce the noise impact, OPM-MPEN is pro-
posed [6]. However, this method can only localize a maximum
of N/2 − 1 sources. In this section, we will present a new
modified OPM algorithm which avoids such limitation. The
signals are supposed to be totally uncorrelated to each other
and independent from the noise. The elements in R can then
be expressed as follows:

R(n−m) = R(m,n) =



K∑
k=1

Psk + σ2 m = n

K∑
k=1

Psk exp(jπ(n−m) sin θk) m 6= n

(4)

where m, n ∈ [1, . . . N ], Psk is the power of the kth signal.
R(n − m) is a function of n − m, which represents the
expression of the element of the mth row and nth column of
matrix R. From (4), the noise is presented only in the diagonal
elements of the covariance matrix R.

However, with finite snapshots, the non-diagonal ele-
ments contain residual from noise. In order to show the
noise impact on both the diagonal and non-diagonal ele-
ments of the data covariance matrix with different snap-
shots, we define the noise uncertainty ratios (NURs) as
the ratio between the elements ymn of the noise free
data covariance matrix ARsA

H and the elements zmn of
matrix R̂ − ARsA

H (for non-diagonal elements, NURs=
{
∑N

m=1

∑N
n=m+1 |ymn|}/{

∑N
m=1

∑N
n=m+1 |zmn|}; for di-

agonal elements, NURs= {
∑N

m=1 |ymm|}/{
∑N

m=1 |zmm|}),
where R̂ = 1

Nt

∑Nt

i=1 r(ti)r
H(ti), Nt is the number of

snapshots. NURs on both diagonal and non-diagonal elements
of the data covariance matrix are calculated in terms of the
number of snapshots with 1000 independent Monte-Carlo
trials and SNR =0 dB.

It can be seen from Fig. 1, for both the diagonal and non-
diagonal elements, the influence of the noise decreases (NURs
increases) when the number of snapshots increases. Moreover,
the influence of the noise is greater (smaller NURs) to the di-
agonal elements than to the non-diagonal elements, especially
when the number of snapshots is large. Therefore, we focus on
the diagonal elements and the influence of the noise could be
reduced by rebuilding the noise free diagonal elements from
the non-diagonal elements of the data covariance matrix.

The noise free diagonal elements can be estimated by
the other non-diagonal elements. Define f(x) = R(x) =∑K

k=1 Psk exp(jπx sin θk) with x = n − m, therefore x ∈
[−N+1, N−1]. When x = 0, f(0) =

∑K
k=1 Psk correspond-

ing to the value of the noise free diagonal element (unknown).
f(0) can be estimated from its adjacent elements of f(x) (or
off-diagonal elements R(x)), x ∈ [−N + 1, −1]

⋃
[1, N − 1]

by the classical spline interpolation procedure [14]. In ad-
dition, as R is a Toeplitz matrix, the diagonal elements of
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Fig. 1. NURs on both the diagonal and non-diagonal elements of the data
covariance matrix versus the number of snapshots with 1000 independent
Monte-Carlo trials, SNR of the received signal equals to 0 dB.

this matrix are all equal. Therefore, it is enough to estimate
only one noise free diagonal element. As the variation of the
norm of non-diagonal elements is slower than that of the
elements themselves, in this paper, the spline interpolation
is applied on the norm of the non-diagonal elements in the
first column and first line of the data covariance matrix
for the calculation of the corresponding noise free diagonal
element f(0). It means by using |f(−N + 1)|, |f(−N +
2)|, . . . , |f(−1)|, |f(1)| . . . , |f(N−1)|, we can estimate the
noise free diagonal element f(0) through spline interpolation.
The detail is given as follows: to estimate the expression of
|f(x)|, the spline function S(x) is built with 2N − 2 sample
points (−N + 1, . . . ,−1, 1, . . . , N − 1) and 2N − 3 intervals.
Si(x) is the spline function inside the ith interval. S(x) should
obey the following constrains:

• In each interval, S(x) = Si(x) is a three order polyno-
mial.

• S(x) and its derivatives S′(x), S′′(x) should be contin-
uous for x ∈ (−N + 1, N − 1).

• S(xi) = |f(xi)|, xi = −N + 1, . . . ,−1, 1, . . . , N − 1.
• S′′′(−N+1) = S′′′(−N+2) and S′′′(N−1) = S′′′(N−

2).

The principle of spline interpolation is to take a shape that
minimizes the bending (under the constraint of passing through
all sample points). Both S′(x) and S′′(x) should be continuous
for x ∈ (−N + 1, N − 1). The above can be achieved
with polynomials of degree 3 or higher. The classical spline
interpolation is to use polynomials of degree 3 [14]. Therefore,
Si(x) can be expressed as Si(x) = aix

3 + bix
2 + cix + gi,

with ai, bi, ci, gi unknown coefficients. By using the principle
of the spline interpolation, the 8N − 12 unknown coefficients
inside S(x) can be calculated. Then, the spline function S(x)
can be rebuilt. Consequently, the noise free diagonal elements
can be estimated by S(0), which is used to restore all the
diagonal elements of R. The elements of the denoised data
covariance matrix Rnf can then be written as

Rnf (m,n) =
K∑

k=1

Psk exp(jπ(n−m) sin θk). (5)

Since the noise is removed, OPM can be directly applied on
the denoised data covariance matrix for DoA estimation. OPM

[7] partitions matrix A into two sub-matrices as follows:

A =

(
A1

A2

)
(6)

where A1 and A2 are (K×K) and ((N−K)×K) dimensional
matrices (N > K), respectively. Since θk ∈ [−π/2, π/2] (for
any θi, θj ∈ [−π/2, π/2], if θi 6= θj , sin θi 6= sin θj), A is of
full rank and A1 is non-singular. Under the above condition,
the following (K × (N −K)) dimensional propagator P can
be defined

PHA1 = A2 (7)

or

[PH , −IN−K ]A = QHA = 0 (8)

where IN−K is a ((N −K)× (N −K)) dimensional identity
matrix. Equation (8) shows that the directional vectors of
sources are orthogonal to the columns of Q. Therefore, the
DoA of each source can be estimated by searching the peak
positions of the following OPM pseudo-spectrum:

POPM(θ) =
1

aH(θ)Q(QHQ)−1QHa(θ)
. (9)

However, propagator P is unknown, which should be retrieved
from data.

Firstly, the data covariance matrix is partitioned into the
following expression:

Rnf = [G, H] (10)

where G and H are the (N × K) and (N × (N − K))
dimensional matrices, respectively. The relationship between
propagator P and these two matrices (G and H) is given by

H = GP. (11)

Therefore, propagator P can be directly extracted through (11)
by the least squares solution:

P = G+H (12)

where the superscript + denotes the Moore-Penrose inverse
operator.

Finally, the general steps of the proposed modified OPM
are summarized as follows:

1) Estimate the covariance matrix R̂ (3).
2) Make the estimated covariance matrix R̂ Toeplitz, de-

noted by RT . The Hermitian Toeplitz matrix RT can be
built by calculating the first line of this matrix, rt(m) =

1

N −m
∑N−m

n=1 R̂(n, m+n), with m = 1, . . . , N−1.
3) Apply the spline interpolation on the norm of the 4M

non-diagonal elements (the norm of the elements) of
the first column and the first line of RT to estimate its
diagonal element.

4) Construct the new data covariance matrix Rnf by re-
placing the diagonal elements of RT with the above
estimated diagonal element.

5) Apply the OPM on the new data covariance matrix Rnf

to estimate the DoA.
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IV. SIMULATIONS AND DISCUSSION

The performance of the proposed modified OPM is eval-
uated on numerical data with 4 simulations. Considering a
ULA with 11 isotropic elements and 2 far-field narrow band
uncorrelated signals with equal power, that is, N = 11, M = 5
and K = 2.

In the first simulation, the pseudo-spectrums of the conven-
tional OPM, OPM-MPEN and proposed method are compared.
The following two cases are considered:

• Case 1. θ1 = −6◦ and θ2 = 7◦.
• Case 2. θ1 = −1◦ and θ2 = 3◦.

The data covariance matrix is estimated with 400 independent
snapshots and SNR= 0 dB. The pseudo-spectrum search is
performed over [−15◦, 15◦] with step size 0.001◦. The angles
corresponding to the two highest peak positions in the pseudo-
spectrum allow estimating the DoAs of signals.
Figs. 2–3 show the pseudo-spectrums of the conventional
OPM, OPM-MPEN and proposed method for the two different
cases. For both cases, the proposed method is able to detect
the true DoAs of signals. As shown in Figs. 2–3, two peaks
corresponding to the DoAs of signals are clearly detected
by the proposed method. For the conventional OPM and
OPM-MPEN, they can detect the true DoAs of signals in
large angle separation situation (in Case 1) and their pseudo-
spectrums are similar to that of the proposed method. However,
when the angle separation becomes small, like in Case 2,
the conventional OPM fails in DoA estimation and the OPM-
MPEN estimates the DoA with bias.
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Fig. 2. Case 1, pseudo-spectrums of the conventional OPM, OPM-MPEN and
proposed modified OPM for DoA estimation. The two DoAs are θ1 = −6◦

and θ2 = 7◦.
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Fig. 3. Case 2, pseudo-spectrums of the conventional OPM, OPM-MPEN and
proposed modified OPM for DoA estimation. The two DoAs are θ1 = −1◦

and θ2 = 3◦.

In the second simulation, the performance of the proposed
method is tested with respect to SNR. A Monte-Carlo process
is constructed with 1000 independent runs of the method. The
performance is assessed in terms of the RMSE of the estimated
DoA defined as

RMSE =

√√√√ 1

KJ

K∑
k=1

J∑
j=1

(
θ̂kj − θk

)2
(13)

where θ̂kj denotes the estimated DoA of the kth incoming
signal for the jth run; θk denotes the true DoA of the kth
incoming signal. The angles in Case 2 are used here. SNR
∈ [−6, 10] dB. The proposed method is compared with OPM-
MPEN, OPM-EVD and MUSIC; moreover, the Cramér-Rao
bound (CRB) results are also provided [15], [16].
Fig. 4 plots the RMSE of DoA estimation against SNR
with the number of snapshots equals to 400. As expected,
the RMSEs of the above mentioned methods continuously
decrease when SNR increases. According to the principle of
OPM [7], the propagator based methods are efficient in terms
of computational burdens, but their statistical performance is
worse than that of the subspace based methods. Therefore, the
gap (estimation performance) between the CRB and propaga-
tor based methods can be large. Same results can be found
in Fig. 4 that the RMSE of MUSIC versus SNR is smaller
than that of the propagator based methods at the beginning of
SNR. However, with higher SNR (−2 dB), these methods tend
to work similarly. In addition, MUSIC applies EVD operation
with computational load O(N3), which is greater than that of
OPM (O(N2K + (N −K)2K), DoA spectrum search is not
taken into account in computational complexity).

Compared with the other denoising procedures, the pro-
posed method has a more significant decrease of RMSE
than that of the OPM-MPEN; its performance is similar to
that of OPM-EVD. The computational loads of the denosing
procedures of OPM-MPEN, OPM-EVD, and the proposed
method are shown in Table I. From Table I, the proposed
method has the smallest computational complexity among the
3 compared methods.

Method Computational loads
OPM-MPEN O((N −K)K2 +K3/3)
OPM-EVD O(N3)

Modified OPM O(N + logN)
TABLE I

THE COMPUTATIONAL LOADS OF THE DENOSING PROCEDURES OF
OPM-MPEN, OPM-EVD AND MODIFIED OPM.

In the third simulation, the statistical performance of the
modified OPM versus the angle separation between two in-
coming signals is assessed with a Monte-Carlo process of 1000
independent runs of the method. One of the incoming signals
is fixed at θ1 = 0◦ while the other comes from θ2 = θ1 + ∆θ
with same power. SNR = 0 dB, ∆θ varies from 0.5◦ to 8◦.
The number of snapshots is 400. From Fig. 5, it is clear
that the mentioned methods fail to detect the DoAs when the
angle separation is small (0.5◦ to 2◦). The performance of the
proposed methods is similar to that of the second simulation.
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Fig. 4. Case 2, RMSE of DoA estimation versus SNR with 400 snapshots.

Moreover, the RMSEs of the mentioned methods continuously
decrease as the angle separation increases. When the angle
separation becomes greater, these methods tend to have similar
performance.

1 2 3 4 5 6 7 8

10-1

100

101

Angle separation (degree)

R
M

SE
 (d

eg
re

e)

Modified OPM
OPM-EVD
OPM-MPEN
MUSIC
CRB

Fig. 5. RMSE of DoA estimation as function of angle separation.

Moreover, the performance of the proposed modified OPM
versus the number of snapshots is evaluated with a numerical
example of 1000 independent Monte-Carlo trials. Case 2 is
studied with SNR = 0 dB. Fig. 6 plots the RMSEs of
the modified OPM, OPM-MPEN, OPM-EVD and MUSIC as
function of the number of snapshots. In Fig. 6, the above
mentioned methods fail when the number of snapshots is small
(less than 10). With the increasing number of snapshots, the
RMSEs decrease. Different from MUSIC, we can observe that
the propagator based methods require good estimation of the
data covariance matrix with a sufficient number of snapshots
(> 50).

100 200 300 400 500 600 700 800 900 100010-2

10-1

100

Number of snapshots

R
M

SE
 (d

eg
re

e)

Modified OPM
OPM-EVD
OPM-MPEN
MUSIC
CRB

Fig. 6. RMSE of DoA estimation as function of the number of snapshots,
SNR = 0 dB.

V. CONCLUSION

In this paper, we propose a modified OPM method for DoA
estimation. By using the spline interpolation to rebuild the
noise free diagonal elements of the data covariance matrix,
the proposed method offers a new way to reduce the noise
impact. The performance of the proposed method is tested
on numerical data. The proposed modified OPM shows good
performance in DoA estimation.
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