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CONSERVATIVITY AND WEAK CONSISTENCY OF A CLASS OF

STAGGERED FINITE VOLUME METHODS

FOR THE EULER EQUATIONS

R. Herbin1, J.-C. Latché2, S. Minjeaud3 and N. Therme4

Abstract. We address here a class of staggered schemes for the compressible Euler equations ; this

scheme was introduced in recent papers and possesses the following features: upwinding is performed

with respect to the material velocity only and the internal energy balance is solved, with a correction

term designed on consistency arguments. These schemes have been shown in previous works to preserve

the convex of admissible states and have been extensively tested numerically. The aim of the present

paper is twofold: we derive a local total energy equation satisfied by the solutions, so that the schemes

are in fact conservative, and we prove that they are consistent in the Lax-Wendroff sense.

June 22, 2020.

1. Introduction

The aim of this paper is to prove some conservativity and consistency properties of a class of numerical
schemes for the compressible Euler equations which model the flow of an ideal gas and read:

∂tρ+ div(ρu) = 0, (1a)

∂t(ρu) + div(ρu⊗ u) +∇p = 0, (1b)

∂t(ρE) + div(ρE u) + div(pu) = 0, (1c)

p = (γ − 1) ρ e, E = Ek + e, Ek =
1

2
|u|2, (1d)

where t is the time, ρ, u, p, E, e and Ek denote the density, velocity, pressure, total energy, internal energy
and kinetic energy respectively, and γ > 1 is the ratio of specific heats. The notation | · | is used both for
the Euclidean norm of a vector of Rd or for the absolute value of a real number. The space–time domain
is denoted by Ω × (0, T ), where Ω is an open bounded connected subset of Rd, 1 ≤ d ≤ 3, and T < +∞.
System (1) is supplemented by the boundary condition u · n = 0 a.e. on ∂Ω, n denoting the unit normal
vector to the boundary, and by initial conditions for ρ, e and u, denoted by ρ0, e0 and u0 respectively, with
ρ0 ∈ L∞(Ω), ρ0 > 0 and e0 ∈ L∞(Ω), e0 > 0.

The use of staggered space discretization for compressible flows is classical: indeed, the well-known Marker-
And-Cell (MAC) scheme of [12, 13], was followed by numerous works, see e.g. [3, 18–20,23, 25, 27, 29] or [28] for
a textbook); a salient feature of staggered discretisations is their native stability for the numerical simulation
of incompressible flows, thus yielding asymptotic preserving schemes in the low Mach number regime. The
decoupling of the fluxes between material velocity and pressure–like part has been implemented in industrial
hyprodynamics codes for quite some time for instance in Lagrange-remap schemes, see e.g. [2, 5, 26]. Following
this line of thought, some numerical schemes for the Euler equations on general staggered grids have been
recently developed [10, 11, 14, 15] (see also [6] for a similar approach in the Lagrange-projection framework),
with share the following features:

- a special attention is paid to the discretization of the momentum convection in Equation (1b) to ensure that
discrete solutions satisfy a discrete kinetic energy balance, i.e. a discrete version of

∂t(ρEk) + div(ρEk u) + u. ·∇p = −R, R ≥ 0, (2)
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3 Laboratoire Jean Dieudonné, Université de Nice-Sophia Antipolis, France, sebastian.minjeaud@unice.fr
4 CEA/CESTA 33116, Le Barp, France, nicolas.therme@cea.fr



2

where the expression of the discrete remainder R is established from the discrete mass and momentum
balance equations (see Section 5. This quantity R may be seen as the dissipation associated to the numerical
diffusion.

- the scheme solves the internal energy balance, i.e. the relation which may be formally derived at the contin-
uous level by subtracting (2) from (1c):

∂t(ρ e) + div(ρ eu) + p divu = R. (3)

These features are also at the heart of a recently developed collocated finite volume scheme [17], and yield an
essential outcome: a suitable discretization of (3) ensures that e ≥ 0 and that an entropy inequality can be
derived [9], with a remarkably unsophisticated definition of the convection fluxes: indeed, upwinding is performed
equation per equation, with respect to the material velocity only, so without any exact or approximate solution
of Riemann problems at interfaces, thus yielding a natural extension to various equations of state and to more
complex problems, such as the reactive Euler equations. Here, the final goal is to use rather a staggered
arrangement of the unknowns to obtain a (class of) schemes that are natively able to cope with all Mach
flows [11, 16]; however, passing from the collocated to the staggered framework renders the application of the
above-described strategy much more intricate: indeed, the discrete kinetic energy balance is posed on the
dual mesh while the internal energy balance is posed on the primal one, and a simple addition of the discrete
analogues of (2) and (3) is no more possible. A crucial question when designing the various steps of the scheme
is whether the resulting scheme is conservative and consistent; here in particular, special attention must be paid
to the convection operator for the velocity, which is designed in order to respect stability properties only (i.e.,
as already mentioned, so as to allow to derive a discrete kinetic energy balance).

The purpose of this paper is to obtain (positive) answers to these questions: we show that a discrete convection
operator on the primal mesh may be derived from the staggered operator for a ”cell average” of the face variables
(i.e., in this context, either the velocity components or the kinetic energy), and that this convection operator
satisfies a Lax-Wendroff consistency property. To fix ideas, we will work with specific choices for the space
and time discretizations, namely an explicit scheme based, with velocity unknowns belonging to the so-called
Rannacher-Turek low-order finite element space [24]; however, the arguments invoked below are rather general.
The extension to simplicial meshes, with non conforming P1 velocity unknowns is straightforward. A similar
construction is also possible for the so-called Marker And Cell (MAC) scheme; in particular, the derivation of a
convection operator on primal meshes from its staggered analogue is performed, with this latter discretization,
in [22].

The schemes studied here are implemented in the open-source software CALIF3S [4] developed at the French
Institut de Radioprotection et de Sûreté Nucléaire (IRSN); they have been extensively tested numerically in
[10, 11, 14, 15] and are routinely used in nuclear safety applications. We thus do not reproduce these numerical
tests here. Note that the proof of consistency given below applies in particular to the MUSCL-like scheme which
was introduced in [10].

2. Meshes and unknowns

Let Ω be an open bounded polyhedral set of Rd, d ≥ 1. We suppose given a mesh M of Ω, i.e. a finite
collection of compact connected sets K ∈ M, called cells, such that

Ω =
⋃

K∈M

K and K̊ ∩ L̊ = ∅, ∀K ∈ M, ∀L ∈ M, K 6= L.

The cells are assumed to be intervals (if d = 1), quadrangles (if d = 2), or hexahedra (if d = 3). In the
multidimensional case, the boundary of each cell K ∈ M is a union of 4 (if d = 2) or 6 (if d = 3) parts of
hyperplanes of Rd, which are called faces for short in the following, for d = 2 as for d = 3; the boundary ∂K
of K reads ∂K = ∪σ∈EK

σ where EK is the set of the faces of K. We denote by E the set of all faces, namely
E = ∪K∈MEK . We suppose that the mesh is conforming in the usual sense, i.e. that any cells K and L of the
mesh is either disjoint (possibly up to common vertex or edge) or share a whole face. We denote by Eint the
set of elements σ of E such that there exist K and L in M (K 6= L) such that σ ∈ EK ∩ EL; such a face σ
is denoted by σ = K|L. The set of faces located on the boundary of Ω, i.e. E \ Eint, is denoted by Eext. For
K ∈ M we denote by hK the diameter of K. The size of the mesh M is hM = max{hK ,K ∈ M}. For K ∈ M
and σ ∈ EK , we denote by nK,σ the unit normal vector to σ outward K. If A is a measurable set of Rd or, for
d > 1, of Rd−1, we denote by |A| the Lebesgue measure of A.
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We also introduce now a dual mesh, that is a new partition of Ω indexed by the elements of E , namely
Ω = ∪σ∈EDσ. For an internal face σ = K|L, the set Dσ is supposed to be a subset of K ∪ L and we define
DK,σ = Dσ ∩K, so that Dσ = DK,σ ∪DL,σ (see Figure 1); for an external face σ of a cell K, Dσ is a subset
of K, and Dσ = DK,σ. The cells (Dσ)σ∈E are referred to as the dual or diamond cells, and DK,σ as half dual
cells or half diamond cells. For a rectangular or a rectangular paralleliped, we define DK,σ as the cone having
the mass center of K as vertex and the face σ as basis; this definition is extended to general primal meshes by
supposing that |DK,σ| is still equal to |K| divided by the number of the faces of K, denoted by ζ:

|DK,σ| =
|K|

ζ
, (4)

and that the sub-cells connectivities (i.e. the way the half-dual cells share a common face) is left unchanged. In
one space dimension, DK,σ is half of the cell K adjacent to σ. The faces of the dual cells are referred to as dual
faces; we denote by E(Dσ) and E(DK,σ) the set of faces of Dσ and DK,σ respectively (so σ ∈ E(DK,σ)) and by
ǫ = σ|τ the dual face separating Dσ and Dτ . Note that the actual geometry of the dual cells or dual faces does
not need to be specified (and a dual cell may not be a polytope, a dual face being possibly not included in an
hyperplane of Rd), and we will see in the following that it is not required for the definition of the scheme.

The scalar unknowns are associated to the cells of the mesh, and read (ρK)K∈M, (pK)K∈M and (eK)K∈M

for the density, the pressure and the internal energy respectively. The velocity unknowns are associated to the
faces and read (uσ)σ∈E , with uσ = (u1,σ, . . . , ud,σ)

t the velocity vector associated to σ.

K

L

σ = K|L
D
L,σ

D
K,σ

Figure 1. Mesh and associated notations.

3. General form of the scheme

For the sake of simplicity, we focus here on an explicit-in-time form of the scheme. Let (tn)0≤n≤N , with
0 = t0 < t1 < . . . < tN = T , define a partition of the time interval (0, T ), which we suppose uniform for the sake
of simplicity, and let δt = tn+1 − tn for 0 ≤ n ≤ N − 1 be the (constant) time step. We consider a fractional
step scheme, which involves only explicit steps and reads in its fully discrete form, for 0 ≤ n ≤ N − 1:

∀K ∈ M,
|K|

δt
(ρn+1
K − ρnK) +

∑

σ∈E(K)

FnK,σ = 0, (5a)

∀K ∈ M,
|K|

δt
(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

FnK,σe
n
σ + |K| pnK (divu)nK = SnK , (5b)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K , (5c)
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For 1 ≤ i ≤ d, ∀σ ∈ E ,

|Dσ|

δt
(ρn+1
Dσ

un+1
σ,i − ρnDσ

unσ,i) +
∑

ǫ∈E(Dσ)

Fnσ,ǫu
n
ǫ,i + |Dσ| (∇p)n+1

σ,i = 0, (5d)

where the terms introduced for each discrete equation are now defined. The mass flux FnK,σ (equations (5a) and

(5b)) vanishes on external edges to comply with the boundary conditions and, for σ ∈ Eint, σ = K|L, we have

FnK,σ = |σ| ρnσ u
n
σ · nK,σ, (6)

where ρnσ is an approximation of the density at the face which is a convex combination of ρnK and ρnL, which does
not need to be specified further for the matter at hand in this paper. Similarly, the internal energy enσ at the
face σ = K|L in Equation (5b) is supposed to be a convex combination of enK and enL. Note that this assumption
allows us to deal both with the upwind scheme or with the quasi 2nd-order scheme using a MUSCL-like choice
introduced in [10].

In the same relation, the quantity (divu)nK reads:

(divu)nK =
1

|K|

∑

σ∈E(K)

|σ| unσ · nK,σ.

The pressure gradient in the momentum balance equation (5d) is obtained by transposition of the divergence
operator with respect to the L2 inner product, and reads for σ = K|L

(∇p)n+1
σ =

1

|Dσ|
(pn+1
L − pn+1

K ) nK,σ,

and (∇p)n+1
σ,i stands for the ith component of (∇p)n+1

σ . The momentum convection operator (i.e. the first two

terms of Equation (5d)) are detailed in Section 4. The term SnK at the right-hand side of Equation (5b) is
a corrective term introduced for consistency, with the aim to compensate the discrete dissipation due to the
numerical diffusion in the discrete momentum balance equation (5d); its precise expression is given in Section
5. A numerical diffusion term, not featured here, may be introduced in applications in the momentum balance
equation to stabilize the scheme. The initial approximations for ρ, e and u are given by the average of the
initial conditions ρ0 and e0 on the primal cells and of u0 on the dual cells:

∀K ∈ M, ρ0K =
1

|K|

∫

K

ρ0(x) dx, and e0K =
1

|K|

∫

K

e0(x) dx,

∀σ ∈ E , u
0
σ =

1

|Dσ|

∫

Dσ

u0(x) dx.

(7)

4. The discrete convection on the dual mesh

Let z be a variable associated to the faces of the mesh, i.e. to the degrees of freedom (znσ )σ∈E, 0≤n≤N . The
discrete convection operator for z (i.e. the discretization of ∂t(ρz) + div(ρzu)) is defined by:

Cnσz =
|Dσ|

δt
(ρn+1
Dσ

zn+1
σ − ρnDσ

znσ ) +
∑

ǫ∈E(Dσ)

Fnσ,ǫ z
n
ǫ , (8)

where, for ǫ = σ|τ , znǫ is supposed to be a convex combination of znσ and znτ . The density ρnDσ
at the face σ is a

weighted combination of the density in the neighbouring primal cells, given by, for 0 ≤ n ≤ N :

ρnDσ
=

1

|Dσ|

(
|DK,σ| ρ

n
K + |DK,σ| ρ

n
K

)
, for σ = K|L ∈ Eint

ρnDσ
= ρnK , for σ ∈ Eext, σ ∈ E(K).

(9)
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We suppose that the mass fluxes through the dual edges ǫ are obtained thanks to a mass balance over the
half-diamond cells, i.e. satisfy, for σ ∈ E(K):

∑

ǫ∈E(DK,σ)

Fnσ,ǫ =
1

ζ

∑

τ∈E(K)

FnK,τ , (10)

where we recall that ζ stands for the number of faces of K, so ζ = 2 in one space dimension, ζ = 4 in two space
dimensions and ζ = 6 in three space dimensions. In addition, they are also supposed to satisfy, for K ∈ M,
σ ∈ E(K) and ǫ ⊂ K, ǫ ∈ E(Dσ):

Fσ,ǫ =
∑

τ∈E(K)

ξǫ,τ FK,τ , (11)

where the coefficients ξǫ,τ are fixed real numbers, i.e. independent of the cell K and the mesh M. Finally, for
diamond cells adjacent to a boundary (which are in fact reduced to a half-diamond cell), one dual face (at least)
is an external face, and coincides with a primal face, let us say σ; the mass flux through this face is supposed to
vanish (i.e. to take the same value as the primal mass flux FK,σ , with K the cell adjacent to σ). The expression
of the coefficients (ξǫ,τ ) may be found in [1] for quadrangles in two space dimensions and in [21] for various
meshes (including hexahedra in three space dimensions).

The essential outcome of the construction of the dual mass fluxes lies in the fact that (9) and (10), together
with the assumption (4) imply that a mass balance holds over the dual cells:

∀σ ∈ E ,
|Dσ|

δt
(ρn+1
Dσ

− ρnDσ
) +

∑

ǫ∈E(Dσ)

Fnσ,ǫ = 0. (12)

5. Discrete kinetic energy balance

Thanks to this relation, the scheme satisfies a discrete kinetic energy balance, which is stated in the following
lemma (see [15] for a proof).

Lemma 5.1 (Discrete kinetic energy balance). A solution to the system (5) satisfies the following equality, for

1 ≤ i ≤ d, σ ∈ E and 0 ≤ n ≤ N − 1:

1

2

|Dσ|

δt

[
ρn+1
Dσ

(un+1
σ,i )2 − ρnDσ

(unσ,i)
2
]
+

1

2

∑

ǫ∈E(Dσ)

Fnσ,ǫ (u
n
ǫ,i)

2

+ |Dσ| (∇p)n+1
σ,i un+1

σ,i = −Rn+1
σ,i , (13)

with:

Rn+1
σ,i =

1

2

|Dσ|

δt
ρn+1
Dσ

(un+1
σ,i − unσ,i)

2 −
1

2

∑

ǫ∈E(Dσ)

Fnσ,ǫ (u
n
ǫ,i − unσ,i)

2

+ (un+1
σ,i − unσ,i)

∑

ǫ∈E(Dσ)

Fnσ,ǫ (u
n
ǫ,i − unσ,i). (14)

The corrective term in the internal energy balance compensates this remainder term:

∀K ∈ M, Sn+1
K =

1

2

d∑

i=1

∑

σ∈E(K)

Rn+1
σ,i . (15)

At the first time step, this corrective term is simply set to zero:

S0
K = 0, ∀K ∈ M.

With the upwind choice for the velocity at the dual face, the remainder term Rn+1
σ,i may be proven to be

non-negative under a CFL condition. In this case, Sn+1
K is also non-negative, and with a suitable choice of the

internal energy at the face (upwind or MUSCL choice with respect to the material velocity), the internal energy
remains non-negative by construction of the scheme [10].
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K
ǫ
1

−Fσ
,ǫ1

ǫ2
−
F
σ
,ǫ

2

ǫ
3

Fσ,ǫ
3

ǫ4

F
σ,ǫ

4

σ

GK,σ = 1
2 (−Fσ,ǫ1zǫ1 − Fσ,ǫ2zǫ2
+Fσ,ǫ3zǫ3 + Fσ,ǫ4zǫ4)

Figure 2. Definition of the convection flux at a primal face.

6. Returning to the primal mesh

For K ∈ M, let us define a reconstructed convection operator CnK from the face convection operators Cnσ
defined by (8) as follows. For a given scalar field (zσ)σ∈Eint , we set:

CnKz =
1

2

∑

σ∈E(K)

Cnσz

=
1

δt

∑

σ∈E(K)

|Dσ|

2
(ρn+1
Dσ

zn+1
σ − ρnDσ

znσ) +
1

2

∑

σ∈E(K)

∑

ǫ∈E(Dσ)

Fnσ,ǫ z
n
ǫ . (16)

We now define the following quantities (see Figure 2):

|K| (ρz)nK =
∑

σ∈E(K)

|Dσ|

2
ρnDσ

znσ , (17)

GnK,σ = −
1

2

∑

ǫ∈E(Dσ),ǫ⊂K

Fnσ,ǫ z
n
ǫ +

1

2

∑

ǫ∈E(Dσ),ǫ 6⊂K

Fnσ,ǫ z
n
ǫ . (18)

We easily check that the fluxes GnK,σ are conservative, in the sense that, for σ = K|L, GnK,σ = −GnL,σ. A simple

reordering of the summations in (16) using the conservativity of the mass fluxes through the dual edges yields:

CnKz =
|K|

δt

(
(ρz)n+1

K − (ρz)nK
)
+

∑

σ∈E(K)

GnK,σ. (19)

7. Lax-Wendroff consistency of the primal mesh convection operator

The aim of the this section is to check the consistency, in the Lax-Wendroff sense, of the discrete operator
CnK .
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We suppose given a sequence of meshes (M(m))m∈N and time steps (δt(m))m∈N, with hM(m) and δt(m) tending
to zero as m tends to +∞. Form ∈ N, let us denote by ρ(m), u(m) and z(m) the discrete functions corresponding
to the approximation on the mesh M(m) and with the time step δt(m) of ρ, u and z respectively, defined by:

ρ(m)(x, t) =
N(m)−1∑

n=0

∑

K∈M(m)

ρnK XK X[tn,tn+1), (20)

u
(m)(x, t) =

N(m)−1∑

n=0

∑

σ∈E(m)

u
n
σ XDσ

X[tn,tn+1), (21)

z(m)(x, t) =
N(m)−1∑

n=0

∑

σ∈E(m)

znσ XDσ
X[tn,tn+1), (22)

where XK , XDσ
and X[tn,tn+1) stand for the characteristic function of K, Dσ and the interval [tn, tn+1) respec-

tively.

We denote by θM,1 the following measure of the regularity of a mesh:

θM,1 = max
{ |K|

|L|
,
|L|

|K|
for σ = K|L ∈ Eint,

}
, (23)

Note that, since |DK,σ| = |K|/ζ (recall that ζ is the number of faces of K), we have

|Dσ| =
1

ζ
(|K|+ |L|) ≤

1

ζ
(1 + θM,1) |K|. (24)

Thanks to (24), the proof of the following lemma is a straightforward consequence of [8, Lemma 4.3].

Lemma 7.1 (Limit of the difference of unknowns translates). Let θ > 0 and (M(m))m∈N be a sequence of

meshes such that θM(m),1 ≤ θ for all m ∈ N and limm→+∞ hM(m) = 0. We also assume that δt(m) tends to

zero.

Let (̺(m))m∈N and (z(m))m∈N be a sequence of discrete functions associated to the sequence of meshes and

time steps, that are piecewise constant over respectively the primal cells and the dual cells. Let us suppose that

(̺(m))m∈N and (z(m))m∈N converge in L1(Ω× (0, T )) to ¯̺ and z̄ respectively. Then

lim
m→+∞

N(m)−1∑

n=0

δt(m)
∑

σ∈E(m)

σ=K|L

|Dσ| |̺
n
K − ̺nL| = 0, (25)

and

lim
m→+∞

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

|K|
∑

σ,τ∈E(K)

|znσ − znτ | = 0. (26)

Let ϕ ∈ C∞
c (Ω× [0, T )) and let us define ϕnK by

ϕnK = ϕ(xK , tn), for K ∈ M(m) and 0 ≤ n ≤ N (m), (27)

where xK stands for an arbitrary point of K. For σ ∈ Eint, σ = K|L, we denote by dσ the distance dσ =
|xK − xL|, and we introduce the following additional measure of the mesh regularity:

θM,2 = max
K∈M

{∑
τ∈E(K) |τ |

|K|
max

σ=K|L∈E(K)
{hK + hL}

}
. (28)

Note that for σ ∈ Eint, σ = K|L, we have

|σ| dσ ≤ |σ| (hK + hL) ≤ θM,2 min(|K|, |L|) ≤
2θM,2

ζ
|Dσ|. (29)
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Also note that the parameter θM,2 defined in (28) is bounded independently of the mesh size if there exists
C ∈ R+ such that |K| ≥ Ch and |σ| ≤ Chd−1, for all K ∈ M and σ ∈ E .

Let the piecewise vector function ∇E,T ϕ be defined by:

∇E,T ϕ =

N−1∑

n=0

∑

σ∈E

(∇E,T ϕ)
n
σ XDσ

(x) X[tn,tn+1[(t), with

(∇E,T ϕ)
n
σ =





|σ|

|Dσ|
(ϕnL − ϕnK)nK,σ if σ ∈ Eint, σ = K|L,

0 if σ ∈ Eext.

(30)

This vector function may be seen as a non-consistent discrete gradient which seems to appear first in [7], where
its convergence properties are shown for specific meshes and norms. The following weak convergence result
holds [8, Theorem 3.2].

Lemma 7.2. Let (M(m))m∈N be a sequence of meshes such that the mesh step hM(m) tends to zero when m
tends to +∞. We suppose that there exists a real number θ such that θM(m),2 ≤ θ for m ∈ N. Let (δt(m))m∈N

be a sequence of time steps such that δt(m) tends to zero when m tends to +∞. Let ϕ ∈ C∞
c (Ω × [0, T )) and,

for m ∈ N, ∇E(m),T (m) ϕ ∈ L∞(Ω× (0, T ))d be defined by (30).

Then the sequence (∇E(m),T (m) ϕ)m∈N is bounded in L∞(Ω×(0, T ))d uniformly with respect tom and converges

to ∇ϕ in L∞(Ω× (0, T ))d weak ⋆.

Multiplying (17) by ϕnK defined by (27), summing over K ∈ M(m) and n = 0, . . . , N (m) − 1 yields

N(m)−1∑

n=0

δt
∑

K∈M(m)

CnKz ϕ
n
K = T

(m)
∂t + T

(m)
div (31)

with

T
(m)
∂t =

N(m)−1∑

n=0

∑

K∈M(m)

|K|
(
(ρz)n+1

K − (ρz)nK
)
ϕnK , (32)

T
(m)
div =

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

ϕnK
∑

σ∈E(K)

GnK,σ. (33)

We are now in position to state the following consistency results.

Lemma 7.3 (Consistency of the time derivative). Let (M(m))m∈N and (δt(m))m∈N be a sequence of meshes

and time steps such that the space and time steps, hM(m) and δt(m), tend to zero when m tends to +∞. Let

(ρ(m))m∈N and (z(m))m∈N be a sequence of discrete functions associated to (M(m))m∈N and (δt(m))m∈N. Let

us suppose that (ρ(m))m∈N and (z(m))m∈N converge in L1(Ω × (0, T )) to ρ̄ and z̄ respectively, and that both

sequences are bounded in L∞(Ω× (0, T )). Finally, let ϕ ∈ C∞
c (Ω× [0, T ) and let T

(m)
∂t be defined by (32). Then

lim
m→+∞

T
(m)
∂t = −

∫ T

0

∫

Ω

ρ̄ z̄ ∂tϕdx dt−

∫

Ω

ρ0 z0 ϕ(x, 0) dx.

Proof. Let (ρz)(m) be the function associated to ((ρz)nK)K∈M,0≤n<N) that is piecewise constant on the primal
cells and time intervals. Since in general, |DK,σ| 6=

1
2 |Dσ| (so that |K| 6= 1

2

∑
σ∈E(K) |Dσ|), the quantity (ρz)K

given by Equation (17) is not a convex combination of the value of the density and z at the primal faces, so
that it is not clear that (ρz)(m) converges to ρ̄z̄ in L1(Ω × (0, T ) as m → +∞. However, since {Dσ, σ ∈ E} is
a partition of Ω, we may expect that (ρz)(m) weakly converges to ρ̄z̄; we prove this result in a first preliminary
step and prove the consistency of the time derivative term in a second step.
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Step 1. Weak convergence of (ρz)(m). Let ψ ∈ C∞
c (Ω× [0, T )), and, for K ∈ M(m) and 0 ≤ n ≤ N (m),

let us define ψ̃nK as the mean value of ψ over K × (tn, tn+1). Let us write

I(m) =

∫ T

0

∫

Ω

(ρz)(m)ψ dx dt =

N(m)−1∑

n=0

δt
∑

K∈M(m)

|K| (ρz)nK ψ̃
n
K .

By the definitions (17) and (9), we get:

I(m) =
N(m)−1∑

n=0

δt
∑

K∈M(m)

∑

σ∈E(K)

1

2

(
|DK,σ| ρ

n
K + |DL,σ| ρ

n
L

)
znσ ψ̃

n
K .

We now decompose I(m) = T
(m)
1 +R

(m)
1 with

T
(m)
1 =

N(m)−1∑

n=0

δt
∑

K∈M(m)

∑

σ∈E(K)

|DK,σ| ρ
n
K znσ ψ̃

n
K .

Then

T
(m)
1 =

∫ T

0

∫

Ω

ρ(m)z(m)ψ dx dt.

The sequences (ρ(m))m∈N and (z(m))m∈N converge to ρ̄ and z̄ in Lp(Ω × (0, T )) for 1 ≤ p < +∞ (since, by
assumption, these sequences converge in L1(Ω× (0, T )) and are uniformly bounded). We thus have:

lim
m→+∞

T
(m)
1 =

∫ T

0

∫

Ω

ρ̄ z̄ ψ dx dt.

The remainder term R
(m)
2 reads

R
(m)
1 =

N(m)−1∑

n=0

δt
∑

K∈M(m)

∑

σ∈E(K)

1

2

(
|DL,σ| ρ

n
L − |DK,σ| ρ

n
K

)
znσ ψ̃

n
K .

For m large enough, since the support in space of ψ is compact in Ω, ψ vanishes in the cells having a face
included in the boundary, and a reordering of the sums yields

R
(m)
1 =

N(m)−1∑

n=0

δt
∑

K∈M(m)

∑

σ∈E(K)
σ=K|L

1

2
|DK,σ| ρ

n
K znσ (ψ̃nL − ψ̃nK),

≤ Cψ T |Ω| ||ρ(m)||L∞(Ω×(0,T )) ||z
(m)||L∞(Ω×(0,T )) hM(m)

where Cψ ∈ R+ depends only on ψ; therefore, R
(m)
1 tends to zero when m tends to +∞. Finally, we observe

that the sequence (ρz)m∈N is bounded in L∞(Ω × (0, T )), so that, by density, we obtain the weak convergence
of this sequence in Lp(Ω× (0, T )), for 1 ≤ p < +∞ (note that weak convergence for a limited range of indexes
p would have been obtained under weaker assumptions on the unknowns, namely a control in Lq with a given
finite q, only under regularity assumptions for the mesh; uniform boundedness is the only case where no such
assumption is needed). A similar proof shows that the function of space only (ρz)0 obtained from the initial
conditions (7) weakly converges to ρ0z0 in Lp(Ω), for 1 ≤ p < +∞.

Step 2. Weak consistency of the time term. Let us now turn to T
(m)
∂t . A discrete integration by parts

with respect to time yields T
(m)
∂t = T

(m)
∂t,1 + T

(m)
∂t,2 with

T
(m)
∂t,1 = −

N(m)−1∑

n=0

δt
∑

K∈M(m)

|K| (ρz)n+1
K

ϕn+1
K − ϕnK

δt
,

T
(m)
∂t,2 = −

∑

K∈M(m)

|K|(ρz)0K ϕ0
K .
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Let us denote by ð
(m)
t ϕ the following time discrete derivative of ϕ:

ð
(m)
t ϕ =

N(m)−1∑

n=0

∑

K∈M(m)

ϕn+1
K − ϕnK

δt
XK X[tn,tn+1).

With this notation, we get:

T
(m)
∂t,1 = −

∫ T

δt

∫

Ω

(ρz)(m)
ð
(m)
t ϕ(., t− δt) dx dt.

Thanks to the regularity of ϕ, ð
(m)
t ϕ tends to ∂tϕ when m tends to +∞ in L∞(Ω× (0, T )), so that, thanks to

the weak convergence of the sequence ((ρz)(m))m∈N,

lim
m→+∞

T
(m)
∂t,1 = −

∫ T

0

∫

Ω

ρ̄ z̄ ∂tϕdx dt.

Similarly, the sequence of piecewise functions of space ((ϕ(m))0)m∈N converges to ϕ(., 0) in L∞(Ω), so that

lim
m→+∞

T
(m)
∂t,2 = −

∫

Ω

ρ0 z0 ϕ(x, 0) dx,

which concludes the proof. �

We now turn to the second term of (31), namely the divergence term T
(m)
div .

Lemma 7.4 (Consistency of the divergence term). Let θ > 0 and (M(m))m∈N be a sequence of meshes such that

max(θM(m),1, θM(m),2) ≤ θ for all m ∈ N and limm→+∞ hM(m) = 0. Let (δt(m))m∈N be a sequence of time steps

such that δt(m) tends to zero when m tends to +∞. Let (ρ(m))m∈N, (u
(m))m∈N and (z(m))m∈N be a sequence of

discrete functions associated to to (M(m))m∈N and (δt(m))m∈N. Let us suppose that (ρ(m))m∈N and (z(m))m∈N

converge in L1(Ω × (0, T )) to ρ̄ and z̄ respectively, and that both sequences are bounded in L∞(Ω × (0, T )).
We assume in addition that (u(m))m∈N converges to ū in L1(Ω× (0, T ))d, and is bounded in L∞(Ω× (0, T ))d.

Finally, let ϕ ∈ C∞
c (Ω× [0, T ) and let T

(m)
div be defined by (33). Then

lim
m→+∞

T
(m)
div = −

∫ T

0

∫

Ω

ρ̄ z̄ ū ·∇ϕdx dt.

Proof. Since the support in space of ϕ is compact in Ω, for m large enough, ϕnK vanishes for 0 ≤ n ≤ N (m) − 1
for every cell K having one of its face on the boundary. For such an index m, reordering the summations, we
get:

T
(m)
div =

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

GnK,σ (ϕnK − ϕnL). (34)

Let σ ∈ Eint, σ = K|L. By the property (10) of the mass fluxes through the dual cells, we get

−
∑

ǫ∈E(Dσ)
ǫ⊂K

Fnσ,ǫ z
n
ǫ = −znσ

∑

ǫ∈E(Dσ)
ǫ⊂K

Fnσ,ǫ +Rnσ,1

= znσ

(
FnK,σ −

1

ζ

∑

τ∈E(K)

FnK,τ

)
+Rnσ,1,

with
Rnσ,1 = −

∑

ǫ∈E(Dσ)
ǫ⊂K

Fnσ,ǫ (z
n
ǫ − znσ ).

Similarly: ∑

ǫ∈E(Dσ)
ǫ 6⊂K

Fnσ,ǫ z
n
ǫ = znσ

(
FnK,σ +

1

ζ

∑

τ∈E(L)

FnL,τ

)
+Rnσ,2,
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with
Rnσ,2 =

∑

ǫ∈E(Dσ)
ǫ 6⊂K

Fnσ,ǫ (z
n
ǫ − znσ ).

Finally, we get

GnK,σ = FnK,σ z
n
σ +

1

2
Rnσ,1 +

1

2
Rnσ,2 +Rnσ,3, (35)

with

Rnσ,3 =
1

2ζ
znσ

( ∑

τ∈E(L)

FnL,τ −
∑

τ∈E(K)

FnK,τ

)

Using the expression (35) in (34), we get T
(m)
div = T

(m)
0 + T

(m)
2 + T

(m)
3 , with

T
(m)
0 =

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

FnK,σ z
n
σ (ϕnK − ϕnL),

T
(m)
2 =

1

2

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

(Rnσ,1 +Rnσ,2) (ϕ
n
K − ϕnL),

T
(m)
3 =

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

Rnσ,3 (ϕnK − ϕnL).

We begin with the term T
(m)
0 , which we decompose as T

(m)
0 = T

(m)
1 +R

(m)
0 with:

T
(m)
1 = −

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

(|DK,σ| ρ
n
K + |DL,σ| ρ

n
L) z

n
σ u

n
σ ·

|σ|

|Dσ|
(ϕnL − ϕnK)nK,σ

= −

∫ T

0

∫

Ω

ρ(m) z(m)
u
(m) ·∇E(m),T (m)ϕdx dt;

again using the fact that the convergence in L1(Ω× (0, T )) and the boundedness in L∞(Ω× (0, T )) implies the
convergence in any Lp(Ω× (0, T )), 1 ≤ p < +∞, we get by Lemma 7.2 that

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

ρ̄ z̄ ū ·∇ϕdx dt.

The residual term R
(m)
0 reads:

R
(m)
0 =

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

|σ|
[ |DK,σ|

|Dσ|
(ρnσ − ρnK) +

|DL,σ|

|Dσ|
(ρnσ − ρnL)

]

znσ u
n
σ · nK,σ (ϕnK − ϕnL),

The regularity of ϕ implies that, for σ ∈ E , σ = K|L and 0 ≤ n ≤ N − 1, |ϕnK − ϕnL| ≤ Cϕdσ. Hence, since ρnσ
is a convex combination of ρnK and ρnL, there exists C > 0, depending on the L∞ bound of the unknowns and
on ϕ, such that

|R
(m)
0 | ≤ C

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

|σ| dσ |ρnK − ρnL|,

and thus R
(m)
0 tends to zero when m tends to +∞ thanks to the assumed regularity of the sequence of meshes

and Lemma 7.1.
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The term T
(m)
2 reads:

T
(m)
2 =

1

2

N(m)−1∑

n=0

δt(m)
∑

σ∈E(m)

σ=K|L

[ ∑

ǫ∈E(Dσ)
ǫ⊂L

Fnσ,ǫ (znǫ − znσ) −
∑

ǫ∈E(Dσ)
ǫ⊂K

Fnσ,ǫ (znǫ − znσ )
]

(ϕnK − ϕnL).

For ǫ = σ|τ , zǫ is supposed to be a convex combination of zσ and zτ , so that |zǫ− zσ| ≤ |zτ − zσ|. We thus get,
reordering the sums, with the same constant Cϕ as previously:

|T
(m)
2 | ≤ Cϕ

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

∑

ǫ⊂K
ǫ=σ|τ

(dσ + dτ ) |F
n
σ,ǫ| |z

n
σ − znτ |

Using now the expressions (11) and (6), and introducing ξ = maxτ∈E(K) ξǫ,τ (recall that the coefficients ξǫ,τ do
not depend on the cell K), we get:

|T
(m)
2 | ≤ Cϕ ξ

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

|K|
∑

ǫ⊂K
ǫ=σ|τ

1

|K|
(dσ + dτ )

( ∑

ω∈E(K)

|ω| ρnω |unω|
)
|znσ − znτ |.

Since the unknowns are assumed to be bounded, by the assumed regularity of the sequence of meshes (see (28)

for the definition of the regularity parameter θM,2), Lemma 7.1 thus implies that T
(m)
2 tends to zero when m

tends to +∞.

Let us turn to the term T
(m)
3 ; using the fact that, for any cell K,

∑

σ∈E(K)

|σ| nK,σ = 0,

and denoting by u
n
K a convex combination of the face velocities (uσ)σ∈E(K), we get:

T
(m)
3 =

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

1

2ζ
znσ

( ∑

τ∈E(L)

FnL,τ −
∑

τ∈E(K)

FnK,τ

)
(ϕnK − ϕnL)

=

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

1

2ζ
znσ

( ∑

τ∈E(L)

|τ | (ρnτu
n
τ − ρnLu

n
L) · nL,τ

−
∑

τ∈E(K)

|τ | (ρnτu
n
τ − ρnKu

n
K) · nK,τ

)
(ϕnK − ϕnL).

Using the regularity of ϕ and the fact that the unknowns are assumed to be bounded, we get by a reordering
of the summations that there exists Cϕ only depending on ϕ such that

|T
(m)
3 | ≤ Cϕ

N(m)−1∑

n=0

δt(m)
∑

σ∈E(m)

σ=K|L

|Vσ,K | |ρnσu
n
σ − ρnKu

n
K |+ |Vσ,L| |ρ

n
σu

n
σ − ρnLu

n
L|,

where the quantity |Vσ,K | is homogeneous to a volume, reads

|Vσ,K | = |σ|
∑

τ∈E(K)

dτ .

and satisfies

|Vσ,K | <
∑

σ∈E(K)

|Vσ,K | =
∑

σ, τ∈E(K)

|σ| dτ =
∑

τ∈E(K)

dτ
∑

σ∈E(K)

|σ| ≤ ζ θM(m),2 |K|.
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By the regularity assumption of the sequence of meshes (see the Definition (23) of the regularity parameter
θM,1), we also have |Vσ,K | < C|Dσ| with C independent of the mesh. Developing the difference of products in
this relation by the identity 2(ab− cd) = (a+ c)(b− d)+ (a− c)(b+ d) for (a, b, c, d) ∈ R4, invoking the assumed

boundedness of the unknowns and Lemma 7.1 thus yields that T
(m)
3 tends to zero when m tends to +∞. �

8. Lax-Wendroff consistency of the scheme

The consistency of the mass balance equation easily follows by the arguments developed in [8], and we focus
here on the equations involving the velocity convection operator, namely the momentum and the total energy
balance equations.

8.1. The momentum balance equation

We show in this section that the limit of a convergent sequence of discrete solutions satifies a weak form of
the momentum balance equation. To this purpose, we derive a discrete momentum balance equation posed over
the primal cells, involving the reconstructed convection operator defined by (19), and pass to the limit in the
resulting relation. The consistency of the convection operator is already treated in the previous section, and we
essentially have to check the consistency of the obtained (primal cell) discrete pressure gradient to obtain the
following result.

Theorem 8.1 (Consistency of the primal cell momentum balance equation). Let θ > 0 and (M(m))m∈N be

a sequence of meshes such that max(θM(m),1, θM(m),2) ≤ θ for all m ∈ N and limm→+∞ hM(m) = 0. We also

assume that δt(m) tends to zero.

Let us suppose that (ρ(m))m∈N and (e(m))m∈N converge in L1(Ω × (0, T )) to ρ̄ and ē respectively, and are

bounded in L∞(Ω × (0, T )); let the sequence (u(m))m∈N converge in L1(Ω × (0, T ))d to ū and be bounded in

L∞(Ω× (0, T ))d.

Then the sequence (p(m))m∈N defined by p(m) = (γ − 1) ρ(m) e(m) for m ∈ N converges in L1(Ω × (0, T )) to

p̄ = (γ − 1) ρ̄ ē and the limits ρ̄, ū and p̄ satisfy the following weak form of the momentum balance equation

which reads: ∫ T

0

∫

Ω

(
ρ̄ ūi ∂tϕ+ ρ̄ ūi ū ·∇ϕ+ p̄ ∂iϕ

)
dx dt+

∫

Ω

ρ0 (u0)i ϕ(x, 0) dx = 0, (36)

for any function ϕ ∈ C∞
c (Ω× [0, T )) and for 1 ≤ i ≤ d.

Proof. Since the sequences (ρ(m))m∈N and (e(m))m∈N are uniformly bounded, their convergence in L1(Ω×(0, T ))
implies their convergence in Lp(Ω× (0, T )) for any finite p > 1, which yields the convergence of (p(m))m∈N to p̄.
Let us now, for m ∈ N and for K ∈ M(m), sum the discrete momentum balance (5d) over the faces of K and
divide by 2. We obtain, for K ∈ M(m), 0 ≤ n < N (m) and 1 ≤ i ≤ d, dropping some superscripts (m) for short:

CnKui +
1

2
σ∈E(K)
σ=K|L |σ| (p

n+1
L − pn+1

K )nK,σ,i = 0. (37)

Let ϕ ∈ C∞
c (Ω × [0, T ) and ϕnK = ϕ(xK , tn), for K ∈ M(m) and 0 ≤ n ≤ N (m), with xK ∈ K. Multiplying

(37) by δt(m)ϕnK and summing over the cells and time levels, we obtain

T
(m)
1 + T

(m)
2 = 0, with

T
(m)
1 =

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

CnKui ϕ
n
K ,

T
(m)
2 =

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

1

2
ϕnK

σ∈E(K)
σ=K|L |σ| (p

n+1
L − pn+1

K )nK,σ,i.

By lemmas 7.3 and 7.4, we get:

lim
m→+∞

T
(m)
1 = −

∫ T

0

∫

Ω

(
ρ̄ ūi ∂tϕ+ ρ̄ ūi ū ·∇ϕ

)
dx dt−

∫

Ω

ρ0 (u0)i ϕ(x, 0) dx.
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Reordering the sums in T
(m)
2 yields

T
(m)
2 =

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

|σ| (pn+1
L − pn+1

K )
ϕnK + ϕnL

2
nK,σ,i

= −
N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

pn+1
K

σ∈E(K)
σ=K|L |σ|

ϕnK + ϕnL
2

nK,σ,i.

For σ ∈ E
(m)
int and 0 ≤ n < N (m), let

ϕnσ =
1

δt(m) |σ|

∫ tn+1

tn

∫

σ

ϕdγ dt, δϕnσ =
ϕnK + ϕnL

2
− ϕnσ .

By regularity of ϕ, there exists a real number Cϕ such that |δϕnσ | ≤ Cϕ (hK + hL). With the notation

(∂iϕ)
n
K = δt(m)σ∈E(K)

σ=K|L |σ| nK,σ,iϕ
n
σ =

∫ tn+1

tn

∫

K

∂iϕdx dt,

we remark that

|(∂iϕ)
n
K | ≤ Cϕ δt

(m) |K|. (38)

We now split T
(m)
2 as T

(m)
2 = −T

(m)
2,1 − T

(m)
2,2 − T

(m)
2,3 with

T
(m)
2,1 =

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

pnK (∂iϕ)
n
K ,

T
(m)
2,2 =

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

(pn+1
K − pnK) (∂iϕ)

n
K ,

T
(m)
2,3 =

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

pn+1
K

σ∈E(K)
σ=K|L |σ| δϕ

n
σnK,σ,i.

The first term reads

T
(m)
2,1 =

∫ T

0

∫

Ω

p(m) ∂iϕdx dt,

so that, since p(m) → p̄ in in L1(Ω× (0, T )) as m→ +∞,

lim
m→+∞

T
(m)
2,1 =

∫ T

0

∫

Ω

p̄ ∂iϕdx dt.

Thanks to (38), we get for T
(m)
2,2 :

|T
(m)
2,2 | ≤ Cϕ

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

|K| |pn+1
K − pnK |,

so T
(m)
2,2 tends to zero when m tends to +∞ by [8, Lemma 4.3]. Reordering the sums in T

(m)
2,3 , we get

T
(m)
2,3 =

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

|σ| δϕnσ (pn+1
K − pn+1

L )nK,σ,i.
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Thanks to the estimate of |δϕnσ | and the regularity assumption on the sequence of meshes which implies that
|σ| (hK + hL) ≤ C |Dσ| (see Inequality (29)), we obtain:

|T
(m)
2,3 | ≤ Cϕ

N(m)−1∑

n=0

δt(m)
∑

σ∈E
(m)
int

σ=K|L

|Dσ| |p
n+1
K − pn+1

L |,

and T
(m)
2,3 tends to zero when m tends to +∞ once again by [8, Lemma 4.3], which concludes the proof. �

8.2. The energy balance equation

We now derive a kinetic energy balance equation associated to the primal mesh and add to the internal
energy balance equation to obtain a discrete total energy balance, which shows that the scheme is, in some
sense, locally conservative with respect to the total energy.

Lemma 8.2 (Local discrete total energy balance). A solution to the scheme (5) satisfies the following total

energy balance equation, for 0 ≤ n ≤ N − 1 and K ∈ M:

|K|

δt

[(
ρn+2
K en+2

K + (ρEk)
n+1
K

)
−
(
ρn+1
K en+1

K + (ρEk)
n
)]

+ σ∈E(K)
σ=K|LF

n+1
K,σ en+1

σ + (Gk)
n
σ + σ∈E(K)

σ=K|L |σ|
pn+1
K + pn+1

L

2
u
n+1
σ · nK,σ = 0, (39)

where the kinetic energy Ek and its associated flux Gk result from the construction of the convection operator

on the primal mesh from the convection on the dual mesh described in Section 6:

|K| (ρEk)
n
K =

1

4

∑

σ∈E(K)

|Dσ| ρ
n
Dσ

|unσ|
2,

(Gk)
n
σ = −

1

2

∑

ǫ∈E(Dσ)
ǫ⊂K

Fnσ,ǫ |u
n
ǫ |

2 +
1

2

∑

ǫ∈E(Dσ)
ǫ 6⊂K

Fnσ,ǫ |u
n
ǫ |

2.
(40)

Proof. For K ∈ M, summing over σ ∈ E(K) and i = 1, . . . , d the kinetic energy balance (13) divided by two
and adding the internal energy balance (5b) of the scheme written at the time step n+ 2 yields Equation (39)
Thanks to its ad hoc definition (15), the corrective term Sn+1

K exactly compensates with the sum of the residual
terms Rn+1

σ defined by (14) to yield a conservative equation. �

We are now in position to prove the following weak consistency result by passing to the limit in the scheme.

Theorem 8.3 (Consistency of the total energy balance equation). Let θ > 0 and (M(m))m∈N be a sequence

of meshes such that max(θM(m),1, θM(m),2) ≤ θ for all m ∈ N and limm→+∞ hM(m) = 0. We also assume that

δt(m) tends to zero.

Let us suppose that (ρ(m))m∈N and (e(m))m∈N converge in L1(Ω × (0, T )) to ρ̄ and ē respectively, and are

bounded in L∞(Ω × (0, T )); let the sequence (u(m))m∈N converge in L1(Ω × (0, T ))d to ū and be bounded in

L∞(Ω× (0, T ))d. We suppose in addition that ρ0 and e0 belong to W 1,1(Ω) and u0 belongs to W 1,1(Ω)d.

Then the sequence (p(m))m∈N defined by p(m) = (γ − 1) ρ(m) e(m) for m ∈ N converges in L1(Ω × (0, T )) to

p̄ = (γ − 1) ρ̄ ē and the limits ρ̄, ū, p̄ and ē satisfy the following weak form of the total energy balance equation:

∫ T

0

∫

Ω

(
ρ̄Ē ∂tϕ+ (ρ̄ Ē + p̄) ū ·∇ϕ

)
dx dt+

∫

Ω

ρ0 (E)0 ϕ(x, 0) dx = 0,

with Ē =
1

2
|ū|2 + ē, (E)0 =

1

2
|u0|

2 + e0 (41)

and for any function ϕ ∈ C∞
c (Ω× [0, T )).
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Proof. The convergence of (p(m))m∈N to p̄ is shown in the proof of Theorem 8.1. We now pass to the limit
in a weak form of Equation (39). Let ϕ ∈ C∞

c (Ω × [0, T ), m ∈ N and ϕnK = ϕ(xK , tn), for K ∈ M(m) and

0 ≤ n ≤ N (m), with xK ∈ K. Multiplying (39) by δt(m)ϕnK and summing over the cells and time levels, we

obtain, dropping the superscripts (m) for short whenever it does not hinder comprehension,

T
(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 + T

(m)
5 = 0, with

T
(m)
1 =

N(m)−2∑

n=0

∑

K∈M(m)

|K| (ρn+2
K en+2

K − ρn+1
K en+1

K ) ϕnK ,

T
(m)
2 =

N(m)−2∑

n=0

∑

K∈M(m)

|K|
(
(ρEk)

n+1
K − (ρEk)

n
K

)
ϕnK ,

T
(m)
3 =

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

ϕnK
∑

σ∈E(K)

|σ| Fn+1
K,σ en+1

σ ,

T
(m)
4 =

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

ϕnK
∑

σ∈E(K)

(Gk)
n
σ,

T
(m)
5 =

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

ϕnK
∑

σ∈E(K)
σ=K|L |σ|

pn+1
K + pn+1

L

2
u
n+1
σ · nK,σ.

Reordering the sums in T
(m)
1 yields T

(m)
1 = T

(m)
1,1 + T

(m)
1,2 with

T
(m)
1,1 = −

N(m)−2∑

n=0

δt(m)
∑

K∈M(m)

|K| ρn+2
K en+2

K

ϕn+1
K − ϕnK
δt(m)

,

T
(m)
1,2 = −

∑

K∈M(m)

|K| ρ1Ke
1
K ϕ0

K .

By a proof similar to that of Step 2 in Lemma 7.3, we get:

lim
m→+∞

T
(m)
1,1 = −

∫ T

0

∫

Ω

ρ̄ ē ∂tϕdx dt.

The treatment of the term T
(m)
1,2 is more intricate, since ρ1K and e1K are not directly related to the initial

conditions; this is the reason why the W 1,1 regularity assumption on the initial conditions is needed. Indeed,
using the discrete internal energy balance (5b), we get:

||ρ1e1 − ρ0e0||L1(Ω) ≤ δt(m) (||divM(ρ0e0u0)||+ ||p0 div(u0)||), with

||divM(ρ0e0u0)|| =
∑

K∈M(m)

|
∑

σ∈E(K)

FnK,σe
n
σ|,

||p0 div(u0)|| =
∑

K∈M(m)

|K| |pnK (divu)nK |.

These last two terms are bounded if ρ0, e0 ∈W 1,1(Ω) and u0 ∈W 1,1(Ω)d and thus, when m converges to +∞,
ρ1 e1 tends to ρ0 e0 in L1(Ω) and

lim
m→+∞

T
(m)
1,2 = −

∫

Ω

ρ0 e0 ϕ(x, 0) dx.

The convergence of the sequence of discrete velocities in L1(Ω×(0, T ))d and its boundedness in L∞(Ω×(0, T ))d

yield that the sequence of discrete functions associated to the kinetic energy also converges in L1(Ω × (0, T ))
and is uniformly bounded, and that the limit is equal to 1

2 |ū|
2. In addition, thanks to the fact that the initial
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velocity u0 belongs to L∞(Ω)d, the sequence (12 |(u
(m))0|2)m∈N defined by (7) converges to 1

2 |u0|2. Lemma 7.3,
with z = Ek, thus shows that

lim
m→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

1

2
ρ̄ |ū|2 ∂tϕdx dt−

∫

Ω

ρ0 |u0|
2 ϕ(x, 0) dx.

Standard arguments combining Lemmas 7.1 and 7.2 show that

lim
m→+∞

T
(m)
3 = −

∫ T

0

∫

Ω

ρ̄ ē ū ·∇ϕdx dt, lim
m→+∞

T
(m)
5 = −

∫ T

0

∫

Ω

p̄ ū ·∇ϕdx dt.

Let (G̃k)
n
σ be defined by:

(G̃k)
n
σ = −

∑

ǫ∈E(Dσ)
ǫ⊂K

Fnσ,ǫ (Ek)
n
ǫ +

∑

ǫ∈E(Dσ)
ǫ 6⊂K

Fnσ,ǫ (Ek)
n
ǫ ,

where, for ǫ = σ|τ , the quantity (Ek)
n
ǫ may be any convex combination of (Ek)

n
σ and (Ek)

n
τ , for instance (Ek)

n
σ

with Dσ the upwind cell of ǫ with respect to Fnσ,ǫ. Let us define T̃
(m)
4 by:

T̃
(m)
4 =

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

ϕnK
∑

σ ∈ E(K)(G̃k)
n
σ ,

Then, the convergence of the sequence of discrete kinetic energies already invoked for the term T
(m)
2 implies

that, thanks to Lemma 7.4,

lim
m→+∞

T̃
(m)
4 = −

∫ T

0

∫

Ω

1

2
|ū|2 ū ·∇ϕdx dt.

Let us write T
(m)
4 = T̃

(m)
4 +R

(m)
4 with

R
(m)
4 =

N(m)−1∑

n=0

δt(m)
∑

K∈M(m)

ϕnK
∑

σ∈E(K)
σ=K|L

[
(Gk)

n
σ − (G̃k)

n
σ

]
.

The fact that R
(m)
4 tends to zero when m tends to +∞ follows from the assumed boundedness of the unknowns

and Lemma 7.1 and concludes the proof. �

Remark 8.1 (On the W 1,1 assumption on the initial data). Note that the W 1,1 assumption on the initial data

is needed because of the time shift on the pressure terms, and because we have taken into account the initial

condition. However, if we take the test function ϕ ∈ Cc(Ω × (0, T )) instead of ϕ ∈ Cc(Ω × [0, T )), then this

assumption is not needed. In particular, the W 1,1 assumption on the initial data is not needed to recover the

Rankine-Hugoniot condition.
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21. J.-C. Latché, B. Piar, and K. Saleh, A discrete kinetic energy preserving convection operator for variable density flows on

locally refined staggered meshes., in preparation (2019).
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