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Abstract

Motivation: The revolution in light sheet microscopy enables the concurrent observation of thou-
sands of dynamic processes, from single molecules to cellular organelles, with high spatiotemporal reso-
lution. However, challenges in the interpretation of multidimensional data requires the fully automatic
measurement of those motions to link local processes to cellular functions. This includes the design and
the implementation of image processing pipelines able to deal with diverse motion types, and 3D visual-
ization tools adapted to the human visual system.

Results: Here, we describe a new method for 3D motion estimation that addresses the aforementioned
issues. We integrate 3D matching and variational approach to handle a diverse range of motion without
any prior on the shape of moving objects. We compare different similarity measures to cope with intensity
ambiguities and demonstrate the effectiveness of the Census signature for both stages. Additionally, we
present two intuitive visualization approaches to adapt complex 3D measures into an interpretable 2D
view, and a novel way to assess the quality of flow estimates in absence of ground truth.

Availability of software: http://serpico.rennes.inria.fr/doku.php?id=data:index

Contact: sandeep.manandhar@inria.fr
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1 Introduction

Motion estimation of cellular and sub-cellular particles is crucial for the understanding of cellular func-
tions. Intracellular dynamics can be complex and exhibits a diverse range of motions. For example,
retrograde flow of actin is a slow process to extend lamellopodia, whereas formation of filopodia and
subsequent cell migration can show faster and larger motions. In three-dimension (3D), light-sheet mi-
croscopy now enables the observation of even more complex behaviours, such as the interaction of a cell in
an extracellular matrix (ECM) that provides mechanical support for cells and influences signaling path-
ways (Davidenko et al.l |2016). Those large and heterogenous 3D datasets motivate the design of a 3D
motion estimation method to measure a large range of motion of intracellular structures, from molecular
motions to cell-wide interactions.

There has been a plethora of works for motion estimation from image sequences in 2D setting. The
pioneering work of [Horn and Schunck] (1981) led to the development of different variational methods for
2D optical flow in natural images (Fortun et al., [2015; |Sun et al., [2010). Most of these methods work in
coarse-to-fine approach where motion is first estimated with image pair of coarser resolution and warped
in subsequent finer resolutions for further refinement. |Brox et al| (2004]) provided a good theoretical
explanation of warping. Later [Brox and Malik| (2011]) integrated feature matching into variational energy
to deal with large displacements. Revaud et al.| (2015) proposed a scheme of matching and interpolation
as initialization for variational method, which produced good performance in different 2D optical flow
benchmarks.The matching is based on a deep predefined convolutional architecture but without learning
weights. It correlates patches at multiple image scales. Each patch is broken down into a hierarchy
of sub-patches, locally matched up to a certain range of motion, and propagated up the hierarchy via
maxpooling and aggregation. [Barnes et al.|(2009) developed a fast patch matching algorithm based on
propagation of good matches and random sampling. These methods further inspired other 2D patch-
based optical flow estimation methods. [Hu et al.| (2016) defined a coarse-to-fine PatchMatch to obtain
semi-dense matches. The method used SIFT features extracted from a coarse grid in each level of image
pyramid for matching. In a subsequent paper, Hu et al|(2017) proposed super-pixel based sampling for
matching and a robust interpolation technique. SIFT and its variants are robust to illumination and
rotation invariant to some extent. However, they are computationally demanding. [Vogel et al.| (2013)), in
their comparative study in optical flow setting, show the robustness of a data term arising from binary
descriptor, namely, Census transform. This data term relates to local binary pattern of image gradient
distribution. Recently, convolutional neural network (CNN)-based methods have been producing state-
of-the-art results in 2D optical flow benchmarks. [Ilg et al.| (2017) used existing 2D dataset from optical
flow benchmark as well as synthesized artificial ones for the training purpose. [Hui et al.| (2018) proposed
a pyramidal based approach for CNN based feature matching, which they claim is 30 times smaller and
1.36 times faster than the network in (Ilg et al., |2017). |[Meister et al.| (2018]) proposed an end-to-end
unsupervised learning for optical flow estimation but at the cost of reduced accuracy. They use Census-
loss instead of brightness constancy assumption as the data term in their loss function. Even though, the
CNN-based methods are best performing methods in 2D optical flow, replicating them in 3D setting for
fluorescence microscopy image is hampered by the requirements of large GPU memory and large labeled
dataset for the training stage.



2D optical flow methods have been reported for fluorescence microscopy in Hubeny et al. (2007);
Delpiano et al.| (2012)); [Fortun et al.| (2013); Liu et al| (2014). In 3D setting, [Tektonidis and Rohr
(2017) used local optical flow to estimate diffeomorphic transformations for non-rigid registration of cell
nuclei. [Chan and Liebling| (2015) measure 3D blood flow by reconstructing 3D divergence-free flow map
from multiple 2D flow estimates computed from different views of 2D image pairs. |Amat et al.| (2013])
proposed an algorithm involving brightness constancy and smoothness constraint imposed by Markov
Random Fields over the graph of presegmented super-voxels in the 3D volume. The method computes
a translation vector per super-voxel by assuming that objects do not undergo complex motion. The
resulting flow field is sparse which was densified for the purpose of visualization in (Kappe et al., |2016).
Boquet-Pujadas et al.|(2017) took a data assimilation approach. They combine the brightness constancy
assumption with an incompressible fluid model of cell to compute various biophysical quantities in cell.
Both of these methods build upon the classical constraint of brightness constancy which is in fact a strong
assumption in microscopy images with Poisson-Gaussian noise. The former method, though fast, requires
a scene containing isolated objects that can be meaningfully segmented into super-voxels and estimates
only local translation motion. This limits the prospects of estimating complex motion in cells. The latter
method requires a biophysical model of the cell. This also limits the prospects of estimating motion in
fluorescence microscopy image sequences. Further, we found that none of the methods present convenient
ways for visualization of 3D flow fields. Both methods use, arrows or glpyh-based methods to display
sampled flow field which makes it difficult to assess the results in terms of smoothness and discontinuity.

In this work, we present a generic 3D optical flow method that neither requires a model of the cell
nor makes any assumption on the motion and distribution of the objects in the volume. We propose a
3D matching framework for handling large displacements and a variational framework for handling small
displacements. Both of the frameworks are then combined to handle various range of motion. We start by
matching voxels between two volumes. For this, we design a 3D extension of the PatchMatch framework
which allows us to deal with large displacements between 3D images. This flow field is used to back
warp the target volume resulting in a reconstruction of a volume which is closer to the source volume.
Then, we estimate the residual displacements between the source and reconstructed volumes by devising
a 3D variational stage. The variational stage can be used independently to handle small displacements.
Furthermore, the choice of the similarity measure in the matching stage or in the data term of the
variational stage is an issue, especially for biological images. Therefore, we have tested three different
similarity measures and chosen the Census signature to tailor both the matching and the variational
stages. Further, we propose two convenient ways to visualize 3D flow fields. This is an important step as
qualitative evaluation, comparison and communication becomes crucial in lack of 3D optical flow ground
truth for real data. Our visualization methods emphasizes smoothness and structural coherence of the
flow field which are not obviously rendered with arrow-based plots. We also present a novel error metric
for motion accuracy assessment, which quantifies the error between source and warped volumes based on
the 3D structure tensor.

2 Materials and Methods

2.1 Sample Preparation

First, we describe the acquisition of the data used in our study.



Figure 1: (A) Sequence 1 depicting a MV3 blebbing cell. (B) Sequence 2 depicting a MV3 cell (in red)
retracting in collagen environment (in green).

Sequence 1: This sequence contains a MV3 cell undergoing blebbing (Charras, 2008) where small
protrusions, termed blebs, slowly move along the cell surface (see Fig. ) F-actin was labelled in the
cell through lentivirus encoding Tractin-EGFP and imaged by diaSLM microscopy (Dean et all |2016).
The cell specimen was plated on a coverslip inclined at 45°. The full image sequence lasts 175 seconds
acquired at 2.86 Hz with each volume of size 50 x 50 x 30 um?® (300 x 300 x 83 voxels).

Sequence 2: This sequence shows an ezrin-labelled MV3 cell undergoing large scale retraction in colla-
gen (see Fig. ) The sequence starts with a cell protrusion latched to a collagen network. The filopodia
are eventually released, resulting in a motion in the direction of retraction that suggests slingshot-like
behaviour. Complex dynamics are captured in both channels containing the cell and the collagen. The
GFP-ezrin construct was expressed through lentivirus. The sequence was acquired using ASLM mi-
croscopy (Dean et al.,[2015). Each volume is 80 x 80 x 40 um? (512 x 512 x 101 voxels) acquired at 0.04
Hz. Throughout the text, we will refer to the channel containing the cell and the collagen as the cell
channel and the collagen channel, respectively.

2.2 Motion Estimation

Our contributions focus on two issues that are specific to fluorescence imaging: a) the difficulty of
associating objects from one frame to another in a noisy or a poorly descriptive fluorescence footprint, b)
unpredictable displacement with a combination of small and large motions. To tackle those challenges,
we propose: i) 3D PatchMatch method for matching voxels between two 3D images, i4) an extension of
Census signature based variational method for 3D image sequence, and finally i) the combination of the
3D PatchMatch method with 3D variational method to address large and small displacements as well.
Let I; and I be two consecutive 3D volumes, defined over a volume domain €2, in a sequence of 3D
light microscopy (LM) images. We refer to I and I» as the source and the target, respectively. The
problem of motion estimation is to compute the 3D flow field w : Q@ — R? such that any voxel pair I (p)
and L(p + w(p)) corresponds to the same physical point. Here, p is a point defined in 3D space by
coordinates (x,y, z). We refer to the three components of w(p) as u,v and w, defined for x,y and z axes,
respectively. A similarity measure d(p) is then required to match a physical point across successive time
steps. We consider a 3D patch P in I; centered at voxel p and its counterpart patch P¢ in I» centered
at voxel p°. The best matching pair of P and P° results in the 3D displacement vector w(p) = p¢ — p.

2.2.1 Similarity Cost

In the literature of 2D variational optical flow methods, the similarity measure is involved in the so-
called data term. With the additional constraint of smooth motion, these methods are able to estimate
small motion with good accuracy. To deal with large motion, various methods have integrated pyramidal
approaches and matching schemes. So far, the methods with matching schemes have better performance
(Revaud et al.l [2015; [Xu et al., [2017)



Table 1: Formulations of similarity measures

SSD Y qep (@) — IL(a+w(p)))?
cs* quP(H(Tq) D Hc(rq+W(11)) _
TZNCC* 1~ =3 ep(li(a) — P)(L2(q + w(p)) — P°)

* H(r) and H.(r) refer to bits of Census signatures of P and P¢ respectively. The function H(r) is defined
in Eq.(I). @ is the bit-wise XOR operator.
*k P Pc, gp and ope are the mean intensity values and standard deviations of P and P¢ patches,
respectively.

Figure 2: Left: Illustration of a 3 x 3 patch with intensity values. The interest point is marked in green and
rest of the points are its connected neighbours. Middle : Census signature of P. Here the Census string
is 11011001. Right: Census string of two different patches. Yellow cells depict the places where bits are
different. Here, the Hamming distance is 3.

In pursuit of appropriate data term for 3D fluorescence images, we compare three different simi-
larity measures: (i) Sum of squared difference (SSD), (ii) Truncated Zero normalized cross-correlation
(TZNCC), (iii) Hamming distance of Census signature (CS). These are common measures used in im-
age registration, disparity computation in stereo-vision, and optical flow problems. SSD, also known
as L? norm, remains a popular choice (Ourselin et al., [2002) for its simplicity. TZNCC is known for
its robustness to Gaussian noise but complex in computation (Di Stefano and Mattoccia) [2003)). CS is
recommended for its robustness to noise and intensity variation over time (Zabih and Woodfill, [1994). It
is defined as:

H(ry) =1[r < 0], (1)

where 7, = I1(q) — I1(p) and ¢ € P (see Fig. [2) and 1[.] is the indicator function.

Formulations of these measures are given in Table[I} For comparison, we embed these three appearance
based criteria within our 3D PatchMatch framework. We apply them to 3D volumes depicting mid-range
to long-range motion.

2.2.2 3D PatchMatch

Our goal is to find the best matching pair P and P€ resulting in the 3D displacement vector w(p) = p°—p.
To this end, we extend the well-known 2D PatchMatch method (Barnes et al}2009) which proves efficient
and accurate in many 2D image registration problems. It is an iterative method where displacements
having best matching score are propagated from neighbours, while using random search allows for update
(Barnes et al, |2009). The resulting flow field involves integer displacements. The idea is to avoid brute
force matching and relying on natural coherence in the images to propagate good matches. As a result,
the method performs faster than other matching algorithms (Muja and Lowe, [2009), while keeping a low
memory footprint. The algorithm proceeds in two stages: 1) initialization , and 2) iteration between
displacement propagation and random search.

Initialization: In this stage, we initialize the displacement field either with random vectors or vectors
approximated with coarse matching.

Propagation: In this stage, for any iteration ¢, the current displacement vectors are propagated. The
scanning of volume is done slice by slice and in raster scan manner for each slice. In the scanning process,
each current matching score for patch of a given voxel is compared with those of its causal neighbours
(i.e., neighbours just previously scanned). If a neighbour has the best matching score, its displacement




vector is copied to the current voxel. This enforces smoothness in the resulting flow field. The matching
score is determined by one of the similarity measures discussed in m

Random Search: In this stage, we try to get a better match by first randomly selecting patches in
I> around the current best estimate. Iterations of random sampling are done in a cuboid region having
side length of R. If the randomly selected patch yields a better matching score, it becomes the new
best corresponding patch. At next iteration, a new random sample will be drawn from a region with
side length of R/2 around the current best estimate. These iterations of random sampling continue by
halving the side length until the cuboid region has unit volume.

We implement 3D PatchMatch in a coarse-to-fine manner. We use three resolution levels, each one
being half the resolution of the preceding one. The top or the coarsest level starts with random ini-
tialization. After few iterations of propagation and random search, a coarse flow field is obtained. It
is then upscaled and upsampled, and used as the initialization for the next level. This scheme reduces
the number of iterations required in the lower levels by providing a good guess for the flow field. Also,
the coarse-to-fine strategy guarantees that the large displacements are captured at the top level with low
ambiguity and are refined at lower levels. The final 3D flow field might have false matches which are
removed by forward-backward consistency check. The final flow field is semi-dense.

2.2.3 Residual Matching Cost

We define the residual matching cost as the similarity measure estimated for the matched pair in the
final iteration of 3D PatchMatch. We use this cost to compare the three similarity measures introduced
in Section 2:2.I] The cost is of importance as the flow field estimated by 3D PatchMatch is due to the
propagation of displacements precisely having low residual matching cost. Trustworthy measurements
are expected in the labeled regions, which are the ones of key interest. Residual matching cost helps us
evaluate matches in such regions.

Figure [3] summarizes the evaluation. The range of the matching costs are as follows: SSD range
s [0,00), CS range is [0,|P|] where |P| is the number of neighbors, TZNCC range is [0,2]. The lower
the cost, the better the confidence in matching. Even though the costs are not directly comparable,
their juxtaposition in Fig reveals how confidently the final matches were made when estimating motion
depicted in Fig. [

The raw data display the labeled region with high intensity and the unlabeled cytosol as noisy inte-
rior. TZNCC and CS exhibit good confidence in the labeled region in contrast to the cytosolic region.
Surprisingly, SSD is assertive in unlabeled nucleus and cytosolic region, and unreliable in the labeled
region. This means that the displacements computed using SSD are propagated from unlabeled region
rather than trustworthy labeled region. Figure |§| juxtaposes 3D flow fields computed using the state-of-
the-art method by |Amat et al.| (2013), and our 3D PatchMatch using SSD, CS and TZNCC measures,
respectively. Clearly, /Amat et al.| (2013)’s method fails to capture large displacement of the protrusion.
Our method proves to be effective here. Further, the flow fields computed using CS and TZNCC are less
noisier than that of SSD.

Robustness of TZNCC comes from the normalization of the intensities with the local average and local
standard deviation. Robustness of CS comes from the composition of the Census signature which captures
the underlying structure of the patch by the arrangement of bits representing the binarized directional
derivatives of the intensity. Granularity of the intensity distribution of patches from these regions can be
visualized by the rank transform (Zabih and Woodfill, |1994). Rank of a voxel is the total number of voxels
in its neighbourhood which have smaller intensity values than itself. Figure [5|illustrates that the labeled
regions have high and uniform rank, whereas the background and unlabeled region inside the cell have
non-uniform rank distribution. The uniformity and the high rank in patches of labeled region suggest
less number of unexpected bit flips when comparing two labeled patches, and hence, smaller Hamming
distances in these regions. Consequently, the propagation is driven by the displacements in trustworthy
labeled region rather than those in the unlabeled regions. In conclusion, we found CS and TZNCC to
be more discriminative than SSD. Taking the computational complexity into account, we choose CS over
TZNCC to carry further with the variational refinement method. Additionally, the over-all confidence of
CS appears to be more coherent within the cell than that of TZNCC.

2.2.4 Variational Method

3D PatchMatch is efficient in computing semi-dense integer displacements. To compute dense sub-voxelic
displacements, we design a 3D variational method. A generic form of variational function based on the
minimization of the energy is:

E(w) = /Q D(I,w) + aR(w)dS, (2)



@

with SSD

Residual Matching

o

=

Residual Matching
Residual Matching Cost

(=]
o

with CS with ZNCC

Figure 3: Residual matching cost. (A) Overlapped consecutive frames in sequence 2 where source is in
red and target in green. Residual matching cost using (B) SSD, (C) CS, and (D) TZNCC based measure,
respectively. The color code for the residual matching cost is given in the right side of the respective figures
and normalized to the maximum of computed values of the respective measures in the given slice.

where D(I,w) is the data term that penalizes variation of intensities, R(w) is a regularizer for the 3D
flow field w and « is the balancing parameter for the two terms. |[Horn and Schunck| (1981)) and [Amat
et al.| (2013) used the brightness constancy assumption in the data term as L? norm and Huber norm
(Huberl, [1964), respectively. In our work, we exploit the Census signature constancy assumption as we
have done with 3D PatchMatch in subsection 2.2.2]

In what follows, we consider the use of quadratic regularizer, R(w) = ||Vw|3 (Horn and Schunck,
1981)), considering a smooth 3D flow field, where V is the spatial gradient operator and the function D
is the data term based on the Census constancy assumption. The Census signature defined in Eq.
cannot be linearized. As a consequence, we take the approximation of the Census signature in continuous
form proposed in (Hafner et al.,|2013)). To simplify notations, we combine spatial and temporal terms to
denote p = (z,y,2,t)' inI) and p’' = (z + u,y + v,z +w,t + 1) in Ir. We write the spatio-temporal
gradient operator as V4 and the motion vector to be estimated as w(p) = (u,v,w,1)". Then D can be
defined in a local spherical coordinate system around p as :

D(I(p), w) = / ’ / " H2(001(p))(w(p) T Va(001(p)))2d0ds, 3)

where 83, acts as a spatial directional derivative operator with direction given by the spherical angles
(¢,0) in a unit sphere around central voxel at p, with ¢ € [0,27), 6 € [0, 7]. Practically, we discretize ¢
and 6 to obtain a 26-connected neighbourhood around p. Please refer to the supplementary document
for the further elaboration on the continuous Census signature. Here, H. and H. are the approximated
Census signature (Hafner et al.| |2013) and its first derivative respectively, which are given by :

1 T / — ;
no =3 (14 ) B0 G (4)
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Figure 4: Motion magnitude estimated using (A) |[Amat et al| (2013) method, and 3D PatchMatch with (B)
SSD, (C) CS, and (D) TZNCC measures, respectively. The 3D flow field is plotted with arrows. The color
code for the magnitude of the motion is given on the right side of sub-figure D.

Minimization of Eq. with the aforementioned data term and regularizer can be solved through
associated Euler-Lagrange equations (see Section 1 in the supplementary document).

2.3 Combination of the two methods

Often, a sequence contains large and small motions. To demonstrate this scenario, we use sequence 2
of MV3 cell retraction in collagen (see figs. E[) 3D PatchMatch is able to handle large displacements
but often fails where sub-voxelic motion is present. Conversely, the variational method on its own is only
robust for small displacements. It can also be employed to deal with medium motion using coarse-to-fine
approach. The idea is to compute motion in coarser levels where larger displacements are scaled down
to smaller ones. However, the number of levels to effectively scale down large motion is not easy to set
a priori. Further, this approach fails to capture motion of smaller objects as they get lost at coarsest
levels and subsequently in warping stages. In contrast, 3D PatchMatch does not face such issues. To deal
with all possible large displacements, initial search region at the coarsest level for 3D PatchMatch is set
to the whole volume domain. Hence, the number of coarser levels are not critical. There is no warping
performed between levels, which preserves smaller objects to be present in successive finer levels.

To deal with mixed motion, we adopt an incremental approach as in [Revaud et al.| (2015)). For this,
we first compute large integer displacements using 3D PatchMatch. To smoothen and densify the flow
field, Gaussian interpolation is applied. The remaining smaller displacements can be dealt with using
our variational method. By warping I> backward with the interpolated flow field w’, we obtain a warped
volume I~2 which is similar to I;. We then proceed to the variational step using I; and fz as input. The
flow field w obtained from this step possesses smaller displacements, which are added to the displacements
obtained from 3D PatchMatch. Thus, the final flow field is computed by vector summation of flow fields
obtained from the both stages. Algorithm [I| presents the steps involved.
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Figure 5: Left: A raw slice of a frame in sequence 2. Right: The rank transform. The color code for the
patch rank is given on the right side, where Min = 0, Max = |P].

Algorithm 1 Combining 3D PatchMatch and Variational method

INPUT: A pair of 3D images I (source) and I (target)
OUTPUT: 3D flow field w

1: W' <= 3DPatchMatch(I1, I2) > w’ is the semi dense flowfield
2: W'« GaussianInterpolation(w’) > densify w’
3: Is(p) + L(p+w'(p)),Vp € Q > Warp Ip
4: W + Variational (I, fg) > compute flow field w with Eq.
5 W4 W+ w > sum up w’ and w

2.4 Assessment

Due to the lack of ground truth, to assess the accuracy of the computed 3D flow field, we mostly rely
on visual inspection. We also propose a quantitative approach to validate the results based on the
reconstruction of volume from the computed 3D flow field.

Visualization: A straight-forward way to visualize a 3D flow field is to use 3D glyphs or arrows to
represent direction and magnitude. To avoid too many overlapping vectors, the plot is subsampled.
It then becomes difficult to establish visual consistency between such representation and raw image
data which is typically viewed slice by slice. Furthermore, such rendering is difficult for the purpose of
comparison and communication.

Color-coded flow map is now a common practice for viewing 2D optical flow fields (Baker et al.,
2011)). Color mapping of 2D vector field was described in the work of |Abramoft et al.| (2000]), where they
proposed to map the Hue subspace to the direction and the Saturation subspace to the magnitude of the
vector, while keeping the Value of the map to 1. However, creating a 3D color map for 3D flow fields
is not straightforward. One might presume that Value space could be used to represent the additional
dimension. This type of mapping for 3D fluorescence volume sequences is not trivial for two reasons:

e Even when the Value space is used for the 3D vector representation, there are not enough colors
discernible to human eyes to accommodate 3D vectors of all orientations and amplitudes.

e Viewing 3D flow field for fluorescence data in 2D planes has to be done smartly as not all portions
of the flow field are informative.

One of our contributions lies in resolving these issues by introducing two different techniques that makes
color mapping of 3D flow fields possible.

The first method takes a slice-by-slice approach, which we call 3DHSV map. 3D flow field of each
slice is used to create a mapping in HSV color space. The direction of the motion is mapped to hue,
the magnitude is mapped to saturation and the off-the-plane motion is mapped to value. We use only x
and y components to map the direction to hue. The magnitude is computed using all three components.
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Figure 6: Color code for 3DHSV (left) and 3PHS (right) maps.

The value-components are given by the z-component of the flow field such that voxels in the slice with
downward and upward trajectories in z-axis are brighter and darker respectively. One can select the
minimum and maximum amplitude of off-the-plane motion so as to create a discernible range of colors
pertaining to amplitude of off-the-plane motion. The color code is depicted as HSV cylinder in Fig. [f]
(left). Now, it becomes possible to view the motion field in the manner similar to slice-by-slice viewing
of volumetric images. However, slice-by-slice viewing of cellular dynamics might not always be revealing.
This brings us to the next visualization method.

The interesting motion might be lying in any arbitrary plane that might not be obvious in a slice-
by-slice view. To this end, we take a multi-view approach. Multi-view of 3D flow field may be more
informative than the previous slice-by-slice approach. To generate multi-view of the 3D flow field, we
slice the 3D flow field with a 2D plane and project the sliced 3D vectors (i.e., vectors whose origin
belongs to the 2D plane) to the selected 2D plane. The slicing plane can be any arbitrary plane. We have
proposed the simpler orthogonal planes of the 3D volumetric data. We call it 3SPHS mapping. The choice
of planes remains in the hand of user. Usually, the planes that provide the best cut-off of background
voxels and the best intersection of specimen signal should be chosen. The projected 2D flow fields can
now be visualized with the usual 2D Hue-and-Saturation (HS) mapping. The color code is depicted as
HS map in Fig. [] (right).

3DHSV map can be rendered by processing the entire 3D flow field in one pass, whereas 3PHS requires

each plane to be defined before rendering. The result of former method is portable as it can be saved in
3-channel image stack. For the latter method, it is not practical to save the map for all planes. Therefore,
we propose to have the user select the desired point in the volume from where three planes can be defined
just before viewing. The normalization of value in 3DHSV map may be required according to the user’s
ability to discern light and dark pixels. However, both methods facilitate the perception of discontinuity
and smoothness of motion.
Accuracy estimation: The most known measures from the literature of 2D optical flow are End-Point-
Error (EPE) and Average Angle Error (AAE), which are the Euclidean norm and cosine of angle between
the estimated and the ground-truth flow vectors, respectively. When no ground truth is available, it is
challenging to define measures with the same objective. [Zhu and Milanfar| (2010) proposed an image-
content metric for image restoration, when no reference image is available. This no-reference metric is
based upon singular values of local image gradient matrix. They use the global average of the metric to
assess the performance of denoising algorithms and automatically set the parameters. In a similar spirit,
we propose a novel metric for assessing the performance of optical flow algorithms, when no ground truth
is available. Our metric is based on the eigenvectors of local structure tensors.

To objectively quantify the accuracy of the computed 3D flow field, the proposed metric relies on the
comparison between the warped and the source volume. We compute a reconstructed volume I,, which
should be close to I; by backward warping I> using the computed 3D flow field. Then, we compare
the structures I, with the real source volume I;. Comparing structure is better than the commonly
used displaced frame difference (DFD), given as DFD(p) = |I2(p + w(p)) — I1(p)|, as it is robust to
noise and independent of the type of interpolation used for warping. DFD tends to be lower where the
intensity gradient is relatively low, even though the flow vector is erroneous. It tends to be high where
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the intensity gradient is strong (i.e., around a sharp edge) even when the flow vectors are close to the
ground truth. The structure-tensor-based comparison, however, does not manifest such disproportionate
behaviour. Our idea is to rely on the underlying image structure rather than on the image intensity itself
as in DFD. The former is both more constraining and differentiating for the flow. Under this premise,
we propose a new error measure called Structural Angular Error (SAE). Let us emphasize that it is still
a quantitative error measure, not a qualitative one, in the absence of ground truth.

We compute and compare the principal orientation of 3D structure in the volume using the smallest
order eigenvector of the structure tensor (Ahmad et al.,[2015)). Let V,.(p) and Vi (p) be the smallest order
eigenvectors of the structure tensors at p in I, and I, respectively. We then compute the structural
angular error (SAE) between V. (p) and Vi(p) according to :

B Vi(p) Vi(p)
SAFE(p) = arccos (\VT(PN ’ |V1(P)|> ”

A map of SAE serves as an error map for the given 3D flow field. On the other hand, as a global metric,
the average of SAE over the foreground region provides a quantitative means to assess the performance
of optical flow algorithms. It can also serve to find the right parameterization of the method.

3 Experiments

Depending on the nature of the specimen under study, one might run the variational method alone when
the specimen exhibits small motion and the combination of 3D PatchMatch and variational stage when
the specimen exhibits mixed motion. For sequence 1, which involves a slow process of blebbing, we
have used the variational stage with the energy form of Eq.. For sequence 2, which displays a large
retraction, we have applied the combination of both methods.

3D PatchMatch: Given the anisotropy factor of 3 in the z-axis for the given data, we choose a patch
of size 9 X 9 x 3. A patch should be small enough to capture the moving structure while not increasing
the computation time. From the coarsest to the finest levels, we apply 7,3, 1 iterations, respectively. Any
further iterations did not improve the results. Median filter of size 3 x 3 was applied to the 3D flow fields
computed in each level, before upscaling and upsampling for outlier removal.

Variational stage: We warped the target volume with the flow field obtained from 3D PatchMatch.
We applied Gaussian interpolation on the flow field and then, warped the target volume using trilinear
interpolation. The Census approximation factor € was set to 50. The regularization parameter a was set
to 0.11 for the channel containing cell data and 0.05 for the collagen channel. As the later parameter
controls the smoothness of the flow field, we recommend values in the range (0.1, 2] for the cell channel
where smooth results are expected, and lower values for the collagen channel where the flow field is not
as smooth. Successive over relaxation (SOR) (David M. Young] 1971)) with 10 iterations was employed
for solving the related Euler-Lagrange equations.

Post Processing: In order to produce clear visualization, we only take relevant parts of the flow field
into account. For this, we segment the source volume using [Huang and Wang| (1995))’s method, and use
the obtained binary mask to restrict the flow field to the foreground region.

For comparison purpose, we implemented a straight-forward 3D version of (Horn and Schunck) [1981])
(HS3D). We also compare with the Amat’s method. We have also generated a set of volume pairs with
ground-truth flow fields. The goal is two-fold: validating the ASAE behaviour by comparison to EPE
measure, and augmenting the quantitative assessment of our 3D optical low method.

Instead of employing arbitrary and unrealistic synthetic flow fields to generate sequences, we simply
apply HS3D method to pairs of real volumes to get flow fields. These flow fields are not accurate enough,
but this is not the matter here; what matters is that they are closer to realistic motion fields than any
arbitrary fields. It then allows us to make quantitative comparison between our method and Amat’s
method, as if the ground-truth flow was available. More specifically, we use the HS3D computed flow
fields for backward warping the target volumes. A new source volume is generated for every target
volume. The flow field then serves as the ground truth for this new volume pair.

We utilize Sequence 1 for the generation, as it was acquired at the highest sampling frequency (3.5Hz)
among other sequences at our disposal. The sequence is characterized by a dominant bleb with slow and
presumably translational motion. We choose a single volume as the source and 10 consecutive target
volumes at incrementing time step. This would mean that the computed motion should be increasing
with each volume pair in the dominant bleb region. Finally, we generate 10 pairs of volumes for each time
steps of the original sequence by backward warping using the HS3D computed flow field. Each of them
is of size 144x150x83. We then compare our method against Amat’s method. As seen in Fig. (left),
clearly, our method outperforms Amat’s method with respect to the average EPE. We also compute our
proposed Average Structural Angular Error (ASAE) for the flow fields computed with the two methods
(see Fig. (right)). The ASAE not only reveals the best performing method but also the trend in error
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at different time steps for each method, which closely follows that of the average EPE. This proves that
the ASAE can be used to assess optical flow accuracy when no ground truth is present. The percentile
and average values of EPE and SAE for volume pair at each time step are given in Tables 2] and [3]
respectively. The visualization of the ground-truth flow fields and the computed flow fields are provided
in the supplementary document.
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Figure 10: Left: Average EPE for each pair in time steps. Right: Average SAE (ASAE) for each pair in
time steps.

Real sequence: Figures [7| and [8| show the results of the three methods. Visually (see Section 2 in
the supplementary document), the belb follows the bottom-right direction in zy-plane. The flow field
computed by our method and Amat’s method reflect the direction. Meanwhile, the result of HS3D shows
incorrect motion to the right. Amat’s method computes piecewise constant motion for super-voxels. As a
consequence, it produces block-like artifacts in the flow field. In contrast, our approach estimates a smooth
motion. The regularization outside of the cell body is limited, since we do not perform optimization with
a large number of iterations. In any case, as a post-processing stage, we use the foreground segmentation
mask for our results and HS3D results to clip off the expansion. Amat’s method applies the segmentation
mask during the optimization at each iteration, thus producing flow field only in the foreground region.

Now, we elaborate on the results obtained while using the 3D PatchMatch and the variational method
separately, and emphasize on the combination of the methods. 3D PatchMatch by design only computes
integer displacements. Smoothness of the computed flow field arises from propagation only, and does
not provide much regularization in practice. To illustrate this, we use collagen channel in sequence 2,
which depicts the motion of collagen, while the cell undergoes large retraction motion. Figure@A displays
source and target frames in red and green channels, respectively. The overlapping voxels appear in yellow.
Figure displays source and reconstructed volume using the flow field obtained from 3D PatchMatch
in red and green channels, respectively. For the most part of the reconstructed volume, the overlapping
is significant except where structures undergo complex deformations or exhibit small displacements. The
next two figures show 3PHS flow map of flow field computed by 3D PatchMatch only and by subsequent
refinement using the proposed variational method. The refinement step captures smaller displacements
which are missing from the flow field obtained in 3D PatchMatch stage. The red rectangle in the figs.
Ep and EID highlights one instance (best viewed in electronic form). Table |3| reports the average SAE
(ASAE) computed using HS3D, Amat’s method and our method. Clearly, our method outperforms the
two other ones. It is interesting to note that, for the cell channel of the Sequence 1, there is not a large
error margin between our method and Amat’s method. Despite the obvious failure of Amat’s method to
compute large displacement of the Filopodium, and visually better performance of our method (see Fig.
4A), the ASAE shows a small overall improvement only. Upon the inspection of the SAE maps (see Fig.
111)), we found that both of the methods exhibit high SAE values in the cytosol region which does not have
any (fluorescence) labeling. In the more biologically interesting filopodium region, where Amat’s method
failed, our method prevails and this is precisely shown by the SAE values. Because of higher errors in
the larger cytosol region for both methods, the two global ASAFE increase, and are finally close to each
other (gap of 0.04), hiding the difference of performance between our method and Amat’s method on the
Filopodium part. We report the mean and the median SAE values in the two regions for both methods
in the supplementary document.
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Figure 11: SAE map for the optical flow computed with (A) Amat’s method (B) Our method. The color
code is given in the right side of (B). Principal orientation of the structures denoted by arrows in black for
I, and in green for I, by the optical flow computed using (C) Amat’s method and (D) Our method.

We point out that SAE is not applicable for 3D PatchMatch alone because a semi-dense flow field is
not sufficient for faithful reconstruction of I.

Time complexity of our algorithm is very similar to HS3D as we use SOR for both implementations.
The time complexity of SOR method is O(kN), where N is the size of the data and k is the number
of iterations. However, additional complexity of O(nN) arises from the computation of the Census
Signature, where n is the size of the discrete neighborhood. The aspects that can be parallelized are the
computation of the Census Signature and its derivatives. For this, each element of the Census Signature
has to be stored as a 3D matrix. Then, we can compute Eq. {4] for each voxel in a parallel manner. We
can also parallelize the minimization stage, if we use a splitting method instead of SOR algorithm, which
could be a prospect for our work.

These experiments were conducted on a 16 GB machine running with 2.80 GHz Intel core i7 proces-
sor. The methods were implemented with C++ language. For a volume of size 512x512x101, the 3D
PatchMatch with CS takes 8, 60 and 578 seconds per iterations for three coarse-to-fine levels, respectively.
Each iteration for SOR takes around 50 seconds. To reduce the computation time, we can divide the
image resolution by two. This requires 3D PatchMatch to run only for the first two coarse levels. The
variational method in this case takes 7 seconds per iteration. Finally, the 3D flow field is upsampled and
upscaled.
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Table 2: Percentile and average EPE for the generated pairs.

Time Step Amat’s method Ours
90% 95% 99% Mean 90% 95% 99% Mean

1 0.4382 | 0.6264 | 1.1269 | 0.1917 | 0.2532 | 0.3587 | 0.6799 | 0.1237
2 0.7761 | 1.1291 | 2.7410 | 0.3553 | 0.3977 | 0.5491 | 1.3267 | 0.2241
3 0.9444 | 1.3608 | 3.3245 | 0.4441 | 0.5534 | 0.7377 | 1.7847 | 0.3048
4 1.1617 | 1.6334 | 4.0799 | 0.5335 | 0.6222 | 0.8556 | 2.1611 | 0.3423
5) 1.0408 | 1.4602 | 2.7193 | 0.4517 | 0.5024 | 0.6944 | 1.2492 | 0.2260
6 1.1278 | 1.7025 | 3.3711 | 0.4786 | 0.6358 | 0.8779 | 1.8720 | 0.3102
7 1.4597 | 2.1316 | 4.2987 | 0.5804 | 0.7422 | 1.0578 | 2.3148 | 0.3628
8 1.9364 | 2.6369 | 5.9004 | 0.8297 | 0.9450 | 1.3820 | 3.9761 | 0.5254
9 1.5825 | 2.4362 | 4.7762 | 0.6265 | 0.8043 | 1.1341 | 2.3198 | 0.3864
10 1.7317 | 2.6051 | 5.7586 | 0.6955 | 0.8781 | 1.2143 | 3.0211 | 0.4497

Table 3: Percentile and average SAE for the generated pairs.

Time Step Amat’s method Ours

90% 95% 99% Mean 90% 95% 99% Mean

1 0.1169 | 0.1898 | 0.4695 | 0.0511 | 0.0493 | 0.0768 | 0.1907 | 0.0229
2 0.1855 | 0.3086 | 0.7945 | 0.0809 | 0.0802 | 0.1216 | 0.2889 | 0.0366
3 0.2263 | 0.3849 | 0.9691 | 0.0966 | 0.1035 | 0.1590 | 0.4025 | 0.0481
4 0.2397 | 0.3814 | 0.8915 | 0.1009 | 0.1011 | 0.1534 | 0.3715 | 0.0474
5! 0.2466 | 0.4136 | 0.9964 | 0.1054 | 0.0876 | 0.1326 | 0.3153 | 0.0384
6 0.2808 | 0.4679 | 1.1921 | 0.1174 | 0.1076 | 0.1689 | 0.4440 | 0.0489
7 0.3119 | 0.5285 | 1.2221 | 0.1266 | 0.1275 | 0.2021 | 0.5201 | 0.0571
8 0.3510 | 0.5813 | 1.2449 | 0.1462 | 0.1572 | 0.2501 | 0.6489 | 0.0711
9 0.3496 | 0.5862 | 1.3142 | 0.1364 | 0.1469 | 0.2327 | 0.6522 | 0.0653
10 0.3873 | 0.6601 | 1.3369 | 0.1505 | 0.1488 | 0.2440 | 0.6614 | 0.0671

4 Conclusion

We have introduced a generic framework for 3D motion estimation in 3D LM images sequences. It
combines matching and variational method while using Census signature in both stages. We first demon-
strated the effectiveness of the Census signature in the matching stage. Drawing on this, we formulated
a 3D variational method using the Census constancy assumption. We tested our methods on different
sequences containing not only the cell but also the collagen. Our approach aims to be general enough,
that is, to handle specimens with different shapes and motion types. Cell and collagen are typical speci-
mens, which are structurally different and exhibit complex motion. We demonstrated that the variational
method with the Census signature in the data term outperforms the brightness constancy term used in
HS3D. While the matching stage is not necessary for sequence exhibiting small motion, combination of
the methods is effective in motion estimation where mixed motion types are expected. Further, we defined
two new visualization techniques for the assessment of 3D motion fields. We also presented a novel error
(ASAE) measure for the purpose of quantitative validation of 3D optical flow when the ground truth is
absent.
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Table 4: ASAE for real sequences.

Sequence ‘ HS3D ‘ |Amat et al.| (]2013[) ‘ Ours
Sequence 1 0.15 0.34 0.14
Sequence 2 (Cell) 0.6 0.46 0.42

Sequence 2 (Collagen) | 0.42 0.39 0.27
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Figure 7: (A) Overlap of slices of sequence 2: source in red, target in green. 3DHSV motion map of (B)
HS3D, (C) Amat’s method, and (D) our variational method. Color code corresponds to Fig. [6] (left).
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Figure 8: 3PHS map of (A) Amat’s method, (B) HS3D, (C) our variational method (Eq. [2), and (D) 3PHS
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Figure 9: (A) Overlap of slices of sequence 2 (collagen): source in red, target in green (showing only zy-plane).
(B) Source in red, reconstructed source after 3D PatchMatch and proposed variational refinement in green;
the overlapped voxels appear in yellow. (C) 3PHS motion map after 3D PatchMatch and proposed variational
refinement (best viewed in electronic form). The red rectangle highlights the small motion captured by the
combination. (D) 3PHS motion map using 3D PatchMatch alone. The small motion is not captured.
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