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A MICROSCOPIC DERIVATION OF COUPLED SPDE’S
WITH A KPZ FLAVOR

R. AHMED, C.BERNARDIN, P. GONÇALVES, AND M. SIMON

Abstract. We consider an interacting particles system composed of a
Hamiltonian part and perturbed by a conservative stochastic noise so that
the full system conserves two quantities: energy and volume. The Hamil-
tonian part is regulated by a scaling parameter vanishing in the limit. We
study the form of the fluctuations of these quantities at equilibrium and
derive coupled stochastic partial differential equations with a KPZ flavor.

Contents

1. Introduction 1
Outline of the paper 3
Notations 3
2. The model 4
3. Stochastic partial differential equations 6
3.1. The Ornstein-Uhlenbeck equation 7
3.2. A two-dimensional drifted Ornstein-Uhlenbeck equation 8
3.3. The one-dimensional stochastic Burgers equation 10
4. Statement of results 10
4.1. Topological setting 10
4.2. Fluctuation fields 11
5. Sketch of the proof of the main theorems 13
5.1. Characterization of limit points for the Z field 14
5.2. Characterization of limit points for the Y field 20
6. The limit of the sequence of martingales (N n)n∈N 24
7. Tightness 25
7.1. Tightness for the Z field 25
7.2. Tightness for the Y field 29
Acknowledgements 30
References 30

1. Introduction

During the last decade a huge number of research programs have been de-
voted to the study of the Kardar-Parisi-Zhang (KPZ) equation and its deriva-
tion from microscopic models. The KPZ equation has been introduced in [22]
as a phenomenological equation which, in dimension one, takes the form
∂th(t, u) = A ∂2

uuh(t, u) +B (∂uh(t, u))2 +
√
C Ẇ(t, u), t > 0, u ∈ R,
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where A > 0, B ∈ R, C > 0 are thermodynamic constants and Ẇ(t, u) is a
standard space-time Gaussian white noise. This equation describes the evolu-
tion of a randomly growing interface, whose height is h(t, u), t > 0 being the
time and u ∈ R the spatial coordinate. Almost equivalently, taking the space
derivative of the KPZ equation, we get the (conservative) stochastic Burgers
equation (SBE) for Y = ∂uh:

∂tY(t, u) = A ∂2
uuY(t, u) +B ∂u(Y2(t, u)) +

√
C ∂uẆ(t, u).

The SBE equation is expected to be a universal object describing the scaling
limit of a large class of weakly asymmetric interacting particle systems with
a single conservation law [30]. In our opinion, the major recent mathematical
contributions in this field have been:

• the proof of the well posedness of the KPZ (or SBE) equation, via the
theory of regularity structures developed by Hairer [19, 20], or alterna-
tively through the paracontrolled distributions theory [16];
• the obtention of its asymptotic properties via the study of some “inte-

grable stochastic systems”, in particular the derivation of scaling limits
for one-dimensional exclusion-type processes, starting from the seminal
paper [5], and going on with [7, 27], and many others;
• the development of a robust method to derive the SBE (or KPZ) equa-

tion as a scaling limit for a large class of interacting particle systems,
thanks to the new notion of energy solutions investigated in [13, 17, 15,
11].

Since a few years there has been a growing interest for one-dimensional n-
component coupled SBE, written as:

∂t ~Y = ∂u(A∂u ~Y) + ∂u(� ~Y , ~B~Y �) +
√

C ∂u~ξ, (1.1)

where ~Y(t, u) ∈ Rn, and A,C are square matrices of size n, ~ξ is a n-component
Gaussian white noise, and ~B = (~Bi) is a tensor1 (i.e. ~Bi is n × n–matrix for
any 1 6 i 6 n). Such equations appeared in the physics literature very early
after the seminal paper [22] of Kardar, Parisi and Zhang and more recently
in the context of the nonlinear fluctuating hydrodynamics theory developed
by Spohn and coauthors [31, 32]. The mathematical study of global-in-time
existence and invariant measures for the n-component coupled SBE has been
investigated in [18, 10, 9]. It is expected that the coupled SBE equations
cover the dynamics of weakly asymmetric interacting particle systems with
several conserved quantities in a suitable mesoscopic scale. In the nonlinear
fluctuating hydrodynamics theory one postulates that these equations describe
correctly the macroscopic properties of the underlying microscopic system in
“some mesoscopic scale” and their study permits to obtain some information
of the large time behavior of the strongly asymmetric system. Let us notice
that it is quite unclear (at least for us), even without asking for a proof, what
are the exact scaling limits to perform in the microscopic models in order to

1Therefore, in (1.1), the quantity � ~Y, ~B~Y � is a vector whose i-th component reads

(� ~Y, ~B~Y �)i = 〈~Y, ~Bi
~Y〉,

where 〈·〉 denotes the Euclidean inner product in Rn.
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obtain these equations. Indeed, such equations should be obtained by tuning
in a very specific way the intensity of the “asymmetry” and the time scale
with respect to the scaling parameter. Moreover, since the system has more
than one conserved quantities, different time scales have to be considered. Let
us also remark that the mathematical treatment of these equations and their
obtention as scaling limits are challenging problems whose resolutions are in
their very infancy.

The aim of the paper is to provide a model with two conserved quantities
for which it can be proved rigorously that in suitable scaling limits, the system
is described by a set of degenerate coupled SBE equations. By degenerate we
mean that some of the matrices entries appearing in (1.1) vanish. When the
asymmetry is very weak, in a diffusive time scale, the system is reduced to
an uncoupled system consisting of two autonomous Ornstein-Uhlenbeck (OU)
equation. If the intensity of the asymmetry is increased, there is some critical
value such that, in a diffusive time scale, the system becomes composed of
coupled equations: an autonomous OU equation and a second OU equation
with a drift term driven by the first one. Increasing again the intensity of the
asymmetry, the system becomes composed of an OU equation (obtained in a
diffusive time scaling) and a transport equation whose transport term is driven
by the first one (obtained in a sudiffusive time scaling). This pictures remains
valid up to a second critical value of the asymmetry intensity, for which the
first OU equation is replaced by a SBE equation while the second is still a
transport equation driven by some OU process. The results obtained are in
agreement with mode coupling theory [28].

This paper is one of the first contributions where coupled equations with a
KPZ flavor are derived from a microscopic system. In [2], the authors derive
some multicomponent coupled SBE equations as a scaling limit of a multi-
species zero-range process. However a big difference of our model with respect
to the latter is that in [2] the velocities of the normal modes are equal while
it is never the case in our model. A second interesting feature of our result is
that we are able to emphasis the exact time and asymmetry parameters scaling
to consider in order to get the expected equations, and we extend the class of
SPDEs which arise in this context.

Outline of the paper. We start in Section 2 with the definition of the mi-
croscopic dynamics under investigation and the introduction of the relevant
macroscopic quantities. Section 3 is devoted to defining and giving a rigorous
meaning to the solution of three stochastic partial differential equations which
will emerge at the macroscopic level. In Section 4 we will state our main con-
vergence results. Finally, Sections 5, 6 and 7 contain the different steps of the
proof: we begin with a sketch given in Section 5, and we are able conclude the
proof up to technical results, namely the convergence of martingales associated
to the microscopic dynamics (proved in Section 6), and the tightness property
of the fluctuation fields (proved in Section 7).

Notations. Given two real-valued functions f and g depending on the variable
u ∈ Rd we will write f(u) ≈ g(u) if there exists a constant C > 0 which does not
depend on u such that for any u, C−1f(u) 6 g(u) 6 Cf(u) and f(u) . g(u) if
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for any u, f(u) 6 Cg(u). We write f = O(g) (resp. f = o(g)) in the neighbor-
hood of u0 if |f | . |g| in the neighborhood of u0 (resp. limu→u0 f(u)/g(u) = 0).
Sometimes it will be convenient to precise the dependence of the constant C
on some extra parameters and this will be done by the standard notation C(λ)
if λ is the extra parameter. We often denote the one-dimensional gradient and
Laplacian on R by ∇ = ∂u and ∆ = ∂2

uu. The transpose matrix of the ma-
trix A is denoted by A†. The one-dimensional continuous torus is denoted by
T = [0, 1). For any integer d > 1, we denote the space of smooth Rd-valued
functions ~f := (f 1, . . . , fd)† on T by D(T,Rd). In the special case d = 1, we
simplify the notation by omitting the arrow on f , and we also denote D(T,R)
(resp. L2(T,R)) by D(T) (resp. L2(T)). Then, we identify D(T,Rd) with
(D(T))d and L2(T,Rd) with (L2(T))d. Finally, for a function ~f ∈ L2(T,Rd),
we denote by ‖~f‖2

0 the usual L2(T,Rd)-norm of ~f :

‖~f‖2
0 :=

d∑
i=1

∫
T
(f i(u))2 du,

and by 〈·, ·〉0 its associated inner product:

〈~f,~g 〉0 =
d∑
i=1

∫
T
f i(u)gi(u)du.

2. The model

Let b > 0 be a fixed parameter and define the one-dimensional exponential
potential

Vb : u ∈ R→ e−bu − 1 + bu ∈ [0,+∞).
Recall that the one-dimensional continuous torus is denoted by T = [0, 1). For
any n > 1, we define its discrete counterpart Tn = {0, 1, . . . , n−1} of size n and
we denote RTn by Ωn. We consider the Markov process η(t) = {ηx(t) : x ∈ Tn}
with state space Ωn defined by its infinitesimal generator L. The latter is given
by

L = αnA+ γS,
where γ > 0 and αn = αn−κ, with α ∈ R, κ > 0. The actions of A and S on
differentiable functions f : Ωn → R are given by

(Af)(η) =
∑
x∈Tn

(
V ′b (ηx+1)− V ′b (ηx−1)

)
(∂ηxf)(η)

and
(Sf)(η) =

∑
x∈Tn

(
f(ηx,x+1)− f(η)

)
.

Here the configuration ηx,x+1 is the configuration obtained from η by exchanging
the occupation variables ηx and ηx+1, i.e. for any z ∈ Tn, (ηx,x+1)z = ηz for
z 6= x, x + 1, (ηx,x+1)x = ηx+1 and (ηx,x+1)x+1 = ηx. We refer the interested
reader to [1, 4, 3, 32] for the motivations behind the study of this system and
more information about its construction. The system is thus a Hamiltonian
system (with generator A) perturbed by a stochastic noise (generated by S).

Let us comment about the role of the parameters which appear in the defini-
tion of the microscopic system. In the following, n will tend to infinity so that
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1/n, which represents the ratio between the macroscopic scale and the micro-
scopic scale, will play the role of a scaling parameter going to 0. The parameter
αn fixes the intensity of the asymmetry in the system in terms of the scaling
parameter: larger κ is, smaller the asymmetry is. Strong asymmetric systems
would correspond to κ = 0. The reason why A represents the asymmetric part
of the generator will become clear in the sequel. The parameter γ fixes the
intensity of the stochastic noise and is always of order 1. We will consider the
Markov process in different time scales, namely by accelerating the microscopic
time by a constant θ(n) = na, where a > 0 is a constant.

The system conserves two quantities: the energy and the volume, given re-
spectively by ∑

x∈Tn
Vb(ηx),

∑
x∈Tn

ηx.

The previous conservation laws are expressed by the well defined continuity
equations
L(Vb(ηx)) = j̄ex−1,x(η)− j̄ex,x+1(η), L(ηx) = j̄vx−1,x(η)− j̄vx,x+1(η), (2.1)

where the microscopic currents are given by
j̄ex,x+1(η) = −αnb2e−b(ηx+ηx+1) + αnb

2(e−bηx + e−bηx+1)− γ∇(Vb(ηx)) (2.2)
j̄vx,x+1(η) = αnb(e−bηx + e−bηx+1)− γ∇ηx. (2.3)

We define a family of product probability measures µβ̄,λ̄ on Ωn by

µβ̄,λ̄(dη) =
∏
x∈Tn

Z̄−1(β̄, λ̄) exp{−β̄e−bηx − λ̄ηx}dηx, β̄, λ̄ > 0, (2.4)

where Z̄(β̄, λ̄) is the normalization constant. It is a simple exercise to show
that A is skew symmetric and S is symmetric in L2(µβ̄,λ̄) so that µβ̄,λ̄ is an
invariant measure for the dynamics generated by L. In fact A is a Liouville
operator corresponding to a Hamiltonian dynamics with Gibbs measure µβ̄,λ̄
and S generates the dynamics of a reversible Markov process with respect to
µβ̄,λ̄. Therefore, A represents the asymmetric part of the system.

Let 〈·〉 denote the average with respect to µβ̄,λ̄. Let us introduce the quantity

ξx = e−bηx .

Note that if η is distributed according to (2.4) then ξ is distributed according
to the probability measure νβ,λ given by

νβ,λ(dξ) =
∏
x∈Z

Z−1(β, λ)1{ξx>0}e
−βξx+λ log(ξx)dξx (2.5)

with β = β̄ and λ = −1 + λ̄/b. Above Z(β, λ) is a normalizing constant.
We are interested in the evolution of this process in some accelerated time

scale tθ(n), thus we denote by {η(tθ(n)) ; t ∈ [0, T ]} the Markov process on
Ωn associated to the accelerated generator θ(n)L. The path space of càdlàg
trajectories with values in Ωn is denoted by D([0, T ],Ωn). We denote by P the
probability measure on D([0, T ],Ωn) induced by an equilibrium initial condi-
tion µβ̄,λ̄ and the Markov process {η(tθ(n)) ; t ∈ [0, T ]}. The corresponding
expectation is denoted by E.
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We define e := e(β̄, λ̄) and v := v(β̄, λ̄) as the averages of the conserved
quantities Vb(ηx), ηx with respect to µβ̄,λ̄, respectively, namely

e = 〈Vb(ηx)〉, v = 〈ηx〉.
We also define ρ as the average of ξx with respect to µβ̄,λ̄, i.e. ρ = 〈ξx〉. Finally,
we denote the variance of ηx (resp. ξx) with respect to µβ̄,λ̄ by σ2 (resp. τ 2) and
the covariance between ηx and ξx by δ. To summarize, we have
〈ηx〉 = v and 〈(ηx − v)2〉 =: σ2 (2.6)

〈ξx〉 = 1 + e− bv = λ+ 1
β

=: ρ and 〈(ξx − ρ)2〉 = λ+ 1
β2 =: τ 2 (2.7)

〈(ηx − v)(ξx − ρ)〉 =: δ. (2.8)
A simple computation shows that

〈j̄ex,x+1〉 = −αnb2(e− bv)2 + αnb
2 (2.9)

〈j̄vx,x+1〉 = 2αnb(1 + e− bv). (2.10)
Hence, in the hyperbolic scaling θ(n) = n, in the strong asymmetry regime,
namely κ = 0, the hydrodynamical equations are given by (see [4] for a proof):∂te− αb2 ∂u((e− bv)2) = 0

∂tv + 2αb ∂u(e− bv) = 0.
(2.11)

3. Stochastic partial differential equations

In this section we give the rigorous meaning of the various SPDEs which will
appear in the scaling limits of our system. Let us start with a few notations.

The topological dual of a topological space E is denoted by E ′. Hence,
the space of R-valued distributions on T is denoted by D′(T). Similarly, the
space of Rd-valued distributions on T is denoted by (D(T,Rd))′. If f ∈ D(T)
and Z = (Z1, · · · ,Zd)† ∈ (D′(T))d, then we denote by Z(f) the vector
(Z1(f), · · · ,Zd(f)) ∈ Rd.

Definition 1. For any Z = (Z1, . . . ,Zd)† ∈ (D′(T))d, we define the element
“Z•” belonging to (D(T,Rd))′ by

Z • ~f =
d∑
j=1
Zj(f j), for any ~f = (f 1, . . . , fd)† ∈ D(T,Rd). (3.1)

Since we are going to consider time processes, let us now define the space
D([0, T ], (D′(T))d) (resp. C([0, T ], (D′(T))d) as the space of (D′(T)d)-valued
functions with càdlàg (resp. continuous) trajectories. We equip these spaces
with the uniform weak topology: a sequence {Zn· }n>1 converges to a path Z·
if for all f ∈ D(T), we have

lim
n→∞

sup
06t6T

∣∣∣∣Znt (f)−Zt(f)
∣∣∣∣ = 0,

where |.| denotes the usual euclidean norm in Rd. We define similarly the space
D([0, T ], (D(T,Rd))′) (resp. C([0, T ], (D(T,Rd))′)) as the space of (D(T,Rd))′-
valued functions with càdlàg (resp. continuous) trajectories and we endow them
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with the uniform weak topology. For any Z ∈ D([0, T ], (D′(T))d) we define
the element “Z·•” belonging to the space D([0, T ], (D(T,Rd))′) by the same
definition as in (3.1).

Note that a sequence {Zn}n taking values in D([0, T ], (D′(T))d) converges to
some Z if and only if the sequence {Zn• }n of D([0, T ], (D(T,Rd))′) converges
to the element Z•.

We recall the following standard definition:

Definition 2. Let {Zt ∈ (D′(T))d ; t ∈ [0, T ]} be a process. We say that Z
is a centered Gaussian process if any linear combination of the components of
{Zti(fi) ; i = 1, . . . , k}, with fi ∈ D(T), is a Gaussian random variable.

Definition 3. We say that the stochastic process

{Bt = (B1
t , . . . ,Bdt )† ; t ∈ [0, T ]}

whose paths are in C([0, T ], (D′(T))d) is a standard (D′(T))d-valued Brownian
motion if it is a centered Gaussian process such that

∀(s, t) ∈ [0, T ]2, E
[
Bt(f)B†s(g)

]
= (s ∧ t) Id

∫
T
f(u)g(u)du

where Id is the identity matrix of size d and any f, g ∈ D(T).

3.1. The Ornstein-Uhlenbeck equation. Let B be a standard (D′(T))d-
valued Brownian motion. The first SPDE which we would like to make sense
of is the d-dimensional Ornstein-Uhlenbeck equation, formally written as:

dZt = A∆Ztdt+
√

2C∇dBt, (3.2)

where A,C are symmetric non-negative d-squared matrices.

Definition 4. We say that the stochastic process {Zt ; t ∈ [0, T ]} taking values
in the space C([0, T ], (D′(T))d) is a stationary solution of (3.2) if it satisfies:

i) For every {~ft : T → Rd ; t ∈ [0, T ]} which is C1 in time and smooth in
space, the quantity given by

Mt • ~f· = Zt • ~ft −Z0 • ~f0 −
∫ t

0
Zs • (A†∆~fs) ds , (3.3)

is a martingale with respect to the natural filtration associated to Z·, namely

Ft := σ
(
Zs • ~f ; s 6 t, ~f ∈ D(T,Rd)

)
, (3.4)

with quadratic variation equal to

2
∫ t

0

∥∥∥√C∇~fs∥∥∥2

0
ds.

ii) Z0 is a mean zero Gaussian field such that for any ~f,~g ∈ D(T,R2), by

E
[
(Z0 • ~f) (Z0 • ~g)

]
=
〈
~f , D~g

〉
0

(3.5)

where D is the (symmetric matrix) solution of

AD + DA† = 2C.
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Remark 1. A simple computation shows that, if Z· satisfies Definition 4, then
Z• is a centered Gaussian process with covariance given by

E
[
(Zt • ~f) (Zs • ~g)

]
=
〈
Tt−s ~f , D~g

〉
0

(3.6)

where Tt := exp(t A†∆).

Proposition 1. There exists a unique stationary solution to (3.2) in the sense
of Definition 4. It is called a stationary d-dimensional generalized Ornstein-
Uhlenbeck process.

3.2. A two-dimensional drifted Ornstein-Uhlenbeck equation. Let c ∈
R be fixed. We define the shift operator T±c acting on functions ~f ∈ D(T,Rd)
by (

T±c
~f
)
(x) = ~f(x± c), x ∈ T.

Let B be a standard (D′(T))2-valued Brownian motion. We consider positive
real numbers λ, µ, a, d > 0 and b, θ ∈ R such that ad − b2 > 0. For each time
t > 0 we define the time dependent operators acting on functions ~f : T → R2

by

Lt : ~f 7→
(

λ∆ 0
θ∇T+

ct µ∆

)
~f (3.7)

and
Ct : ~f 7→

(
a bT−ct

bT+
ct d

)
~f. (3.8)

Observe that Ct is a non-negative symmetric operator: for any ~f = (f 1, f 2)† ∈
L2(T,R2), we have that

qt(~f) :=
〈
~f, Ct ~f

〉
0

(3.9)

= a
∫
T

(
f 1(y)

)2
dy + d

∫
T

(
f 2(y)

)2
dy + 2b

∫
T

(
T+
ct f

1(y) f 2(y)
)
dy

> 0

because a, d > 0 and ad − b2 > 0. The adjoint operator of Lt in L2(T,R2) is
denoted by L†t and is given by

L†t : ~f 7→
(
λ∆ −θ∇T−ct
0 µ∆

)
~f.

In this section we want to make sense of the two-dimensional coupled SPDE
system

dZt = LtZtdt+
√

2Ct∇dBt. (3.10)

Definition 5. We say that the stochastic process {Zt ; t ∈ [0, T ]} taking values
in the space C([0, T ], (D′(T))2) is a solution of (3.10) with initial condition Z0

if for every function ~f : [0, T ] × T → Rd which is C1 in time and smooth in
space, the quantity given by

Mt • ~f· = Zt • ~ft −Z0 • ~f0 −
∫ t

0
Zs • (∂s ~fs + L†s

~fs) ds , (3.11)
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is a martingale with respect to the natural filtration associated to Z· as in (3.4),
with quadratic variation ∫ t

0
qs(∇~fs)ds,

where q has been defined in (3.9).
Remark 2. We observe that, when the equation (3.10) has no noise (a = b =
d = 0) and no diffusive part (λ = µ = 0) that is:

Z1
t (f)−Z1

0 (f) = 0, Z2
t (f)−Z2

0 (f) = θ
∫ t

0
Z1

0 (∇T−csf) ds, (3.12)

then Definition 5 remains in force, the only difference being in (3.11), where the
martingale term now is not present. We call this equation the trivial transport
equation with parameter θ.
Proposition 2. There exists a unique stochastic process Z solution of (3.10)
in the sense of Definition 5. Moreover, if Z0 is a Gaussian field then Z• is a
Gaussian process.
Proof. We fix t ∈ [0, T ] and we define the semigroup P (t)

s by
∂sP

(t)
s
~f = L†t−sP

(t)
s
~f

where ~f ∈ D(T,R2). Now we fix ~f ∈ D(T,R2) and we apply (3.11) to the
time dependent function ~f (t)

s = P
(t)
t−s

~f , which satisfies ∂s ~f (t)
s = −L†s ~f (t)

s and
~f

(t)
0 = P

(t)
t
~f , ~f (t)

t = ~f . We get that{
Ms • ~f·

}
06s6t

=
{
Zs • ~f (t)

s −Z0 • P
(t)
t
~f
}

06s6t
(3.13)

is a martingale with a deterministic quadratic variation given by∫ s

0
qu
(
∇P (t)

t−u
~f
)
du.

From this we conclude that for any s 6 t,

E
[

exp{iZt • ~f (t)
t }

∣∣∣∣Fs] = exp{iZ0 • P
(t)
t
~f}E

[
exp{iMt • ~f•}

∣∣∣∣Fs]
= exp{iZ0 • P

(t)
t
~f} exp

{
− 1

2

∫ t

s
qv(∇P (t)

t−v
~f)dv

}
× exp{iMs • ~f·}

= exp{iZs • ~f (t)
s } exp

{
− 1

2

∫ t

s
qv(∇P (t)

t−v
~f)dv

}
.

In the second equality above we used the fact that{
exp

{
iMs • ~f· +

1
2

∫ s

0
qv(∇P (t)

t−v
~f) dv

}
; s ∈ [0, t]

}
is a martingale with respect to (Fs)s. By tower property of the conditional
expectation we can then deduce an explicit expression for the finite dimen-
sional distributions of the process Z• whose only free parameter is the initial
distribution of Z0 and this shows uniqueness. Moreover if Z0 is a Gaussian
field, the characteristic function of the finite dimensional distributions of Z•
takes the form of the characteristic function of a Gaussian random vector. This
completes the proof of the proposition. �
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3.3. The one-dimensional stochastic Burgers equation. Now we want
to make sense of the 1-dimensional stochastic Burgers equation (SBE):

dYt = A∆Ytdt+B∇(Y2
t )dt+

√
2C∇dBt (3.14)

where A > 0, B ∈ R and C > 0 are constants, and B is a D′(T)-valued standard
Brownian motion.

Definition 6. A stochastic process {Yt ; t ∈ [0, T ]} taking values in C([0, T ],D′(T))
is a stationary energy solution of (3.14) if

i) for each t ∈ [0, T ], Yt is a D′(T)-valued white noise with variance C/A;
ii) there exists a constant κ > 0 such that for any f ∈ D(T) and 0 < δ < ε < 1

E
[(
Qεs,t(f)−Qδs,t(f)

)2
]
6 κε(t− s)‖∇f‖2

0, (3.15)

where
Qεs,t(H) :=

∫ t

s

∫
T

(
Yr(ιε(u))

)2
∇f(u) du dr

and for u ∈ T the function ιε(u) : [0, 1] → R is the approximation of the
identity defined as

ιε(u)(v) := ε−1 1]u,u+ε](v)

iii) for f ∈ D(T),

Yt(f)− Y0(f)− A
∫ t

0
Ys(∆f)ds+BQt(f)

is a Brownian motion of variance 2Ct‖∇f‖2
0, where Qt(f) := limε→0Qε0,t(f),

the limit being in L2;
iv) the reversed process {YT−t ; t ∈ [0, T ]} satisfies item iii) with B replaced

by −B.

Proposition 3 (Theorem 2.4, [17]). There exists a unique random element Y
which is a stationary energy solution of (3.14) in the sense of Definition 6.

4. Statement of results

4.1. Topological setting. For each integer z ∈ Z, let

hz : x ∈ T 7→


√

2 cos(2πzx) if z > 0,√
2 sin(2πzx) if z < 0,

1 if z = 0.
(4.1)

The set {hz ; z ∈ Z} is an orthonormal basis of L2(T). Consider in L2(T) the
operator K = (Id −∆). A simple computation shows that Khz = γzhz where
γz = 1 + 4π2|z|2.

For any integer k > 0, denote by Hk ⊂ L2(T) the Hilbert space induced by
D(T) and the scalar product 〈·, ·〉k defined by 〈f, g〉k = 〈f,Kkg〉0, which can
be written as

〈f, g〉k =
∑
z∈Z
〈f, hz〉0 〈g, hz〉0 γkz , f, g ∈ D(T). (4.2)
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Denote by H−k ⊂ D′(T) the dual of Hk relatively to the scalar product 〈·, ·〉0.
It is a Hilbert space for the inner product 〈·, ·〉−k defined by

〈Y1,Y2〉−k =
∑
z∈Z
Y1(hz)Y2(hz) γ−kz , Y1,Y2 ∈ H−k. (4.3)

We denote by ‖·‖−k the corresponding norm. We generalize the previous spaces
when L2(T) is replaced by (L2(T))2. The set {(hz, 0)†, (0, hz)† ; z ∈ Z} is then
an orthonormal basis of (L2(T))2. We define the space Hk ×Hk as the Hilbert
space induced by (D(T))2 and the scalar product 〈·, ·〉k defined by

〈ϕ, ψ〉k = 〈ϕ1, ψ1〉k + 〈ϕ2, ψ2〉k =
2∑
i=1

∑
z∈Z
〈ϕi, hz〉0 〈ψi, hz〉0 γkz . (4.4)

Analogously, we define the space (Hk ×Hk)′ as the dual of Hk ×Hk, relatively
to the previous inner product on (L2(T))2. The inner product between two
elements X 1,X 2 ∈ (Hk ×Hk)′ is defined by

〈X 1,X 2〉−k =
∑
z∈Z

{
X 1(hz, 0)† X 2(hz, 0)† + X 1(0, hz)† X 2(0, hz)†

}
γ−kz (4.5)

and we denote by ‖ · ‖−k the corresponding norm.

Remark 3. Observe that if Z = (Z1,Z2)† ∈ H−k × H−k then the application
Z• given by

Z• : (f 1, f 2)† ∈ Hk ×Hk 7→ Z1(f 1) + Z2(f 2)
is an element of (Hk ×Hk)′.

Conversely, any element X ∈ (Hk × Hk)′ can be written in this form : take
Z1(f) = X (f, 0) and Z2(f) = X (0, f). In fact, the map Z 7→ Z• that we can
define in this way, permits to identify topologically H−k×H−k with (Hk×Hk)′.

4.2. Fluctuation fields. Fix an integer k. Let us consider 0 < a 6 2 and
take θ(n) = na. We recall that κ > 0 and αn = αn−κ. Let us denote

cn := 2b2ρ θ(n)αn
n

= 2b2ραna−κ−1, n > 1. (4.6)
We also fix some horizon time T > 0. For any n > 1 we define the fluctuation
field {Ynt ; t ∈ [0, T ]} for the variable ξ as the random process living in the
Skorokhod space D([0, T ],H−k) such that

Ynt (f) = 1√
n

∑
x∈Tn

(
T+
cnt f

)(
x
n

)(
ξx(tθ(n))− ρ

)
, f ∈ D(T). (4.7)

This means that we are looking at the fluctuation field of ξ in a frame moving
at velocity cn. Similarly we define the fluctuation field {Vnt ; t ∈ [0, T ]} for the
variable η as the random process living in the Skorokhod space D([0, T ],H−k)
such that

Vnt (f) = 1√
n

∑
x∈Tn

f
(
x
n

) (
ηx(tθ(n))− v

)
, f ∈ D(T). (4.8)

In fact we are interested in the mutual evolution of these two fields, so we define

Zn :=
(
Yn
Vn
)
.
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Our aim is to study the convergence of the sequence (Zn)n according to the
intensity of the asymmetry of the system which is regulated by the parameter
κ > 0. Our main result is the following theorem. In what follows c = 2b2ρα.

Theorem 1. We have that:
• If κ > 1, then in the diffusive time scale θ(n) = n2, the sequence of

processes (Zn)n converges in law to Z ∈ D([0, T ], (D′(T))2) which is
the stationary solution of the Ornstein-Uhlenbeck equation (3.2) with
parameters:

A = γ I2 and C = γ

(
τ 2 δ
δ σ2

)
. (4.9)

• If κ = 1, then in the diffusive time scale θ(n) = n2, the sequence of
processes (Zn)n converges in law to Z ∈ D([0, T ], (D′(T))2) which is the
stationary solution of the two-dimensional drifted Ornstein-Uhlenbeck
equation (3.10) with parameters λ = µ = γ, θ = 0, a = 2γτ 2, b = 2γδ
and d = 2γσ2, and initial condition a two-dimensional Gaussian white
noise (in space) with covariance matrix(

τ 2 δ
δ σ2

)
.

• If 0 6 κ < 1, then in the time scale θ(n) = nκ+1, the sequence of
processes (Zn)n converges in law to Z ∈ D([0, T ], (D′(T))2) which is the
stationary solution of the trivial transport equation given in (3.12) with
parameter θ = −2αb, and initial condition a two-dimensional Gaussian
white noise (in space) with covariance matrix(

τ 2 δ
δ σ2

)
.

Moreover in all these cases, if the time scale θ(n) = na is such that a <
inf(2, κ + 1) the evolution is trivial in the sense that the sequence of processes
(Zn)n converges in law to Z0.

Hence this theorem fixes the minimal time scale needed in order to see a
joint evolution of the fields of interest. It does not mean that this time scale
is the only one for which a non trivial temporal evolution of the fields occurs.
The next theorem shows that for the field Yn we can go even further.

Theorem 2. The sequence of processes (Yn)n converges in law to Y which is
an element of D([0, T ],D′(T)) such that

• For any κ > 0, if the time scale is θ(n) = na with a < inf(2, 4
3(κ+ 1)),

then dYt = 0.

• If κ > 1
2 , then in the diffusive time scale θ(n) = n2, Y is the stationary

solution of the Ornstein-Uhlenbeck equation2 given by (3.2), in dimen-
sion d = 1, with A = γ and C = γτ .

2or equivalently of (3.14) with A = γ, B = 0 and C = γτ .
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• If κ = 1
2 , then in the diffusive time scale θ(n) = n2, Y is the station-

ary energy solution of the one-dimensional stochastic Burgers equation
(3.14) with parameters A = γ, B = b2α and C = γτ .

We conjecture that the result in the first item is true for any a < 2 and
κ > a− 3

2 but below we use Theorem 4 of [3] which is not optimal in this case.
The behavior when b = a− 3

2 is open.

a

κ1/2
0

3/2

4/3

2
OU

??
?

??
??

SBE

Trivial

Figure 1. ξx fluctuations

5. Sketch of the proof of the main theorems

For any d > 1 and n > 1 and any function u : T→ Rd the discrete gradient
∇nu (resp. Laplacian ∆nu) is the function defined on 1

n
Tn by

(∇nu)
(
x
n

)
= n

[
u
(
x+1
n

)
− u

(
x
n

)]
,

(∆nu)
(
x
n

)
= n2

[
u
(
x+1
n

)
+ u

(
x−1
n

)
− 2u

(
x
n

)]
, x ∈ Tn.

Along the proofs we will use frequently the following bound based on the
Cauchy-Schwarz inequality and stationarity of the process. We recall that
〈·〉 denotes the average with respect to the equilibrium measure µβ̄,λ̄. If F :
[0, T ]× Ωn → R is a function such that

∫ T
0 〈F 2(s, ·)〉 ds <∞ then we have

∀t ∈ [0, T ], E
[( ∫ t

0
F (s, η(s)) ds

)2
]
6 t

∫ t

0

〈
F 2(s, ·)

〉
ds. (5.1)

Observe that the r.h.s. of (5.1) is usually easy to compute or estimate since it
involves only a static expectation while the l.h.s. involves a dynamical expec-
tation.



14 R. AHMED, C.BERNARDIN, P. GONÇALVES, AND M. SIMON

a

κ11/2
0

1

2
OU

2d
-dr

ift
ed

OU
*

Trivial

Figure 2. Joint fluctuations

It turns out convenient to introduce the mutual field X n := Zn• defined by

Znt • ~f =
1
√
n

∑
x∈Tn

{(
T+
cntf

1
)(

x
n

)
(ξx(tθ(n)− ρ) + f 2

(
x
n

)
(ηx(tθ(n))− v)

}

= Ynt (f 1) + Vnt (f 2) (5.2)

where ~f = (f 1, f 2)† ∈ D(T,R2). Then, the fluctuation field {X n
t ; t ∈ [0, T ]}

is an element of the Skorokhod space D([0, T ], (Hk ×Hk)′).

5.1. Characterization of limit points for the Z field. In Section 7.1 we
will prove that in a certain range of time scales the sequence of processes (X n)n
is tight in D([0, T ], (Hk × Hk)′), for some k. This implies, by Remark 3, that
(Zn)n is also tight in D([0, T ],H−k×H−k). Therefore, up to a subsequence, we
may assume that the sequences above converge in the respective spaces. The
results of this section are restricted to the following range of time scales:

a 6 inf(κ+ 1, 2).

In particular, in the regime κ ∈ (0, 1) we are not able to study the limit of the
sequence (X n)n if the parameter a of the time scale na is strictly bigger than
the transition line a = κ+ 1.

For ~f = (f 1, f 2)† ∈ D(T,R2) and t ∈ [0, T ] we define

N n
t
• ~f = Znt • ~f −Zn0 • ~f −

∫ t

0
(∂s + θ(n)L) (Zns • ~f) ds. (5.3)
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By Dynkin’s formula {N n
t
• ~f ; t ∈ [0, T ]} is a martingale. We have

(∂s + θ(n)L) (Zns • ~f) = γθ(n)
n2 Zns •∆n

~f (5.4)

+ b
θ(n)αn
n3/2

∑
x∈Tn

(
∇nf

2
)(

x
n

)
(ξx(sθ(n)) + ξx+1(sθ(n)) (5.5)

− b2 θ(n)αn
n3/2

∑
x∈Tn

(
∇nT

+
cns f

1
)(

x
n

)
ξ̄x(sθ(n))ξ̄x+1(sθ(n)). (5.6)

Above and in what follows, for a random variable X, the random variable X̄
denotes the centered variable X−E[X]. Recall that θ(n) = na and αn = αn−κ.
Note that by using (5.1) it is easy to check that the variance of the time integral
of (5.4) has variance of order O(θ(n)2 n−4), which vanishes if a < 2. Now, (5.5)
can be rewritten as

2b θ(n)αn
n3/2

∑
x∈Tn

(
∇nf

2
)(

x
n

)
ξ̄x(sθ(n)) + b

θ(n)αn
n5/2

∑
x∈Tn

(
∆nf

2
)(

x
n

)
ξ̄x(sθ(n)).

(5.7)
As above, by (5.1), the time integral of the term at the r.h.s. of last expression
has variance of order O(α2

n θ(n)2 n−4) while the remaining term in (5.7) can
be written as

2b θ(n)αn
n3/2

∑
x∈Tn

(
∇nf

2
)(

x
n

)
ξ̄x(sθ(n)) = 2b θ(n)αn

n
Yns
(
∇nT

−
cns f

2
)
.

Note that by (5.1) the variance of the time integral of the term of last expression
is bounded from above by O(α2

n θ(n)2 n−2). This means that when a < κ + 1
that term does not contribute to the limit. The time integral of (5.6) has a
variance bounded from above (use again (5.1)) by

E
[(
b2 θ(n)αn

n3/2

∫ t

0

∑
x∈Tn

(
∇nT

+
cns f

1
)
(x
n
) ξ̄x(sθ(n))ξ̄x+1(sθ(n)) ds

)2
]
.
θ(n)2α2

n

n2

(5.8)
which vanishes if a < κ + 1. In fact, we will show in Section 5.2 that a less
rough estimate than (5.1) shows, in fact, that the expectation in (5.8) is of
order O(α2

n (θ(n))3/2 n−2), so that it goes to 0 as soon as a < 4
3(κ+ 1).

Let us now study the quadratic variation of the martingale term in (5.3). By
Dynkin’s formula, the quadratic variation of the martingale N n

t
• ~f is given by

〈N n • ~f 〉t =
∫ t

0

{
θ(n)L((Zns • ~f)2)− 2θ(n)(Zns • ~f)L(Zns • ~f)

}
ds

= γθ(n)
∫ t

0

{
S((Zns • ~f)2)− 2(Zns • ~f)S(Zns • ~f)

}
ds, (5.9)
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and a simple computation shows that last display is equal to

〈N n • ~f 〉t = γθ(n)
n3

∫ t

0

∑
x∈Tn

(
∇n

(
T+
cnsf

1
))2(

x
n

) [
ξx+1(θ(n)s)− ξx(θ(n)s)

]2
ds

+ γθ(n)
n3

∫ t

0

∑
x∈Tn

(
∇nf

2
)2(

x
n

) [
ηx+1(θ(n)s)− ηx(θ(n)s)

]2
ds

+ 2γθ(n)
n3

∫ t

0

∑
x∈Tn

(
∇n

(
T+
cnsf

1
))(

x
n

)(
∇nf

2
)(

x
n

) [
ξx+1(θ(n)s)− ξx(θ(n)s)

]
×
[
ηx+1(θ(n)s)− ηx(θ(n)s)

]
ds. (5.10)

If a < 2 then the L1-norm of the quadratic variation of N n • ~f vanishes as
n→ +∞. If a = 2 then we have that

E
[
〈N n • ~f 〉t

]
= 2γτ 2 1

n

∑
x∈Tn

∫ t

0

(
∇n

(
T+
cnsf

1
))2(

x
n

)
ds

+ 2γσ2t
1
n

∑
x∈Tn

(
∇nf

2
)2(

x
n

)

+ 4γδ
∫ t

0

1
n

∑
x∈Tn

(
∇n

(
T+
cnsf

1
))(

x
n

)(
∇nf

2
)(

x
n

)
ds.

Recall that cn = 2b2ραna−κ−1 = 2b2ραn1−κ. It follows that
• If κ < 1 then cn →∞ and therefore

lim
n→∞

E
[
〈N n • ~f 〉t

]
= 2γτ 2t

∫
T
(∇f 1)2(y) dy + 2γσ2t

∫
T
(∇f 2)2(y) dy.

• If κ = 1 then cn = c := 2b2ρα and therefore

lim
n→∞

E
[
〈N n • ~f 〉t

]
= 2γτ 2t

∫
T
(∇f 1)2(y) dy + 2γσ2t

∫
T
(∇f 2)2(y) dy

+ 4γδ
∫
T
c−1

(
f 1(y + ct)− f 1(y)

)
(∇f 2)(y) dy.

Note that last expression is equal to

lim
n→∞

E
[
〈N n • ~f 〉t

]
= 2γτ 2t

∫
T
(∇f 1)2(y) dy + 2γσ2t

∫
T
(∇f 2)2(y) dy

+ 4γδ
∫ t

0

∫
T

(
∇T+

csf
1
)
(y) (∇f 2)(y) dyds.

• If κ > 1 then cn → 0 and therefore

lim
n→∞

E
[
〈N n • ~f 〉t

]
= 2γτ 2t

∫
T
(∇f 1)2(y) dy + 2γσ2t

∫
T
(∇f 2)2(y) dy

+ 4γδ
∫
T
(∇f 1)(y) (∇f 2)(y) dy.

We have then
• If κ > 1 and a = 2 then

N n
t
• ~f = Znt • ~f −Zn0 • ~f + γ

∫ t

0
Zns •∆n

~f ds
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plus terms which vanish as n → ∞ in the L2-norm. Moreover, the
quadratic variation of the martingale satisfies:

lim
n→+∞

E[〈N n • ~f 〉t] = 2tτ 2γ‖∇f 1‖2
0 + 2tσ2γ‖∇f 2‖2

0 + 4γδt〈∇f 1,∇f 2〉0.

Then, the limiting field {Zt ; t ∈ [0, T ]} satisfies

Nt • ~f = Zt • ~f −Z0 • ~f + γ
∫ t

0
Zs •∆n

~f ds

so that it is a solution of (3.2) as given in Definition 4, with

A =
(
γ 0
0 γ

)
, D =

(
τ 2 δ
δ σ2

)
, C = γD. (5.11)

• If κ > a− 1 and a < 2 then

N n
t
• ~f = Znt • ~f −Zn0 • ~f

plus terms which vanish as n → ∞ in in the L2-norm. Moreover, the
quadratic variation of the martingale satisfies:

lim
n→+∞

E[〈N n • ~f〉t] = 0.

Then {Zt ; t ∈ [0, T ]} has a trivial evolution given by:

Zt • ~f = Z0 • ~f, so that dZt = 0. (5.12)

• If κ = a− 1 and a < 2 then

N n
t
• ~f = Znt • ~f −Zn0 • ~f − 2b θ(n)αn

n

∫ t

0
Zns •

(
∇nT

−
cns f

2 , 0
)†
ds (5.13)

is equal to

N n
t
• ~f = Znt • ~f −Zn0 • ~f − 2bα

∫ t

0
Zns •

(
∇nT

−
cs f

2 , 0
)†
ds (5.14)

where we recall that c = 2b2ρα. Moreover, the quadratic variation of
the martingale satisfies:

lim
n→+∞

E[〈N n • ~f 〉t] = 0.

Therefore, by Lemma 1 (applied with γ = 0), we have that the limiting
field {Zt ; t ∈ [0, T ]} satisfies

Zt • ~f = Z0 • ~f − 2bα
∫ t

0
Zs •

(
∇T−csf 2 , 0

)†
ds.

Therefore, {Zt ; t ∈ [0, T ]} is the solution of the trivial transport
equation as defined in Remark 2 with θ = −2αb, i.e.

Lt =
(

0 0
−2αb∇T+

ct 0

)
, (5.15)

and initial condition a centered Gaussian field with covariance matrix
D as given in (5.11).
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• If κ = 1 and a = 2 then we have

N n
t
• ~f = Znt • ~f −Zn0 • ~f + γ

∫ t

0
Zns •∆n

~f ds

− 2bα
∫ t

0
Yns (∇nT

−
csf

2) ds,
(5.16)

which is equal to

N n
t
• ~f = Znt • ~f −Zn0 • ~f + γ

∫ t

0
Zns •∆n

~f ds

− 2bα
∫ t

0
Zns • (∇nT

−
csf

2, 0)† ds.
(5.17)

Moreover, the quadratic variation of the martingale satisfies:

lim
n→+∞

E[〈N n • ~f 〉t]

= 2tτ 2γ‖∇f 1‖2
0 + 2tσ2γ‖∇f 2‖2

0 + 4γδc−1
〈
T+
ct f

1 − f 1 , ∇f 2
〉

0
.

Then, by Lemma 1 (applied with α = 0) and Corollary 1, we conclude
that the sequence {Znt ; t ∈ [0, T ]}n converges to the solution of equa-
tion (3.10) as given in Definition 5 with Lt as in (3.7) with λ = µ = γ
and θ = 0:

Lt = γ

(
∆ 0
0 ∆

)
, (5.18)

and Ct as in (3.8) with a = 2γτ 2, b = 2γδ and d = 2γσ2, i.e.

Ct = γ

(
2τ 2 2δT−ct

2δT+
ct 2σ2

)
, (5.19)

and D as in (5.11).

Lemma 1. Let γ, α > 0 and fix ~f = (f 1, f 2)† ∈ Hk × Hk. Assume that
the sequence of processes {Znt ; t ∈ [0, T ]}n converges in law, as a process
of D([0, T ] , (Hk × Hk)′), to {Zt ; t ∈ [0, T ]}. Then, for any t ∈ [0, T ], the
sequence of random variables{

Zn
}
n

:=
{
Znt • ~f −Zn0 • ~f + γ

∫ t

0
Zns •∆n

~f ds− 2bα
∫ t

0
Zns • (∇nT

−
csf

2, 0)† ds
}
n

(5.20)

converges, as n→ +∞, to the random variable

Z := Zt • ~f −Z0 • ~f + γ
∫ t

0
Zs •∆~f ds− 2bα

∫ t

0
Zs • (∇T−csf 2, 0)† ds.

Proof. By performing a Taylor expansion on ~f we can replace in the expression
(5.20), the discrete gradient and Laplacian by the continuous gradient and
Laplacian, up to terms which vanish in L2 (use (5.1)):

lim
n→∞

E
[
(Zn − Z′n)2] = 0
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where

Z′n = Znt • ~f −Zn0 • ~f + γ
∫ t

0
Zns •∆~f ds− 2bα

∫ t

0
Zns • (∇T−csf 2, 0)† ds. (5.21)

Let us first analyse the last term on the l.h.s. of (5.21). We split the time
integral on [0, t] in a sum of time integrals on intervals of size th, h > 0 being
small, as:∫ t

0
Zns • (∇T−csf 2, 0)† dr =

∫ t

0
Yns (∇T−cs f 2) ds =

1/h∑
k=0

∫ (k+1)th

kth
Yns (∇T−cs f 2) ds.

(5.22)
Without loss of generality we can assume that 1/h is an integer. Now in each
integral of the r.h.s. we can sum and subtract ∇T−ctkh f 2 inside, so that, by
linearity of Yns , last display is equal to

1/h∑
k=0

∫ (k+1)th

kth
Yns (∇T−cs f 2 −∇T−ctkh f 2) ds +

1/h∑
k=0

∫ (k+1)th

kth
Yns (∇T−ctkh f 2) ds.

(5.23)
Now we estimate the L2-norm of the term at the l.h.s. of last display. From
Minkowski’s inequality and (5.1), we have that√√√√√E

[( 1/h∑
k=0

∫ (k+1)th

kth
Yns
(
∇T−cs f 2 −∇T−ckth f 2

)
ds
)2
]

6
1/h∑
k=0

√√√√E
[( ∫ (k+1)th

kth
Yns
(
∇T−cs f 2 −∇T−ckth f 2

)
ds
)2
]

6
1/h∑
k=0

√√√√E
[
th

∫ (k+1)th

kth

(
Yns
(
∇T−cs f 2 −∇T−ckth f 2

))2
ds

]

=
1/h∑
k=0

√
th

√∫ (k+1)th

kth
E
[(
Yn0
(
∇T−cs f 2 −∇T−ckth f 2

))2
]
ds

.
1/h∑
k=0

√
th

 1
n

∑
x∈Tn

∫ (k+1)th

kth

(
∇T−cs f 2 −∇T−ckthf 2

)2(
x
n

)
ds

 1
2

,

where the last inequality uses an explicit computation with the initial distri-
bution. By Taylor expansion on the function f 2, we can bound the last term
from above by

C(f 2, T )
1/h∑
k=0

(th)2 6 C(f 2, T )h, (5.24)

which vanishes as h → 0. From the last computations, we are able to rewrite
(5.14) as∫ t

0
Yns (∇T−cs f 2) ds =

1/h∑
k=0

∫ (k+1)th

kth
Yns (∇T−ckth f 2) ds + εn,h

=
1/h∑
k=0

∫ (k+1)th

kth
Zns • (∇T−ckth f 2 , 0)† ds + εn,h
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where the term εn,h vanishes as n → ∞ and then h → 0 in L2. Similarly we
have that∫ t

0
Ys(∇T−cs f 2) ds =

1/h∑
k=0

∫ (k+1)th

kth
Zs • (∇T−ckth f 2 , 0)† ds + εh (5.25)

where the term εh vanishes as h → 0 in L2. Therefore it is sufficient to prove
that for each fixed h > 0, the sequence of random variablesZnt • ~f −Zn0 • ~f + γ

∫ t

0
Zns •∆~fds− 2bα

1/h∑
k=0

∫ (k+1)th

kth
Zns • (∇T−ckth f 2 , 0)† ds


n

converges in law to the random variable

Zt • ~f −Z0 • ~f + γ
∫ t

0
Zs •∆~fds− 2bα

1/h∑
k=0

∫ (k+1)th

kth
Zs • (∇T−ckth f 2 , 0)† ds.

For a fixed h > 0 and a fixed t ∈ [0, T ], the application

Z ∈ D([0, T ], (Hk ×Hk)′) 7→ Zt • ~f −Z0 • ~f + γ
∫ t

0
Zs •∆~fds

− 2bα
1/h∑
k=0

∫ (k+1)th

kth
Zs • (∇T−ckth f 2, 0)† ds ∈ R

is continuous. Therefore the result becomes a trivial consequence of the as-
sumption. �

5.2. Characterization of limit points for the Y field. The results of the
previous section are restricted to the range of time scales a < inf(κ+ 1, 2). In
this section, we show we can go beyond this range but only for the sequence
(Yn)n. In the range of time scales considered below we show in Section 7.2 that
the sequence (Yn)n is tight. Therefore we may assume (up to a subsequence)
that it is converging to a process Y . The key difference with the previous
section is that now the term (5.8) will be able to contribute.

From Dynkin’s formula, for f ∈ D(T) we have that:

Mn
t (f) = Ynt (f)− Yn0 (f)−

∫ t

0
(∂s + θ(n)L)Yns (f)ds (5.26)

is a martingale, where

(∂s + θ(n)L)Yns (f) = γθ(n)
n2 Y

n
s (∆nf)

− b2 θ(n)
n3/2 αn

∑
x∈Tn

(
∇nT

+
cnsf

)
(x
n
) ξx(sθ(n))ξx+1(sθ(n))

+ 2b2ρ
θ(n)
n3/2 αn

∑
x∈Tn
∇
(
T+
cnsf

)
(x
n
) ξx(sθ(n)). (5.27)
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Now we can sum and subtract terms, perform a summation by parts and a
Taylor expansion on T+

cnsf to write the time integral of the r.h.s. of (5.27) as

γθ(n)
n2

∫ t

0
Yns (∆nf) ds

− b2 θ(n)
n3/2 αn

∫ t

0

∑
x∈Tn

(
∇nT

+
cns f

)(
x
n

)[
ξx(sθ(n))ξx+1(sθ(n))− ρξx(sθ(n))

− ρξx+1(sθ(n))
]
ds,

plus a term whose variance is O(θ(n)2 α2
n n
−4). Adding the constant ρ2 above,

which we can do since the sum of the discrete gradients vanishes on the periodic
lattice: ∑x∈Tn(∇nT

+
cnsf)(x

n
) = 0, we rewrite the last expression as

γθ(n)
n2

∫ t

0
Yns (∆nf) ds

− b2 θ(n)
n3/2 αn

∫ t

0

∑
x∈Tn

(
∇nT

+
cnsf

)(
x
n

)
ξ̄x(sθ(n))ξ̄x+1(sθ(n)) ds.

Then the martingale decomposition for the field Ynt defined in (4.7) is given by

Mn
t (f) = Ynt (f)− Yn0 (f)−

∫ t

0

γθ(n)
n2 Y

n
s (∆nf) ds (5.28)

+
∫ t

0
b2 θ(n)
n3/2 αn

∑
x∈Tn

(
∇nT

+
cnsf

)(
x
n

)
ξ̄x(sθ(n))ξ̄x+1(sθ(n)) ds. (5.29)

Observe that by using the bound (5.1), the last term (5.29) has variance of
order at most α2

n (θ(n))2 n−2. This bound is not sharp and can be improved by
a H−1 estimate. From Theorem 4 of [3] the term (5.29) has variance of order
at most α2

n (θ(n))3/2 n−2. Indeed, by looking into the proof of Theorem 4 in
[3], for a function ψ : R+ × T→ R, it holds that if t 6 T ,

E
[( ∫ t

0

∑
x∈Tn

ψ(s, x
n
) ξ̄x(sθ(n))ξ̄x+1(sθ(n)) ds

)2]
.

n√
θ(n)

∫ t

0
‖ψ(s, ·)‖2

2,n ds

(5.30)
where

‖ψ(s, ·)‖2
2,n := 1

n

∑
x∈Tn

ψ2
(
s, x

n

)
. (5.31)

From this we easily get the last bound. Therefore if a < 4
3(κ+ 1) the L2-norm

of the last term (5.29) vanishes as n → +∞. Moreover, if a < 2 the L2-norm
of the integral term at the r.h.s. of (5.28) vanishes as n→ +∞ (by the rough
bound provided by (5.1)).

Let us now study the martingaleMn appearing in (5.28)–(5.29). By Dynkin’s
formula, the quadratic variation of the martingale is given by

〈Mn(f)〉t =
∫ t

0

{
θ(n)L(Yns (f))2 − 2Yns (f)θ(n)LYns (f)

}
ds, (5.32)
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and a simple computation shows that last display is equal to

〈Mn(f)〉t = γ
∫ t

0

θ(n)
n

∑
x∈T

(
f(x+1

n
)− f(x

n
)
)2(

ξx+1(θ(n)s)− ξx(θ(n)s)
)2
ds.

(5.33)
Recall that θ(n) = na and αn = αn−κ.

• If a = 2 and κ > 3
4a− 1 then

Mn
t (f) = Ynt (f)− Yn0 (f)− γ

∫ t

0
Yns (∆nf)ds (5.34)

plus a term that vanishes in L2 as n → +∞. Moreover, the quadratic
variation of the martingale satisfies:

lim
n→+∞

E[〈Mn(f)〉t] = 2tγτ‖∇f‖2
0. (5.35)

Then (Yn)n converges to the solution of the Ornstein Uhlenbeck equa-
tion:

dYt = γ∆Ytdt+
√

2γτ∇dBt. (5.36)

• If a < 2 and κ > 3
4a− 1 then

Mn
t (f) = Ynt (f)− Yn0 (f) (5.37)

plus a term that vanishes in L2 as n → +∞. Moreover, the quadratic
variation of the martingale satisfies:

lim
n→+∞

E[〈Mn(f)〉t] = 0.

Then Y has a trivial evolution given by:

Yt(f) = Y0(f), so that dYt = 0. (5.38)

• If a = 2 and κ = 3
4a− 1 = 1

2 then

Mn
t (f) = Ynt (f)−Yn0 (f)− γ

∫ t

0
Yns (∆nf)ds

+b2α
∫ t

0

∑
x∈Tn

(
∇nT

+
cns f

)(
x
n

)
ξ̄x(sn2)ξ̄x+1(sn2)ds.

(5.39)

plus a term which vanishes in L2 as n → +∞. Now we recall from
[11] a second-order Boltzmann-Gibbs principle which is needed in order
to close the last term at the r.h.s. of last expression in terms of the
fluctuation field Yn.

Theorem 3 (Second-order Boltzmann-Gibbs principle). Fix a function
ψ : R+ × Tn → R such that∫ t

0
‖ψ(s, ·)‖2

2,n ds <∞.
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For any t ∈ [0, T ], any positive integer n and any ε ∈ (0, 1), it holds
that:

E
[( ∫ t

0

∑
x∈Tn

ψ(s, x
n
)
{
ξ̄x(sn2)ξ̄x+1(sn2)−

(
~ξεnx (sn2)

)2
+ τ 2

εn

}
ds
)2]

.
∫ t

0
‖ψ(s, ·)‖2

2,n ds
{
ε+ t

ε2n

}
, (5.40)

where ~ξεnx is the empirical average on the box of size bεnc at the right
of site x:

~ξεnx = 1
bεnc

x+bεnc∑
y=x+1

ξ̄y. (5.41)

Proof. The proof of last result is completely analogous to the proof of
Theorem 1 in [11] and for that reason it is omitted. �

From the previous theorem, we can replace (in L2) the last term at
the r.h.s. of (5.39), for n sufficiently big and then ε sufficiently small,
by

b2α
∫ t

0

∑
x∈Tn

(
∇nT

+
cnsf

)(
x
n

)(
ξ̄εnx (sn2)

)2
ds. (5.42)

Note that last expression writes as

b2α
∫ t

0

∑
x∈Tn

(
∇nT

+
cns f

)(
x
n

)( 1
εn

x+εn∑
y=x

ξ̄x(sn2)
)2
ds. (5.43)

For ε > 0 and x ∈ T, we recall that ιε(x) : T → R is the function
defined for y ∈ T by ιε(x)(y) = ε−1 1x<y6x+ε. Note that

1√
n
Yns (ιε(x)) = 1

εn

x+εn−2b2ραn3/2s∑
y=x−2b2ραn3/2s

ξ̄y(sn2). (5.44)

If in (5.43) we change the variable x into z − 2b2ραn3/2s, we rewrite
(5.43) as

b2α
∫ t

0

∑
z∈Tn
∇nf( z

n
)
( 1
εn

z−2b2ραn3/2s+εn∑
y=z−2b2ραn3/2s

ξ̄y(sn2)
)2
ds (5.45)

and from (5.44) last expression writes as

b2α
∫ t

0

1
n

∑
z∈Tn
∇nf( z

n
)
(
Yns (ιε(z))

)2
ds. (5.46)

Then we get

Mn
t (f) = Ynt (f)− Yn0 (f)− γ

∫ t

0
Yns (∆nf)ds

+ b2α
∫ t

0

1
n

∑
z∈Tn
∇nf( z

n
)
(
Yns (ιε(z))

)2
ds.

Moreover, the quadratic variation of the martingale satisfies:
lim

n→+∞
E[〈Mn(f)〉t] = 2tγτ‖∇f‖2

2
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so that Y is solution of the stochastic Burgers equation:
dYt = γ∆Ytdt+ b2α∇(Yt)2dt+

√
2γτ∇dBt. (5.47)

6. The limit of the sequence of martingales (N n)n∈N
In this section we prove convergence of the sequence of martingales{

N n
t
• ~f ; t ∈ [0, T ]

}
n∈N

which is a consequence of Theorem VIII.3.12 in [21] which can be stated as
follows.

Proposition 4 ([21]). Let t ∈ [0, T ] 7→ Ct ∈ [0,∞) be a deterministic con-
tinuous function of the time t. Let {Mn

t ; t ∈ [0, T ]}n∈N be a sequence of
square-integrable real-valued martingales with càdlàg trajectories defined on a
probability space (Ω,F ,P). Let {〈Mn〉t ; t ∈ [0, T ]} denote the quadratic vari-
ation of {Mn

t ; t ∈ [0, T ]}. Assume that
i) For each n ∈ N, the quadratic variation process {〈Mn〉t ; t ∈ [0, T ]}

has continuous trajectories P a.s.;
ii) the maximal jump satisfies

lim
n→∞

E
[

sup
06s6T

∣∣∣Mn
s −Mn

s−

∣∣∣] = 0; (6.1)

Above E denotes the expectation w.r.t. P.
iii) For each t ∈ [0, T ], the sequence of random variables {〈Mn〉t}n∈N con-

verges in probability to the deterministic path {Ct ; t ∈ [0, T ]}.
Then the sequence {Mn

t ; t ∈ [0, T ]}n∈N converges in law in D([0, T ],R) to
a martingale {Mt ; t ∈ [0, T ]} with quadratic variation t 7→ Ct. Moreover
{Mt ; t ∈ [0, T ]} is a mean zero Gaussian process.

Remark 4. We note that if in the previous theorem Ct = σ2t, then the limit
is a Brownian motion with quadratic variation equal to σ2t.

Before we proceed we explain how to deduce Proposition 1 from Theorem
VIII.3.12 of [21]. To get Proposition 1, we use the statement of Theorem
VIII.3.12 which requires assumptions (3.14) and b) (iv) (both in [21]) to get
the convergence in law of the martingales. By the assertion VIII.3.5 in [21],
the conditions [δ̂5−D] and (3.14) are a consequence of (6.1) above. Moreover,
condition [γ5−D] defined in (3.3) page 470 of [21] is a consequence of iii) above.

As a consequence of last result we conclude that:

Corollary 1. Let ~f = (f 1, f 2)† ∈ D(T,R2). The sequence of martingales
{N n

t
• ~f : t ∈ [0, T ]}n∈N converges in law under the topology of D([0, T ],R), as

n→∞, to:
• 0 when a < 2 and κ 6 a− 1 ;
• to a martingale {Nt • ~f : t ∈ [0, T ]} which is a mean-zero Gaussian

process and whose quadratic variation is given by
◦ if κ > 1 and a = 2:
〈N • ~f 〉t = 2tγτ 2‖∇f 1‖2

0 + 2tγσ2‖∇f 2‖2
0 + 4γδt〈∇f 1,∇f 2〉0 ;
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◦ if κ = 1 and a = 2:

〈N • ~f 〉t = 2tγτ 2‖∇f 1‖2
0 + 2tγσ2‖∇f 2‖2

0 + 4γδc−1 〈T+
ct f

1 − f 1 , ∇f 2〉0.

Proof. Now we fix ~f = (f 1, f 2)† ∈ D(T,R2). In order to apply Proposition 1
to the sequence (N n • ~f )n∈N, we note that item i) is trivial because of (5.10).
Note that ii) is a consequence of the computations performed in the proof of
Lemma 4. Finally we prove iii), that is, the convergence, in the L2-norm, of
the quadratic variation of N n • ~f . For that purpose, note that, by using the
inequality (x+ y)2 6 2x2 + 2y2 we can bound from above,

E
[(
〈N n • ~f〉t − E

[
〈N n • ~f〉t

])2]
by a constant times the sum of the next three terms:

I := E
[( ∫ t

0

θ(n)
n3

∑
x∈Z

(
∇nT

+
cnsf

1(x
n
)
)2{(

ξx+1(θ(n)s)− ξx(θ(n)s)
)2
− 2τ 2

}
ds
)2]

II := E
[( ∫ t

0

θ(n)
n3

∑
x∈Z

(
∇nf

2(x
n
)
)2{(

ηx+1(θ(n)s)− ηx(θ(n)s)
)2
− 2σ2

}
ds
)2]

III := E
[( ∫ t

0

θ(n)
n3

∑
x∈Z

(
∇nT

+
cnsf

1
)
(x
n
)(∇ng)(x

n
)
{(
ηx+1(θ(n)s)− ηx(θ(n)s)

)

×
(
ξx+1(θ(n)s)− ξx(θ(n)s)

)
− 2(δ − ρv)ds

})2]
.

A simple computation, based on (5.1), shows that each one of the last three
expectations are of order O((θ(n))2 n−5). Since θ(n) 6 n2, the last three terms
vanish as n→ +∞. From these computations we conclude that when a < 2 we
have that Ct = 0, so that the sequence (N n

t
• ~f )n∈N converges to 0 as n→ +∞,

but when a = 2 and k > 1,
Ct = 2tγτ 2‖∇f 1‖2

0 + 2tγσ2‖∇f 2‖2
0 + 4γδ〈∇f 1,∇f 2〉0

and when a = 2 and k = 1 we have that
Ct = 2tγτ 2‖∇f 1‖2

0 + 2tγσ2‖∇f 2‖2
0 + 4γδc−1〈T+

ct f
1 − f 1,∇f 2〉0.

From Proposition 1 we conclude that the sequence {N n
t ; t ∈ [0, T ]}n∈N con-

verges to a mean-zero Gaussian process {Nt ; t ∈ [0, T ]} which is a martingale
with quadratic variation given by Ct. This finishes the proof of Corollary 1. �

7. Tightness

7.1. Tightness for the Z field. In this section we prove tightness of the
sequence {X n

t = Znt • ; t ∈ [0, T ]}n∈N ∈ D([0, T ], (Hk ×Hk)′) following Chapter
11 of [25]. By Remark 3 this implies the tightness of {Znt ; t ∈ [0, T ]}n∈N ∈
D([0, T ],H−k ×H−k)}n∈N. We assume that a 6 inf(2, κ+ 1). We need to show
that:

(A) limA→+∞ lim supn→+∞ P
(

sup06t6T ‖Znt • ‖2
−k > A

)
= 0,

(B) ∀ε > 0, limδ→0 lim supn→+∞ P
(
ωδ(Zn•) > ε

)
= 0,
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where
ωδ(Zn•) := sup

|s−t|<δ
06s,t6T

‖Znt • −Zns • ‖−k.

The norms above and the corresponding inner products 〈·, ·〉−k have been in-
troduced in the beginning of Section 4. We start by showing condition (A).
For each integer z ∈ Z, recall that hz denotes the function defined in (4.1).

Lemma 2. Assume that a 6 inf(2, κ + 1). There exists a finite constant
C(T ) > 0 such that for every z ∈ Z,

sup
n→+∞

E
[

sup
06t6T

∣∣∣Znt • (hz, 0)†
∣∣∣2 +

∣∣∣Znt • (0, hz)†
∣∣∣2] 6 C(T ) (1 + z41a=2 + z2).

Proof. Recall (5.3):

N n
t
• ~f = Znt • ~f −Zn0 • ~f −

∫ t

0
(∂s + θ(n)L)Zns • ~f ds. (7.1)

A simple computation shows that for ~f ∈ {(hz, 0)†, (0, hz)†}

lim
n→+∞

E
[
(Zn0 • ~f)2

]
. ‖hz‖2

0 = 1.

To treat the martingale term, we rely on Doob’s inequality to get that for
~f ∈ {(hz, 0)†, (0, hz)†}

E
[

sup
06t6T

∣∣∣N n
t
• ~f
∣∣∣2] 6 4E

[∣∣∣N n
T
• ~f
∣∣∣2].

From (5.10) and since ~f ∈ {(hz, 0)†, (0, hz)†}, it follows that

lim sup
n→+∞

E
[

sup
06t6T

∣∣∣N n
t
• ~f
∣∣∣2] . T

θ(n)
n2 ‖∇hz‖

2
0 . Tz2 (7.2)

since θ(n) = na and a 6 2 and ‖∇hz‖2
0 . z2. Finally, it remains to bound:

E
[

sup
06t6T

( ∫ t

0
(∂s + θ(n)L)Zns • ~f ds

)2]
for ~f ∈ {(hz, 0)†, (0, hz)†}. From the computations following (5.3), we see that
last expectation is bounded from above by a constant times

T 2 θ(n)2

n4 ‖∆hz‖
2
0 + T 2 θ(n)2α2

n

n2 ‖∇hz‖2
0 . na−2z4 + n2(a−κ−1)z2

The limit as n → +∞ of last term is equal to z4 if a = 2 and equal to z2 if
a = k + 1 < 2, otherwise it is 0. This proves the lemma. �

Remark 5. We observe here that in the regime a > κ+1 (e.g. a = 2, κ = 1/2)
the previous bound is not sufficiently sharp to prove tightness of the field Zn.
We will need to show tightness of the Yn field in the next section in this range
of parameters and we will have to deal with this problem.

Corollary 2. Assume that a 6 inf(2, κ+ 1) and k > 5/2. It holds that

(1) lim supn→+∞ E
[

sup06t6T ‖Znt • ‖2
−k

]
<∞.
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(2) lim supj→+∞ lim supn→+∞

E
[

sup
06t6T

∑
|z|>j

{∣∣∣Znt • (hz, 0)†
∣∣∣2 +

∣∣∣Znt • (0, hz)†
∣∣∣2}γ−kz ]

= 0.

Proof. The first item of the corollary follows from (5.2), the definition of the
inner product 〈·, ·〉−k of H−k × H−k given in (4.5) and the previous lemma.
More precisely:

E
[

sup
06t6T

‖Znt • ‖2
−k

]
=
∑
z∈Z

γ−kz E
[

sup
06t6T

∣∣∣Znt • (hz, 0)†
∣∣∣2 +

∣∣∣Znt • (0, hz)†
∣∣∣2]

.
∑
z∈Z

1
(1 + (2πz)2)(k−2)

and last sum is finite as long as k > 5/2. The second item follows exactly by
the same argument. �

By Chebychev’s inequality, condition (A) follows from (1) in Corollary 2 . It
remains now to prove (B) but since (2) of Corollary 2 holds, (B) follows from
the next lemma.

Lemma 3. For every j > 1 and every ε > 0,

lim
δ→0

lim sup
n→+∞

P
[

sup
|s−t|<δ
06s,t6T

∑
|z|6j

{(
Znt • (hz, 0)† −Zns • (hz, 0)†

)2

+
(
Znt • (0, hz)† −Zns • (0, hz)†

)2
}
γ−kz > ε

]
= 0.

To prove last lemma it is enough to show, for every z ∈ Z, ε > 0 and for
~f ∈ {(hz, 0)†, (0, hz)†}, that

lim
δ→0

lim sup
n→+∞

P

 sup
|s−t|<δ
06s,t6T

(
Znt • ~f −Zns • ~f

)2
> ε

 = 0.

This is a consequence of the next two lemmas.

Lemma 4. Let ~f ∈ D(T,R2). For every ε > 0

lim
δ→0

lim sup
n→+∞

P

 sup
|s−t|<δ
06s,t6T

∣∣∣N n
t
• ~f −N n

s
• ~f
∣∣∣ > ε

 = 0.

Proof. Denote by ω′δ(N n • ~f) the modified modulus of continuity defined by

ω′δ(N n • ~f) = inf
{ti}

max
06i6r

sup
ti6s<t6ti+1

∣∣∣N n
t
• ~f −N n

s
• ~f
∣∣∣,

where the infimum is taken over all partitions of [0, T ] such that
0 = t0 < t1 < ... < tr = T

with ti+1 − ti > δ for 0 6 i 6 r. Since

ωδ(N n • ~f) 6 2ω′δ(N n • ~f) + sup
t

∣∣∣N n
t
• ~f −N n

t− •
~f
∣∣∣
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it is sufficient to control the two terms on the r.h.s. of the previous inequality
separately. We start with the first one. Observe that

sup
t

∣∣∣∣N n
t
• ~f −N n

t− •
~f
∣∣∣∣ = sup

t

∣∣∣∣Znt • ~f −Znt− • ~f ∣∣∣∣
and that for any t ∈ [0, T ] it holds that∣∣∣∣Znt • ~f −Znt− • ~f ∣∣∣∣ 6 ∣∣∣Ynt (f 1)− Ynt−(f 1)

∣∣∣+ ∣∣∣Vnt (f 2)− Vnt−(f 2)
∣∣∣. (7.3)

Let xt be the site where the jump occurred at time t for the speeded by θ(n)
process. Now we calculate the L2-norm of each term on the RHS of (7.3)
separately. Note that

E
[
sup
t6T

(
Ynt (f 1)− Ynt−(f 1)

)2
]

= E
[
sup
t6T

(
1√
n

(
T+
cntf

1(xt
n

)− T+
cntf

1(xt+1
n

)
)(

ξxt(tθ(n))− ξxt+1(tθ(n))
))2

]

.
1
n3E

[
sup
t6T

(
ξxt(tθ(n))− ξxt+1(tθ(n))

)2
]

.
1
n3E

sup
t6T

( ∑
x∈Tn

(ξx(tθ(n))− ξx+1(tθ(n)))
)2


.
1
n3E

sup
t6T

( ∑
x∈Tn

ξx(tθ(n))
)2


= 1
n3E

[( ∑
x∈Tn

ξx(0)
)2]

where the last equality follows from the conservation of ∑x∈Tn ξx. A simple
computation shows that the last term above is of order O(n−1). Finally,

E
[

sup
t6T

(
Vnt (f 2)− Vnt−(f 2)

)2]
= E

[
sup
t6T

(
1√
n

(
f 2(xt

n
)− f 2(xt+1

n
)
)(
ηxt(tθ(n))− ηxt+1(tθ(n))

))2]

.
1
n3E

[
sup
t6T

(
|ηxt(tθ(n))|+ |ηxt+1(sθ(n))|

)2]

.
1
n3E

[
sup
t6T

( ∑
x∈Tn
|ηx(tθ(n))|+ |ηx+1(tθ(n))|

)2]

.
1
n3E

[
sup
t6T

( ∑
x∈Tn
|ηx(tθ(n))|

)2]
.

Since for any b > 0 and for any u ∈ R, it holds that |u| . 1 + Vb(u), last
expectation can be bounded from above by

1
n3E

[
sup
t6T

( ∑
x∈Tn

Vb(ηx(tθ(n))
)2]



29

plus a term that vanishes as n→ +∞. From the conservation of ∑x∈Tn Vb(ηx),
last display is equal to

1
n3E

[( ∑
x∈Tn

Vb(ηx(0)
)2]

which is of order O(n−1). In order to finish the proof it is enough to show that

lim
δ→0

lim sup
n→+∞

P
[
ω′δ(N n • ~f) > ε

]
= 0

for every ε > 0. By Aldous’ criterium, see, for example, Proposition 4.1.6 of
[25], it is enough to show that:

lim
δ→0

lim sup
n→+∞

sup
τ∈Tτ
06θ6δ

P
[
|N n

τ+θ •
~f −N n

τ
• ~f | > ε

]
= 0

for every ε > 0. Here Tτ denotes the family of all stopping times bounded
by T with respect to the canonical filtration. By Chebychev’s inequality, the
Optional Stopping Theorem and (5.10) the result follows. �

Lemma 5. Let ~f ∈ {(hz, 0)†, (0, hz)†}. For every ε > 0

lim
δ→0

lim sup
n→+∞

P

 sup
|s−t|<δ
06s,t6T

∣∣∣∣ ∫ t

s
(∂r + θ(n)L)Znr ~f dr

∣∣∣∣ > ε

 = 0.

Proof. By using the explicit expression for (∂r + θ(n)L)Znr • ~f , Chebychev’s
inequality and some simple computations we conclude the proof. �

Remark 6. We observe that in the proof above it was not necessary to consider
~f ∈ {(hz, 0)†, (0, hz)†}. The proof works out for any ~f ∈ D(T).

7.2. Tightness for the Y field. We note that the proof of tightness for the
sequence {Ynt ; t ∈ [0, T ]}n∈N is completely similar to the one presented in the
previous subsection. Observe that the field Y can be recovered from the field
X by simply taking the test function g = 0. The only regime which requires
some care is when a 6 inf(4

3(κ + 1), 2) and κ 6 1, so that we need to look
carefully at (5.6). See the comments at the end of the proof of Lemma 2. Now
we treat this term. For that purpose, fix ε > 0 and note that, from (5.30) we
have that

En
[

sup
06t6T

( ∫ t

0

θ(n)αn
n3/2

∑
x∈Tn

(
∇nT

+
cns hz

)
(x
n
) ξ̄x(sn2)ξ̄x+1(sn2)ds

)2]

6
θ(n)3/2α2

n

n2

∫ T

0
‖∇nT

+
cns hz‖

2
2,nds.

For the range of the parameters that we are looking at, last expression is
bounded from above by C(T )

∫ T
0 ‖∇nT

+
cns hz‖

2
2,nds. The rest of the proof of

tightness follows exactly from the same computations as presented above for
the X field.
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