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A MICROSCOPIC DERIVATION OF COUPLED SPDE'S WITH A KPZ FLAVOR

We consider an interacting particles system composed of a Hamiltonian part and perturbed by a conservative stochastic noise so that the full system conserves two quantities: energy and volume. The Hamiltonian part is regulated by a scaling parameter vanishing in the limit. We study the form of the fluctuations of these quantities at equilibrium and derive coupled stochastic partial differential equations with a KPZ flavor.

Introduction

During the last decade a huge number of research programs have been devoted to the study of the Kardar-Parisi-Zhang (KPZ) equation and its derivation from microscopic models. The KPZ equation has been introduced in [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF] as a phenomenological equation which, in dimension one, takes the form

∂ t h(t, u) = A ∂ 2 uu h(t, u) + B (∂ u h(t, u)) 2 + √ C Ẇ(t, u), t > 0, u ∈ R,
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where A > 0, B ∈ R, C > 0 are thermodynamic constants and Ẇ(t, u) is a standard space-time Gaussian white noise. This equation describes the evolution of a randomly growing interface, whose height is h(t, u), t > 0 being the time and u ∈ R the spatial coordinate. Almost equivalently, taking the space derivative of the KPZ equation, we get the (conservative) stochastic Burgers equation (SBE) for Y = ∂ u h:

∂ t Y(t, u) = A ∂ 2 uu Y(t, u) + B ∂ u (Y 2 (t, u)) + √ C ∂ u Ẇ(t, u).
The SBE equation is expected to be a universal object describing the scaling limit of a large class of weakly asymmetric interacting particle systems with a single conservation law [START_REF] Spohn | The Kardar-Parisi-Zhang equation: A statistical physics perspective in Stochastic processes and random matrices: Lecture notes of the Les Houches summer school[END_REF]. In our opinion, the major recent mathematical contributions in this field have been:

• the proof of the well posedness of the KPZ (or SBE) equation, via the theory of regularity structures developed by Hairer [START_REF] Hairer | Solving the KPZ equation[END_REF][START_REF] Hairer | A theory of regularity structures[END_REF], or alternatively through the paracontrolled distributions theory [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF]; • the obtention of its asymptotic properties via the study of some "integrable stochastic systems", in particular the derivation of scaling limits for one-dimensional exclusion-type processes, starting from the seminal paper [START_REF] Bertini | Stochastic Burgers and KPZ equations from particle systems[END_REF], and going on with [START_REF] Corwin | Kardar-Parisi-Zhang universality[END_REF][START_REF] Quastel | The one-dimensional KPZ equation and its universality class[END_REF], and many others; • the development of a robust method to derive the SBE (or KPZ) equation as a scaling limit for a large class of interacting particle systems, thanks to the new notion of energy solutions investigated in [START_REF] Gonçalves | Nonlinear fluctuations of weakly asymmetric interacting particle systems[END_REF][START_REF] Gubinelli | Energy solutions of KPZ are unique[END_REF][START_REF] Gonçalves | A stochastic Burgers equation from a class of microscopic interactions[END_REF][START_REF] Gonçalves | Second order Boltzmann-Gibbs Principle for polynomial functions and applications[END_REF]. Since a few years there has been a growing interest for one-dimensional ncomponent coupled SBE, written as:

∂ t Y = ∂ u (A∂ u Y) + ∂ u ( Y, B Y ) + √ C ∂ u ξ, ( 1.1) 
where Y(t, u) ∈ R n , and A, C are square matrices of size n, ξ is a n-component Gaussian white noise, and B = ( B i ) is a tensor 1 (i.e. B i is n × n-matrix for any 1 i n). Such equations appeared in the physics literature very early after the seminal paper [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF] of Kardar, Parisi and Zhang and more recently in the context of the nonlinear fluctuating hydrodynamics theory developed by Spohn and coauthors [START_REF] Spohn | Nonlinear Fluctuating Hydrodynamics for Anharmonic Chains[END_REF][START_REF] Spohn | Nonlinear Fluctuating Hydrodynamics in One Dimension: The Case of Two Conserved Fields[END_REF]. The mathematical study of global-in-time existence and invariant measures for the n-component coupled SBE has been investigated in [START_REF] Gubinelli | T he infinitesimal generator of the stochastic Burgers equation[END_REF][START_REF] Funaki | A coupled KPZ equation, its two types of approximations and existence of global solutions[END_REF][START_REF] Funaki | Invariant measures in coupled KPZ equations[END_REF]. It is expected that the coupled SBE equations cover the dynamics of weakly asymmetric interacting particle systems with several conserved quantities in a suitable mesoscopic scale. In the nonlinear fluctuating hydrodynamics theory one postulates that these equations describe correctly the macroscopic properties of the underlying microscopic system in "some mesoscopic scale" and their study permits to obtain some information of the large time behavior of the strongly asymmetric system. Let us notice that it is quite unclear (at least for us), even without asking for a proof, what are the exact scaling limits to perform in the microscopic models in order to 1 Therefore, in (1. [START_REF] Bernardin | Superdiffusivity of asymmetric energy model in dimensions 1 and 2[END_REF], the quantity Y, B Y is a vector whose i-th component reads

( Y, B Y ) i = Y, B i Y ,
where • denotes the Euclidean inner product in R n .

obtain these equations. Indeed, such equations should be obtained by tuning in a very specific way the intensity of the "asymmetry" and the time scale with respect to the scaling parameter. Moreover, since the system has more than one conserved quantities, different time scales have to be considered. Let us also remark that the mathematical treatment of these equations and their obtention as scaling limits are challenging problems whose resolutions are in their very infancy. The aim of the paper is to provide a model with two conserved quantities for which it can be proved rigorously that in suitable scaling limits, the system is described by a set of degenerate coupled SBE equations. By degenerate we mean that some of the matrices entries appearing in (1. [START_REF] Bernardin | Superdiffusivity of asymmetric energy model in dimensions 1 and 2[END_REF] vanish. When the asymmetry is very weak, in a diffusive time scale, the system is reduced to an uncoupled system consisting of two autonomous Ornstein-Uhlenbeck (OU) equation. If the intensity of the asymmetry is increased, there is some critical value such that, in a diffusive time scale, the system becomes composed of coupled equations: an autonomous OU equation and a second OU equation with a drift term driven by the first one. Increasing again the intensity of the asymmetry, the system becomes composed of an OU equation (obtained in a diffusive time scaling) and a transport equation whose transport term is driven by the first one (obtained in a sudiffusive time scaling). This pictures remains valid up to a second critical value of the asymmetry intensity, for which the first OU equation is replaced by a SBE equation while the second is still a transport equation driven by some OU process. The results obtained are in agreement with mode coupling theory [28].

This paper is one of the first contributions where coupled equations with a KPZ flavor are derived from a microscopic system. In [START_REF] Bernardin | Derivation of coupled KPZ-Burgers equation from multi-species zero-range processes[END_REF], the authors derive some multicomponent coupled SBE equations as a scaling limit of a multispecies zero-range process. However a big difference of our model with respect to the latter is that in [START_REF] Bernardin | Derivation of coupled KPZ-Burgers equation from multi-species zero-range processes[END_REF] the velocities of the normal modes are equal while it is never the case in our model. A second interesting feature of our result is that we are able to emphasis the exact time and asymmetry parameters scaling to consider in order to get the expected equations, and we extend the class of SPDEs which arise in this context.

Outline of the paper. We start in Section 2 with the definition of the microscopic dynamics under investigation and the introduction of the relevant macroscopic quantities. Section 3 is devoted to defining and giving a rigorous meaning to the solution of three stochastic partial differential equations which will emerge at the macroscopic level. In Section 4 we will state our main convergence results. Finally, Sections 5, 6 and 7 contain the different steps of the proof: we begin with a sketch given in Section 5, and we are able conclude the proof up to technical results, namely the convergence of martingales associated to the microscopic dynamics (proved in Section 6), and the tightness property of the fluctuation fields (proved in Section 7).

Notations. Given two real-valued functions f and g depending on the variable u ∈ R d we will write f (u) ≈ g(u) if there exists a constant C > 0 which does not depend on u such that for any u,

C -1 f (u) g(u) Cf (u) and f (u) g(u) if for any u, f (u) Cg(u). We write f = O(g) (resp. f = o(g)) in the neighbor- hood of u 0 if |f | |g|
in the neighborhood of u 0 (resp. lim u→u 0 f (u)/g(u) = 0). Sometimes it will be convenient to precise the dependence of the constant C on some extra parameters and this will be done by the standard notation C(λ) if λ is the extra parameter. We often denote the one-dimensional gradient and Laplacian on R by ∇ = ∂ u and ∆ = ∂ 2 uu . The transpose matrix of the matrix A is denoted by A † . The one-dimensional continuous torus is denoted by T = [0, [START_REF] Bernardin | Superdiffusivity of asymmetric energy model in dimensions 1 and 2[END_REF]. For any integer d 1, we denote the space of smooth R d -valued functions f := (f 1 , . . . , f d ) † on T by D(T, R d ). In the special case d = 1, we simplify the notation by omitting the arrow on f , and we also denote

D(T, R) (resp. L 2 (T, R)) by D(T) (resp. L 2 (T)). Then, we identify D(T, R d ) with (D(T)) d and L 2 (T, R d ) with (L 2 (T)) d . Finally, for a function f ∈ L 2 (T, R d ), we denote by f 2 0 the usual L 2 (T, R d )-norm of f : f 2 0 := d i=1 T (f i (u)) 2 du,
and by •, • 0 its associated inner product:

f , g 0 = d i=1 T f i (u)g i (u)du.

The model

Let b > 0 be a fixed parameter and define the one-dimensional exponential potential +∞). Recall that the one-dimensional continuous torus is denoted by T = [0, [START_REF] Bernardin | Superdiffusivity of asymmetric energy model in dimensions 1 and 2[END_REF]. For any n 1, we define its discrete counterpart T n = {0, 1, . . . , n-1} of size n and we denote R Tn by Ω n . We consider the Markov process η(t) = {η x (t) : x ∈ T n } with state space Ω n defined by its infinitesimal generator L. The latter is given by L = α n A + γS, where γ > 0 and α n = αn -κ , with α ∈ R, κ > 0. The actions of A and S on differentiable functions f : Ω n → R are given by

V b : u ∈ R → e -bu -1 + bu ∈ [0,
(Af )(η) = x∈Tn V b (η x+1 ) -V b (η x-1 ) (∂ ηx f )(η) and (Sf )(η) = x∈Tn f (η x,x+1 ) -f (η) .
Here the configuration η x,x+1 is the configuration obtained from η by exchanging the occupation variables η x and η x+1 , i.e. for any

z ∈ T n , (η x,x+1 ) z = η z for z = x, x + 1, (η x,x+1 ) x = η x+1 and (η x,x+1 ) x+1 = η x .
We refer the interested reader to [START_REF] Bernardin | Superdiffusivity of asymmetric energy model in dimensions 1 and 2[END_REF][START_REF] Bernardin | Anomalous diffusion for a class of systems with two conserved quantities[END_REF][START_REF] Bernardin | Anomalous Fluctuations for a Perturbed Hamiltonian System with Exponential Interactions[END_REF][START_REF] Spohn | Nonlinear Fluctuating Hydrodynamics in One Dimension: The Case of Two Conserved Fields[END_REF] for the motivations behind the study of this system and more information about its construction. The system is thus a Hamiltonian system (with generator A) perturbed by a stochastic noise (generated by S).

Let us comment about the role of the parameters which appear in the definition of the microscopic system. In the following, n will tend to infinity so that 1/n, which represents the ratio between the macroscopic scale and the microscopic scale, will play the role of a scaling parameter going to 0. The parameter α n fixes the intensity of the asymmetry in the system in terms of the scaling parameter: larger κ is, smaller the asymmetry is. Strong asymmetric systems would correspond to κ = 0. The reason why A represents the asymmetric part of the generator will become clear in the sequel. The parameter γ fixes the intensity of the stochastic noise and is always of order 1. We will consider the Markov process in different time scales, namely by accelerating the microscopic time by a constant θ(n) = n a , where a > 0 is a constant.

The system conserves two quantities: the energy and the volume, given respectively by

x∈Tn V b (η x ), x∈Tn η x .
The previous conservation laws are expressed by the well defined continuity equations

L(V b (η x )) = je x-1,x (η) -je x,x+1 (η), L(η x ) = jv x-1,x (η) -jv x,x+1 (η), (2.1)
where the microscopic currents are given by je

x,x+1 (η) = -α n b 2 e -b(ηx+η x+1 ) + α n b 2 (e -bηx + e -bη x+1 ) -γ∇(V b (η x )) (2.2) jv x,x+1 (η) = α n b(e -bηx + e -bη x+1 ) -γ∇η x . ( 2.3) 
We define a family of product probability measures µβ , λ on Ω n by

µβ , λ(dη) = x∈Tn Z-1 ( β, λ) exp{-βe -bηx -λη x }dη x , β, λ > 0, (2.4) 
where Z( β, λ) is the normalization constant. It is a simple exercise to show that A is skew symmetric and S is symmetric in L 2 (µβ , λ) so that µβ , λ is an invariant measure for the dynamics generated by L. In fact A is a Liouville operator corresponding to a Hamiltonian dynamics with Gibbs measure µβ , λ and S generates the dynamics of a reversible Markov process with respect to µβ , λ. Therefore, A represents the asymmetric part of the system.

Let • denote the average with respect to µβ , λ. Let us introduce the quantity

ξ x = e -bηx .
Note that if η is distributed according to (2.4) then ξ is distributed according to the probability measure ν β,λ given by

ν β,λ (dξ) = x∈Z Z -1 (β, λ)1 {ξx>0} e -βξx+λ log(ξx) dξ x (2.5)
with β = β and λ = -1 + λ/b. Above Z(β, λ) is a normalizing constant.

We are interested in the evolution of this process in some accelerated time scale tθ(n), thus we denote by {η(tθ(n)) ; t ∈ [0, T ]} the Markov process on Ω n associated to the accelerated generator θ(n)L. The path space of càdlàg trajectories with values in Ω n is denoted by D([0, T ], Ω n ). We denote by P the probability measure on D([0, T ], Ω n ) induced by an equilibrium initial condition µβ , λ and the Markov process {η(tθ(n)) ; t ∈ [0, T ]}. The corresponding expectation is denoted by E.

We define e := e( β, λ) and v := v( β, λ) as the averages of the conserved quantities V b (η x ), η x with respect to µβ , λ, respectively, namely

e = V b (η x ) , v = η x .
We also define ρ as the average of ξ x with respect to µβ , λ, i.e. ρ = ξ x . Finally, we denote the variance of η x (resp. ξ x ) with respect to µβ , λ by σ 2 (resp. τ 2 ) and the covariance between η x and ξ x by δ. To summarize, we have

η x = v and (η x -v) 2 =: σ 2 (2.6
)

ξ x = 1 + e -bv = λ + 1 β =: ρ and (ξ x -ρ) 2 = λ + 1 β 2 =: τ 2 (2.7) (η x -v)(ξ x -ρ) =: δ.
(2.8)

A simple computation shows that je

x,x+1 = -α n b 2 (e -bv) 2 + α n b 2 (2.9) jv x,x+1 = 2α n b(1 + e -bv).
(2.10)

Hence, in the hyperbolic scaling θ(n) = n, in the strong asymmetry regime, namely κ = 0, the hydrodynamical equations are given by (see [START_REF] Bernardin | Anomalous diffusion for a class of systems with two conserved quantities[END_REF] for a proof):

   ∂ t e -αb 2 ∂ u ((e -bv) 2 ) = 0 ∂ t v + 2αb ∂ u (e -bv) = 0. (2.11) 

Stochastic partial differential equations

In this section we give the rigorous meaning of the various SPDEs which will appear in the scaling limits of our system. Let us start with a few notations.

The topological dual of a topological space E is denoted by E . Hence, the space of R-valued distributions on T is denoted by D (T). Similarly, the space of R d -valued distributions on T is denoted by ( We recall the following standard definition:

D(T, R d )) . If f ∈ D(T) and Z = (Z 1 , • • • , Z d ) † ∈ (D (T)) d , then we denote by Z(f ) the vector (Z 1 (f ), • • • , Z d (f )) ∈ R d . Definition 1. For any Z = (Z 1 , . . . , Z d ) † ∈ (D (T)) d , we define the element "Z • " belonging to (D(T, R d )) by Z • f = d j=1 Z j (f j ), for any f = (f 1 , . . . , f d ) † ∈ D(T, R d ). ( 3 
Definition 2. Let {Z t ∈ (D (T)) d ; t ∈ [0, T ]} be a process.
We say that Z is a centered Gaussian process if any linear combination of the components of

{Z t i (f i ) ; i = 1, . . . , k}, with f i ∈ D(T)
, is a Gaussian random variable.

Definition 3. We say that the stochastic process

{B t = (B 1 t , . . . , B d t ) † ; t ∈ [0, T ]} whose paths are in C([0, T ], (D (T)) d ) is a standard (D (T)) d -valued Brownian motion if it is a centered Gaussian process such that ∀(s, t) ∈ [0, T ] 2 , E B t (f )B † s (g) = (s ∧ t) I d T f (u)g(u)du
where I d is the identity matrix of size d and any f, g ∈ D(T). 

dZ t = A ∆Z t dt + √ 2C ∇dB t , ( 3.2) 
where A, C are symmetric non-negative d-squared matrices.

Definition 4. We say that the stochastic process

{Z t ; t ∈ [0, T ]} taking values in the space C([0, T ], (D (T)) d ) is a stationary solution of (3.2) if it satisfies: i) For every { f t : T → R d ; t ∈ [0, T ]} which is C 1 in
time and smooth in space, the quantity given by

M t • f • = Z t • f t -Z 0 • f 0 - t 0 Z s • (A † ∆ f s ) ds , ( 3.3) 
is a martingale with respect to the natural filtration associated to Z • , namely

F t := σ Z s • f ; s t, f ∈ D(T, R d ) , (3.4) 
with quadratic variation equal to

2 t 0 √ C ∇ f s 2 0 ds.
ii) Z 0 is a mean zero Gaussian field such that for any f , g ∈ D(T, R 2 ), by

E (Z 0 • f ) (Z 0 • g) = f , D g 0 (3.5)
where D is the (symmetric matrix) solution of

AD + DA † = 2C.
Remark 1. A simple computation shows that, if Z • satisfies Definition 4, then Z • is a centered Gaussian process with covariance given by

E (Z t • f ) (Z s • g) = T t-s f , D g 0 (3.6)
where

T t := exp(t A † ∆).
Proposition 1. There exists a unique stationary solution to (3.2) in the sense of Definition 4. It is called a stationary d-dimensional generalized Ornstein-Uhlenbeck process.

3.2.

A two-dimensional drifted Ornstein-Uhlenbeck equation. Let c ∈ R be fixed. We define the shift operator 2 -valued Brownian motion. We consider positive real numbers λ, µ, a, d > 0 and b, θ ∈ R such that adb 2 > 0. For each time t > 0 we define the time dependent operators acting on functions f : T → R 2 by

T ± c acting on functions f ∈ D(T, R d ) by T ± c f (x) = f (x ± c), x ∈ T. Let B be a standard (D (T))
L t : f → λ∆ 0 θ∇T + ct µ∆ f (3.7)
and

C t : f → a bT - ct bT + ct d f . ( 3.8) 
Observe that C t is a non-negative symmetric operator: for any

f = (f 1 , f 2 ) † ∈ L 2 (T, R 2 ), we have that q t ( f ) := f , C t f 0 (3.9) = a T f 1 (y) 2 dy + d T f 2 (y) 2 dy + 2b T T + ct f 1 (y) f 2 (y) dy 0 because a, d > 0 and ad -b 2 > 0. The adjoint operator of L t in L 2 (T, R 2 ) is
denoted by L † t and is given by

L † t : f → λ∆ -θ∇T - ct 0 µ∆ f .
In this section we want to make sense of the two-dimensional coupled SPDE system

dZ t = L t Z t dt + 2C t ∇dB t . (3.10)
Definition 5. We say that the stochastic process {Z t ; t ∈ [0, T ]} taking values in the space C([0, T ], (D (T)) 2 ) is a solution of (3.10) with initial condition Z 0 if for every function f : [0, T ] × T → R d which is C 1 in time and smooth in space, the quantity given by

M t • f • = Z t • f t -Z 0 • f 0 - t 0 Z s • (∂ s f s + L † s f s ) ds , (3.11)
is a martingale with respect to the natural filtration associated to Z • as in (3. [START_REF] Bernardin | Anomalous diffusion for a class of systems with two conserved quantities[END_REF], with quadratic variation

t 0 q s (∇ f s )ds,
where q has been defined in (3.9).

Remark 2. We observe that, when the equation (3.10) has no noise (a = b = d = 0) and no diffusive part (λ = µ = 0) that is:

Z 1 t (f ) -Z 1 0 (f ) = 0, Z 2 t (f ) -Z 2 0 (f ) = θ t 0 Z 1 0 (∇T - cs f ) ds, ( 3.12) 
then Definition 5 remains in force, the only difference being in (3.11), where the martingale term now is not present. We call this equation the trivial transport equation with parameter θ.

Proposition 2. There exists a unique stochastic process Z solution of (3.10) in the sense of Definition 5. Moreover, if Z 0 is a Gaussian field then Z • is a Gaussian process.

Proof. We fix t ∈ [0, T ] and we define the semigroup 

P (t) s by ∂ s P (t) s f = L † t-s P (t) s f where f ∈ D(T, R 2 ). Now we fix f ∈ D(T, R 2
s = P (t) t-s f , which satisfies ∂ s f (t) s = -L † s f (t) s and f (t) 0 = P (t) t f , f (t) t = f . We get that M s • f • 0 s t = Z s • f (t) s -Z 0 • P (t) t f 0 s t (3.13)
is a martingale with a deterministic quadratic variation given by

s 0 q u ∇P (t)
t-u f du. From this we conclude that for any s t,

E exp{iZ t • f (t) t } F s = exp{iZ 0 • P (t) t f }E exp{iM t • f • } F s = exp{iZ 0 • P (t) t f } exp - 1 2 t s q v (∇P (t) t-v f )dv × exp{iM s • f • } = exp{iZ s • f (t) s } exp - 1 2 t s q v (∇P (t)
t-v f )dv . In the second equality above we used the fact that

exp iM s • f • + 1 2 s 0 q v (∇P (t) t-v f ) dv ; s ∈ [0, t]
is a martingale with respect to (F s ) s . By tower property of the conditional expectation we can then deduce an explicit expression for the finite dimensional distributions of the process Z • whose only free parameter is the initial distribution of Z 0 and this shows uniqueness. Moreover if Z 0 is a Gaussian field, the characteristic function of the finite dimensional distributions of Z • takes the form of the characteristic function of a Gaussian random vector. This completes the proof of the proposition. 

dY t = A ∆Y t dt + B ∇(Y 2 t )dt + √ 2C ∇dB t (3.14)
where A > 0, B ∈ R and C > 0 are constants, and B is a D (T)-valued standard Brownian motion.

Definition 6. A stochastic process {Y t ; t ∈ [0, T ]} taking values in C([0, T ], D (T))
is a stationary energy solution of (3.14

) if i) for each t ∈ [0, T ], Y t is a D (T)
-valued white noise with variance C/A; ii) there exists a constant κ > 0 such that for any f ∈ D(T) and 0 < δ < ε < 1

E Q ε s,t (f ) -Q δ s,t (f ) 2 κε(t -s) ∇f 2 0 , ( 3.15) 
where

Q ε s,t (H) := t s T Y r (ι ε (u))
2 ∇f (u) du dr and for u ∈ T the function ι ε (u) : [0, 1] → R is the approximation of the identity defined as

ι ε (u)(v) := ε -1 1 ]u,u+ε] (v) iii) for f ∈ D(T), Y t (f ) -Y 0 (f ) -A t 0 Y s (∆f )ds + BQ t (f )
is a Brownian motion of variance 2Ct ∇f 2 0 , where Q t (f ) := lim ε→0 Q ε 0,t (f ), the limit being in L 2 ; iv) the reversed process {Y T -t ; t ∈ [0, T ]} satisfies item iii) with B replaced by -B.

Proposition 3 (Theorem 2.4, [17]

). There exists a unique random element Y which is a stationary energy solution of (3. [START_REF] Gonçalves | Scaling limits of additive functionals of interacting particle systems[END_REF] in the sense of Definition 6.

Statement of results

4.1. Topological setting. For each integer z ∈ Z, let

h z : x ∈ T →        √ 2 cos(2πzx) if z > 0, √ 2 sin(2πzx) if z < 0, 1 if z = 0. (4.1)
The set {h z ; z ∈ Z} is an orthonormal basis of L 2 (T). Consider in L 2 (T) the operator K = (Id -∆). A simple computation shows that Kh z = γ z h z where

γ z = 1 + 4π 2 |z| 2 .
For any integer k 0, denote by H k ⊂ L 2 (T) the Hilbert space induced by D(T) and the scalar product •, • k defined by f, g k = f, K k g 0 , which can be written as

f, g k = z∈Z f, h z 0 g, h z 0 γ k z , f, g ∈ D(T). (4.2) 
Denote by H -k ⊂ D (T) the dual of H k relatively to the scalar product •, • 0 . It is a Hilbert space for the inner product •, • -k defined by

Y 1 , Y 2 -k = z∈Z Y 1 (h z ) Y 2 (h z ) γ -k z , Y 1 , Y 2 ∈ H -k . (4.3)
We denote by • -k the corresponding norm. We generalize the previous spaces when L 2 (T) is replaced by (L 2 (T)) 2 . The set {(h z , 0) † , (0, h z ) † ; z ∈ Z} is then an orthonormal basis of (L 2 (T)) 2 . We define the space H k × H k as the Hilbert space induced by (D(T)) 2 and the scalar product

•, • k defined by ϕ, ψ k = ϕ 1 , ψ 1 k + ϕ 2 , ψ 2 k = 2 i=1 z∈Z ϕ i , h z 0 ψ i , h z 0 γ k z . (4.4)
Analogously, we define the space (H k × H k ) as the dual of H k × H k , relatively to the previous inner product on (L 2 (T)) 2 . The inner product between two elements

X 1 , X 2 ∈ (H k × H k ) is defined by X 1 , X 2 -k = z∈Z X 1 (h z , 0) † X 2 (h z , 0) † + X 1 (0, h z ) † X 2 (0, h z ) † γ -k z (4.5)
and we denote by • -k the corresponding norm.

Remark 3. Observe that if Z = (Z 1 , Z 2 ) † ∈ H -k × H -k then the application Z • given by Z • : (f 1 , f 2 ) † ∈ H k × H k → Z 1 (f 1 ) + Z 2 (f 2 ) is an element of (H k × H k ) .
Conversely, any element X ∈ (H k × H k ) can be written in this form : take Z 1 (f ) = X (f, 0) and Z 2 (f ) = X (0, f ). In fact, the map Z → Z • that we can define in this way, permits to identify topologically

H -k × H -k with (H k × H k ) .

Fluctuation fields.

Fix an integer k. Let us consider 0 < a 2 and take θ(n) = n a . We recall that κ > 0 and α n = αn -κ . Let us denote

c n := 2b 2 ρ θ(n)αn n = 2b 2 ραn a-κ-1 , n 1. ( 4.6) 
We also fix some horizon time T > 0. For any n 1 we define the fluctuation field {Y n t ; t ∈ [0, T ]} for the variable ξ as the random process living in the Skorokhod space D([0, T ], H -k ) such that

Y n t (f ) = 1 √ n x∈Tn T + cnt f x n ξ x (tθ(n)) -ρ , f ∈ D(T). (4.7) 
This means that we are looking at the fluctuation field of ξ in a frame moving at velocity c n . Similarly we define the fluctuation field {V n t ; t ∈ [0, T ]} for the variable η as the random process living in the Skorokhod space D([0, T ], H -k ) such that

V n t (f ) = 1 √ n x∈Tn f x n η x (tθ(n)) -v , f ∈ D(T). (4.8) 
In fact we are interested in the mutual evolution of these two fields, so we define

Z n := Y n V n .
Our aim is to study the convergence of the sequence (Z n ) n according to the intensity of the asymmetry of the system which is regulated by the parameter κ > 0. Our main result is the following theorem. In what follows c = 2b2 ρα.

Theorem 1. We have that: 2 ) which is the stationary solution of the trivial transport equation given in (3.12) with parameter θ = -2αb, and initial condition a two-dimensional Gaussian white noise (in space) with covariance matrix

• If κ > 1,
τ 2 δ δ σ 2 . • If 0 κ < 1, then in the time scale θ(n) = n κ+1 , the sequence of processes (Z n ) n converges in law to Z ∈ D([0, T ], (D (T))
τ 2 δ δ σ 2 .
Moreover in all these cases, if the time scale θ(n) = n a is such that a < inf(2, κ + 1) the evolution is trivial in the sense that the sequence of processes (Z n ) n converges in law to Z 0 .

Hence this theorem fixes the minimal time scale needed in order to see a joint evolution of the fields of interest. It does not mean that this time scale is the only one for which a non trivial temporal evolution of the fields occurs. The next theorem shows that for the field Y n we can go even further. We conjecture that the result in the first item is true for any a < 2 and κ > a - 3 2 but below we use Theorem 4 of [START_REF] Bernardin | Anomalous Fluctuations for a Perturbed Hamiltonian System with Exponential Interactions[END_REF] which is not optimal in this case. The behavior when b = a - 

Theorem 2. The sequence of processes

(Y n ) n converges in law to Y which is an element of D([0, T ], D (T)) such that • For any κ > 0, if the time scale is θ(n) = n a with a < inf(2, 4 3 (κ + 1)), then dY t = 0. • If κ > 1 2 ,
→ R d the discrete gradient ∇ n u (resp. Laplacian ∆ n u) is the function defined on 1 n T n by (∇ n u) x n = n u x+1 n -u x n , (∆ n u) x n = n 2 u x+1 n + u x-1 n -2u x n , x ∈ T n .
Along the proofs we will use frequently the following bound based on the Cauchy-Schwarz inequality and stationarity of the process. We recall that • denotes the average with respect to the equilibrium measure

µβ , λ. If F : [0, T ] × Ω n → R is a function such that T 0 F 2 (s, •) ds < ∞ then we have ∀t ∈ [0, T ], E t 0 F (s, η(s)) ds 2 t t 0 F 2 (s, •) ds. (5.1)
Observe that the r.h.s. of (5.1) is usually easy to compute or estimate since it involves only a static expectation while the l.h.s. involves a dynamical expectation. 

Z n t • f = 1 √ n x∈Tn T + cnt f 1 x n (ξ x (tθ(n) -ρ) + f 2 x n (η x (tθ(n)) -v) = Y n t (f 1 ) + V n t (f 2 ) (5.2)
where

f = (f 1 , f 2 ) † ∈ D(T, R 2 ).
Then, the fluctuation field {X n t ; t ∈ [0, T ]} is an element of the Skorokhod space D([0, T ], (H k × H k ) ).

5.1. Characterization of limit points for the Z field. In Section 7.1 we will prove that in a certain range of time scales the sequence of processes (X

n ) n is tight in D([0, T ], (H k × H k ) ), for some k. This implies, by Remark 3, that (Z n ) n is also tight in D([0, T ], H -k × H -k ).
Therefore, up to a subsequence, we may assume that the sequences above converge in the respective spaces. The results of this section are restricted to the following range of time scales:

a inf(κ + 1, 2).
In particular, in the regime κ ∈ (0, [START_REF] Bernardin | Superdiffusivity of asymmetric energy model in dimensions 1 and 2[END_REF] we are not able to study the limit of the sequence (X n ) n if the parameter a of the time scale n a is strictly bigger than the transition line a = κ + 1.

For f = (f 1 , f 2 ) † ∈ D(T, R 2 ) and t ∈ [0, T ] we define N n t • f = Z n t • f -Z n 0 • f - t 0 (∂ s + θ(n)L) (Z n s • f ) ds. (5.3) By Dynkin's formula {N n t • f ; t ∈ [0, T ]} is a martingale. We have (∂ s + θ(n)L) (Z n s • f ) = γθ(n) n 2 Z n s • ∆ n f (5.4) + b θ(n)α n n 3/2 x∈Tn ∇ n f 2 x n (ξ x (sθ(n)) + ξ x+1 (sθ(n)) (5.5) -b 2 θ(n)α n n 3/2 x∈Tn ∇ n T + cns f 1 x n ξx (sθ(n)) ξx+1 (sθ(n)). (5.6)
Above and in what follows, for a random variable X, the random variable X denotes the centered variable X -E[X]. Recall that θ(n) = n a and α n = αn -κ . Note that by using (5.1) it is easy to check that the variance of the time integral of (5.4) has variance of order O(θ(n) 2 n -4 ), which vanishes if a < 2. Now, (5.5) can be rewritten as

2b θ(n)α n n 3/2 x∈Tn ∇ n f 2 x n ξx (sθ(n)) + b θ(n)α n n 5/2 x∈Tn ∆ n f 2 x n ξx (sθ(n)).
(5.7) As above, by (5.1), the time integral of the term at the r.h.s. of last expression has variance of order O(α 2 n θ(n) 2 n -4 ) while the remaining term in (5.7) can be written as

2b θ(n)α n n 3/2 x∈Tn ∇ n f 2 x n ξx (sθ(n)) = 2b θ(n)α n n Y n s ∇ n T - cns f 2 .
Note that by (5.1) the variance of the time integral of the term of last expression is bounded from above by O(α 2 n θ(n) 2 n -2 ). This means that when a < κ + 1 that term does not contribute to the limit. The time integral of (5.6) has a variance bounded from above (use again (5.1)) by

E b 2 θ(n)α n n 3/2 t 0 x∈Tn ∇ n T + cns f 1 ( x n ) ξx (sθ(n)) ξx+1 (sθ(n)) ds 2 θ(n) 2 α 2 n n 2
(5.8) which vanishes if a < κ + 1. In fact, we will show in Section 5.2 that a less rough estimate than (5. [START_REF] Bernardin | Superdiffusivity of asymmetric energy model in dimensions 1 and 2[END_REF] shows, in fact, that the expectation in (5.8) is of order O(α 2 n (θ(n)) 3/2 n -2 ), so that it goes to 0 as soon as a < 4 3 (κ + 1).

Let us now study the quadratic variation of the martingale term in (5. [START_REF] Bernardin | Anomalous Fluctuations for a Perturbed Hamiltonian System with Exponential Interactions[END_REF]. By Dynkin's formula, the quadratic variation of the martingale N n t • f is given by

N n • f t = t 0 θ(n)L((Z n s • f ) 2 ) -2θ(n)(Z n s • f ) L(Z n s • f ) ds = γθ(n) t 0 S((Z n s • f ) 2 ) -2(Z n s • f ) S(Z n s • f ) ds, ( 5.9) 
and a simple computation shows that last display is equal to

N n • f t = γθ(n) n 3 t 0 x∈Tn ∇ n T + cns f 1 2 x n ξ x+1 (θ(n)s) -ξ x (θ(n)s) 2 ds + γθ(n) n 3 t 0 x∈Tn ∇ n f 2 2 x n η x+1 (θ(n)s) -η x (θ(n)s) 2 ds + 2 γθ(n) n 3 t 0 x∈Tn ∇ n T + cns f 1 x n ∇ n f 2 x n ξ x+1 (θ(n)s) -ξ x (θ(n)s) × η x+1 (θ(n)s) -η x (θ(n)s) ds.
(5.10)

If a < 2 then the L 1 -norm of the quadratic variation of N n • f vanishes as n → +∞. If a = 2 then we have that

E N n • f t = 2γτ 2 1 n x∈Tn t 0 ∇ n T + cns f 1 2 x n ds + 2γσ 2 t 1 n x∈Tn ∇ n f 2 2 x n + 4γδ t 0 1 n x∈Tn ∇ n T + cns f 1 x n ∇ n f 2 x n ds.
Recall that c n = 2b 2 ραn a-κ-1 = 2b 2 ραn 1-κ . It follows that

• If κ < 1 then c n → ∞ and therefore lim n→∞ E N n • f t = 2γτ 2 t T (∇f 1 ) 2 (y) dy + 2γσ 2 t T (∇f 2 ) 2 ( 
y) dy.

• If κ = 1 then c n = c := 2b 2 ρα and therefore

lim n→∞ E N n • f t = 2γτ 2 t T (∇f 1 ) 2 (y) dy + 2γσ 2 t T (∇f 2 ) 2 (y) dy + 4γδ T c -1 f 1 (y + ct) -f 1 (y) (∇f 2 )(y) dy.
Note that last expression is equal to

lim n→∞ E N n • f t = 2γτ 2 t T (∇f 1 ) 2 (y) dy + 2γσ 2 t T (∇f 2 ) 2 (y) dy + 4γδ t 0 T ∇T + cs f 1 (y) (∇f 2 )(y) dyds. • If κ > 1 then c n → 0 and therefore lim n→∞ E N n • f t = 2γτ 2 t T (∇f 1 ) 2 (y) dy + 2γσ 2 t T (∇f 2 ) 2 (y) dy + 4γδ T (∇f 1 )(y) (∇f 2 )(y) dy.
We have then

• If κ > 1 and a = 2 then N n t • f = Z n t • f -Z n 0 • f + γ t 0 Z n s • ∆ n f ds
plus terms which vanish as n → ∞ in the L 2 -norm. Moreover, the quadratic variation of the martingale satisfies:

lim n→+∞ E[ N n • f t ] = 2tτ 2 γ ∇f 1 2 0 + 2tσ 2 γ ∇f 2 2 0 + 4γδt ∇f 1 , ∇f 2 0 .
Then, the limiting field {Z t ; t ∈ [0, T ]} satisfies

N t • f = Z t • f -Z 0 • f + γ t 0 Z s • ∆ n f ds
so that it is a solution of (3.2) as given in Definition 4, with

A = γ 0 0 γ , D = τ 2 δ δ σ 2 , C = γD.
(5.11)

• If κ > a -1 and a < 2 then

N n t • f = Z n t • f -Z n 0
• f plus terms which vanish as n → ∞ in in the L 2 -norm. Moreover, the quadratic variation of the martingale satisfies:

lim n→+∞ E[ N n • f t ] = 0.
Then {Z t ; t ∈ [0, T ]} has a trivial evolution given by:

Z t • f = Z 0 • f , so that dZ t = 0.
(5.12)

• If κ = a -1 and a < 2 then [START_REF] Gonçalves | Nonlinear fluctuations of weakly asymmetric interacting particle systems[END_REF] is equal to [START_REF] Gonçalves | Scaling limits of additive functionals of interacting particle systems[END_REF] where we recall that c = 2b 2 ρα. Moreover, the quadratic variation of the martingale satisfies:

N n t • f = Z n t • f -Z n 0 • f -2b θ(n)αn n t 0 Z n s • ∇ n T - cns f 2 , 0 † ds (5.
N n t • f = Z n t • f -Z n 0 • f -2bα t 0 Z n s • ∇ n T - cs f 2 , 0 † ds (5.
lim n→+∞ E[ N n • f t ] = 0.
Therefore, by Lemma 1 (applied with γ = 0), we have that the limiting field {Z t ; t ∈ [0, T ]} satisfies

Z t • f = Z 0 • f -2bα t 0 Z s • ∇T - cs f 2 , 0 † ds.
Therefore, {Z t ; t ∈ [0, T ]} is the solution of the trivial transport equation as defined in Remark 2 with θ = -2αb, i.e.

L t = 0 0 -2αb∇T + ct 0 , ( 5.15) 
and initial condition a centered Gaussian field with covariance matrix D as given in (5.11).

• If κ = 1 and a = 2 then we have [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] which is equal to

N n t • f = Z n t • f -Z n 0 • f + γ t 0 Z n s • ∆ n f ds -2bα t 0 Y n s (∇ n T - cs f 2 ) ds, (5.
N n t • f = Z n t • f -Z n 0 • f + γ t 0 Z n s • ∆ n f ds -2bα t 0 Z n s • (∇ n T - cs f 2 , 0) † ds.
(5.17)

Moreover, the quadratic variation of the martingale satisfies:

lim n→+∞ E[ N n • f t ] = 2tτ 2 γ ∇f 1 2 0 + 2tσ 2 γ ∇f 2 2 0 + 4γδc -1 T + ct f 1 -f 1 , ∇f 2 0 .
Then, by Lemma 1 (applied with α = 0) and Corollary 1, we conclude that the sequence {Z n t ; t ∈ [0, T ]} n converges to the solution of equation (3.10) as given in Definition 5 with L t as in (3.7) with λ = µ = γ and θ = 0:

L t = γ ∆ 0 0 ∆ , ( 5.18) 
and C t as in (3.8) with a = 2γτ 2 , b = 2γδ and d = 2γσ 2 , i.e.

C t = γ 2τ 2 2δT - ct 2δT + ct 2σ 2 ,
(5. [START_REF] Hairer | Solving the KPZ equation[END_REF] and D as in (5.11).

Lemma 1. Let γ, α 0 and fix f = (f 1 , f 2 ) † ∈ H k × H k . Assume that the sequence of processes {Z n t ; t ∈ [0, T ]} n converges in law, as a process of D([0, T ] , (H k × H k ) ), to {Z t ; t ∈ [0, T ]}.
Then, for any t ∈ [0, T ], the sequence of random variables

Z n n := Z n t • f -Z n 0 • f + γ t 0 Z n s • ∆ n f ds -2bα t 0 Z n s • (∇ n T - cs f 2 , 0) † ds n (5.20)
converges, as n → +∞, to the random variable

Z := Z t • f -Z 0 • f + γ t 0 Z s • ∆ f ds -2bα t 0 Z s • (∇T - cs f 2 , 0) † ds.
Proof. By performing a Taylor expansion on f we can replace in the expression (5. [START_REF] Hairer | A theory of regularity structures[END_REF], the discrete gradient and Laplacian by the continuous gradient and Laplacian, up to terms which vanish in L 2 (use (5.1)):

lim n→∞ E (Z n -Z n ) 2 = 0
where

Z n = Z n t • f -Z n 0 • f + γ t 0 Z n s • ∆ f ds -2bα t 0 Z n s • (∇T - cs f 2 , 0) † ds. (5.21)
Let us first analyse the last term on the l.h.s. of (5. [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]. We split the time integral on [0, t] in a sum of time integrals on intervals of size th, h > 0 being small, as:

t 0 Z n s • (∇T - cs f 2 , 0) † dr = t 0 Y n s (∇T - cs f 2 ) ds = 1/h k=0 (k+1)th kth Y n s (∇T - cs f 2 ) ds.
(5.22) Without loss of generality we can assume that 1/h is an integer. Now in each integral of the r.h.s. we can sum and subtract ∇T - ctkh f 2 inside, so that, by linearity of Y n s , last display is equal to

1/h k=0 (k+1)th kth Y n s (∇T - cs f 2 -∇T - ctkh f 2 ) ds + 1/h k=0 (k+1)th kth Y n s (∇T - ctkh f 2 ) ds.
(5.23) Now we estimate the L 2 -norm of the term at the l.h.s. of last display. From Minkowski's inequality and (5.1), we have that

E 1/h k=0 (k+1)th kth Y n s ∇T - cs f 2 -∇T - ckth f 2 ds 2 1/h k=0 E (k+1)th kth Y n s ∇T - cs f 2 -∇T - ckth f 2 ds 2 1/h k=0 E th (k+1)th kth Y n s ∇T - cs f 2 -∇T - ckth f 2 2 ds = 1/h k=0 √ th (k+1)th kth E Y n 0 ∇T - cs f 2 -∇T - ckth f 2 2 ds 1/h k=0 √ th   1 n x∈Tn (k+1)th kth ∇T - cs f 2 -∇T - ckth f 2 2 x n ds   1 2
, where the last inequality uses an explicit computation with the initial distribution. By Taylor expansion on the function f 2 , we can bound the last term from above by

C(f 2 , T ) 1/h k=0 (th) 2 C(f 2 , T )h, (5.24) 
which vanishes as h → 0. From the last computations, we are able to rewrite (5. [START_REF] Gonçalves | Scaling limits of additive functionals of interacting particle systems[END_REF] as

t 0 Y n s (∇T - cs f 2 ) ds = 1/h k=0 (k+1)th kth Y n s (∇T - ckth f 2 ) ds + ε n,h = 1/h k=0 (k+1)th kth Z n s • (∇T - ckth f 2 , 0) † ds + ε n,h
where the term ε n,h vanishes as n → ∞ and then h → 0 in L 2 . Similarly we have that [START_REF] Kipnis | Scaling limits of interacting particle systems[END_REF] where the term ε h vanishes as h → 0 in L 2 . Therefore it is sufficient to prove that for each fixed h > 0, the sequence of random variables

t 0 Y s (∇T - cs f 2 ) ds = 1/h k=0 (k+1)th kth Z s • (∇T - ckth f 2 , 0) † ds + ε h (5.
   Z n t • f -Z n 0 • f + γ t 0 Z n s • ∆ f ds -2bα 1/h k=0 (k+1)th kth Z n s • (∇T - ckth f 2 , 0) † ds    n
converges in law to the random variable

Z t • f -Z 0 • f + γ t 0 Z s • ∆ f ds -2bα 1/h k=0 (k+1)th kth Z s • (∇T - ckth f 2 , 0) † ds.
For a fixed h > 0 and a fixed t ∈ [0, T ], the application

Z ∈ D([0, T ], (H k × H k ) ) → Z t • f -Z 0 • f + γ t 0 Z s • ∆ f ds -2bα 1/h k=0 (k+1)th kth Z s • (∇T - ckth f 2 , 0) † ds ∈ R
is continuous. Therefore the result becomes a trivial consequence of the assumption.

5.2. Characterization of limit points for the Y field. The results of the previous section are restricted to the range of time scales a < inf(κ + 1, 2). In this section, we show we can go beyond this range but only for the sequence (Y n ) n . In the range of time scales considered below we show in Section 7.2 that the sequence (Y n ) n is tight. Therefore we may assume (up to a subsequence) that it is converging to a process Y. The key difference with the previous section is that now the term (5.8) will be able to contribute.

From Dynkin's formula, for f ∈ D(T) we have that:

M n t (f ) = Y n t (f ) -Y n 0 (f ) - t 0 (∂ s + θ(n)L)Y n s (f )ds (5.26)
is a martingale, where

(∂ s + θ(n)L)Y n s (f ) = γθ(n) n 2 Y n s (∆ n f ) -b 2 θ(n) n 3/2 α n x∈Tn ∇ n T + cns f ( x n ) ξ x (sθ(n))ξ x+1 (sθ(n)) + 2b 2 ρ θ(n) n 3/2 α n x∈Tn ∇ T + cns f ( x n ) ξ x (sθ(n)). (5.27) 
Now we can sum and subtract terms, perform a summation by parts and a Taylor expansion on T + cns f to write the time integral of the r.h.s. of (5. [START_REF] Quastel | The one-dimensional KPZ equation and its universality class[END_REF] as

γθ(n) n 2 t 0 Y n s (∆ n f ) ds -b 2 θ(n) n 3/2 α n t 0 x∈Tn ∇ n T + cns f x n ξ x (sθ(n))ξ x+1 (sθ(n)) -ρξ x (sθ(n)) -ρξ x+1 (sθ(n)) ds, plus a term whose variance is O(θ(n) 2 α 2 n n -4
). Adding the constant ρ 2 above, which we can do since the sum of the discrete gradients vanishes on the periodic lattice:

x∈Tn (∇ n T + cns f )( x n ) = 0, we rewrite the last expression as γθ(n) n 2 t 0 Y n s (∆ n f ) ds -b 2 θ(n) n 3/2 α n t 0 x∈Tn ∇ n T + cns f x n ξx (sθ(n)) ξx+1 (sθ(n)) ds.
Then the martingale decomposition for the field Y n t defined in (4. [START_REF] Corwin | Kardar-Parisi-Zhang universality[END_REF] is given by

M n t (f ) = Y n t (f ) -Y n 0 (f ) - t 0 γθ(n) n 2 Y n s (∆ n f ) ds (5.28) 
+ t 0 b 2 θ(n) n 3/2 α n x∈Tn ∇ n T + cns f x n ξx (sθ(n)) ξx+1 (sθ(n)) ds. (5.29)
Observe that by using the bound (5.1), the last term (5.29) has variance of order at most α 2 n (θ(n)) 2 n -2 . This bound is not sharp and can be improved by a H -1 estimate. From Theorem 4 of [START_REF] Bernardin | Anomalous Fluctuations for a Perturbed Hamiltonian System with Exponential Interactions[END_REF] the term (5.29) has variance of order at most α 2 n (θ(n)) 3/2 n -2 . Indeed, by looking into the proof of Theorem 4 in [START_REF] Bernardin | Anomalous Fluctuations for a Perturbed Hamiltonian System with Exponential Interactions[END_REF], for a function ψ : R + × T → R, it holds that if t T ,

E t 0 x∈Tn ψ(s, x n ) ξx (sθ(n)) ξx+1 (sθ(n)) ds 2 n θ(n) t 0 ψ(s, •) 2 2,n ds
(5. [START_REF] Spohn | The Kardar-Parisi-Zhang equation: A statistical physics perspective in Stochastic processes and random matrices: Lecture notes of the Les Houches summer school[END_REF]) where

ψ(s, •) 2 2,n := 1 n x∈Tn ψ 2 s, x n . ( 5.31) 
From this we easily get the last bound. Therefore if a < 4 3 (κ + 1) the L 2 -norm of the last term (5.29) vanishes as n → +∞. Moreover, if a < 2 the L 2 -norm of the integral term at the r.h.s. of (5.28) vanishes as n → +∞ (by the rough bound provided by (5.1)).

Let us now study the martingale M n appearing in (5.28)-(5. [START_REF] Spohn | Large Scale Dynamics of Interacting Particles[END_REF]. By Dynkin's formula, the quadratic variation of the martingale is given by

M n (f ) t = t 0 θ(n)L(Y n s (f )) 2 -2Y n s (f )θ(n)LY n s (f ) ds, ( 5.32) 
and a simple computation shows that last display is equal to

M n (f ) t = γ t 0 θ(n) n x∈T f ( x+1 n ) -f ( x n ) 2 ξ x+1 (θ(n)s) -ξ x (θ(n)s) 2 ds.
(5.33) Recall that θ(n) = n a and α n = αn -κ .

• If a = 2 and κ > 3 4 a -1 then

M n t (f ) = Y n t (f ) -Y n 0 (f ) -γ t 0 Y n s (∆ n f )ds (5.34)
plus a term that vanishes in L 2 as n → +∞. Moreover, the quadratic variation of the martingale satisfies:

lim n→+∞ E[ M n (f ) t ] = 2tγτ ∇f 2 0 . ( 5.35) 
Then (Y n ) n converges to the solution of the Ornstein Uhlenbeck equation:

dY t = γ∆Y t dt + √ 2γτ ∇dB t .
(5.36)

• If a < 2 and κ > 3 4 a -1 then M n t (f ) = Y n t (f ) -Y n 0 (f ) (5.37) 
plus a term that vanishes in L 2 as n → +∞. Moreover, the quadratic variation of the martingale satisfies:

lim n→+∞ E[ M n (f ) t ] = 0.
Then Y has a trivial evolution given by:

Y t (f ) = Y 0 (f ), so that dY t = 0.
(5.38)

• If a = 2 and κ = 3 4 a -1 = 1 2 then M n t (f ) = Y n t (f )-Y n 0 (f ) -γ t 0 Y n s (∆ n f )ds +b 2 α t 0 x∈Tn ∇ n T + cns f x n ξx (sn 2 ) ξx+1 (sn 2 )ds.
(5.39) plus a term which vanishes in L 2 as n → +∞. Now we recall from [START_REF] Gonçalves | Second order Boltzmann-Gibbs Principle for polynomial functions and applications[END_REF] a second-order Boltzmann-Gibbs principle which is needed in order to close the last term at the r.h.s. of last expression in terms of the fluctuation field Y n .

Theorem 3 (Second-order Boltzmann-Gibbs principle ξy .

(5.41)

Proof. The proof of last result is completely analogous to the proof of Theorem 1 in [START_REF] Gonçalves | Second order Boltzmann-Gibbs Principle for polynomial functions and applications[END_REF] and for that reason it is omitted.

From the previous theorem, we can replace (in L 2 ) the last term at the r.h.s. of (5.39), for n sufficiently big and then ε sufficiently small, by 

b 2 α t 0 x∈Tn ∇ n T + cns f x n ξεn x (sn 2
b 2 α t 0 1 n z∈Tn ∇ n f ( z n ) Y n s (ι ε (z)) 2 
ds.

(5.46)

Then we get

M n t (f ) = Y n t (f ) -Y n 0 (f ) -γ t 0 Y n s (∆ n f )ds + b 2 α t 0 1 n z∈Tn ∇ n f ( z n ) Y n s (ι ε (z)) 2 ds.
Moreover, the quadratic variation of the martingale satisfies:

lim n→+∞ E[ M n (f ) t ] = 2tγτ ∇f 2 2
so that Y is solution of the stochastic Burgers equation:

dY t = γ∆Y t dt + b 2 α∇(Y t ) 2 dt + √ 2γτ ∇dB t .
(5.47)

6. The limit of the sequence of martingales (N n ) n∈N

In this section we prove convergence of the sequence of martingales

N n t • f ; t ∈ [0, T ] n∈N
which is a consequence of Theorem VIII.3.12 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] which can be stated as follows.

Proposition 4 Remark 4. We note that if in the previous theorem C t = σ 2 t, then the limit is a Brownian motion with quadratic variation equal to σ 2 t.

([21]). Let t ∈ [0, T ] → C t ∈ [0, ∞)
Before we proceed we explain how to deduce Proposition 1 from Theorem VIII.3.12 of [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]. To get Proposition 1, we use the statement of Theorem VIII.3.12 which requires assumptions (3.14) and b) (iv) (both in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]) to get the convergence in law of the martingales. By the assertion VIII.3.5 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF], the conditions [ δ5 -D] and (3.14) are a consequence of (6.1) above. Moreover, condition [γ 5 -D] defined in (3.3) page 470 of [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] is a consequence of iii) above.

As a consequence of last result we conclude that:

Corollary 1. Let f = (f 1 , f 2 ) † ∈ D(T, R 2 ).
The sequence of martingales {N n t • f : t ∈ [0, T ]} n∈N converges in law under the topology of D([0, T ], R), as n → ∞, to:

• 0 when a < 2 and κ a -1 ;

• to a martingale {N t • f : t ∈ [0, T ]} which is a mean-zero Gaussian process and whose quadratic variation is given by

• if κ > 1 and a = 2: N • f t = 2tγτ 2 ∇f 1 2 0 + 2tγσ 2 ∇f 2 2 0 + 4γδt ∇f 1 , ∇f 2 0 ; 
• if κ = 1 and a = 2:

N • f t = 2tγτ 2 ∇f 1 2 0 + 2tγσ 2 ∇f 2 2 0 + 4γδc -1 T + ct f 1 -f 1 , ∇f 2 0 .
Proof. Now we fix f = (f 1 , f 2 ) † ∈ D(T, R 2 ). In order to apply Proposition 1 to the sequence (N n • f ) n∈N , we note that item i) is trivial because of (5.10). Note that ii) is a consequence of the computations performed in the proof of Lemma 4. Finally we prove iii), that is, the convergence, in the L 2 -norm, of the quadratic variation of N n • f . For that purpose, note that, by using the inequality (x + y) 2 2x 2 + 2y 2 we can bound from above,

E N n • f t -E N n • f t 2
by a constant times the sum of the next three terms:

I := E t 0 θ(n) n 3 x∈Z ∇ n T + cns f 1 ( x n ) 2 ξ x+1 (θ(n)s) -ξ x (θ(n)s) 2 -2τ 2 ds 2 II := E t 0 θ(n) n 3 x∈Z ∇ n f 2 ( x n ) 2 η x+1 (θ(n)s) -η x (θ(n)s) 2 -2σ 2 ds 2 III := E t 0 θ(n) n 3 x∈Z ∇ n T + cns f 1 ( x n )(∇ n g)( x n ) η x+1 (θ(n)s) -η x (θ(n)s) × ξ x+1 (θ(n)s) -ξ x (θ(n)s) -2(δ -ρv)ds 2 .
A simple computation, based on (5. [START_REF] Bernardin | Superdiffusivity of asymmetric energy model in dimensions 1 and 2[END_REF], shows that each one of the last three expectations are of order O((θ(n)) 2 n -5 ). Since θ(n) n 2 , the last three terms vanish as n → +∞. From these computations we conclude that when a < 2 we have that C t = 0, so that the sequence (N n t • f ) n∈N converges to 0 as n → +∞, but when a = 2 and k > 1,

C t = 2tγτ 2 ∇f 1 2 0 + 2tγσ 2 ∇f 2 2 0 + 4γδ ∇f 1 , ∇f 2 0
and when a = 2 and k = 1 we have that

C t = 2tγτ 2 ∇f 1 2 0 + 2tγσ 2 ∇f 2 2 0 + 4γδc -1 T + ct f 1 -f 1 , ∇f 2 0 .
From Proposition 1 we conclude that the sequence {N n t ; t ∈ [0, T ]} n∈N converges to a mean-zero Gaussian process {N t ; t ∈ [0, T ]} which is a martingale with quadratic variation given by C t . This finishes the proof of Corollary 1.

7. Tightness 7.1. Tightness for the Z field. In this section we prove tightness of the sequence

{X n t = Z n t • ; t ∈ [0, T ]} n∈N ∈ D([0, T ], (H k × H k ) )
following Chapter 11 of [START_REF] Kipnis | Scaling limits of interacting particle systems[END_REF]. By Remark 3 this implies the tightness of {Z n

t ; t ∈ [0, T ]} n∈N ∈ D([0, T ], H -k × H -k )} n∈N .
We assume that a inf(2, κ + 1). We need to show that:

(A) lim A→+∞ lim sup n→+∞ P sup 0 t T Z n t • 2 -k > A = 0, (B) ∀ε > 0, lim δ→0 lim sup n→+∞ P ω δ (Z n • ) ε = 0, where ω δ (Z n • ) := sup |s-t|<δ 0 s,t T Z n t • -Z n s • -k .
The norms above and the corresponding inner products •, • -k have been introduced in the beginning of Section 4. We start by showing condition (A).

For each integer z ∈ Z, recall that h z denotes the function defined in (4. [START_REF] Bernardin | Superdiffusivity of asymmetric energy model in dimensions 1 and 2[END_REF].

Lemma 2. Assume that a inf(2, κ + 1). There exists a finite constant C(T ) > 0 such that for every z ∈ Z,

sup n→+∞ E sup 0 t T Z n t • (h z , 0) † 2 + Z n t • (0, h z ) † 2 C(T ) (1 + z 4 1 a=2 + z 2 ).
Proof. Recall (5.3):

N n t • f = Z n t • f -Z n 0 • f - t 0 (∂ s + θ(n)L)Z n s • f ds. ( 7.1) 
A simple computation shows that for

f ∈ {(h z , 0) † , (0, h z ) † } lim n→+∞ E (Z n 0 • f ) 2 h z 2 0 = 1.
To treat the martingale term, we rely on Doob's inequality to get that for

f ∈ {(h z , 0) † , (0, h z ) † } E sup 0 t T N n t • f 2 4E N n T • f 2 .
From (5.10) and since f ∈ {(h z , 0) † , (0, h z ) † }, it follows that lim sup n→+∞ E sup

0 t T N n t • f 2 T θ(n) n 2 ∇h z 2 0 T z 2 (7.2)
since θ(n) = n a and a 2 and ∇h z 2 0 z 2 . Finally, it remains to bound:

E sup 0 t T t 0 (∂ s + θ(n)L)Z n s • f ds 2 for f ∈ {(h z , 0) † , (0, h z ) † }.
From the computations following (5. [START_REF] Bernardin | Anomalous Fluctuations for a Perturbed Hamiltonian System with Exponential Interactions[END_REF], we see that last expectation is bounded from above by a constant times

T 2 θ(n) 2 n 4 ∆h z 2 0 + T 2 θ(n) 2 α 2 n n 2 ∇h z 2 0 n a-2 z 4 + n 2(a-κ-1) z 2
The limit as n → +∞ of last term is equal to z 4 if a = 2 and equal to z 2 if a = k + 1 < 2, otherwise it is 0. This proves the lemma.

Remark 5. We observe here that in the regime a > κ+1 (e.g. a = 2, κ = 1/2) the previous bound is not sufficiently sharp to prove tightness of the field Z n . We will need to show tightness of the Y n field in the next section in this range of parameters and we will have to deal with this problem.

Corollary 2. Assume that a inf(2, κ + 1) and k > 5/2. It holds that

(1) lim sup n→+∞ E sup 0 t T Z n t • 2 -k < ∞.
(2) lim sup j→+∞ lim sup n→+∞ E sup

0 t T |z| j Z n t • (h z , 0) † 2 + Z n t • (0, h z ) † 2 γ -k z = 0.
Proof. The first item of the corollary follows from (5.2), the definition of the inner product •, • -k of H -k × H -k given in (4.5) and the previous lemma. More precisely:

E sup 0 t T Z n t • 2 -k = z∈Z γ -k z E sup 0 t T Z n t • (h z , 0) † 2 + Z n t • (0, h z ) † 2 z∈Z 1 (1 + (2πz) 2 ) (k-2)
and last sum is finite as long as k > 5/2. The second item follows exactly by the same argument. By Chebychev's inequality, condition (A) follows from ( 1 

Z n t • (h z , 0) † -Z n s • (h z , 0) † 2 + Z n t • (0, h z ) † -Z n s • (0, h z ) † 2 γ -k z > ε = 0.
To prove last lemma it is enough to show, for every z ∈ Z, ε > 0 and for f ∈ {(h z , 0) † , (0, h z ) † }, that lim δ→0 lim sup

n→+∞ P   sup |s-t|<δ 0 s,t T Z n t • f -Z n s • f 2 > ε   = 0.
This is a consequence of the next two lemmas. 

N n t • f -N n s • f > ε   = 0.
Proof. Denote by ω δ (N n • f ) the modified modulus of continuity defined by

ω δ (N n • f ) = inf {t i } max 0 i r sup t i s<t t i+1 N n t • f -N n s • f ,
where the infimum is taken over all partitions of [0, T ] such that 0 = t 0 < t 1 < ... < t r = T with t i+1 -t i > δ for 0 i r. Since

ω δ (N n • f ) 2ω δ (N n • f ) + sup t N n t • f -N n t-• f
it is sufficient to control the two terms on the r.h.s. of the previous inequality separately. We start with the first one. Observe that

sup t N n t • f -N n t-• f = sup t Z n t • f -Z n t-• f
and that for any t ∈ [0, T ] it holds that

Z n t • f -Z n t-• f Y n t (f 1 ) -Y n t-(f 1 ) + V n t (f 2 ) -V n t-(f 2 ) . ( 7.3) 
Let x t be the site where the jump occurred at time t for the speeded by θ(n) process. Now we calculate the L 2 -norm of each term on the RHS of (7. [START_REF] Bernardin | Anomalous Fluctuations for a Perturbed Hamiltonian System with Exponential Interactions[END_REF] separately. Note that where the last equality follows from the conservation of x∈Tn ξ x . A simple computation shows that the last term above is of order O(n -1 ). Finally, Proof. By using the explicit expression for (∂ r + θ(n)L)Z n r • f , Chebychev's inequality and some simple computations we conclude the proof. Remark 6. We observe that in the proof above it was not necessary to consider f ∈ {(h z , 0) † , (0, h z ) † }. The proof works out for any f ∈ D(T).

E sup t T Y n t (f 1 ) -Y n t-(f 1 ) 2 = E sup t T 1 √ n T + cnt f 1 ( xt n ) -T + cnt f 1 ( xt+1 n ) ξ xt (tθ(n)) -ξ xt+1 (tθ(n))
E sup t T V n t (f 2 ) -V n t-(f 2 ) 2 = E sup t T 1 √ n f 2 ( xt n ) -f 2 ( xt+1 n ) η xt (tθ(n)) -η xt+1 (tθ(n))
7.2. Tightness for the Y field. We note that the proof of tightness for the sequence {Y n t ; t ∈ [0, T ]} n∈N is completely similar to the one presented in the previous subsection. Observe that the field Y can be recovered from the field X by simply taking the test function g = 0. The only regime which requires some care is when a inf( 4 3 (κ + 1), 2) and κ 1, so that we need to look carefully at (5.6). See the comments at the end of the proof of Lemma 2. Now we treat this term. For that purpose, fix ε > 0 and note that, from (5. [START_REF] Spohn | The Kardar-Parisi-Zhang equation: A statistical physics perspective in Stochastic processes and random matrices: Lecture notes of the Les Houches summer school[END_REF] For the range of the parameters that we are looking at, last expression is bounded from above by C(T ) T 0 ∇ n T + cns h z 2 2,n ds. The rest of the proof of tightness follows exactly from the same computations as presented above for the X field.

. 1 )

 1 Since we are going to consider time processes, let us now define the space D([0, T ], (D (T)) d ) (resp. C([0, T ], (D (T)) d ) as the space of (D (T) d )-valued functions with càdlàg (resp. continuous) trajectories. We equip these spaces with the uniform weak topology: a sequence{Z n • } n 1 converges to a path Z • if for all f ∈ D(T), we have lim n→∞ sup 0 t T Z n t (f ) -Z t (f ) =0, where |.| denotes the usual euclidean norm in R d . We define similarly the space D([0, T ], (D(T, R d )) ) (resp. C([0, T ], (D(T, R d )) )) as the space of (D(T, R d ))valued functions with càdlàg (resp. continuous) trajectories and we endow them with the uniform weak topology. For any Z ∈ D([0, T ], (D (T)) d ) we define the element "Z • • " belonging to the space D([0, T ], (D(T, R d )) ) by the same definition as in (3.1). Note that a sequence {Z n } n taking values in D([0, T ], (D (T)) d ) converges to some Z if and only if the sequence {Z n • } n of D([0, T ], (D(T, R d )) ) converges to the element Z • .

3. 1 .

 1 The Ornstein-Uhlenbeck equation. Let B be a standard (D (T)) dvalued Brownian motion. The first SPDE which we would like to make sense of is the d-dimensional Ornstein-Uhlenbeck equation, formally written as:

  ) and we apply(3.11) to the time dependent function f(t) 

3. 3 .

 3 The one-dimensional stochastic Burgers equation. Now we want to make sense of the 1-dimensional stochastic Burgers equation (SBE):

A = γ I 2 and C = γ τ 2 δ δ σ 2 . ( 4 . 9 )•

 2249 then in the diffusive time scale θ(n) = n 2 , the sequence of processes (Z n ) n converges in law to Z ∈ D([0, T ], (D (T)) 2 ) which is the stationary solution of the Ornstein-Uhlenbeck equation (3.2) with parameters: If κ = 1, then in the diffusive time scale θ(n) = n 2 , the sequence of processes (Z n ) n converges in law to Z ∈ D([0, T ], (D (T)) 2 ) which is the stationary solution of the two-dimensional drifted Ornstein-Uhlenbeck equation (3.10) with parameters λ = µ = γ, θ = 0, a = 2γτ 2 , b = 2γδ and d = 2γσ 2 , and initial condition a two-dimensional Gaussian white noise (in space) with covariance matrix

  then in the diffusive time scale θ(n) = n 2 , Y is the stationary solution of the Ornstein-Uhlenbeck equation 2 given by (3.2), in dimension d = 1, with A = γ and C = γτ . • If κ = 1 2 , then in the diffusive time scale θ(n) = n 2 , Y is the stationary energy solution of the one-dimensional stochastic Burgers equation (3.14) with parameters A = γ, B = b 2 α and C = γτ .

Figure 1 . ξ x fluctuations 5 .

 15 Figure 1. ξ x fluctuations

Figure 2 .

 2 Figure 2. Joint fluctuations

For

  ε > 0 and x ∈ T, we recall that ι ε (x) :T → R is the function defined for y ∈ T by ι ε (x)(y) = ε -1 1 x<y x+ε . Note that 1 √ n Y n s (ι ε (x)) = 1 εn x+εn-2b 2 ραn 3/2 s y=x-2b 2 ραn 3/2 sξy (sn2 ).(5.44)If in (5.43) we change the variable x into z -2b 2 ραn 3/2 s, we rewrite (

Lemma 4 .

 4 Let f ∈ D(T, R 2 ).For every ε >

2 1 n 3

 23 E sup t T ξ xt (tθ(n)) -ξ xt+1 (tθ(n)) (tθ(n)) -ξ x+1 (tθ(n)))

2 1 n 3 2 1 n 3 2 1 n 3 2 .PLemma 5 .

 23232325 E sup t T |η xt (tθ(n))| + |η xt+1 (sθ(n))| E sup t T x∈Tn |η x (tθ(n))| + |η x+1 (tθ(n))| E sup t T x∈Tn |η x (tθ(n))|Since for any b > 0 and for any u ∈ R, it holds that |u| 1 + V b (u), last expectation can be bounded from above by1 n 3 E sup t T x∈Tn V b (η x (tθ(n))2 plus a term that vanishes as n → +∞. From the conservation of x∈Tn V b (η x ), last display is equal to1 n 3 E x∈Tn V b (η x (0)2 which is of order O(n -1 ). In order to finish the proof it is enough to show that lim δ→0 lim supn→+∞ P ω δ (N n • f ) > ε = 0for every ε > 0. By Aldous' criterium, see, for example, Proposition 4.1.6 of[START_REF] Kipnis | Scaling limits of interacting particle systems[END_REF], it is enough to show that:|N n τ +θ • f -N n τ • f | > ε = 0for every ε > 0. Here T τ denotes the family of all stopping times bounded by T with respect to the canonical filtration. By Chebychev's inequality, the Optional Stopping Theorem and (5.10) the result follows. Let f ∈ {(h z , 0) † , (0, h z ) † }. For every ε >

2 θ(n) 3 /2 α 2 n n 2 T 0 ∇ n T + cns h z 2 2

 23202 ,n ds.

  be a deterministic continuous function of the time t. Let {M n t ; t ∈ [0, T ]} n∈N be a sequence of square-integrable real-valued martingales with càdlàg trajectories defined on a probability space (Ω, F, P). Let { M n t ; t ∈ [0, T ]} denote the quadratic variation of {M n t ; t ∈ [0, T ]}. Assume that i) For each n ∈ N, the quadratic variation process { M n t ; t ∈ [0, T ]} has continuous trajectories P a.s.; ii) the maximal jump satisfies Above E denotes the expectation w.r.t. P. iii) For each t ∈ [0, T ], the sequence of random variables { M n t } n∈N converges in probability to the deterministic path {C t ; t ∈ [0, T ]}. Then the sequence {M n t ; t ∈ [0, T ]} n∈N converges in law in D([0, T ], R) to a martingale {M t ; t ∈ [0, T ]} with quadratic variation t → C t . Moreover {M t ; t ∈ [0, T ]} is a mean zero Gaussian process.

	lim n→∞	E sup 0 s T	M n s -M n s-	= 0;	(6.1)

  ) in Corollary 2 . It remains now to prove (B) but since (2) of Corollary 2 holds, (B) follows from the next lemma.

	Lemma 3. For every j 1 and every ε > 0,
	lim δ→0	lim sup n→+∞	P sup |s-t|<δ 0 s,t T	|z| j

or equivalently of (3.[START_REF] Gonçalves | Scaling limits of additive functionals of interacting particle systems[END_REF] with A = γ, B = 0 and C = γτ .
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