
HAL Id: hal-02307962
https://hal.science/hal-02307962

Submitted on 8 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wavelet-type expansion of generalized Rosenblatt
process and its rate of convergence

Antoine Ayache, Yassine Esmili

To cite this version:
Antoine Ayache, Yassine Esmili. Wavelet-type expansion of generalized Rosenblatt process and its
rate of convergence. Journal of Fourier Analysis and Applications, 2020. �hal-02307962�

https://hal.science/hal-02307962
https://hal.archives-ouvertes.fr


Wavelet-type expansion of generalized Rosenblatt process and

its rate of convergence

Antoine Ayache and Yassine Esmili

UMR CNRS 8524

Laboratoire Paul Painlevé
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Abstract

Pipiras introduced in the early 2000s an almost surely and uniformly convergent (on

compact intervals) wavelet-type expansion of classical Rosenblatt process. Yet, the issue

of estimating, almost surely, its uniform rate of convergence remained an open question.

The main goal of our present article is to provide an answer to it in the more general

framework of generalized Rosenblatt process, under the assumption that the underlying

wavelet basis belongs to the class due to Meyer. The main ingredient of our strategy

consists in expressing in a non-classical (new) way the approximation errors related with

the approximation spaces of a multiresolution analysis of L2(R2). Such a non-classical

expression may also be of interest in its own right.

Running Title: Wavelet expansion of Rosenblatt process revisited.

Key Words. Wiener chaos, self-similar processes, multiresolution analyses, wavelet bases, random

series.
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1 Introduction and statement of the two main results

The Rosenblatt process is a non-Gaussian extension of the classical fractional Brownian

motion (see e.g. [22, 13]) which was first introduced in the pioneering article [20]. Later,

the well-known papers [23, 12, 24] drew important connections between it and Non-Central
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Limit theorem. Since more than a decade, there has been increasing interest in its study,

we refer to the works [19, 1, 9, 16, 25, 2, 10] to cite only a few. More precisely, it is a real-

valued non-Gaussian self-similar stochastic process with stationary increments which belongs

to the second order Wiener chaos and has continuous paths. We mention in passing that two

classical books on Wiener chaoses, multiple Wiener integrals and related topics are [14, 18].

Throughout our article, using the same terminology as in [19], the Rosenblatt process is called

fractional Rosenblatt motion (fRm in short) and denoted by {RH(t)}t∈R+ since it depends

on a parameter H ∈ (3/4, 1). Notice that this parameter H is replaced by the parameter

κ := H − 1/2 by some authors, because of the fact that 2κ corresponds to the self-similarity

exponent of fRm. {RH(t)}t∈R+ is defined through the following double Wiener integral with

respect to a Brownian motion {B(x)}x∈R fixed once and for all:

RH(t) :=

∫ ′
R2

KH(t, x1, x2) dB(x1)dB(x2), for all t ∈ R+ . (1.1)

The symbol
∫ ′
R2 in (1.1) denotes integration over R2 excluding the diagonal, and the integrand

KH is given, for every (t, x1, x2) ∈ R+ × R2, by:

KH(t, x1, x2) :=
(
Γ(H − 1/2)

)−2
∫ t

0
(s− x1)

H−3/2
+ (s− x2)

H−3/2
+ ds , (1.2)

with the convention that, for each (y, α) ∈ R2, one has yα+ := yα if y is positive, and yα+ := 0

else. Observe that Γ in (1.2) is the usual ”Gamma function” defined, for every real number

z ∈ (0,+∞), as Γ(z) :=
∫ +∞

0 uz−1e−u du. Also, observe that the inequalities 3/4 < H < 1

imply, for each fixed t ∈ R+, that the kernel function (x1, x2) 7→ KH(t, x1, x2) belongs to the

Hilbert space L2(R2); this is why the double Wiener integral in (1.1) is well-defined.

In the early 2000s, a wavelet-type series expansion of {RH(t)}t∈R+ , which is almost surely

and uniformly convergent in t on any compact interval I ⊂ R+, was introduced by Pipiras

in [19]. Thanks to it, this process can be almost surely approximated, uniformly in t ∈ I,

by a sequence of processes
(
{RH,J(t)}t∈R+

)
J∈N with continuous paths which are issued from

a multiresolution analysis (MRA) of L2(R2) and for which efficient simulation methods are

available (see [1, 19]). Yet, the issue of estimating, almost surely, the uniform norm over I

of the approximation error, that is ‖RH − RH,J‖I,∞ := supt∈I
∣∣RH(t) − RH,J(t)

∣∣, remained

an open question. The primary motivation behind our article is to provide an answer to it.

In order to explain the main focus of our strategy employed to this end, we need to briefly

present the fundamental notion of MRA which is the keystone of the wavelet theory. Let us

mention that two very classical references on this theory are [11, 17].

A MRA of the Hilbert space L2(Rd), the integer d ≥ 1 being arbitrary, is a sequence

(V d
j )j∈Z of closed subspaces of L2(Rd) satisfying the following four conditions:
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(i) V d
j ⊂ V d

j+1, for every j ∈ Z;

(ii)
⋂
j∈Z V

d
j = {0} and

⋃
j∈Z V

d
j is dense in L2(Rd);

(iii) for any function f(x) ∈ L2(Rd), f(x) belongs to V d
0 if and only if f(2jx) belongs to V d

j ,

for all j ∈ Z, in other words one has V d
j :=

{
f(2jx) : f(x) ∈ V d

0 };

(iv) There exists a function φd(x) in V d
0 , called scaling function, such that the sequence{

φd(x− l) : l ∈ Zd
}

forms an orthonormal basis of V d
0 .

Notice that it can easily be derived from (iii) and (iv) that the sequence
{

2jd/2 φd(2jx− l) :

l ∈ Zd
}

is an orthonormal basis of V d
j , for every fixed j ∈ Z. The closed subspace W d

j of

L2(Rd) denotes the orthogonal complement of V d
j in V d

j+1, that is one has

V d
j+1 = V d

j

⊥
⊕W d

j , for all j ∈ Z . (1.3)

Observe that it follows from (1.3) and (ii) that, for any fixed J ∈ Z, the following three

fundamental equalities hold:

V d
J =

⊥⊕
−∞<j<J

W d
j (1.4)

and

L2(Rd) = V d
J

⊥
⊕
( ⊥⊕
J≤j<+∞

W d
j

)
=

⊥⊕
−∞<j<+∞

W d
j . (1.5)

It is known that there are 2d − 1 functions ψd,p, p ∈ {1, . . . , 2d − 1}, belonging to W d
0 ,

called mother wavelets, such that the sequence
{
ψd,p(x − k) : (p, k) ∈ {1, . . . , 2d − 1} ×

Zd
}

is an orthonormal basis of W d
0 . A straightforward consequence is that the sequence{

2jd/2 ψd,p(2jx− k) : (p, k) ∈ {1, . . . , 2d − 1}×Zd
}

is an orthonormal basis of W d
j , for every

fixed j ∈ Z. Thus, using (1.4) and (1.5), it can be shown that:

Theorem 1.1 (see e.g. [17, 11]) Assume that J ∈ Z is arbitrary and fixed.

1. Not only the sequence
{

2Jd/2 φd(2Jx − l) : l ∈ Zd
}

is an orthonormal basis of V d
J but

also the sequence{
2Jd/2 ψd,p(2Jx− k) : (p, j, k) ∈ {1, . . . , 2d − 1} × Z× Zd and j < J

}
.

2. The sequences{
2Jd/2 φd(2Jx− l) : l ∈ Zd

}
∪
{

2jd/2 ψd,p(2jx− k) : (p, j, k) ∈ {1, . . . , 2d − 1} × Z× Zd and j ≥ J
}
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and {
2jd/2 ψd,p(2jx− k) : (p, j, k) ∈ {1, . . . , 2d − 1} × Z× Zd

}
are two orthonormal bases of L2(Rd). Such bases of L2(Rd) are called wavelet bases.

Usually, for any d ≥ 2, a MRA (V d
j )j∈Z of L2(Rd) is obtained starting from a MRA

(V 1
j )j∈Z of L2(R) by making use of the tensor product method. It is important for our

purposes to briefly describe this method in the case where d = 2. In all the sequel, for

the sake of simplicity, (V 1
j )j∈Z is denoted by (Vj)j∈Z and corresponding scaling function and

mother wavelet are denoted by φ and ψ. Throughout our article, these two functions are

assumed to be real-valued. The tensor product method simply consists in defining, for every

j ∈ Z, the space V 2
j as the tensor product:

V 2
j := Vj ⊗ Vj . (1.6)

In other words, V 2
j is the closed subspace of L2(R2) spanned by the set of functions

{
g(x1)h(x2),

g ∈ Vj and h ∈ Vj
}

. Then a scaling function associated to (V 2
j )j∈Z is (x1, x2) 7→ φ(x1)φ(x2),

and three corresponding mother wavelets are (x1, x2) 7→ φ(x1)ψ(x2), (x1, x2) 7→ ψ(x1)φ(x2)

and (x1, x2) 7→ ψ(x1)ψ(x2). Such a MRA (V 2
j )j∈Z was implicitly used in Section 4 of [19] in

order to construct the stochastic processes {RH,J(t)}t∈R+ , J ∈ N, which approximate the fRm

{RH(t)}t∈R+ . More precisely, for any fixed t ∈ R+, the functions (x1, x2) 7→ KH,J(t, x1, x2)

and (x1, x2) 7→ K⊥H,J(t, x1, x2) respectively denote the orthogonal projections in L2(R2) of

the kernel function (x1, x2) 7→ KH(t, x1, x2) (see (1.2)) respectively on the space V 2
J and on

its orthogonal complement (V 2
J )⊥. The random variable RH,J(t) is defined as:

RH,J(t) :=

∫ ′
R2

KH,J(t, x1, x2) dB(x1)dB(x2). (1.7)

Observe that one can derive from (1.1) and (1.7) that

RH(t)−RH,J(t) :=

∫ ′
R2

K⊥H,J(t, x1, x2) dB(x1)dB(x2). (1.8)

In order to estimate almost surely the approximation error ‖RH − RH,J‖I,∞, it is crucial

to express RH(t) − RH,J(t) in a convenient way. Under some general conditions on φ and

ψ, an expression for it as a random series is given in the statement of Theorem 1 in [19].

Basically, this expression for RH(t) − RH,J(t) is issued from the expansion of the function

(x1, x2) 7→ K⊥H,J(t, x1, x2) in the classical orthonormal basis of (V 2
J )⊥, namely:{

2jφ(2jx1 − k1)ψ(2jx2 − k2), 2jψ(2jx1 − k1)φ(2jx2 − k2),

2jψ(2jx1 − k1)ψ(2jx2 − k2) : (j, k1, k2) ∈ Z3 and j ≥ J
}
.
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Unfortunately, this expression has a drawback: the terms of the random series providing it,

that is the random variables Z
(j)
κ,d(t), j ≥ J defined in relation (4.9) of [19], are correlated.

In order to avoid such a drawback, our strategy consists to expand the function (x1, x2) 7→
K⊥H,J(t, x1, x2) in another much less classical orthonormal basis of (V 2

J )⊥, namely:

B′′J :=
{

2
j1+j2

2 ψ(2j1x1−k1)ψ(2j2x2−k2) : (j1, j2, k1, k2) ∈ Z4 and j1∨j2 := max{j1, j2} ≥ J
}
.

(1.9)

We mention in passing that the fact that B′′J is an orthonormal basis of (V 2
J )⊥ can be shown

in the following way. The first part of Theorem 1.1 (with d = 1) and (1.6) imply that

B′J :=
{

2
j1+j2

2 ψ(2j1x1 − k1)ψ(2j2x2 − k2) : (j1, j2, k1, k2) ∈ Z4 and j1 ∨ j2 < J
}

is an orthonormal basis of V 2
J . Moreover, the second part of Theorem 1.1 (with d = 1) and

(1.6) entail that

B :=
{

2
j1+j2

2 ψ(2j1x1 − k1)ψ(2j2x2 − k2) : (j1, j2, k1, k2) ∈ Z4
}

(1.10)

is an orthonormal basis of L2(R2). Combining these two results with the equality L2(R2) =

V 2
J

⊥
⊕ (V 2

J )⊥, it follows that B′′J is an orthonormal basis of (V 2
J )⊥.

Our strategy also works in the more general framework of the generalized Rosenblatt

process, that we call generalized fractional Rosenblatt motion (gfRm). It was first introduced

by Maejima and Tudor in their paper [15]. In the last few years, several articles related to

it, written by Bai and Taqqu, were published (see [4, 5, 6, 7, 8]). The gfRm depends on two

parameters H1 and H2 satisfying

H1, H2 ∈ (1/2, 1) and H1 +H2 > 3/2 . (1.11)

It is denoted by {RH1,H2(t)}t∈R+ and defined as:

RH1,H2(t) :=

∫ ′
R2

KH1,H2(t, x1, x2) dB(x1)dB(x2), for all t ∈ R+ , (1.12)

where, the integrand KH1,H2 is given, for every (t, x1, x2) ∈ R+ × R2, by:

KH1,H2(t, x1, x2) :=
1

Γ(H1 − 1/2)Γ(H2 − 1/2)

∫ t

0
(s− x1)

H1−3/2
+ (s− x2)

H2−3/2
+ ds. (1.13)

Notice that the condition (1.11) implies that, for each fixed t ∈ R+, the kernel function

(x1, x2) 7→ KH1,H2(t, x1, x2) is in L2(R2), which guarantees the existence of the double Wiener

integral in (1.12). Also notice that the gfRm reduces to the fRm when H1 = H2. Similarly to

the fRm, the gfRm belongs to the second order Wiener chaos, it has continuous paths, and
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it is self-similar with stationary increments; the self-similarity exponent being the quantity

H1 + H2 − 1. For any fixed J ∈ N and t ∈ R+, the functions (x1, x2) 7→ KH1,H2,J(t, x1, x2)

and (x1, x2) 7→ K⊥H1,H2,J
(t, x1, x2) are defined in the same way as (x1, x2) 7→ KH,J(t, x1, x2)

and (x1, x2) 7→ K⊥H,J(t, x1, x2). Namely, they respectively are the orthogonal projections in

L2(R2) of the kernel function (x1, x2) 7→ KH1,H2(t, x1, x2) (see (1.13)) respectively on the

space V 2
J and on its orthogonal complement (V 2

J )⊥. Similarly to (1.7) and (1.8), the random

variable RH1,H2,J(t) is defined as:

RH1,H2,J(t) :=

∫ ′
R2

KH1,H2,J(t, x1, x2) dB(x1)dB(x2), (1.14)

and one can derive from (1.12) and (1.14) that

RH1,H2(t)−RH1,H2,J(t) :=

∫ ′
R2

K⊥H1,H2,J(t, x1, x2) dB(x1)dB(x2). (1.15)

We mention in passing that it results from the isometry property of double Wiener integral

and from the Kolmogorov’s continuity theorem that, for any fixed J ∈ N, the stochastic

processes {RH1,H2,J(t)}t∈R+ and {RH1,H2(t)−RH1,H2,J(t)}t∈R+ have continuous paths.

By expanding, for each fixed J ∈ N and t ∈ R, the function (x1, x2) 7→ K⊥H1,H2,J
(t, x1, x2)

in the basis B′′J (see (1.9)), and by using (1.15) as well as the isometry property of double

Wiener integral, one obtains that

RH1,H2(t)−RH1,H2,J(t) =
∑

(j1,j2)∈Z2, j1∨j2≥J

∑
(k1,k2)∈Z2

Kk1,k2j1,j2
(t)εk1,k2j1,j2

, (1.16)

Notice that, for all (j1, j2, k1, k2) ∈ Z4, the real-valued deterministic coefficient Kk1,k2j1,j2
(t) is

given by:

Kk1,k2j1,j2
(t) := 2

j1+j2
2

∫
R2

KH1,H2(t, x1, x2)ψ(2j1x1 − k1)ψ(2j2x2 − k2) dx1dx2 ; (1.17)

we mention that (1.13), (1.17) and the dominated convergence theorem imply that Kk1,k2j1,j2
is

a continuous function on R+. Also notice that εk1,k2j1,j2
is the random variable of the second

order Wiener chaos defined, for all (j1, j2, k1, k2) ∈ Z4, as:

εk1,k2j1,j2
:= 2

j1+j2
2

∫ ′
R2

ψ(2j1x1 − k1)ψ(2j2x2 − k2) dB(x1)dB(x2). (1.18)

Observe that our previous arguments for deriving the equality (1.16) only allow to assert

that the random series in it is, for each fixed t ∈ R+ and J ∈ N, unconditionally conver-

gent in L2(Ω), where Ω denotes the underlying probability space. Yet, in the proof of our
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Theorem 1.2, stated below, we show that this random series is also almost surely convergent

uniformly in t ∈ I. Let us point out that one may assume without any restriction that the

latter compact interval is of the form I = [0, T ], where the real number T > 2 is arbitrary

and fixed. This assumption is systematically made from now on.

The goal of Section 2 of our article is to derive the following theorem which provides an

almost sure estimate of the approximation error ‖RH1,H2 −RH1,H2,J‖I,∞.

Theorem 1.2 Assume that ψ in (1.9) is a Meyer’s mother wavelet; that is ψ belongs to

the Schwartz class S(R) and its Fourier transform ψ̂ is compactly supported with support

satisfying

supp ψ̂ ⊆
{
ξ ∈ R :

2π

3
≤ |ξ| ≤ 8π

3

}
. (1.19)

Then, for all compact interval I ⊂ R+, there exists an almost surely finite random variable

C (depending on I) for which one has, almost surely, for each J ∈ N,

‖RH1,H2 −RH1,H2,J‖I,∞ := sup
t∈I

∣∣RH1,H2(t)−RH1,H2,J(t)
∣∣ ≤ CJ 2−J(H1+H2−3/2). (1.20)

Let us now present the goal of Section 3 of our article. Using (1.12) and the wavelet

basis B (see (1.10)), similarly to (1.16) one can derive, for each fixed t ∈ R+, that

RH1,H2(t) =
∑

(j1,j2,k1,k2)∈Z4

Kk1,k2j1,j2
(t)εk1,k2j1,j2

, (1.21)

where the random series is unconditionally convergent in L2(Ω). The main goal of Section 3

is to show that it is also convergent in a much stronger sense: almost surely, uniformly in

t ∈ I := [0, T ], and jointly in the four indices j1, j2, k1 and k2; and to obtain an estimate

of the almost sure rate of convergence. More precisely, the following theorem is derived in

Section 3:

Theorem 1.3 The four real numbers T > 2 and b, d, g ∈ (0,+∞) are arbitrary and fixed.

For all t ∈ R+ and n ∈ N, let R̃H1,H2,n(t) be the random variable of the second order Wiener

chaos defined as the finite random sum:

R̃H1,H2,n(t) :=
∑

(j1,j2,k1,k2)∈S+n ∪S−n

Kk1,k2j1,j2
(t)εk1,k2j1,j2

, (1.22)

where S+
n and S−n are the two finite disjoint sets such that

S+
n :=

{
(j1, j2, k1, k2) ∈ Z4 : −2nb ≤ j1 ∧ j2 , 0 ≤ j1 ∨ j2 < n , |k1| ≤ 2n+1T , |k2| ≤ 2n+1T

}
(1.23)
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and

S−n :=
{

(j1, j2, k1, k2) ∈ Z4 : −2nd ≤ j1 ∧ j2 ≤ j1 ∨ j2 < 0 , |k1| ≤ 2ng , |k2| ≤ 2ng
}

; (1.24)

recall that j1 ∧ j2 := min{j1, j2} and j1 ∨ j2 := max{j1, j2}. Then, under the assumption that

ψ in (1.10) is a Meyer’s mother wavelet, there exists an almost surely finite random variable

C (depending on T, b, d, g) for which one has, almost surely, for each n ∈ N,

‖RH1,H2 − R̃H1,H2,n‖I,∞ := sup
t∈I

∣∣RH1,H2(t)− R̃H1,H2,n(t)
∣∣ ≤ Cn 2−n(H1+H2−3/2) , (1.25)

where I := [0, T ].

2 Proof of Theorem 1.2

In order to prove Theorem 1.2 one needs to obtain several intermediary results.

First one shows that, for all t ∈ R+ and (j1, j2, k1, k2) ∈ Z4, the deterministic coefficient

Kk1,k2j1,j2
(t) (see (1.17)) can be nicely expressed in terms of ΨH1 and ΨH2 , the two left-sided

fractional primitives of orders H1 − 1/2 and H2 − 1/2 of the Meyer’s mother wavelet ψ.

One refers to the book [21] for a classical reference on the fundamental notions of fractional

primitives and derivatives. Recall that, for anyH ∈ (1/2, 1), the left-sided fractional primitive

of ψ of order H − 1/2 is the real-valued function, we denote by ΨH , defined as:

ΨH(s) :=
1

Γ(H − 1/2)

∫
R

(s− y)
H−3/2
+ ψ(y) dy , for all s ∈ R. (2.1)

It inherits some important properties of the Meyer’s mother wavelet ψ, namely:

Remark 2.1 The function ΨH belongs to the Schwartz class S(R). This means that it is

infinitely differentiable on the real line, and that itself and its derivative of any order have

rapid decrease at infinity; in other words, for each fixed (positive) real number L, one has

sup
x∈R

{(
3 + |x|

)L |ΨH(x)|
}
< +∞, (2.2)

and (2.2) remains valid when ΨH is replaced by its derivative of an arbitrary order. Moreover,

its Fourier transform Ψ̂H is the infinitely differentiable function on the real line given by:

Ψ̂H(0) = 0 and Ψ̂H(ξ) = (iξ)−(H−1/2) ψ̂(ξ), for every ξ ∈ R \ {0}. (2.3)

Thus, in view of (1.19), Ψ̂H has a compact support satisfying:

supp Ψ̂H ⊆
{
ξ ∈ R :

2π

3
≤ |ξ| ≤ 8π

3

}
. (2.4)

�
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The proof of Remark 2.1 has been skipped since it is very classical. The following remark

shows that the deterministic coefficient Kk1,k2j1,j2
(t) can be nicely expressed in terms of the

functions ΨH1 and ΨH2 .

Remark 2.2 Let t ∈ R+ and (j1, j2, k1, k2) ∈ Z4 be arbitrary and fixed. Using (1.17), (2.1),

Fubini’s theorem and the change of variables: y1 = 2j1x1 − k1 and y2 = 2j2x2 − k2, one gets

that

Kk1,k2j1,j2
(t) = 2j1(1−H1)+j2(1−H2)Ak1,k2j1,j2

(t), (2.5)

where

Ak1,k2j1,j2
(t) =

∫ t

0
ΨH1(2j1s− k1)ΨH2(2j2s− k2) ds. (2.6)

�

Let us now give, for every (j1, j2, k1, k2) ∈ Z4, a nice expression for the random variable

εk1,k2j1,j2
(see (1.18)). The following remark shows that it is the product of two independent

standard Gaussian random variables except in the particular case where j1 = j2 and k1 = k2.

Remark 2.3 It is well-known (see e.g. Lemma A.1 in [19] or [14, 18]) that, for every

real-valued functions f and g belonging to L2(R), one has∫ ′
R2

f(x1)g(x2) dB(x1)dB(x2) =

∫
R
f(x) dB(x)

∫
R
g(x) dB(x)−

∫
R
f(x)g(x) dx , (2.7)

where
∫
R
(
·
)
dB denotes the usual Wiener integral on R. Thus, using (1.18), (2.7) and the

orthonormality property of the wavelets 2j/2ψ(2jx− k), (j, k) ∈ Z2, one obtains

εk,kj,j =

(
2j/2

∫
R
ψ(2jx− k) dB(x)

)2

− 1 , for all (j, k) ∈ Z2, (2.8)

and, for every (j1, j2, k1, k2) ∈ Z4,

εk1,k2j1,j2
=

(
2j1/2

∫
R
ψ(2j1x−k1) dB(x)

)(
2j2/2

∫
R
ψ(2j2x−k2) dB(x)

)
, if j1 6= j2 or k1 6= k2.

(2.9)

Also, observe that it follows from the orthonormality property of the wavelets 2j/2ψ(2jx−k),

(j, k) ∈ Z2, and from elementary properties of the usual Wiener integral that the real-valued

random variables 2j/2
∫
R ψ(2jx−k) dB(x), (j, k) ∈ Z2, are independent with the same N (0, 1)

Gaussian distribution. �

The following crucial lemma easily results from Remark 2.3 and from Lemma 2 in [3].
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Lemma 2.4 There exist Ω∗ an event of probability 1 and C a positive random variable of

finite moment of any order, such that, for all ω ∈ Ω∗ and for each (j1, j2, k1, k2) ∈ Z4, one

has ∣∣εk1,k2j1,j2
(ω)
∣∣ ≤ C(ω)

√
log
(
3 + |j1|+ |k1|

)
log
(
3 + |j2|+ |k2|

)
. (2.10)

Let us now introduce a partition of the set of integers Z which will play a fundamental

role in the proof of Theorem 1.2.

Definition 2.5 The parameter a ∈ (1/2, 1) is arbitrary and fixed once and for all. For every

(j, k) ∈ Z+ × Z, one denotes by Bj,k the compact interval of real line centered at the dyadic

number 2−jk and of radius 2−ja, that is

Bj,k :=
[
2−jk − 2−ja, 2−jk + 2−ja

]
. (2.11)

For each fixed j ∈ Z+ and t ∈ R+, D1
j (t), D

2
j (t) and D3

j (t) are the three disjoint subsets of Z
defined as:

D1
j (t) :=

{
k ∈ Z : Bj,k ⊆ [0, t]

}
, (2.12)

D2
j (t) :=

{
k ∈ Z\D1

j (t) : Bj,k ∩ [0, t] 6= ∅
}
, (2.13)

and

D3
j (t) :=

{
k ∈ Z : Bj,k ∩ [0, t] = ∅

}
. (2.14)

It can easily be seen that these three disjoints sets, which depend on t and also on the param-

eter a, form a partition of Z, that is:

Z = D1
j (t) ∪D2

j (t) ∪D3
j (t). (2.15)

Remark 2.6 Notice that, D3
j (t) is always an infinite set; while D2

j (t) and D1
j (t) are always

finite sets which can even be empty. Their cardinalities satisfy, for each fixed positive real

number T and for all j ∈ Z+,

sup
t∈[0,T ]

{
card(D1

j (t))
}
≤ c′ 2j (2.16)

and

sup
t∈[0,T ]

{
card(D2

j (t))
}
≤ c′′2j(1−a), (2.17)

where c′ ≥ 1 and c′′ ≥ 1 are two finite constants. Notice that c′ depends on T while c′′ does

not depend on it. �
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Definition 2.7 For all J ∈ N, one denotes by ℵ1,J and ℵ2,J the two subsets of Z2 defined

as:

ℵ1,J :=
{

(j1, j2) ∈ Z2 : j1 ≥ j2 and j1 ≥ J
}

(2.18)

and

ℵ2,J :=
{

(j1, j2) ∈ Z2 : j2 ≥ j1 and j2 ≥ J
}
. (2.19)

Lemma 2.8 The real numbers T > 2 and L ≥ 3/2 are arbitrary and fixed. For every J ∈ N,

let H1
1,J and H1

2,J be the positive random variables defined as:

H1
1,J :=

∑
(j1,j2)∈ℵ1,J

2j1(1−H1)+j2(1−H2)
∑
k1∈Z

∑
|k2|>2j1+1T

sup
t∈[0,T ]

{∣∣Ak1,k2j1,j2
(t)
∣∣}∣∣εk1,k2j1,j2

∣∣ (2.20)

and

H1
2,J :=

∑
(j1,j2)∈ℵ2,J

2j1(1−H1)+j2(1−H2)
∑

|k1|>2j2+1T

∑
k2∈Z

sup
t∈[0,T ]

{∣∣Ak1,k2j1,j2
(t)
∣∣}∣∣εk1,k2j1,j2

∣∣. (2.21)

Then, there exists an almost surely finite random variable C such that, for all J ∈ N and

l ∈ {1, 2}, the following inequality holds on the event Ω∗:

H1
l,J ≤ C 2−J(H1+H2+L−3) J

√
log(3 + J) . (2.22)

Proof of Lemma 2.8 One only shows that (2.22) is satisfied when l = 1, the case where

l = 2 can be treated in the same way. Let (j1, j2) ∈ ℵ1,J be arbitrary and fixed. Using (2.6),

(2.2), (2.10), (4.1), the triangle inequality, the inequality j1 ≥ j2, Lemma 4.2, the fact that

y 7→ (2 + y)−L
√

log(2 + y) is a decreasing function on R+, and (4.2) one gets that∑
k1∈Z

∑
|k2|>2j1+1T

sup
t∈[0,T ]

{∣∣Ak1,k2j1,j2
(t)
∣∣}∣∣εk1,k2j1,j2

∣∣
≤ C0

∑
k1∈Z

∑
|k2|>2j1+1T

∫ T

0

√
log(3 + j1 + |k1|)(
3 + |2j1s− k1|

)L ×
√

log(3 + |j2|+ |k2|)(
3 + |2j2s− k2|

)L ds

≤ C0

∫ T

0

( ∑
k1∈Z

∑
|k2|>2j1+1T

√
log(3 + j1 + |k1|)(
3 + |2j1s− k1|

)L ×
√

log(3 + |j2|+ |k2|)(
3 + |k2| − 2j2s

)L )
ds

≤ C1T 2L
√

log(3 + j1 + 2j1T ) log(3 + |j2|)
∑

|k2|>2j1+1T

√
log(3 + |k2|)(
3 + |k2|

)L
≤ C1T 2L+1

√
log(3 + j1 + 2j1T ) log(3 + |j2|)

∫ +∞

2j1+1T

√
log(2 + y)

(2 + y)L
dy

≤ C2

√
log(3 + |j2|) j1 2−j1(L−1), (2.23)
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where C0, C1 and C2 are 3 positive random constants not depending on (j1, j2) and J . Next,

it follows from (2.18), (2.23), the triangle inequality, and (4.1) that∑
(j1,j2)∈ℵ1,J

2j1(1−H1)+j2(1−H2)
∑
k1∈Z

∑
|k2|>2j1+1T

sup
t∈[0,T ]

{∣∣Ak1,k2j1,j2
(t)
∣∣}∣∣εk1,k2j1,j2

∣∣
≤ C2

+∞∑
j1=J

j1∑
j2=−∞

√
log(3 + |j2|) 2j2(1−H2) j1 2−j1(H1+L−2)

≤ C2

+∞∑
j1=J

+∞∑
p=0

√
log(3 + |j1 − p|) 2(j1−p)(1−H2) j1 2−j1(H1+L−2)

≤ C2

+∞∑
j1=J

j1 2−j1(H1+H2+L−3)
+∞∑
p=0

√
log(3 + j1 + p) 2−p(1−H2)

≤ C3

+∞∑
j1=J

j1
√

log(3 + j1) 2−j1(H1+H2+L−3)

≤ C4J
√

log(3 + J) 2−J(H1+H2+L−3),

where the finite random constants C3 and C4 are defined as:

C3 := C2

+∞∑
p=0

√
log(3 + p) 2−p(1−H2) and C4 := C3

+∞∑
q=0

(1 + q)
√

log(3 + q) 2−q(H1+H2+L−3).

Thus, one obtains (2.22) when l = 1. �

Lemma 2.9 The real numbers T > 2 and L ≥ 2−1(1− a)−1 + 1 are arbitrary and fixed. For

every J ∈ N, let H2
1,J and H2

2,J be the positive random variables defined as:

H2
1,J :=

∑
(j1,j2)∈ℵ1,J

2j1(1−H1)+j2(1−H2) sup
t∈[0,T ]

{ ∑
k1∈D3

j1
(t)

∑
k2∈Z

∣∣Ak1,k2j1,j2
(t)
∣∣∣∣εk1,k2j1,j2

∣∣} (2.24)

and

H2
2,J :=

∑
(j1,j2)∈ℵ2,J

2j1(1−H1)+j2(1−H2) sup
t∈[0,T ]

{ ∑
k1∈Z

∑
k2∈D3

j2
(t)

∣∣Ak1,k2j1,j2
(t)
∣∣∣∣εk1,k2j1,j2

∣∣}. (2.25)

Then, there exists an almost surely finite random variable C such that, for all J ∈ N and

l ∈ {1, 2}, the following inequality holds on the event Ω∗:

H2
l,J ≤ C 2−J((L−1)(1−a)+H1+H2−2) J2

√
log(3 + J) . (2.26)
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Proof of Lemma 2.9 One only shows that (2.26) is satisfied when l = 1, the case where

l = 2 can be treated in the same way. Let t ∈ [0, T ] and (j1, j2) ∈ ℵ1,J be arbitrary and fixed.

Using (2.6), (2.10), (2.2), Lemma 4.2 and Lemma 4.3, one gets that∑
k1∈D3

j1
(t)

∑
k2∈Z

∣∣Ak1,k2j1,j2
(t)
∣∣∣∣εk1,k2j1,j2

∣∣
≤ C0

∫ T

0

( ∑
k1∈D3

j1
(t)

∑
k2∈Z

√
log(3 + j1 + |k1|)(
3 + |2j1s− k1|

)L ×
√

log(3 + |j2|+ |k2|)(
3 + |2j2s− k2|

)L )
ds

≤ C1

√
log(3 + |j2|+ 2j2T )

∫ T

0

( ∑
k1∈D3

j1
(t)

√
log(3 + j1 + |k1|)(
3 + |2j1s− k1|

)L ) ds
≤ C2(j1 + 1)2−j1(L−1)(1−a)

√
log
(
3 + |j2|+ 2j2T

)
, (2.27)

where C0, C1 and C2 are 3 positive finite random constants not depending on t, (j1, j2) and

J . Next, it follows from (2.18), (2.27), the triangle inequality and (4.1) that∑
(j1,j2)∈ℵ1,J

2j1(1−H1)+j2(1−H2) sup
t∈[0,T ]

{ ∑
k1∈D3

j1
(t)

∑
k2∈Z

∣∣Ak1,k2j1,j2
(t)
∣∣∣∣εk1,k2j1,j2

∣∣}

≤ C2

+∞∑
j1=J

j1∑
j2=−∞

(j1 + 1)2−j1((L−1)(1−a)+H1−1) 2j2(1−H2)
√

log
(
3 + |j2|+ 2j2T

)
≤ C2

+∞∑
j1=J

+∞∑
p=0

(j1 + 1)2−j1((L−1)(1−a)+H1−1) 2(j1−p)(1−H2)
√

log
(
3 + |j1 − p|+ 2j1−pT

)
≤ C2

+∞∑
j1=J

(j1 + 1)
√

log
(
3 + 2j1T

)
2−j1((L−1)(1−a)+H1+H2−2)

+∞∑
p=0

√
log(3 + j1 + p) 2−p(1−H2)

≤ C3

+∞∑
j1=J

j2
1

√
log(3 + j1) 2−j1((L−1)(1−a)+H1+H2−2)

≤ C4J
2
√

log(3 + J) 2−J((L−1)(1−a)+H1+H2−2),

where the finite random constants C3 and C4 are defined as:

C3 := 16C2(2 + T )
+∞∑
p=0

√
log(3 + p) 2−p(1−H2)

and

C4 := C3

+∞∑
q=0

(1 + q)2
√

log(3 + q) 2−q((L−1)(1−a)+H1+H2−2).

Thus one obtains (2.26) when l = 1. �
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Lemma 2.10 The real number T > 2 is arbitrary and fixed. For every J ∈ N, let H3
1,J and

H3
2,J be the positive random variables defined as:

H3
1,J :=

∑
(j1,j2)∈ℵ1,J

2j1(1−H1)+j2(1−H2) sup
t∈[0,T ]

{ ∑
k1∈D2

j1
(t)

∑
k2∈Z

∣∣Ak1,k2j1,j2
(t)
∣∣∣∣εk1,k2j1,j2

∣∣} (2.28)

and

H3
2,J :=

∑
(j1,j2)∈ℵ2,J

2j1(1−H1)+j2(1−H2) sup
t∈[0,T ]

{ ∑
k1∈Z

∑
k2∈D2

j2
(t)

∣∣Ak1,k2j1,j2
(t)
∣∣∣∣εk1,k2j1,j2

∣∣}. (2.29)

Then, there exists an almost surely finite random variable C such that, for all J ∈ N and

l ∈ {1, 2}, the following inequality holds on the event Ω∗:

H3
l,J ≤ C 2−J(H1+H2+a−2) J

√
log(3 + J). (2.30)

Proof of Lemma 2.10 One only shows that (2.30) is satisfied when l = 1, the case where

l = 2 can be treated in the same way. Let L ∈ (1,+∞), t ∈ [0, T ] and (j1, j2) ∈ ℵ1,J be

arbitrary and fixed. Using (2.6), (2.10), (2.2), Lemma 4.2, the inequality |k1| ≤ 2j1(1−a)+2j1T ,

for all k1 ∈ D2
j1

(t) (see (2.13), (2.12) and (2.11)), the change of variable z = 2j1s− k1, (2.17)

and (4.2), one gets that∑
k1∈D2

j1
(t)

∑
k2∈Z

∣∣Ak1,k2j1,j2
(t)
∣∣∣∣εk1,k2j1,j2

∣∣
≤ C0

∫ T

0

( ∑
k1∈D2

j1
(t)

∑
k2∈Z

√
log(3 + j1 + |k1|)(
3 + |2j1s− k1|

)L ×
√

log(3 + |j2|+ |k2|)(
3 + |2j2s− k2|

)L )
ds

≤ C1

√
log
(
3 + |j2|+ 2j2T

) ∫ T

0

( ∑
k1∈D2

j1
(t)

√
log(3 + j1 + |k1|)(
3 + |2j1s− k1|

)L ) ds
≤ C1

√
log
(
3 + |j2|+ 2j2T

)
log
(
3 + j1 + 2j1(1−a) + 2j1T

) ∑
k1∈D2

j1
(t)

∫
R

ds(
3 + |2j1s− k1|

)L
= C1

(∫
R

ds(
3 + |z|

)L)√log
(
3 + |j2|+ 2j2T

)
log
(
3 + j1 + 2j1(1−a) + 2j1T

)
card(D2

j1(t)) 2−j1

≤ C2 2−j1a
√

(j1 + 1) log
(
3 + |j2|+ 2j2T

)
, (2.31)

where C0, C1 and C2 are 3 positive finite random constants not depending on t, (j1, j2) and

J . Next, it follows from (2.18), (2.31), (4.1) and the inequalities a > 1/2 and H1 +H2 > 3/2,
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that ∑
(j1,j2)∈ℵ1,J

2j1(1−H1)+j2(1−H2) sup
t∈[0,T ]

{ ∑
k1∈D2

j1
(t)

∑
k2∈Z

∣∣Ak1,k2j1,j2
(t)
∣∣∣∣εk1,k2j1,j2

∣∣}

≤ C2

+∞∑
j1=J

2−j1(H1+a−1)
√
j1 + 1

j1∑
j2=−∞

2j2(1−H2)
√

log
(
3 + |j2|+ 2j2T

)
≤ C2

+∞∑
j1=J

2−j1(H1+a−1)
√
j1 + 1

+∞∑
p=0

2(j1−p)(1−H2)
√

log
(
3 + |j1 − p|+ 2j1−pT

)
≤ C2

+∞∑
j1=J

2−j1(H1+H2+a−2)
√

(j1 + 1) log
(
3 + 2j1T

) +∞∑
p=0

2−p(1−H2)
√

log(3 + j1 + p)

≤ C3

+∞∑
j1=J

2−j1(H1+H2+a−2) j1
√

log(3 + j1)

≤ C42−J(H1+H2+a−2) J
√

log(3 + J) ,

where the finite random constants C3 and C4 are defined as:

C3 := 2C2

√
log(3 + T )

+∞∑
p=0

2−p(1−H2)
√

log(3 + p)

and

C4 := C3

+∞∑
q=0

2−q(H1+H2+a−2) (1 + q)
√

log(3 + q) .

Thus, one obtains (2.30) when l = 1. �

Definition 2.11 For all (j1, j2, k1, k2) ∈ Z4, one sets

F k1,k2j1,j2
:=

∫
R

ΨH1(2j1s− k1)ΨH2(2j2s− k2) ds. (2.32)

One knows from Remark 2.1 that the real-valued functions ΨH1 and ΨH2 belong to the

Schwartz class S(R). Therefore, F k1,k2j1,j2
is well-defined and it results from the Plancherel

formula and from elementary property of Fourier transform that

F k1,k2j1,j2
= 2−j1−j2

∫
R

exp
(
− i(2−j1k1 − 2−j2k2)ξ

)
Ψ̂H1(2−j1ξ)Ψ̂H2(2−j2ξ) dξ. (2.33)

15



Remark 2.12 Observe that one can easily derive from (2.4) and (2.33) that

F k1,k2j1,j2
= 0, for all (j1, j2, k1, k2) ∈ Z4 such that |j1 − j2| ≥ 2. (2.34)

In other words, a necessary condition for having F k1,k2j1,j2
6= 0 is that j2 ∈ {j1 − 1, j1, j1 + 1}.

This leads us to introduce the following notations: for every (j, k1, k2) ∈ Z3, one sets

F̃ k1,k2j := F k1,k2j,j , F̀ k1,k2j := F k1,k2j,j−1 and F́ k1,k2j := F k1,k2j,j+1 .

Thus, using (2.33) and the change of variables η = 2−jξ and η′ = 2−j−1ξ, one gets that

F̃ k1,k2j := F k1,k2j,j = 2−j
∫
R

exp
(
− i(k1 − k2)η

)
Ψ̂H1(η)Ψ̂H2(η) dη , (2.35)

F̀ k1,k2j := F k1,k2j,j−1 = 21−j
∫
R

exp
(
− i(k1 − 2k2)η

)
Ψ̂H1(η)Ψ̂H2(2η)dη (2.36)

and

F́ k1,k2j := F k1,k2j,j+1 = 2−j
∫
R

exp
(
− i(2k1 − k2)η′

)
Ψ̂H1(2η′)Ψ̂H2(η′) dη′ . (2.37)

�

Remark 2.13 Let Λ1, Λ2 and Λ3 be the three functions defined, for all η ∈ R, as:

Λ1(η) := Ψ̂H1(η)Ψ̂H2(η) , Λ2(η) := Ψ̂H1(η)Ψ̂H2(2η) and Λ3(η) := Ψ̂H1(2η)Ψ̂H2(η).

(2.38)

These three functions as well as their Fourier transforms Λ̂1, Λ̂2 and Λ̂3 belong to the Schwartz

class S(R) since ΨH1 and ΨH2 are in this class. Thus, for any arbitrary fixed positive real

number L, there exists a positive constant c such that∣∣Λ̂m(v)
∣∣ ≤ c(3 + |v|

)−L
, for all (m, v) ∈ {1, 2, 3} × R. (2.39)

On the other hand, one knows from (2.35), (2.36), (2.37) and (2.38), that, for all (j, k1, k2) ∈
Z3, one has

F̃ k1,k2j = 2−j Λ̂1(k1 − k2) , F̀ k1,k2j = 21−j Λ̂1(k1 − 2k2) and F́ k1,k2j = 2−j Λ̂1(2k1 − k2).

(2.40)

Thus, one can derive from (2.39) and (2.40) that, for all (j, k1, k2) ∈ Z3, the following three

inequalities, in which c denotes the same constant as in (2.39), hold:∣∣F̃ k1,k2j

∣∣ ≤ c 2−j
(
3 + |k1 − k2|

)−L
, (2.41)∣∣F̀ k1,k2j

∣∣ ≤ c 21−j(3 + |k1 − 2k2|
)−L

and
∣∣F́ k1,k2j

∣∣ ≤ c 2−j
(
3 + |2k1 − k2|

)−L
. (2.42)

�
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Lemma 2.14 The real numbers L > 2 and T > 2 are arbitrary and fixed. For every J ∈ N,

let H4
1,J and H4

2,J be the positive random variables defined as:

H4
1,J :=

∑
(j1,j2)∈ℵ1,J

2j1(1−H1)+j2(1−H2) sup
t∈[0,T ]

{ ∑
k1∈D1

j1
(t)

∑
k2∈Z

∣∣Ak1,k2j1,j2
(t)− F k1,k2j1,j2

∣∣∣∣εk1,k2j1,j2

∣∣}
(2.43)

and

H4
2,J :=

∑
(j1,j2)∈ℵ2,J

2j1(1−H1)+j2(1−H2) sup
t∈[0,T ]

{ ∑
k1∈Z

∑
k2∈D1

j2
(t)

∣∣Ak1,k2j1,j2
(t)− F k1,k2j1,j2

∣∣∣∣εk1,k2j1,j2

∣∣}.
(2.44)

Then, there exists an almost surely finite random variable C such that, for all J ∈ N and

l ∈ {1, 2}, the following inequality holds on the event Ω∗:

H4
l,J ≤ CJ3/2 2−J((L−2)(1−a)+H1+H2−1). (2.45)

Proof of Lemma 2.14 One only shows that (2.45) is satisfied when l = 1, the case where

l = 2 can be treated in the same way. Let t ∈ [0, T ] and (j1, j2) ∈ ℵ1,J be arbitrary and fixed.

Using (2.6), (2.32), (2.11), (2.12), (2.2), (2.10), the inequality |k1| ≤ 2j1T when k1 ∈ D1
j1

(t),

the inequality 2j1T ≥ j1, Lemma 4.2, the inequality j2 ≤ j1 and (4.1), one gets that∑
k1∈D1

j1
(t)

∑
k2∈Z

∣∣Ak1,k2j1,j2
(t)− F k1,k2j1,j2

∣∣∣∣εk1,k2j1,j2

∣∣
≤ C0

√
log(3 + 2j1+1T )

∫
R\[0,t]

( ∑
k1∈D1

j1
(t)

1(
3 + |2j1s− k1|

)L)( ∑
k2∈Z

√
log(3 + |j2|+ |k2|)(
3 + |2j2s− k2|

)L )
ds

≤ C1

√
log(3 + 2j1+1T )

∫
R\[0,t]

( ∑
k1∈D1

j1
(t)

√
log(3 + |j2|+ |2j2s|)(
3 + |2j1s− k1|

)L )
ds

≤ C1

√
log(3 + 2j1+1T )

∫
R\[0,t]

( ∑
k1∈D1

j1
(t)

√
log(3 + |j2|+ |2j1s|)(
3 + |2j1s− k1|

)L )
ds

≤ C1 log(3 + 2j1+1T )

∫
R\[0,t]

( ∑
k1∈D1

j1
(t)

√
log(3 + |j2|+ |2j1s− k1|)(

3 + |2j1s− k1|
)L )

ds

≤ C1 log(3 + 2j1+1T )
(
Uj1,j2(t) + Vj1,j2

)
, (2.46)

where C0 and C1 are 2 positive finite random constants not depending on t, T , (j1, j2) and

J , and where

Uj1,j2(t) :=

∫ +∞

t

( ∑
k1≤2j1 t−2j1(1−a)

√
log(3 + |j2|+ 2j1s− k1)(

3 + 2j1s− k1

)L )
ds (2.47)
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and

Vj1,j2 :=

∫ 0

−∞

( ∑
k1≥2j1(1−a)

√
log(3 + |j2| − 2j1s+ k1)(

3− 2j1s+ k1

)L )
ds. (2.48)

Next, the change of variable y = 2j1(s − t) in (2.47), the fact that, for any fixed j2 ∈ Z,

the function y 7→ (2 + y)−L
√

log(2 + |j2|+ y) is decreasing on R+, and integrations by parts

entail that

Uj1,j2(t) = 2−j1
∫ +∞

0

( ∑
k1≤2j1 t−2j1(1−a)

√
log(3 + |j2|+ y + 2j1t− k1)(

3 + y + 2j1t− k1

)L )
dy

≤ 2−j1
∫ +∞

0

( +∞∑
m=0

√
log(3 + |j2|+ y + 2j1(1−a) +m)(

3 + y + 2j1(1−a) +m
)L )

dy

≤ 2−j1
∫ +∞

0

(∫ +∞

0

√
log(2 + |j2|+ y + 2j1(1−a) + z)(

2 + y + 2j1(1−a) + z
)L dz

)
dy

≤ 21−j1
∫ +∞

0

√
log(2 + |j2|+ y + 2j1(1−a))(

2 + y + 2j1(1−a)
)L−1

dy

≤ 22−j1(L− 2)−1

√
log(2 + |j2|+ 2j1(1−a))(

2 + 2j1(1−a)
)L−2

. (2.49)

Similar arguments allow to derive from (2.48) that

Vj1,j2 ≤ 22−j1(L− 2)−1

√
log(2 + |j2|+ 2j1(1−a))(

2 + 2j1(1−a)
)L−2

. (2.50)

Next, it follows from (2.18), (2.46), (2.49), (2.50), the triangle inequality, (4.1) and (1.11)

that ∑
(j1,j2)∈ℵ1,J

2j1(1−H1)+j2(1−H2) sup
t∈[0,T ]

{ ∑
k1∈D1

j1
(t)

∑
k2∈Z

∣∣Ak1,k2j1,j2
(t)− F k1,k2j1,j2

∣∣∣∣εk1,k2j1,j2

∣∣}

≤ C2

+∞∑
j1=J

j1∑
j2=−∞

(j1 + 1) 2−j1((L−2)(1−a)+H1) 2j2(1−H2)
√

log(2 + |j2|+ 2j1(1−a))

≤ C2

+∞∑
j1=J

+∞∑
p=0

(j1 + 1) 2−j1((L−2)(1−a)+H1) 2(j1−p)(1−H2)
√

log(2 + |j1 − p|+ 2j1(1−a))

≤ C2

+∞∑
j1=J

(j1 + 1) 2−j1((L−2)(1−a)+H1+H2−1)
+∞∑
p=0

2−p(1−H2)
√

log(2 + j1 + 2j1(1−a) + p)

≤ C3

+∞∑
j1=J

j
3/2
1 2−j1((L−2)(1−a)+H1+H2−1)

≤ C4J
3/2 2−J((L−2)(1−a)+H1+H2−1),
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where C2, C3 and C4 are 3 positive finite random constants not depending on t and J . Thus

one obtains (2.45) when l = 1. �

Definition 2.15 For all J ∈ N, one denotes by M1,J and M2,J the positive random variables

defined as:

M1,J :=
∑

(j1,j2)∈ℵ1,J

2j1(1−H1)+j2(1−H2) sup
t∈[0,T ]

{∣∣∣ ∑
k1∈D1

j1
(t)

∑
|k2|≤2j1+1T

F k1,k2j1,j2
εk1,k2j1,j2

∣∣∣} (2.51)

and

M2,J :=
∑

(j1,j2)∈ℵ2,J

2j1(1−H1)+j2(1−H2) sup
t∈[0,T ]

{∣∣∣ ∑
|k1|≤2j2+1T

∑
k2∈D1

j2
(t)

F k1,k2j1,j2
εk1,k2j1,j2

∣∣∣}, (2.52)

where the real number T > 2 is arbitrary and fixed.

Lemma 2.16 There exists Ω∗∗ an event of probability 1, and there is C∗∗ a positive finite

random variable, such that, for all (ω, J) ∈ Ω∗∗ × N and l ∈ {1, 2}, one has

Ml,J(ω) ≤ C∗∗(ω)J 2−J(H1+H2−3/2). (2.53)

Our next goal is to show that Lemma 2.16 is satisfied; one focuses on the case l = 1, the

other case l = 2 can be treated similarly.

Remark 2.17 Observe that setting j = j1 in (2.51), and using Remark 2.12 and (2.18) one

has that

M1,J =
+∞∑
j=J

2j(2−H1−H2)
(

sup
t∈[0,T ]

{
M̃j(t)

}
+ 2H2−1 sup

t∈[0,T ]

{
M̀j(t)

})
, (2.54)

where, for all j ∈ N and t ∈ [0, T ],

M̃j(t) :=
∑

k1∈D1
j (t)

∑
|k2|≤2j+1T

F̃ k1,k2j εk1,k2j,j (2.55)

and

M̀j(t) :=
∑

k1∈D1
j (t)

∑
|k2|≤2j+1T

F̀ k1,k2j εk1,k2j,j−1 . (2.56)

�
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In fact, in the case where l = 1, Lemma 2.16 is a straightforward consequence of (2.54)

and the following lemma.

Lemma 2.18 There exist Ω̃∗∗ and Ὼ∗∗ two events of probability 1, and there are C̃∗∗ and

C̀∗∗ two positive finite random variables, such that one has:

sup
t∈[0,T ]

{
|M̃j(t, ω)|

}
≤ C̃∗∗(ω) j 2−j/2 , for all (ω, j) ∈ Ω̃∗∗ × N (2.57)

and

sup
t∈[0,T ]

{
|M̀j(t, ω)|

}
≤ C̀∗∗(ω) j 2−j/2 , for all (ω, j) ∈ Ὼ∗∗ × N. (2.58)

In order to show that Lemma 2.18 is satisfied, one needs some preliminary results.

Remark 2.19 Let j ∈ Z+ and t ∈ R+ be arbitrary and fixed. Using (2.11) and (2.12) it

can easily be shown that

D1
j (t) =


∅ , if t ∈ [0, 21−ja),

D1
j

(
mj,t 2−j + 2−ja

)
, if t ∈ [21−ja,+∞),

(2.59)

where mj,t is the positive integer defined as mj,t :=
⌊
2jt− 2j(1−a)c. Thus, denoting by Ij the

finite set of positive integers defined as

Ij := N ∩
(
2j(1−a) − 1, 2jT − 2j(1−a)

]
, (2.60)

in view of (2.59), one has, for all j ∈ N, that

sup
t∈[0,T ]

{
|M̃j(t)|

}
= sup

m∈Ij

{∣∣M̃j

(
m 2−j + 2−ja

)∣∣} (2.61)

and

sup
t∈[0,T ]

{
|M̀j(t)|

}
= sup

m∈Ij

{∣∣M̀j

(
m 2−j + 2−ja

)∣∣}. (2.62)

Observe that the cardinality of the set Ij , satisfies, for some finite constant c ≥ 1 only

depending on T ,

card(Ij) ≤ c 2j , for all j ∈ N. (2.63)

�

20



The following lemma is a straightforward consequence of Theorem 6.7 in [14].

Lemma 2.20 There exists a positive finite universal constant c̆ such that, for every random

variable χ belonging to the second order Wiener chaos and for each real number y ≥ 2, one

has

P
(
|χ| > y‖χ‖L2(Ω)

)
≤ exp

(
− c̆ y

)
, (2.64)

where ‖χ‖L2(Ω) :=
(
E
[
|χ|2

])1/2
.

Lemma 2.21 There exists a finite constant c > 0 which depends on T , such that one has

sup
t∈[0,T ]

{∥∥M̃j(t)
∥∥
L2(Ω)

}
≤ c 2−j/2 , for all j ∈ N, (2.65)

and

sup
t∈[0,T ]

{∥∥M̀j(t)
∥∥
L2(Ω)

}
≤ c 2−j/2 , for all j ∈ N. (2.66)

Proof of Lemma 2.21 We only give the proof of (2.65) since (2.66) can be shown in

the same way except that the first inequality in (2.42) has to be used instead of (2.41).

Let t ∈ [0, T ] and j ∈ N be arbitrary and fixed. Observe that, in view of the inclusion

D1
j (t) ⊂

{
k2 ∈ Z : |k2| ≤ 2j+1T

}
the set D1

j (t) ×
{
k2 ∈ Z : |k2| ≤ 2j+1T

}
can be expressed

as the disjoint union:

D1
j (t)×

{
k2 ∈ Z : |k2| ≤ 2j+1T

}
= ∆<

j (t) ∪∆=
j (t) ∪∆>

j (t) ∪∆c
j(t) ,

where, for any R ∈ {< , = , >}

∆Rj (t) :=
{

(k1, k2) ∈ D1
j (t)×D1

j (t) : k1Rk2

}
(2.67)

and

∆c
j(t) := D1

j (t)×
{
k2 ∈ Z : |k2| ≤ 2j+1T and k2 /∈ D1

j (t)
}
. (2.68)

Thus, using (2.55), one gets that

M̃j(t) = M̃<
j (t) + M̃=

j (t) + M̃>
j (t) + M̃ c

j (t) , (2.69)

where, for any R ∈ {< , = , > , c},

M̃Rj (t) :=
∑

(k1,k2)∈∆Rj (t)

F̃ k1,k2j εk1,k2j,j . (2.70)
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Next, it follows from (2.69) and the triangle inequality that∥∥M̃j(t)
∥∥
L2(Ω)

≤
∥∥M̃<

j (t)
∥∥
L2(Ω)

+
∥∥M̃=

j (t)
∥∥
L2(Ω)

+
∥∥M̃>

j (t)
∥∥
L2(Ω)

+
∥∥M̃ c

j (t)
∥∥
L2(Ω)

. (2.71)

The advantage in using the sets ∆Rj (t), R ∈ {< , = , > , c}, is that one can derive from (2.67),

(2.68) and Remark 2.3, that, for any (k′1, k
′
2) ∈ ∆Rj (t) and (k′′1 , k

′′
2) ∈ ∆Rj (t), the two centered

random variables ε
k′1,k

′
2

j,j and ε
k′′1 ,k

′′
2

j,j are uncorrelated except when (k′1, k
′
2) = (k′′1 , k

′′
2). Then,

it follows from (2.70), (2.8), (2.9), classical properties of Wiener integral, the fact that the

fourth moment of a standard Gaussian random variable equals 3, and (2.41) that∥∥M̃Rj (t)
∥∥2

L2(Ω)
:= E

((
M̃Rj (t)

)2)
(2.72)

=
∑

(k1,k2)∈∆Rj (t)

(
F̃ k1,k2j

)2 E((εk1,k2j,j

)2) ≤ c12−2j
∑

(k1,k2)∈∆Rj (t)

(
3 + |k1 − k2|

)−2L
,

where the arbitrary real number L > 1/2 is fixed, and c1 > 0 is a constant only depending

on L. Then, denoting by c2 the finite constant c2 := 2c1
∑+∞

n=0(3 + n)−2L and using (2.72)

and the inclusion

∆Rj (t) ⊂ Z×
{
k2 ∈ Z : |k2| ≤ 2j+1T

}
,

one obtains that∥∥M̃Rj (t)
∥∥2

L2(Ω)
≤ c12−2j

∑
|k2|≤2j+1T

∑
k1∈Z

(
3 + |k1 − k2|

)−2L ≤ 8Tc22−j . (2.73)

Finally, one can derive from (2.73) and (2.71) that (2.65) holds. �

We are now in position to prove Lemma 2.18.

Proof of Lemma 2.18 We only give the proof of (2.57) since (2.58) can be shown in the

same way. Let κ ≥ 2 be a constant which will be defined more precisely later. Using (2.61)

and (2.60), for all j ∈ N, one has

P
(

sup
t∈[0,T ]

{
|M̃j(t)|

}
> κ j sup

t∈[0,T ]

{∥∥M̃j(t)
∥∥
L2(Ω)

})
= P

(
sup
m∈Ij

{∣∣M̃j

(
m 2−j + 2−ja

)∣∣} > κ j sup
t∈[0,T ]

{∥∥M̃j(t)
∥∥
L2(Ω)

})
≤
∑
m∈Ij

P
(∣∣M̃j

(
m 2−j + 2−ja

)∣∣ > κ j sup
t∈[0,T ]

{∥∥M̃j(t)
∥∥
L2(Ω)

})

≤
∑
m∈Ij

P
(∣∣M̃j

(
m 2−j + 2−ja

)∣∣ > κ j
∥∥M̃j

(
m 2−j + 2−ja

)∥∥
L2(Ω)

)
. (2.74)
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Next, observe that, for any t ∈ [0, T ] (and in particular for t = m 2−j + 2−ja) the random

variable M̃j(t) belongs to the second order Wiener chaos, since it is (see (2.55)) a linear

combination of random variables εk1,k2j,j which are in this chaos. Thus, one can make use of

Lemma 2.20 in order to bound from above the probabilities in (2.74). By this way, for all

m ∈ Ij , one gets

P
(∣∣M̃j

(
m 2−j + 2−ja

)∣∣ > κ j
∥∥M̃j

(
m 2−j + 2−ja

)∥∥
L2(Ω)

)
≤ exp

(
− c̆ κ j

)
, (2.75)

where c̆ is the same positive finite constant as in (2.64). Next combining (2.74) and (2.75)

with (2.63), one obtains that

P
(

sup
t∈[0,T ]

{
|M̃j(t)|

}
> κ j sup

t∈[0,T ]

{∥∥M̃j(t)
∥∥
L2(Ω)

})
≤ c12j exp

(
− c̆ κ j

)
= c1 exp

(
− (c̆ κ− log 2)j

)
, (2.76)

where c1 denotes the positive finite constant c in (2.63). One can assume that the finite

constant κ is chosen such that κ > (log 2)/c̆. Then, one can derive from (2.76) that

+∞∑
j=1

P
(

sup
t∈[0,T ]

{
|M̃j(t)|

}
> κ j sup

t∈[0,T ]

{∥∥M̃j(t)
∥∥
L2(Ω)

})
< +∞.

Thus, the Borel-Cantelli lemma implies that there exist Ω̃∗∗ an event of probability 1 and

C̃∗∗2 a positive finite random variable, such that, for all ω ∈ Ω∗∗ and for every j ∈ N, one has

sup
t∈[0,T ]

{
|M̃j(t, ω)|

}
≤ C̃∗∗2 (ω) j sup

t∈[0,T ]

{∥∥M̃j(t)
∥∥
L2(Ω)

}
. (2.77)

Finally, (2.57) results from (2.65) and (2.77). �

We are now in position to complete the prove Theorem 1.2.

End of the proof of Theorem 1.2 Recall that the compact interval I is assumed to

be of the form I = [0, T ], where the real number T > 2 is arbitrary. Also recall that Ω∗

denotes the event of probability 1 which was introduced in Lemma 2.4. Let us first show

that, for all fixed (j1, j2) ∈ Z2 and for every ω ∈ Ω∗, the series of continuous of functions∑
(k1,k2)∈Z2 A

k1,k2
j1,j2

(•) εk1,k2j1,j2
(ω) is normally convergent with respect to the uniform norm ‖·‖I,∞,

that is one has ∑
(k1,k2)∈Z2

∥∥Ak1,k2j1,j2

∥∥
I,∞
∣∣εk1,k2j1,j2

(ω)
∣∣ < +∞ . (2.78)
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Using (2.2), (2.6), (2.10), the definition of ‖ · ‖I,∞, and the triangle inequality, one gets, for

some positive finite constant C1 depending on T , (j1, j2) ∈ Z2 and ω, that∑
(k1,k2)∈Z2

∥∥Ak1,k2j1,j2

∥∥
I,∞
∣∣εk1,k2j1,j2

(ω)
∣∣

≤ C1

∑
(k1,k2)∈Z2

∫ T

0

√
log(3 + |j1|+ |k1|) log(3 + |j2|+ |k2|)(

1 + 2j1T + |2j1s− k1|
)2(

1 + 2j2T + |2j2s− k2|
)2 ds

≤ C1

∑
(k1,k2)∈Z2

∫ T

0

√
log(3 + |j1|+ |k1|) log(3 + |j2|+ |k2|)(

1 + 2j1T + |k1| − |2j1s|
)2(

1 + 2j2T + |k2| − |2j2s|
)2 ds

≤ C1T
∑

(k1,k2)∈Z2

√
log(3 + |j1|+ |k1|) log(3 + |j2|+ |k2|)(

1 + |k1|
)2(

1 + |k2|
)2 < +∞ ,

which shows that (2.78) holds. Next, for each fixed (j1, j2) ∈ Z2, one denotes by {Xj1,j2(t)}t∈I
the stochastic process with continuous paths which vanishes outside of the event Ω∗, and

which is defined on Ω∗, for all (t, ω) ∈ I × Ω∗, as

Xj1,j2(t, ω) =
∑

(k1,k2)∈Z2

Ak1,k2j1,j2
(t) εk1,k2j1,j2

(ω) . (2.79)

Let us now show that in order to derive (1.20) it is enough to prove that there are Ω̌ an event

of probability 1 included in Ω∗, and Č a positive finite random variable such that one has on

Ω̌, for every J ∈ N,∑
(j1,j2)∈Z2, j1∨j2≥J

2j1(1−H1)+j2(1−H2) ‖Xj1,j2‖I,∞ ≤ Č J 2−J(H1+H2−3/2). (2.80)

Assuming that (2.80) is true, then it turns out that, for all fixed J ∈ N and for every ω ∈ Ω̌

the series of continuous functions

XJ(•, ω) :=
∑

(j1,j2)∈Z2, j1∨j2≥J

2j1(1−H1)+j2(1−H2)Xj1,j2(•, ω) (2.81)

is normally convergent with respect to the norm ‖ · ‖I,∞; thus, XJ(•, ω) is a continuous

function on I. In the sequel, one denotes by {XJ(t)}t∈I the stochastic process with continuous

paths which vanishes outside of Ω̌ and which is defined through (2.81) on Ω̌. It can easily be

seen that (2.80) and the triangle inequality imply, almost surely for all J ∈ N, that

‖XJ‖I,∞ ≤ Č J 2−J(H1+H2−3/2). (2.82)

On the other hand, one knows from (2.79), (2.5) and (1.16), that, for all fixed J ∈ N and

t ∈ I, the random series ∑
(j1,j2)∈Z2, j1∨j2≥J

2j1(1−H1)+j2(1−H2)Xj1,j2(t)
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converges to RH1,H2(t) − RH1,H2,J(t) in L2(Ω). Combining the later fact with (2.81), one

obtains, for all t ∈ I almost surely,

XJ(t) = RH1,H2(t)−RH1,H2,J(t) .

The latter equality and the fact that the stochastic processes {RH1,H2(t) − RH1,H2,J(t)}t∈I
and {XJ(t)}t∈I have continuous paths imply that they are indistinguishable. Thus, (1.20) is

nothing else than (2.82).

Finally, let us show that (2.80) holds. Using (2.79), the triangle inequality, (2.20), (2.21),

(2.24), (2.25), (2.28), (2.29), (2.43), (2.44), (2.51) and (2.52), one gets, for all J ∈ N, that

∑
(j1,j2)∈Z2, j1∨j2≥J

2j1(1−H1)+j2(1−H2) ‖Xj1,j2‖I,∞ ≤
2∑
l=1

(
Ml,J +

4∑
m=1

Hml,J
)
.

Therefore, combining Lemmas 2.8, 2.9 and 2.14 (in which L is assumed to be large enough)

with Lemmas 2.10 and 2.16, one obtains (2.80). �

3 Proof of Theorem 1.3

In order to prove Theorem 1.3 one needs to obtain some intermediary results.

Lemma 3.1 The real numbers T > 2 and L ≥ 3/2 are arbitrary and fixed. For every n ∈ N,

let L1
1,n and L1

2,n be the positive random variables defined as:

L1
1,n :=

∑
j1∨j2<n

2j1(1−H1)+j2(1−H2)
∑
k1∈Z

∑
|k2|>2n+1T

sup
t∈[0,T ]

{∣∣Ak1,k2j1,j2
(t)
∣∣}∣∣εk1,k2j1,j2

∣∣ (3.1)

and

L1
2,n :=

∑
j1∨j2<n

2j1(1−H1)+j2(1−H2)
∑

|k1|>2n+1T

∑
k2∈Z

sup
t∈[0,T ]

{∣∣Ak1,k2j1,j2
(t)
∣∣}∣∣εk1,k2j1,j2

∣∣. (3.2)

Then, there exists an almost surely finite random variable C such that, for all n ∈ N and

l ∈ {1, 2}, the following inequality holds on the event Ω∗ of probability 1 which was introduced

in Lemma 2.4:

L1
l,n ≤ C 2−n(H1+H2+L−3) n log(3 + n) . (3.3)
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Proof of Lemma 3.1 One only shows that (3.3) is satisfied when l = 1, the case where

l = 2 can be treated in the same way. Let n ∈ N and (j1, j2) ∈ Z2 be arbitrary, fixed and

such that

j1 ∨ j2 < n. (3.4)

Using (2.6), (2.2), (2.10), (4.1), the triangle inequality, (3.4), Lemma 4.2, the fact that

y 7→ (2 + y)−L
√

log(2 + y) is a decreasing function on R+, and (4.2), one gets that∑
k1∈Z

∑
|k2|>2n+1T

sup
t∈[0,T ]

{
|Ak1,k2j1,j2

(t)
∣∣}∣∣εk1,k2j1,j2

∣∣
≤ C0

∑
k1∈Z

∑
|k2|>2n+1T

∫ T

0

√
log(3 + |j1|+ |k1|)(
3 + |2j1s− k1|

)L ×
√

log(3 + |j2|+ |k2|)(
3 + |2j2s− k2|

)L ds

≤ C0

∫ T

0

( ∑
k1∈Z

∑
|k2|>2n+1T

√
log(3 + |j1|+ |k1|)(
3 + |2j1s− k1|

)L ×
√

log(3 + |j2|+ |k2|)(
3 + |k2| − 2j2s

)L )
ds

≤ C1T 2L
√

log(3 + |j1|+ 2j1T ) log(3 + |j2|)
∑

|k2|>2n+1T

√
log(3 + |k2|)(
3 + |k2|

)L
≤ C1T 2L+1

√
log(3 + |j1|+ 2j1T ) log(3 + |j2|)

∫ +∞

2n+1T

√
log(2 + y)

(2 + y)L
dy

≤ C2

√
log(3 + |j1|) log(3 + |j2|)n 2−n(L−1), (3.5)

where C0, C1 and C2 are 3 positive finite random constants not depending on (j1, j2) and n.

Next, it follows from (3.1) and (3.5) that

L1
1,n ≤ C2 n 2−n(L−1)

n−1∑
j1=−∞

n−1∑
j2=−∞

2j1(1−H1)+j2(1−H2)
√

log(3 + |j1|) log(3 + |j2|)

≤ C3 2−n(H1+H2+L−3) n log(3 + n) ,

where C3 is a positive finite random constant not depending on n. Thus, one obtains (3.3)

when l = 1. �

Lemma 3.2 The real numbers T > 2, L > 1 and g > 0 are arbitrary and fixed. For every

n ∈ N, let L2
1,n and L2

2,n be the positive random variables defined as:

L2
1,n :=

∑
(j1,j2)∈N2

2−j1(1−H1)−j2(1−H2)
∑
k1∈Z

∑
|k2|>2ng

sup
t∈[0,T ]

{∣∣Ak1,k2−j1,−j2(t)
∣∣}∣∣εk1,k2−j1,−j2

∣∣ (3.6)

and

L2
2,n :=

∑
(j1,j2)∈N2

2−j1(1−H1)−j2(1−H2)
∑

|k1|>2ng

∑
k2∈Z

sup
t∈[0,T ]

{∣∣Ak1,k2−j1,−j2(t)
∣∣}∣∣εk1,k2−j1,−j2

∣∣. (3.7)
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Then, there exists an almost surely finite random variable C such that, for all n ∈ N and

l ∈ {1, 2}, the following inequality holds on the event Ω∗:

L2
l,n ≤ C 2−n(L−1)g√n . (3.8)

Proof of Lemma 3.2 One only shows that (3.8) is satisfied when l = 1, the case where l = 2

can be treated in the same way. Let n ∈ N and (j1, j2) ∈ N2 be arbitrary and fixed. Using

(2.6), (2.2), (2.10), (4.1), the triangle inequality, and the fact that y 7→ (2 +y)−L
√

log(2 + y)

is a decreasing function on R+, one gets that∑
k1∈Z

∑
|k2|>2ng

sup
t∈[0,T ]

{∣∣Ak1,k2−j1,−j2(t)
∣∣}∣∣εk1,k2−j1,−j2

∣∣
≤ C0

∑
k1∈Z

∑
|k2|>2ng

∫ T

0

√
log(3 + j1 + |k1|)(

3 + T + |2−j1s− k1|
)L ×

√
log(3 + j2 + |k2|)(

3 + T + |2−j2s− k2|
)L ds

≤ C0

√
log(3 + j1) log(3 + j2)

∫ T

0

( ∑
k1∈Z

∑
|k2|>2ng

√
log(3 + |k1|)(
3 + |k1|

)L ×
√

log(3 + |k2|)(
3 + |k2|

)L )
ds

≤ C1

√
log(3 + j1) log(3 + j2)

∑
|k2|>2ng

√
log(3 + |k2|)(
3 + |k2|

)L
≤ C1

√
log(3 + j1) log(3 + j2)

∫ +∞

2ng

√
log(2 + y)

(2 + y)L
dy

≤ C2

√
log(3 + j1) log(3 + j2) 2−n(L−1)g√n, (3.9)

where C0, C1 and C2 are 3 positive finite random constants not depending on (j1, j2) and n.

Next, it follows from (3.6) and (3.9) that

L2
1,n ≤ C22−n(L−1)g√n

∑
(j1,j2)∈N2

2−j1(1−H1)−j2(1−H2)
√

log(3 + j1) log(3 + j2)

= C32−n(L−1)g√n ,

where C3 is a positive finite random constant not depending on n. Thus, one obtains (3.8)

when l = 1. �

Lemma 3.3 The real numbers T > 2 and b > 0 are arbitrary and fixed. For every n ∈ N,

let L3
1,n and L3

2,n be the positive random variables defined as:

L3
1,n :=

n−1∑
j1=0

∑
j2>2nb

2j1(1−H1)−j2(1−H2)
∑
k1∈Z

∑
k2∈Z

sup
t∈[0,T ]

{∣∣Ak1,k2j1,−j2(t)
∣∣}∣∣εk1,k2j1,−j2

∣∣ (3.10)
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and

L3
2,n :=

∑
j1>2nb

n−1∑
j2=0

2−j1(1−H1)+j2(1−H2)
∑
k1∈Z

∑
k2∈Z

sup
t∈[0,T ]

{∣∣Ak1,k2−j1,j2(t)
∣∣}∣∣εk1,k2−j1,j2

∣∣. (3.11)

Then, there exists an almost surely finite random variable C such that, for all n ∈ N and

l ∈ {1, 2}, the following inequality holds on the event Ω∗:

L3
l,n ≤ C n 2(1−H1∧H2)n−(1−H1∨H2)2nb

. (3.12)

Proof of Lemma 3.3 One only shows that (3.12) is satisfied when l = 1, the case where

l = 2 can be treated in the same way. Let n ∈ N and (j1, j2) ∈ Z2
+ be arbitrary, fixed and

such that

0 ≤ j1 < n and j2 > 2nb. (3.13)

Using (2.6), (2.2), (2.10), (4.1), the triangle inequality, (3.13), Lemma 4.2 and (4.2), one gets

that ∑
k1∈Z

∑
k2∈Z

sup
t∈[0,T ]

{∣∣Ak1,k2j1,−j2(t)
∣∣}∣∣εk1,k2j1,−j2

∣∣
≤ C0

∑
k1∈Z

∑
k2∈Z

∫ T

0

√
log(3 + j1 + |k1|)(
3 + |2j1s− k1|

)2 ×
√

log(3 + j2 + |k2|)(
3 + T + |2−j2s− k2|

)2 ds
≤ C0

√
log(3 + j2)

∫ T

0

(√
log(3 + j1 + 2j1T )

∑
k2∈Z

√
log(3 + |k2|)(
3 + |k2|

)2 )
ds

≤ C1

√
n log(3 + j2) , (3.14)

where C0 and C1 are 2 positive finite random constants not depending on (j1, j2) and n.

Next, it follows from (3.10) and (3.14) that

L3
1,n ≤ C1

√
n
n−1∑
j1=0

∑
j2>2nb

2j1(1−H1)−j2(1−H2)
√

log(3 + j2)

≤ C2 n 2(1−H1)n−(1−H2)2nb ≤ C2 n 2(1−H1∧H2)n−(1−H1∨H2)2nb
,

where C2 is a positive finite random constant not depending on n. Thus, one obtains (3.12)

when l = 1.

�
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Lemma 3.4 The real numbers T > 2 and d > 0 are arbitrary and fixed. For every n ∈ N,

let Qn be the positive random variable defined as:

Qn :=
∑

(j1,j2)∈N2, j1∨j2>2nd

2−j1(1−H1)−j2(1−H2)
∑
k1∈Z

∑
k2∈Z

sup
t∈[0,T ]

{∣∣Ak1,k2−j1,−j2(t)
∣∣}∣∣εk1,k2−j1,−j2

∣∣.
(3.15)

Then, there exists an almost surely finite random variable C such that, for all n ∈ N, the

following inequality holds on the event Ω∗:

Qn ≤ C 2−(1−H1∨H2)2nd √
n . (3.16)

Proof of Lemma 3.4 Let (j1, j2) ∈ N2 be arbitrary and fixed. Using (2.6), (2.2), (2.10),

(4.1) and the triangle inequality, one gets that∑
k1∈Z

∑
k2∈Z

sup
t∈[0,T ]

{∣∣Ak1,k2−j1,−j2(t)
∣∣}∣∣εk1,k2−j1,−j2

∣∣
≤ C0

∑
k1∈Z

∑
k2∈Z

∫ T

0

√
log(3 + j1 + |k1|)(

3 + T + |2−j1s− k1|
)2 ×

√
log(3 + j2 + |k2|)(

3 + T + |2−j2s− k2|
)2 ds

≤ C0

√
log(3 + j1) log(3 + j2)

∫ T

0

( ∑
k1∈Z

∑
k2∈Z

√
log(3 + |k1|)(
3 + |k1|

)2 ×
√

log(3 + |k2|)(
3 + |k2|

)2 )
ds

= C1

√
log(3 + j1) log(3 + j2) , (3.17)

where C0 and C1 are 2 positive finite random constants not depending on (j1, j2). Next, it

follows from (3.15) and (3.17) that, for all n ∈ N, one has

Qn ≤ C1

∑
(j1,j2)∈N2, j1∨j2>2nd

2−j1(1−H1)−j2(1−H2)
√

log(3 + j1) log(3 + j2)

≤ C22−(1−H1∨H2)2nd √
n ,

where C2 is a positive finite random constant not depending on n. Thus, one obtains (3.16).

�

We are now in position to complete the prove Theorem 1.3.

End of the proof of Theorem 1.3 Let Ω∗ and Ω∗∗ be the same events of probability 1 as

in Lemmas 2.4 and 2.16. Let us first show that in order to derive (1.25) it is enough to prove

that there exists an almost surely finite random variable C such that the inequality∥∥R̃H1,H2,n+p − R̃H1,H2,n

∥∥
I,∞ ≤ Cn 2−n(H1+H2−3/2) (3.18)
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holds, for all (n, p) ∈ N2, on the event Ω∗∩Ω∗∗ of probability 1. Assuming that (3.18) is true,

then it turns out that, for every fixed ω ∈ Ω∗ ∩ Ω∗∗, the sequence of continuous functions(
R̃H1,H2,n(•, ω)

)
n∈N is a Cauchy sequence in the Banach space of the continuous functions

over I equipped with the norm ‖ · ‖I,∞. Thus, for any fixed ω ∈ Ω∗ ∩ Ω∗∗, it converges to a

continuous function over I denoted by R̃H1,H2(•, ω). On the other hand, when ω /∈ Ω∗ ∩Ω∗∗,

one assumes that R̃H1,H2(•, ω) is the vanishing function. Next observe that one has

R̃H1,H2(t) = RH1,H2(t), for all t ∈ I, almost surely, (3.19)

since one knows from (1.21) and (1.22) that, for any fixed t ∈ I, the sequence of random

variables
(
R̃H1,H2,n(t)

)
n∈N converges to RH1,H2(t) in L2(Ω). The equality (3.19) implies that

the stochastic processes {R̃H1,H2(t)}t∈I and {RH1,H2(t)}t∈I are indistinguishable since they

have continuous paths. Thus, letting p in (3.18) tend to +∞, one obtains (1.25).

Finally, let us show that (3.18) holds. Using (1.22), (1.23), (1.24), the equality I := [0, T ],

(2.12), the inclusion

D1
j (t) ⊂

{
k ∈ Z : |k| ≤ 2n+p+1T

}
, for all t ∈ I and (j, n, p) ∈ N3 s.t. n < j ≤ n+ p,

the triangle inequality, (2.20), (2.21), (2.24), (2.25), (2.28), (2.29), (2.43), (2.44), (2.51),

(2.52), (3.1), (3.2), (3.6), (3.7), (3.10), (3.11), and (3.15), one gets, for all (n, p) ∈ N2, that

∥∥R̃H1,H2,n+p − R̃H1,H2,n

∥∥
I,∞ ≤ Qn +

2∑
l=1

(
Ml,n +

4∑
m=1

Hml,n +
3∑

m′=1

Lm′l,n
)
.

Therefore, combining Lemmas 2.8, 2.9, 2.14, 3.1, and 3.2 (in which L is assumed to be large

enough) with Lemmas 2.10, 2.16, 3.3, and 3.4, one obtains (3.18). �

4 Appendix

Lemma 4.1 For every (x, y) ∈ R2
+, one has

log(3 + x+ y) ≤ log(3 + x) log(3 + y). (4.1)

Moreover, for any fixed positive real number T there exists a constant c > 0 such that, for all

x ∈ R+, the following inequality holds:

log(3 + x+ 2xT ) ≤ c(1 + x). (4.2)

The proof of Lemma 4.1 is standard and easy this is why it has been omitted.
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Lemma 4.2 For any fixed real number L > 1, there exists a constant c > 0 such that, for

all j ∈ Z and for each s ∈ R, one has:

∑
k∈Z

√
log(3 + |j|+ |k|)

(3 + |2js− k|)L
≤ c

√
log
(
3 + |j|+ 2j |s|

)
. (4.3)

Proof of Lemma 4.2 Setting m = k − b2jsc, where b2jsc denotes the integer part of 2js,

and using the triangle inequality and (4.1), one obtains that

∑
k∈Z

√
log(3 + |j|+ |k|)

(3 + |2js− k|)L
=
∑
m∈Z

√
log
(
3 + |j|+ |m+ b2jsc|)

(3 + |2js− b2jsc −m|)L

≤
√

log
(
3 + |j|+ 2j |s|

) ∑
m∈Z

√
log(4 + |m|)

(3 + |2js− b2jsc −m|)L
.

Then, noticing that

3 + |2js− b2jsc −m| ≥ 2 + |m|,

one gets that ∑
k∈Z

√
log(3 + |j|+ |k|)

(3 + |2js− k|)L
≤ c

√
log(3 + |j|+ 2j |s|

)
,

where the constant

c :=
∑
m∈Z

√
log(4 + |m|)
(2 + |m|)L

< +∞.

�

Lemma 4.3 For each fixed real number L > 1, there exists a constant c > 0 such that, for

every t ∈ R+, for all s ∈ [0, t] and for any j ∈ Z+, one has

∑
k∈D3

j (t)

√
log(3 + j + |k|)

(3 + |2js− k|)L
≤ c(j + 1)2−j(L−1)(1−a)

√
log(3 + t) , (4.4)

where D3
j (t) is defined through (2.14) and (2.11).

Proof of Lemma 4.3 In view of (2.14) and (2.11), one has D3
j (t) = D3,+

j (t) ∪ D3,−
j (t),

where D3,+
j (t) and D3,−

j (t) are the two disjoint sets defined as:

D3,+
j (t) =

{
k ∈ Z, k > 2jt+ 2j(1−a)

}
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and

D3,−
j (t) =

{
k ∈ Z, k < −2j(1−a)

}
.

Thus, one gets that

∑
k∈D3

j (t)

√
log(3 + j + |k|)

(3 + |2js− k|)L
=

∑
k>2jt+2j(1−a)

√
log(3 + j + k)

(3 + |2js− k|)L
+

∑
k<−2j(1−a)

√
log(3 + j + |k|)

(3 + |2js− k|)L
.

(4.5)

Let us now provide an appropriate upper bound for the first term in the right-hand side of

(4.5). One denotes by b·c the integer part function. Using the change of variablem = k−b2jtc,
the triangle inequality, (4.1), the inequality b2jtc−2js > −1, the inequality log(3+m) ≤ 2+m,

and the fact that x 7→ (1+x)−L
√

log(2 + x) is a decreasing function on R+, one obtains that

∑
k>2jt+2j(1−a)

√
log(3 + j + k)

(3 + |2js− k|)L
=

∑
k>2jt+2j(1−a)

√
log(3 + j + k)

(3 + k − 2js)L

=
∑

m>2jt−b2jtc+2j(1−a)

√
log(3 + j + b2jtc+ |m|)

(3 + b2jtc − 2js+m)L

≤
√

log(3 + j + 2jt)
∑

m>2j(1−a)

√
log(3 +m)

(2 +m)L

≤
√

log(3 + j + 2jt)

∫ +∞

2j(1−a)

√
log(2 + x)

(1 + x)L
dx

≤ c1

√
(j + 1) log(3 + t) 2−j(L−1)(1−a)

√
log
(
2 + 2j(1−a)

)
≤ c2(j + 1)2−j(L−1)(1−a)

√
log(3 + t) , (4.6)

where c1 and c2 are two positive finite constants not depending on j, t, s and a. Similarly to

(4.6), it can be shown that

∑
k<−2j(1−a)

√
log(3 + j + |k|)

(3 + |2js− k|)L
≤ c32−j(L−1)(1−a)

√
(j + 1) log(3 + j) , (4.7)

where c3 is a positive finite constant not depending on j, t, s and a. Finally, putting together

(4.5), (4.6), (4.7) and (4.2), it follows that (4.4) holds. �
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