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Introduction

This article deals with the Boltzmann equation in a perturbative setting as the Knudsen number tends to zero. This equation rules the dynamics of rarefied gas particles moving on the flat torus in dimension d, T d , when the only interactions taken into account are binary collisions. More precisely, the Boltzmann equation describes the time evolution of the distribution f = f (t, x, v) of particles in position x and velocity v. A formal derivation of the Boltzmann equation from Newton's laws under the rarefied gas assumption can be found in [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF], while [START_REF] Cercignani | The mathematical theory of dilute gases[END_REF] presents Lanford's Theorem (see [START_REF] Lanford | Time evolution of large classical systems[END_REF] and [START_REF] Gallagher | From newton to boltzmann: the case of short-range potentials[END_REF] for detailed proofs) which rigorously proves the derivation in short times.

We denote the Knudsen number by ε and the Boltzmann equation reads

∂ t f + v • ∇ x f = 1 ε Q(f, f ) , on T d × R d ,
where Q is the Boltzmann collision operator given by

Q(f, f ) = R d ×S d-1 B (|v -v * |, cos θ) [f f * -f f * ] dv * dσ.
The Boltzmann kernel operator B encodes the physics of the collision process and f , f * , f * and f are the values taken by f at v , v * , v * and v respectively, where

       v = v + v * 2 + |v -v * | 2 σ v * = v + v * 2 - |v -v * | 2 σ
, and cos

θ = v -v * |v -v * | , σ .
. The Boltzmann collision operator comes from a symmetric bilinear operator Q(g, h) defined by

Q(g, h) = 1 2 R d ×S d-1 B (|v -v * |, cos θ) [h g * + h * g -hg * -h * g] dv * dσ.
It is well-known (see [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF], [START_REF] Cercignani | The mathematical theory of dilute gases[END_REF] or [START_REF] Golse | From kinetic to macroscopic models[END_REF] for example) that the global equilibria for the Boltzmann equation are the Maxwellians, which are gaussian density functions depending only on the v variable. Without loss of generality we consider only the case of normalized Maxwellians:

µ(v) = 1 (2π) d 2
e -|v| 2 2 .

In this paper we will assume that the Boltzmann collision kernel is of the following form

(1.1) B (|v -v * |, cos θ) = Φ (|v -v * |) b (cos θ) ,
with Φ and b positive functions. This hypothesis is satisfied for all physical model and is more convenient to work with but do not impede the generality of our results. We also restrict ourselves to the case of hard potential (γ > 0) or Maxwellian potential (γ = 0), that is to say there is a constant C Φ > 0 such that

(1.2) Φ(z) = C Φ z γ , γ ∈ [0, 1],
with a strong form of Grad's angular cutoff (see [START_REF] Grad | Principles of the kinetic theory of gases[END_REF]), expressed here by the fact that we assume b to be C 1 with the controls from above

(1.3) ∀z ∈ [-1, 1], b(z), b (z) C b .
1.1. The problem and its motivations. The Knudsen number is the inverse of the average number of collisions for each particle per unit of time. Therefore, as reviewed in [START_REF] Villani | Limites hydrodynamiques de l'équation de Boltzmann (d'après C. Bardos[END_REF], one can expect a convergence, in some sense, from the Boltzmann model towards the acoustics and the fluids dynamics as the Knudsen number tends to 0. However, these different models describe physical phenomena that do not evolve at the same timescale and the right rescaling to approximate the incompressible Navier-Stokes equation (see [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF] [START_REF] Golse | From kinetic to macroscopic models[END_REF][34] [START_REF] Saint-Raymond | Hydrodynamic limits of the Boltzmann equation[END_REF]) is the following equation (t, x, v). This leads to the perturbed Boltzmann equation

(1.4) ∂ t f ε + 1 ε v • ∇ x f ε = 1 ε 2 Q(f ε , f ε ) , on T d × R d , under the linearization f ε (t, x, v) = µ(v) + εh ε
(1.5) ∂ t h ε + 1 ε v • ∇ x h ε = 1 ε 2 L(h ε ) + 1 ε Q(h ε , h ε ),
where we defined L(h) = 2Q(µ, h).

The hydrodynamical limit of the perturbed equation is the system of equations satisfied by the limit, as ε tends to 0, of the hydrodynamical fluctuations that are the following physical observables of h ε :

ρ ε (t, x) = R d h ε (t, x, v) dv, u ε (t, x) = R d vh ε (t, x, v) dv, θ ε (t, x) = 1 d R d (|v| 2 -d)h ε (t, x, v) dv.
Note that (ρ ε , u ε , θ ε ) are the linearised fluctuations of the mass, momentum and the thermal energy around the global equilibrium µ.

In our perturbative framework, previous studies [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF][5] [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] show that the hydrodynamical limits ρ, u and θ are the weak (in the Leray sense [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF]) solutions of the linearized incompressible Navier-Stokes equations:

∂ t u -ν∆u + u • ∇u + ∇p = 0, ∇ • u = 0, (1.6) ∂ t θ -κ∆θ + u • ∇θ = 0,
where p is the pressure function and ν and κ are constants determined by L (see [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF] or [START_REF] Golse | From kinetic to macroscopic models[END_REF] Theorem 5). They also satisfy the Boussineq relation

(1.7) ∇(ρ + θ) = 0.
The aim of the present work is to use a constructive method to obtain existence and exponential decay for solutions to the perturbed Boltzmann equation (1.4), uniformly in the Knudsen number. One will thus be allowed to extract a converging (at least weakly) subsequence of h ε converging to the incompressible Navier-Stokes equations [START_REF] Bardos | The classical incompressible Navier-Stokes limit of the Boltzmann equation[END_REF][4] [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF]. Such uniform results have been obtained on the torus in Sobolev spaces with exponential weight H s x,v µ -1/2 in [23] [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] and the present work improves this strong weight to a polynomial weight without the need of derivatives in the velocity variable.

1.2. Existing results. The first part of our work is to prove that the linear part of the Boltzmann equation

G ε = 1 ε 2 L - 1 ε v • ∇ x
generates a strongly continuous semigroup with an exponential decay in Lebesgue and Sobolev spaces with polynomial weight, namely 1+|v| k for some k large enough. It has been known for long that the linear Boltzmann operator L is a self-adjoint non positive linear operator in the space L 2 v µ -1/2 . Moreover it has a spectral gap λ 0 . This has been proved in [START_REF] Carleman | Problèmes mathématiques dans la théorie cinétique des gaz[END_REF][18] [START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF] with non constructive methods for hard potential with cutoff and in [START_REF] Bobylëv | The method of the Fourier transform in the theory of the Boltzmann equation for Maxwell molecules[END_REF] [START_REF] Bobylëv | The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules[END_REF] in the Maxwellian case. These results were made constructive in [START_REF] Baranger | Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials[END_REF][27] for more general collision operators. One can easily extend this spectral gap to Sobolev spaces H s v µ -1/2 (see for instance [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] Section 4.1).

The next step is to see if the latter properties about L in the velocity space can be transposed when one adds the skew-symmetric transport operator -v • ∇ x . The first results were obtained in [START_REF] Ukai | On the existence of global solutions of mixed problem for non-linear Boltzmann equation[END_REF] where G 1 was proven to generate a strong continuous semigroup in

L 2 v H s x µ -1/2 and in L ∞ v H s x µ -1/2 (1 + |v|) k
, for s and k large enough. Then [START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF] obtained constructively this result in H s x,v µ -1/2 using hypocoercivity properties of the Boltzmann linear operator. Finally, a recent breakthrough proving abstract extension of semigroups [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] showed that G 1 generates a C 0 -semigroup in all the Sobolev spaces of the form W α,q v W β,p x (m), for m being an exponential weight (including maxwellian density if q = p = 2) or a polynomial weight (1 + |v|) k , as long as α β and k is large enough depending on q (with k > 2 in the case q = 1).

The full Boltzmann equation perturbed around a global equilibrium µ(v) (1.5) has also been studied in the case ε = 1. The associated Cauchy problem has been worked on over the past fifty years, starting with Grad [START_REF] Grad | Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations[END_REF], and it has been studied in different spaces, such as [START_REF] Yu | Global classical solutions of the Boltzmann equation near Maxwellians[END_REF]. The Cauchy theory was then extended to H s x,v µ -1/2 where an exponential trend to equilibrium has also been obtained. This was obtained using hypocoercivity properties of the linear operator [START_REF] Mouhot | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF] or nonlinear estimates on fluid and microscopic parts of the equation [START_REF] Guo | Boltzmann diffusive limit beyond the Navier-Stokes approximation[END_REF]. Recently, [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] proved existence and uniqueness for (1.5) in more the general spaces

L 2 v H s x µ -1/2 spaces [32] or H s x,v µ -1/2 (1 + |v|) k [22]
(W α,1 v ∩ W α,q v ) W β,p
x 1 + |v|) k for α β and β and k large enough with explicit thresholds. This result therefore gets rid of the exponential weight needed in the previous studies.

All the results presented above hold in the case of the torus. We refer the reader interested in the Cauchy problem, both for the torus and the whole space, to the review [START_REF] Ukai | Mathematical theory of the Boltzmann equation[END_REF].

For physical purposes, these studies for ε = 1 are relevant since mere rescalings or changes of physical units changes (1.4) to the case where the Knudsen number equals 1. However, if one wants to study the hydrodynamical limits of the Boltzmann equation, one needs to obtain explicit dependencies on the Knudsen number. Using hypocoercivity methods [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] gave a constructive uniform approach on the semigroup generated by G ε in H s x,v µ -1/2 and its exponential decay. The study of the full perturbed Boltzmann equation (1.5) taking into account the dependencies on the Knudsen number has been obtained [START_REF] Guo | Boltzmann diffusive limit beyond the Navier-Stokes approximation[END_REF] [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] in the same spaces H s x,v µ -1/2 , for s large enough. More precisely, for initial data sufficiently close to µ there exists a unique non-negative solution to (1.4) and it decays exponentially fast towards its equilibrium. The smallness assumption was proven to be independent of the Knudsen number as well as the rate of decay and the methods used in [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] are constructive.

1.3. Our contributions and strategy. The present work brings two major improvements.

In the spirit of [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF], we first prove that G ε generates a strong continuous semigroup in Sobolev spaces W α,1 v W β,p x 1 + |v|) k for α β and β and k large enough with explicit thresholds. It is done by starting from existing results in H s

x,v µ -1/2 and then decomposing the linear operator G ε into a dissipative part and a regularising part that is then treated in more and more regular spaces up to the space where the semigroup properties have been derived in previous articles. We thus improve the existing result [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF]. Our main contribution is an adapted version of the abstract extension theorem developed in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] that takes into account the dependencies on the Knudsen number as well as a careful study of the dissipative and the regularising parts of the operator G ε .

The second contribution of this article is the solution to the Cauchy problem with exponential trend to equilibrium, independently on ε, in spaces

W α,1 v W β,1 x 1 + |v| 2+0 and W α,1 v H β x 1 + |v| 2+0
, for β large enough and all α β. First, this result makes the recent study [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] uniform in the Knudsen number. Second, it improves the Cauchy theory developed uniformly in ε in [START_REF] Guo | Boltzmann diffusive limit beyond the Navier-Stokes approximation[END_REF] [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] by dropping the exponential weight and the v-derivatives. Moreover, one can notice that the polynomial weight is almost the optimal one for the Boltzmann equation (conservation of mass and energy).

The main issue to obtain uniform results is that the bilinear operator ε -1 Q cannot be treated as a mere perturbation that evolves under the flow of S Gε , the semigroup generated by G ε , since the latter has an exponential decay of order O(1) that is negligeable compared to O(ε -1 ) as ε tends to zero. We develop an analytic point of view about the extension theorem in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] and include the bilinear term. More precisely, we decompose the perturbed equation (1.5) into a hierarchy of equations taking place in spaces that have more and more regularity up to H s x,v µ -1/2 where estimates had been derived in [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF]. At each step we use the dissipative part of the linear operator to control the remainder term ε -1 Q whereas the regularising part is controlled in spaces with higher regularity. 1.4. Organization of the article. Section 2 first introduces the different notations and definitions we will use throughout the paper and then states the precise theorems we prove in this work. Section 2.2 deals with the semigroup generated by the full linear operator ε -2 L-ε -1 v•∇ x whereas Section 2.3 is dedicated to the full Boltzmann equation.

The full linear part of the Boltzmann operator is proven to generate a strongly continuous semigroup in Lebesgue and Sobolev spaces with polynomial weight in Section 3.

We start with Section 3.1, a thorough description of our strategy and a version of the extension theorem of [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] that takes into account the dependencies in ε.

We show in this section that ε -2 L-ε -1 v •∇ x can be decompose into a regularising operator in the velocity variable (Section 3.2) and a dissipative one (Section 3.3).

We then combine the last two properties to gain regularity both in space and velocity (Section 3.4) to finally prove the existence and exponential decay of the associated semigroup (Section 3.5).

The last section, Section 4, proves existence, uniqueness and exponential decay of solutions to the perturbed Boltzmann equation (1.5).

Section 4.1 gives a new point of view on the extension we used to generate the semigroup associated to ε -2 L -ε -1 v • ∇ x and how it can be used with the bilinear operator. This strategy is developed through Sections 4.2 and 4.3 and it leads to the proof of the exponential decay towards equilibrium in Section 4.4.

Main results

2.1. Notations. We gather here the notations we will use throughout this article.

Function spaces. We first define the following shorthand notation,

• = 1 + |•| 2 .
The convention we choose is to index the space by the name of the concerned variable so we have, for p in [1, +∞],

L p [0,T ] = L p ([0, T ]) , L p x = L p T d , L p v = L p R d .
Let p and q be in [1, +∞), α and β in N and m : R d -→ R + a strictly positive measurable function. For any multi-indexes j = (j 1 , . . . , j d ) and l = (l 1 , . . . , l d ) in N d we denote the (j, l) th partial derivative by

∂ j l = ∂ l x ∂ j v . We define the space W α,q v W β,p x (m) by the norm f W α,q v W β,p x (m) = |j| α,|l| β |l|+|j| max(α,β) ∂ j l f m L q v L p x ,
where we used the Lebesgue norm

g L q v L p x = R d T d |f (x, v)| p dx q/p dv 1/q .
Linear Boltzmann operator. First we use a writing convention. The present work aims at extending results known in a small space E, namely H s x,v µ -1/2 with s sufficiently large, into a larger space E, namely Lebesgue and Sobolev spaces with polynomial weight. We will use curly letters for operators in E and their non-curly equivalent to denote their restriction to E. For instance, we will denote

L| E = L.
The linear Boltzmann operator L has several properties we will use throughout this paper (see [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF][15] [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF][21] for instance).

L is a closed self-adjoint operator in L 2 v µ -1/2 with kernel Ker (L) = Span {φ 0 (v), . . . , φ d+1 (v)} µ, where φ 0 (v) = 1, for i = 1, . . . , d we defined φ i (v) = v i and φ d+1 = |v| 2 -d / √ 2d. The family (φ i ) 0 i d+1 is an orthonormal basis of Ker (L) in L 2 v µ -1/2 and we denote π L the orthogonal projection onto Ker (L) in L 2 v µ -1/2 :

(2.1)

π L (h) = d+1 i=0 R d h(u)φ i (u) du φ i (v)µ(v),
and we define π ⊥ L = Id -π L . We will also denote the full linear Boltzmann operator by

G ε = 1 ε 2 L - 1 ε v • ∇ x .
For s in N we will use the convention

(G ε )| H s x,v (µ -1/2 ) = G ε .
It has been proven ( [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] Proposition 3.1) that the kernel of G ε does not depend on ε and that its generators in L 2

x,v µ -1/2 are the same than the ones of Ker (L). We therefore have that the orthogonal projection onto Ker (G ε ) in L 2

x,v µ -1/2 is given by

(2.2) Π G (h) = Π Gε (h) = d+1 i=0 T d ×R d h(x, u)φ i (u) dxdu φ i (v)µ(v),
and we define Π ⊥ G = Id -Π G . Note that for a function h in L 2

x,v µ -1/2 we have that

∀(x, v) ∈ T d × R d , Π G (h)(x, v) = T d π L (h(x * , •))(v) dx * .

2.2.

Results about the full linear part. We first deal with G ε , the linear part of the perturbed Boltzmann operator. We prove that it generates a strongly continuous semigroup with an exponential decay in Lebesgue and Sobolev spaces with a weight v k as long as k is large enough. The precise statement is the following. 

2)-(1.3).

There exists 0 < ε d 1 such that for all p, q in [1, +∞], all α, β in N with α β and all k > k * q , where

(2.3) k * q = 3 + 49 -48/q 2 + γ 1 - 1 q with γ defined in (1.2), ( 1 
)
for all 0 < ε ε d , G ε = ε -2 L -ε -1 v • ∇ x generates a C 0 -semigroup, S Gε (t), on W α,q v W β,p x v k , (2) 
for all τ > 0, there exist C G (τ ), λ 0 > 0, such that for all 0 < ε ε d and for all

h in in W α,q v W β,p x v k , for all t τ S Gε (t)(h in ) -Π G (h in ) W α,q v W β,p x ( v k ) C G (τ )e -λ 0 t h in -Π G (h in ) W α,q v W β,p x ( v k )
, where Π G is the spectral projector onto Ker (G ε ) which is given, for all ε, by

(2.4) Π G (g) = d+1 i=0 T d ×R d gφ i dxdv φ i µ.
The constants ε d , C G (τ ) and λ 0 are constructive and only depends on d, p, q, k, α, β and the kernel of the Boltzmann operator.

We refer to [START_REF] Kato | Perturbation theory for linear operators[END_REF] and [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] Section 2 for definitions and properties of spectral projectors.

Remark 2.2. We can make a couple of remarks about this theorem.

(1) Of important note is the fact that the exponential decay has a strong dependence on τ > 0. This is inherent to our uniform extension of the enlargement semigroup theory of [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF]. However, such a problematic initial layer could not be used to control directly the bilinear operator. That is why, as explained in the introduction, we need a new analytic approach of the enlargement theorem to tackle the non-linearity. (2) It has been proven in [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] Section 3, that in H 1

x,v (µ -1/2 ), Ker (G ε ) does not depend on ε if ε is positive and we therefore can define Π G = Π Gε . During the proof of Theorem 2.1 we will show that (Π Gε )| H s x,v (µ -1/2 ) = Π Gε and thus Π G is well-defined and is independent of ε and given by (2.2).

(3) As noticed in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF], the rate of decay λ 0 can be taken equal to the spectral gap of L| H s x,v (µ -1/2 ) (see [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF]), for s as large as wanted, when k is big enough (and we obtained a constructive threshold). (4) Finally, we emphasize that in the case q = 1, the result holds for all k > 2. This is almost the minimal regularity L 2 v 1 + |v| 2 for the Boltzmann equation, that is solutions with bounded mass and energy.

2.3.

Existence, uniqueness and trend to equilibrium. A physically relevant requirement for solutions to the Boltzmann equation are that their mass, momentum and energy are preserved with time. This is also an a priori property of the Boltzmann equation on the torus (see [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] Chapter 1 Section 2 for instance) which reads ∀t 0,

T d ×R d   1 v |v| 2   f ε (t, x, v) dxdv = T d ×R d   1 v |v| 2   f ε (0, x, v) dxdv.
If one expects trend to the equilibrium µ(v) for the solutions f ε = µ + εh ε of the Boltzmann equation (1.4) then it must be that ∀t 0,

T d ×R d   1 v |v| 2   h ε (t, x, v) dxdv = 0, that is Π Gε (h ε (t, •, •)) = 0 for
all t, which is a property that is indeed preserved along time for solution to the perturbed Boltzmann equation (1.5), see [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] for instance.

We hence state the following theorem answering the Cauchy problem and the exponential convergence towards the equilibrium µ. 

E p = W α,1 v W β,p x v k .
There exists 0 < ε d 1 and β 0 in N such that for all β β 0 , α β, for all k > 2, for any λ 0 in (0, λ 0 ) (λ 0 defined in Theorem 2.1) there exist C α,β , η α,β > 0 such that for any 0 < ε ε d , for any distribution 0

f in = µ + εh in : If (i) h in is in Ker(G ε ) ⊥ in E p , (ii) h in E p η α,β ,
then there exists a unique global solution

f ε = f ε (t, x, v) to (1.4) in E p which, more- over, satisfies f ε = µ + εh ε 0 with: • h ε belongs to Ker(G ε ) ⊥ for all times, • h ε E p C α,β h in E p e -λ 0 t .
The constants C α,β and η α,β are constructive and depends only on α, β, k, d, λ 0 and the kernel of the Boltzmann operator.

Remark 2.4. Note that the uniform control in E p gives a weak convergence of the of the physical observables of h ε (t, x, v), that is ρ ε (t, x), u ε (t, x) and θ ε (t, x). Thanks to the convergence in distribution study made by Bardos, Golse and Levermore [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF][3] we know that the weak limit of (ρ ε , u ε , θ ε ) is a solution to (1.6) with (1.7) close to the equilibrium (1, 0, 1).

3. The linear part: a C 0 -semigroup in spaces with polynomial weight, proof of Theorem 2.1

In this section we focus on the linear part of the perturbed Boltzmann equation in W α,q v W β,p x v k . We thus consider the following equation:

(3.1) ∂ t h = G ε (h). 3.1. Strategy of the proof. If we denote E = W α,q v W β,p x v k and E = H s x,v µ -1/2
we have that E ⊂ E, dense with continuous embedding for s large enough. [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] Theorem 2.1 (with the norm of Theorem 2.4) states that G ε = (G ε )| E generates a strongly continuous semigroup in E with exponential decay. Theorem 2.1 can therefore be understood as the possibility to extend properties of G ε in a small space E to G ε in a larger space E.

This issue of extending spectral gap properties as well as semigroup properties has been first tackled by Mouhot to obtain constructive rates of convergence to equilibrium for the homogeneous Boltzmann equation [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF]. Recently, Gualdani, Mischler and Mouhot [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] proposed a more abstract approach that allows to deal with the full linear operator. In their work, they proved that if some conditions on G ε and G ε are satisfied then we can pass on some semigroup properties from E to E. The main argument of the proof of Theorem 2.1 is to show that we can use their result in our setting, independently of ε.

To be more precise, we give below a modified version of their main functional analysis theorem which is combination of Theorem 2.13 and Lemma 2.17 where we added dependencies on ε.

We refer to [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] Section 2 for the definition of hypodissipativity (roughly speaking it is a dissipative property in a different norm on a Banach space) and the definition of the convolution of two semigroups of operators (denoted by the symbol ( * )). In the sequel we will use C (E) for the set of closed operators on E and B(E) for the set of bounded operators on E. For any operator G in C (E) we denote R(G) its range and Σ(G) its spectrum. Theorem 3.1 (Modified extension theorem from [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF]). Let ε be a parameter such that 0 < ε 1. Let E, E be two Banach spaces with E ⊂ E dense with continuous embedding, and consider

G ε in C (E), G ε in C (E) with (G ε )| E = G ε and a > 0.
We assume the following

(A1) G ε generates a semigroup S Gε on E, G ε +a is hypodissipative on R (Id -Π Gε,a ) and 
Σ (G ε ) ∩ {z ∈ C, Re(z) > -a} = {0}
where 0 is a discrete eigenvalue.

(A2) There exists

A ε , B ε in C (E) such that G ε = A ε + B ε (with corresponding restrictions A ε , B ε on E)
and there exist some "intermediate spaces" (not necessarily ordered)

E = E J , E J-1 , . . . , E 2 , E 1 = E such that, still denoting B ε := (B ε )| E j and A ε := (A ε )| E j (i) For any j in {1, . . . , J}, (B ε + a/ε 2 ) is hypodissipative on E j ; (ii) For any j in {1, . . . , J}, A ε ∈ B (E j ) with A ε B(E j ) C A /ε 2 ; (iii) there are some constants l 0 , l 1 ∈ N * , C 1, K ∈ R, α ∈ [0, 1) such that ∀t 0, T l 0 (t) B(E j ,E j+1 ) C e Kt/ε 2 ε l 1 t α , for 1 j J -1, with the notation T l := (A ε S Bε ) ( * l)
. Then G ε is hypodissipative in E and for all a < a there exists n = n(a ) 1 and some positive constants C a and C a such that

(3.2) T n (t) B(E) C a ε nl 1 /l 0 e -a t/ε 2 ; (3.3) S Gε (t) = S Gε (t)Π G + n-1 l=0 (-1) l (Id -Π G ) S Bε * T l (t) + (-1) n [(Id -Π G ) S Gε ] * T n (t); (3.4) S Gε (t) -S Gε (t)Π G B(E) C a t n ε n(2+l 1 /l 0 ) e -a t/ε 2 ,
where Π G has been defined in (2.4).

We will use Theorem 3.1 to directly prove Theorem 2.1. Indeed, [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] Theorem 2.1 states that G ε generates a strongly continuous semigroup with exponential decay at rate a in E = H s x,v µ -1/2 , which is the required assumption (A1) (properties about the spectral gap of the spectrum can be found in [START_REF] Baranger | Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials[END_REF]). Therefore if G ε fulfils hypothesis (A2) then it generates a strongly continuous semigroup, with an exponential decay of order λ 0 for all 0 < λ 0 < a. Indeed, take a in (λ 0 , a) in (3.4) and fix τ > 0 and see that (3.5)

∀t τ, t n ε n(2+l 1 /l 0 ) e -a t/ε 2 t n ε n(2+l 1 /l 0 ) e -(a -λ 0 )t/ε 2 e -λ 0 t/ε 2 C n,l 1 /l 0 ,
τ,a ,λ 0 e -λ 0 t , which is the expected result given in Theorem 2.1.

3.2.

Decomposition of the operator and assumption (A2)(ii). In this section we find a decomposition G ε = A ε + B ε that will fit the requirements (A1) -(A2) of Theorem 3.1. This decomposition has been found in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] in the case ε = 1. We will use exactly the same operators but including the dependencies in ε. All the results presented in the rest of this section are true for ε = 1 (see [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] Section 4) so we will try to relate as much as possible our computations with the ones for ε = 1.

For δ in (0, 1), to be chosen later, we consider We define the splitting

Θ δ = Θ δ (v, v * , σ) in C ∞ that
G ε = A (δ) ε + B (δ) ε , with A (δ) ε h(v) = 1 ε 2 R d ×S d-1 Θ δ [µ * h + µ h * -µh * ] b (cos θ) |v -v * | γ dσdv * and B (δ) ε h(v) = B (δ) 2,ε h(v) - 1 ε 2 ν(v)h(v) - 1 ε v • ∇ x h(v),
where

B (δ) 2,ε h(v) = 1 ε 2 R d ×S d-1 (1 -Θ δ ) [µ * h + µ h * -µh * ] b (cos θ) |v -v * | γ dσdv * and ν(v) is the standard collision frequency ν(v) = R d ×S d-1 b (cos θ) |v -v * | γ µ * dσdv * .
Note that there exists ν 0 , ν 1 > 0 such that

(3.6) ∀v ∈ R d , ν 0 (1 + |v| γ ) ν(v) ν 1 (1 + |v| γ ).
We have that

A (δ) ε = 1 ε 2 A (δ) 1 and B (δ) 2,ε = 1 ε 2 B (δ) 2,1 .
We therefore obtain the following controls on A (δ) ε .

Proposition 3.2. For all 0 < ε < ε d , for any q in [1, +∞] and α 0, the operator

A (δ) ε maps L q v into W α,q v
with compact support. There exists C δ,α,q , R δ > 0 independent of ε such that

∀h ∈ L q v , supp A (δ) ε h ⊂ B(0, R δ ), A (δ) ε h W α,q v C δ,α,q ε 2 h L q v . Moreover, for any p in [1, +∞] and for all h in L q v L p x , A (δ) ε h L q v L p x A (δ) ε h L p x L q v Remark 3.3.
We notice here that this Proposition gives the point (A2)(ii) of Theorem 3.1 if the E j are Sobolev spaces.

Proof of Proposition 3.2. The kernel of the operator

A (δ)
ε is of compact support so its Carleman representation (see [START_REF] Carleman | Problèmes mathématiques dans la théorie cinétique des gaz[END_REF]) gives the existence of k

(δ) in C ∞ c R d × R d such that (3.7) A (δ) ε h(v) = 1 ε 2 R d k (δ) (v, v * )h(v * ) dv * ,
and therefore the control on

A (δ) ε h W α,q v is straightforward. The control of A (δ) ε h L q v L p x
comes directly from Minkowski's integral inequality which states

T d R d k (δ) (v, v * )h(x, v * )dv * p dx 1/p R d T d k (δ) (v, v * ) p h(x, v * ) p dx 1/p dv * .

Dissipativity estimates for B (δ)

ε , assumption (A2)(i). One can find in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] proof of Lemma 4.14 case (W 2) and (W 3) the following estimate on the operator

B (δ) ε in the case ε = 1.
Lemma 3.4. For all p, q in [1, +∞], for all k > 2 and for any δ in (0, 1) and all h in

L q v L p x v k , R d v kq h q-p L p x T d sgn(h) |h| p-1 B (δ) 1 h dx dv Λ k-γ/q ,q (δ) -1 h q L q v L p x( v k ν 1/q )
, where q is the conjugate exponent of q and Λ k,q (δ) is a constructive constant such that

lim δ→0 Λ k,q (δ) = φ q (k) = 4 k + 2 1/q 4 k -1 1-1/q .
Remark 3.5. As noticed in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] Remark 4.3, the quantity φ q (k) is strictly less than one for k bigger than a constant k * * q . The constant k * q we are considering is not optimal and is such that φ q (k -γ/q ) < 1, where q is the conjugate exponent of q. This appearance of k -γ/q is due to a loss of weight of order ν -1/q in the estimate of the spectral gap, see proof of Proposition 3.6.

In the case of the Boltzmann operator with hard potential and angular cutoff, point (A2)(i) is fulfilled by B (δ) ε for δ small enough. This is the purpose of the following lemma. We recall here that ν 0 = inf v∈R d (ν(v)) > 0 and that we define

• W α,q v W β,p x ( v k ) = |l|+|j| max(α,β) |j| α,|l| β ∂ j l • L q v L p x( v k ) .
Proposition 3.6. Consider p, q in [1, +∞], k > k * q , defined by (2.3), and α, β in N such that α β. Then there exists δ k,q in (0, 1) such that for all 0 < δ δ k,q there exists λ 0 = λ 0 (k, q, δ) in (0, ν 0 ) such that for all 0 < ε 1,

• λ 0 (k, q, δ) tends to λ * 0 (k, q) as δ goes to 0,

• λ * 0 (k, q) tends to ν 0 when k goes to +∞, • B (δ) ε + λ 0 /ε 2 is hypodissipative in W α,q v W β,p x v k .
Proof of Proposition 3.6. Let h 0 be in W α,q v W β,p x v k and considert h to be a solution to the linear equation

(3.8) ∂ t h = B (δ) ε h = B (δ) 2,ε h - 1 ε 2 νh - 1 ε v • ∇ x h,
with initial value h 0 . Since the x-derivative commutes with the equation we can consider only the case when β = α. The proof is split into two parts. First we prove Proposition 3.6 in the case α = 0 and then we study the case with v-derivatives.

Step 1: the case α = 0. Take p, q in [1, +∞). We recall that

h L q v L p x( v k ) = R d 1 + |v| k q T d |h| p dx q/p dv 1/q .
Therefore we can compute

d dt h L q v L p x( v k ) = h 1-q L q v L p x( v k ) × R d 1 + |v| k q h q-p L p x T d sgn(h) |h| p-1 B (δ) ε h dx dv.
(3.9)

Observing that

T d sgn(h) |h| p-1 v • ∇ x h dx = 1 p v • T d ∇ x (|h| p ) dx = 0, we deduce d dt h L q v L p x( v k ) = h 1-q L q v L p x( v k ) × 1 ε 2 R d 1 + |v| k q h q-p L p x T d sgn(h) |h| p-1 B (δ) 1 h dx dv.
We can therefore use Lemma 3.4 which leads to

(3.10) d dt h L q v L p x( v k ) - 1 ε 2 1 -Λ k-γ/q ,q (δ) h q L q v L p x( v k ν 1/q ) h 1-q L q v L p x( v k ) ,
We already noticed that Λ k-1/q ,q (δ) is strictly less than 1 for δ smaller than some δ k,q (see Remark 3.5). Therefore, because ν(v) ν 0 for all v we have that for all δ smaller than δ k,q the following holds,

d dt h L q v L p x( v k ) - ν 0 ε 2 1 -Λ k-γ/q ,q (δ) h L q v L p
x( v k ) , This concludes the proof of Proposition 3.6 for α = 0 and 1 p, q < +∞. The cases p = ∞ and q = ∞ are respectively dealt with by taking the limit p → ∞ and q → ∞ which is possible since δ k,q is independent of p and can be chosen to converge to a strictly positive constant when q goes to ∞, thanks to the definition of Λ k,q (δ).

Step 2: the case with v-derivatives. Take p, q in [1, +∞] and α = β = 1. Since the x-derivative commutes with (3.8) the equation satisfied by h, we have that (3.10) holds for x-derivatives. Notice that 1 -q 0 gives

d dt h L q v L p x( v k ) + ∇ x h L q v L p x( v k ) - ν 1-1/q 0 ε 2 1 -Λ k-γ/q ,q (δ) h L q v L p x( v k ν 1/q ) + ∇ x h L q v L p x( v k ν 1/q ) . (3.11) 
Applying a v-derivatives to (3.8) yields

∂ t ∇ v h = B (δ) ε (∇ v h) + ∇ v B (δ) ε (h) = B (δ) ε (∇ v h) - 1 ε ∇ x h + R (δ) ε (h),
where

R (δ) ε (h) = ∇ v B (δ) 2,ε (h) -1 ε 2 ∇ v (ν)h = 1 ε 2 R (δ)
1 (h). From (3.11), our computations in Step 1 with δ δ k,q and the following norm

h W 1,q v W 1,p x ( v k ) η = h L q v L p x( v k ) + ∇ x h L q v L p x( v k ) + η ∇ v h L q v L p x( v k ) ,
with η > 0 to be fixed later, we obtain

d dt h W 1,q v W 1,p x ( v k ) η - ν 1-1/q 0 ε 2 1 -Λ k-γ/q ,q (δ) h L q v L p x( v k ν 1/q ) + ∇ x h L q v L p x( v k ν 1/q ) -η ν 1-1/q 0 ε 2 1 -Λ k-γ/q ,q (δ) ∇ v h L q v L p x( v k ν 1/q ) - η ε ∇ v h 1-q L q v L p x( v k ) R d v k q ∇ v h q-p L p x T d sgn(h) |∇ v h| p-1 ∇ x h dx dv + η ε 2 ∇ v h 1-q L q v L p x( v k ) R d v k q ∇ v h q-p L p x T d sgn(h) |∇ v h| p-1 R (δ) 1 (h) dx dv.
We take the absolute value and use Hölder inequality twice on the last two terms which makes the terms in ∇ v h disappear, and this gives

d dt h W 1,q v W 1,p x ( v k ) η - ν 1-1/q 0 ε 2 1 -Λ k-γ/q ,q (δ) h L q v L p x( v k ν 1/q ) + η ∇ v h L q v L p x( v k ν 1/q ) + 1 ε 2 εην -1/q 0 -ν 1-1/q 0 1 -Λ k-γ/q ,q (δ) ∇ x h L q v L p x( v k ν 1/q ) + η ε 2 R (δ) 1 (h) L q v L p x( v k )
.

One can find in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] proof of Lemma 4.14 case (W 2) and (W 3) the following estimate

R (δ) 1 (h) L q v L p x( v k ) C δ h L q v L p
x( v k ν 1/q ) , where C δ > 0 is a constant only depending on δ.

Because ε 1, this latter estimates yields

d dt h W 1,q v W 1,p x ( v k ) η 1 ε 2 C δ η -ν 1-1/q 0 1 -Λ k-γ/q ,q (δ) h L q v L p x( v k ν 1/q ) + 1 ε 2 ην -1/q 0 -ν 1-1/q 0 1 -Λ k-γ/q ,q (δ) ∇ x h L q v L p x( v k ν 1/q ) -η ν 1-1/q 0 ε 2 1 -Λ k-γ/q ,q (δ) ∇ v h L q v L p x( v k ν 1/q ) , (3.12) 
which concludes the proof if we take η small enough in terms of δ, for δ δ k,q .

The case where 1 < α = β is dealt with in the same way with the norm

h W α,q v W α,p x ( v k ) η = 0 |j|+|l| α η |j| ∂ j l h L q v L p x( v k ) ,
with η small enough in terms of δ.

Estimates on the iterated convolution product, assumption (A2)(iii).

In order to use Theorem 3.1, it remains to show that our equation (3.1) satisfies hypothesis (A2)(iii), that is we need to control the iterated quantities T l :=

A (δ) ε S B (δ) ε ( * l)
for some l in N. The following proposition describes such controls when p = 1. Proposition 3.7. Consider k > k * q , defined by (2.3), and s in N . For any δ in (0, δ k,q ] and any λ 0 in (0, λ 0 ) (δ k,q and λ 0 defined in Proposition 3.6), there exists C 1 = C 1 (λ 0 , δ) > 0 and R = R(δ) > 0 such that for any t 0,

∀n ∈ N, supp T n (t)h ⊂ K := B(0, R) and ∀s 1, T 1 (t)h W s+1,1 x,v (K) C 1 e -λ 0 ε 2 t ε 2 t h W s+1,1 v W s x ( v k ) , (3.13) ∀s 0, T 2 (t)h W s+1/2,1 x,v (K) C 1 e -λ 0 ε 2 t ε 4 h W s,1 x,v ( v k ) . (3.14)
Proof of Proposition 3.7. Most of the proof is an adaptation of [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] proof of Lemma 4.19 to keep track of the dependencies on ε. We will refer to it when we are using some of its computations.

Control of T 1 (t)h: The x-derivatives commutes with T 1 (t) and therefore it is enough to consider h in W s,1 v W 1,1

x ( v k ), with s 1, and to control T 1 (t)h W s+1,1 v W 1,1

x (K) . This yields

(3.15) T 1 (t)h W s+1,1 v W 1,1 x (K) T 1 (t)h W s+1,1 v L 1 x (K) + ∇ x T 1 (t)h W s+1,1 v L 1 x (K) .
The first term is easily dealt with thanks to the estimate on A 

T 1 (t)h W s+1,1 v L 1 x (K) = A (δ) ε S B (δ) ε h W s+1,1 v L 1 x (K) C ε 2 e -λ 0 ε 2 t h L 1 v L 1 x ( v k ) .
For the second term, define f (t) = S B (δ) ε (t)h and (3.17)

D t = ε -1 t∇ x + ∇ v .
By direct computations we have that

ε -1 t∇ x T 1 (t)h = A (δ) ε (D t f ) -∇ v * A (δ) ε f. Above we denote ∇ v * A (δ)
ε to be the operator

A (δ)
ε where the kernel k(v, v * ) is swapped with -∇ v * k(v, v * ), see the proof of Proposition 3.2. By Proposition 3.2 we get

(3.18) ε -1 t ∇ x T 1 (t)h W s+1,1 v L 1 x (K) C ε 2 D t f L 1 x,v ( v k ) + f L 1 x,v ( v k ) . The dissipativity property of B (δ)
ε , in particular (3.10) with q = 1, yields

(3.19) d dt f L 1 x,v ( v k ) - λ 0 ε 2 f L 1 x,v ( v k ν) . Direct computations yields ∂ t (D t f ) = B (δ) ε (D t f ) + 1 ε 2 J (δ) f, where (3.20) J (δ) = ∇ v B (δ) (•) -B (δ) (∇ v (•)) with B (δ) = B (δ)
2,1 -ν(v) is independent of ε and satisfies (see [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] proof of Lemma 4.19) 

for all g in L 1 v v k ν J (δ) g L 1 v ( v k ) C δ g L 1 v ( v k ν) .
In the same way as proof of Proposition 3.6 we obtain

(3.21) d dt D t f L 1 x,v ( v k ) - λ 0 ε 2 D t f L 1 x,v ( v k ν) + C δ ε 2 f L 1 v ( v k ν)
. We then consider λ 0 in (0, λ 0 ) and define η = (λ 0 -λ 0 )/C δ . We compute, with (3.19),

d dt e λ 0 ε 2 t η D t f L 1 x,v ( v k ) + f L 1 x,v ( v k ) 0,
and thus

(3.22) D t f L 1 x,v ( v k ) + f L 1 x,v ( v k ) η -1 e -λ 0 ε 2 t h W 1,1 v L 1
x( v k ) . To conclude we plug (3.22) into (3.18) and we combine it with (3.16) into (3.15). This yields, because s 1,

T 1 (t)h W s+1,1 v W 1,1 x (K) C e -λ 0 ε 2 t ε 2 t h W s,1 v L 1
x ( v k ) , which implies the expected result (3.13) because T 1 (t) commutes with x-derivatives.

Control of T 2 (t)h: For s

0 we can interpolate (for interpolation theory in Sobolev spaces see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF] Chapters 6) between (3.16) and (3.13) to get

T 1 (t)h W s+1/2,1 x,v (K) C e -λ 0 ε 2 t ε 2 √ t h W s,1 v L 1 x ( v k )
. Then, we firstly use the inequality above and secondly (3.16) to obtain

T 2 (t)h W s+1/2,1 x,v (K) t 0 T 1 (t -s)T 1 (s)h W s+1/2,1 x,v (K) ds C ε 4 e -λ 0 t ε 2   t 0 e -λ 0 -λ 0 ε 2 s √ t -s ds   h W s,1 v L 1 x ( v k ) ,
which is the expected result (3.14).

The aim is to link our space L q v L p x v k to the space H s x,v µ -1/2 . We thus state the following control on the iterated convolution in the case p = 2. Proposition 3.8. Consider k > k * q , defined by (2.3), and s in N . For any δ in (0, δ k,q ] there exists C 2 = C 2 (δ) > 0 and R = R(δ) > 0 such that for any t 0, ∀n ∈ N, supp T n (t)h ⊂ K := B(0, R) and

(3.23) ∀s 0, T 2 (t)h H s+1/2 x,v (K) C T ε 5/2 h H s x,v ( v k ) . Proof of Proposition 3.8. Consider h in W s,2
x,v ( v k ), s in N. This Proposition is easier than when p = 1 because there exists velocity averaging lemmas in this framework, as discussed in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] Remark 4.21. The x-derivative commutes with T 1 and therefore we suppose there is no derivative in space.

Define f (t) = S B (δ) ε (t)(h) so that f is solution to the kinetic equation

∂ t f + 1 ε v • ∇ x f = s ε (t, x, v), with s ε (t, x, v) = -ε -2 νf + ε -2 B (δ)
2,1 f . Let j be a multi-index such that |j| s. We apply ∂ j 0 to the latter equation, which gives

(3.24) ∂ t ∂ j 0 f + 1 ε v • ∇ x ∂ j 0 f = ∂ j 0 s ε (t, x, v) + 1 ε |i|+|l|=|j| a i,l ∂ i l f,
where a i,j are non-negative numbers.

A classical averaging lemma (see [START_REF] Bouchut | Averaging lemmas without time Fourier transform and application to discretized kinetic equations[END_REF] Lemma 1 and [START_REF] Boudin | On the singularities of the global small solutions of the full Boltzmann equation[END_REF] in which we emphasize the dependencies in ε) reads, for (3.24) with

∂ j 0 f (0, x, v) = ∂ j 0 h(x, v), for all ψ in D R d R d ∂ j 0 f (t, x, v)ψ(v) dv L 2 t H 1/2 x C √ ε    ∂ j 0 h(x, v) L 2 x,v + ∂ j 0 s ε L 2 t,x,v + 1 ε |i|+|l|=|j| a i,l ∂ i l f L 2 t,x,v    .
(3.25)

We use [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF], Lemmas 4.4 and 4.7, in order to bound the terms involving

B (δ) 2,ε = ε -2 B (δ)
2,1 we have that

s ε H s x,v ( v k ) 1 ε 2 s 1 H s x,v ( v k ) C ε 2 f H s x,v ( v k ν) C ε 2 e -λ 0 ε 2 t h H s x,v ( v k ν)
, where the last inequality comes from the hypodissipativity properties of S Bε (t), see Proposition 3.6.

Using the dissipativity properties of S Bε (t) one more time we deduce that

(3.26) T 1 (t)h L 2 t H s+1/2 x,v ( v k ) C ε 5/2 h H s x,v ( v k ν) .
To conclude we notice that t 0 T 1 (t -s)T 1 (s) ds is a continuous linear operator on the Hilbert space H s+1/2 x,v (K) and thus we can see it as an element of H s+1/2 x,v (K) by Riesz's representation theorem. Hence, thanks to Cauchy-Schwartz,

T 2 (t)h H s+1/2 x,v (K) = t 0 T 1 (t -s)T 1 (s) ds (h) H s+1/2 x,v (K) h H s x,v ( v k ν) t 0 T 1 (t -s)T 1 (s) B H s x,v ( v k ν),H s+1/2 x,v (K) ds h H s x,v ( v k ν) t 0 T 1 (t -s) 2 B H s x,v (K),H s+1/2 x,v (K) ds 1/2 × t 0 T 1 (s) 2 B(H s x,v ( v k ν),H s x,v (K)) ds 1/2 h H s x,v ( v k ν) C ε 5/2 t 0 C A ε 2 e -λ 0 ε 2 s ds 1/2 C ε 5/2 h H s x,v ( v k ν)
, where we used Proposition 3.2 and the fact that S B (δ) ε is a contraction semigroup on H s

x,v with spectral gap λ 0 /ε 2 .

3.5. Proof of Theorem 2.1. As we explained it in Section 3.1, the proof of Theorem 2.1 is direct from the application of Theorem 3.1. This theorem is clearly applicable in our case and we emphasize it through the extreme case of no derivative in space or velocity variables. Indeed, we consider s in N to be chosen big enough later. We define

E = L q v L p x v k and E = H s x,v µ -1/2
and we have E ⊂ E for s big enough (dense with continuous embedding). Indeed, in the case q 2 and p 2, standard Sobolev embeddings (see [START_REF] Brezis | Analyse fonctionnelle[END_REF] Section IX.3.) imply E ⊂ L q v L p x µ -1/2 . In the case p < 2 we have, on the torus, L 2

x ⊂ L p x and H s x ⊂ L 2

x by the same Sobolev embeddings. Finally, in the case q < 2 we have that

L 2 v µ -1/2 ⊂ L q v v k (it
can be done by a mere Cauchy-Schwarz inequality) and the same Sobolev embeddings give

H s v µ -1/2 ⊂ L 2 v µ -1/2 .
On the torus we have the following embedding: L p x ⊂ L 1

x . Thanks to Proposition 3.2 and Proposition 3.6 we obtain (same arguments as (3.16))

(3.27) T 1 (t)h E C A (δ) ε S B (δ) ε h L q v L 1 x (K) C ε 2 e -λ 0 ε 2 t h L 1 v L 1 x ( v k ) .
We therefore define

E 2 = L 1 v L 1 x ( v k ).
Then we define by

E j = W (j-2)/2,1 x,v ( v k ) for j from 2 to m with m big enough such that W (m-1)/2,1 x,v ( v k ) ⊂ L 2 x,v ( v k ). Then we denote E j = H (j-m-1)/2 x,v ( v k ) up J -1 where H (J-m-2)/2 x,v ( v k ) ⊂ E.
Point (A1) of Theorem 3.1 is satisfied thanks to [START_REF] Baranger | Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials[END_REF] and [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] Theorem 2.1 (with the norm of Theorem 2.4), point (A2)(i) by Proposition 3.6 and point (A2)(ii) by Proposition 3.2. Finally, point (A2)(iii) is given by (3.27) for E and E 1 , then by Proposition 3.7 (3.14) up to E m and by Proposition 3.8 from E m to E J and E.

4. An a priori estimate for the full perturbed equation: proof of Theorem 2.3

In this section we work in

W α,1 v H β x v k or in W α,1 v W β,1
x v k , with α β on the full perturbed Boltzmann equation

∂ t h = G ε (h) + 1 ε Q(h, h).
4.1. Description of the problem and notations. When ε = 1, the linear part G ε has the same order of magnitude than the bilinear term Q in the linearized Boltzmann equation (1.5). In this case, Theorem 2.1 suffices to obtain existence and exponential decay since the contraction property of the semigroup S G 1 controls the bilinear part for small initial data (see [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF]). In the general case, S Gε only generates a semigroup with a spectral gap of order 1, insufficient to control ε -1 Q. However, [START_REF] Guo | Boltzmann diffusive limit beyond the Navier-Stokes approximation[END_REF] [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] show that a careful study of ε -1 Q compared to G ε yields existence and exponential decay of solutions to (1.5) in H s x,v µ -1/2 for s large enough (see Theorem 4.7 for an adapted version of this result). Our strategy is to use the same kind of ideas as when we extended the semigroup properties from

H β x,v µ -1/2 to W α,1 v H β x v k and W α,1 v W β,1
x v k but including the bilinear term. Namely, we shall decompose the partial differential equation (1.5) into a system of partial differential equations from

W α,1 v H β x v k or W α,1 v W β,1 x v k to H β µ -1/2
and use the perturbative estimates of [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF].

As noticed in Remark 2.16 of [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF], Theorem 3.1 extending the semigroup generated by

G ε in H s µ -1/2 to L 1 v L ∞
x v k can be interpreted as a decomposition of

∂ t f = G ε f, into a system of partial differential equations, involving operators G ε = A ε + B ε (defined in Section 3.2), with f = f 1 + • • • + f J satisfying • f 1 is in L 1 v L ∞ x v k and f 1 in = f in in Ker(G ε ) ⊥ , • for all 2 j J -1, f j is in E j and f j in = 0, • f J is in H s µ -1/2 , f J in = 0
and in that space we can use the contraction property of S Gε . We will decompose the linearized Boltzmann equation in a similar way than the one explained above. We shall define a sequence of spaces (E j ) 1 j J . In each space E j , 1 j J -1, a piece of the bilinear term, of order ε -1 , will be added and controlled by the dissipativity property of B (δ) ε , of order ε -2 . Contrary to the study in the linear case, the bilinear operator generates terms involving functions in all the spaces E j which have to be compared and controlled. This imposes to construct (E j ) 1 j J as a nested sequence.

The difficult part of the linear operator, namely A (δ) ε , enjoys a regularising effect and could therefore be treated in more regular spaces. Of course, our decomposition will be much easier since we solely want to go from an exponential weight into a polynomial weight Sobolev spaces, without losing any derivatives in x or v.

In order to shorten notations we define, for p = 1, 2 and k to be defined later, (4.1)

E p = W α,1 v W β,p x v k and E = H β x,v µ -1/2
. We take h in in E p and we decompose the partial differential equation,

∂ t h = G ε (h) + 1 ε Q(h, h) = A (δ) ε (h) + B (δ) ε (h) + 1 ε Q(h, h)
into an equivalent system of partial differential equations for the following decomposition

(4.2) h(t, x, v) = h 0 (t, x, v) + h 1 (t, x, v), with (1) In E p , h 0 t=0 = h in and (4.3) ∂ t h 0 = B (δ) ε (h 0 ) + 1 ε Q(h 0 , h 0 ) + 2 ε Q h 0 , h 1 , (2) 
In E, h 1 t=0 = 0 and (4.4)

∂ t h 1 = G ε (h 1 ) + 1 ε Q(h 1 , h 1 ) + A (δ) ε (h 0 ).
The aim of this Section is to establish the following estimate of solutions to the system (4.3) -(4.4). Theorem 4.1. Let p = 1 or p = 2. There exist β 0 in N and ε d in (0, 1] depending on d and the kernel of the Boltzmann operator such that: For all β β 0 , for any δ in (0, δ k,1 ] and any λ 0 in (0, λ 0 ) (δ k,1 and λ 0 defined in Proposition 3.6) there exist C β , η β > 0 such that for any 0 < ε ε d and

h in in E p , if (i) h in E p η β , (ii) (h 0 , h 1 ) is solution to the system (4.3) -(4.4), then h 0 + h 1 E p C β h in E p e -λ 0 t
. The constants C β and η β are constructive and depends only on β, d, δ, λ 0 and the kernel of the Boltzmann operator. Remark 4.2 (Link with Theorem 2.3). The existence and uniqueness for the perturbed Boltzmann equation (1.5) in E p has been proved for ε = 1, that is equivalent of ε fixed with constant depending on it, in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] Theorems 5.3 and 5.5 respectively. The constants, as well as the smallness assumption on the initial data, in the theorem above are independent of ε and therefore this a priori result combined with existence and uniqueness developed in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF] and in [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] implies the existence and uniqueness independently of ε which is Theorem 2.3.

The next subsections deal with the estimates one can get for solutions to the system (4.3) -(4.4). We study each of them independently and the a priori exponential decay will be a straightforward application of these results together with a maximum principle argument. 

E p = W α,1 v W β,p
x v k , for p = 1 or p = 2. We define the shorthand notation

E p ν = W α,1 v W β,p x v k ν .
Proposition 4.3. Let p = 1 or p = 2 and 0 < ε 1. Let k > k * 1 = 2, β > 2d/p. Let h in be in E p and h 1 in E p ν . For any δ in (0, δ k,1 ] and any λ 0 in (0, λ 0 ) (δ k,1 and λ 0 defined in Proposition 3.6)

there exist C 0 , η 0 > 0 such that if (i) h in E p η 0 , h 1 E p ν η 0 , (ii) h 0 satisfies h 0 t=0 = h in
and is solution to

∂ t h 0 = B (δ) ε (h 0 ) + 1 ε Q(h 0 , h 0 ) + 2 ε Q h 0 , h 1 , then h 0 E p C 0 e -λ 0 ε 2 t h in E p .
The constant η 0 is constructive and depends only on δ, λ 0 and the kernel of the Boltzmann operator.

Note that the presence of C 0 is due to the hypodissipativity of the linear operator rather than a direct dissipativity. We need to control the bilinear term Q, which is given by the following lemma. Lemma 4.4. For all p = 1, 2 and α, β in N such that β > 2d/p, there exists C β,p > 0 such that all f and g

Q(f, g) E p C β,p g E p ν f E p + g E p f E p ν .
This lemma has been proved in Lemma 5.16 in [START_REF] Gualdani | Factorization for non-symmetric operators and exponential H-theorem[END_REF], which is adapted from interpolation results in [START_REF] Arkeryd | Stability in L 1 for the spatially homogeneous Boltzmann equation[END_REF] or duality arguments as in [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF] Theorem 2.1.

Proof of Proposition 4.3. Consider δ in (0, δ k,1 ] and λ 0 in (0, λ 0 ). Take p = 1 or p = 2 and β > 2d/p.

We have that

∂ t h 0 = B (δ) ε (h 0 ) + 1 ε Q(h 0 , h 0 ) + 2 ε Q h 0 , h 1 .
Thanks to the hypodissipativity of property of B (δ) ε , more precisely the proof of Lemma 3.6, we have

d dt h 0 E p - λ 0 ε 2 ν 0 h 0 E p ν + 1 ε Q(h 0 , h 0 ) + 2Q(h 0 , h 1 ), h 0 E p - λ 0 ε 2 ν 0 h 0 E p ν + 1 ε Q(h 0 , h 0 ) + 2Q(h 0 , h 1 ) E p ,
where we used the scalar product notation to refer to the product operator appearing in

W α,1 v W β,p x when one differentiates h W α,1 v W β,p
x ( v k ) (of the same form as (3.9)). For the second inequality we used Hölder inequality between L p x and L p/(p-1) x inside the product operator:

T d sgn(h 0 ) h 0 p-1 F (h 0 ) dx h 0 p-1 L p x F (h 0 ) L p x .
Then estimating Q using Lemma 4.4 yields

(4.5) d dt h 0 E p - 1 ε 2 λ 0 ν 0 -2εC β,p h 0 E p + 2 ν 0 h 1 E p ν h 0 E p ν , we recall ν 0 = inf v∈R d (ν(v)) > 0.
Therefore, if

h 1 E p ν ε -1 (λ 0 -λ 0 ) 8C β,p and h t=0 E p ε -1 (λ 0 -λ 0 ) 4ν 0 C β,p , then h 0 E p is always decreasing in time with d dt h 0 E p - λ 0 ε 2 ν 0 h 0 E p
ν , which hence yields the expected exponential decay by Grönwall Lemma. 4.3. Study of equations (4.4) in E. In the space E = H β x,v µ -1/2 , solutions to the perturbed Boltzmann equation enjoy an exponential decay. More precisely, [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] derived a precise Grönwall that we will now use to obtain estimates on the solution h 1 . We will use the following shorthand notation

E ν = H β x,v µ -1/2 ν 1/2
In this section we use the previous theorem to obtain exponential decay of h 1 in E. This result is stated in the following proposition, where C 0 t denotes the space of time-continuous functions. Proposition 4.5. Let p = 1 or p = 2, 0 < ε ε d 1, β s 0 and α β (ε d and s 0 being constructive constants that will be defined in Theorem 4.7). Let h in be in E p and h 0 in C 0 t E p . For any δ in (0, δ k,1 ] and any λ 0 in (0, λ 0 ) (δ k,1 and λ 0 defined in Proposition 3.6)

there exist η 1 , C 1 > 0 such that if (i) h in E p η 1 , (ii) there exists C 0 > 0 such that h 0 E p
C 0 e -λ 0 +λ 0 2ε 2 t h in E p , (iii) h 1 satisfies h 1 t=0 = 0 and is solution to

∂ t h 1 = G ε (h 1 ) + 1 ε Q(h 1 , h 1 ) + A (δ) ε (h 0 ) then h 1 E C 1 e -λ 0 t h in E p
The constants C 1 and η 1 are constructive and depends only on δ, λ 0 and the kernel of the Boltzmann operator.

In order to prove Proposition 4.5 we need a new control on the bilinear term. For any operator F defined on E × E, we will say that F satisfies the property (H) if the following holds. Property (H):

(1) for all g 1 , g 2 in E we have π L (F (g 1 , g 2 )) = 0, where π L is the orthogonal projection on Ker (L) in L 2 v µ -1/2 (see (2.1)), (2) for all s > 0 there exists F s F : E × E -→ R + such that for all multi-indexes j and l such that |j| + |l| s ,

∂ j l F (g 1 , g 2 ), g 3 L 2 x,v (µ -1/2 ) F s F (g 1 , g 2 ) g 3 L 2 x,v (µ -1/2 ν 1/2 ) , with F s F F s +1 F .
Lemma 4.6. The Boltzmann linear operator Q satisfies the property (H) with

∀s > d, ∃C s > 0, F s Q (f, g) C s f E g Eν + f Eν g E .
The latter control on the bilinear part is from [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] Appendix A.2.

Proof of Proposition 4.5. We state below the estimate derived in [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] (note that this is a version of [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] Theorem 2.4 extended by estimates proved in [START_REF] Briant | A constructive method from Boltzmann to incompressible Navier-Stokes on the torus[END_REF] Propositions 2.2 and 7.1).

Theorem 4.7. There exist 0 < ε d 1 and s 0 in N such that for any s s 0 and any λ 0 in (0, λ 0 ) there exists δ s , C s > 0 such that,

• for any h in in H s x,v µ -1/2 with h in H s x,v (µ -1/2 ) δ s , • for any operator F defined on H s x,v µ -1/2 × H s x,v µ -1/2 satisfying the property (H);

Then for all 0 < ε ε d and for all g 1 , g 2 in H s

x,v µ -1/2 , if h is a solution to      ∂ t h = G ε (h) + 1 ε F (g 1 , g 2 ) h t=0 = h in ,
and h is in Ker (G ε ) for all time, then Now, let λ be in (0, λ 0 ), s s 0 and 0 < ε ε d . The proof of Proposition 4.5 will be done in two steps. First we study the projection of h 1 onto Ker (G ε ) and then its orthogonal part.

∀t ∈ R + , d dt h 2 H s x,v (µ -1/2 ) - 2λ 0 ν 2 0 h 2 H s x,v (µ -1/2 ν) + C s F s F (g
Estimate on the projection part. We have that, see the decomposition (4.2), that h 1 = h -h 0 with h solution to the perturbed Boltzmann equation and thus satisfying Π G (h) = 0. We therefore have that Π G (h 1 ) = -Π G (h 0 ). Moreover, Theorem 2.1 tells us that Π G and Π G coincide on E and thus

Π G (h 1 ) = -Π G (h 0 ),
and assumption (ii) together with the shape of Π G (see (2.4)), there exists a constant C Π > 0, depending only on the dimension d and s and the constant C 0 , such that

(4.6) Π G (h 1 ) Eν C Π e -λ 0 +λ 0 2ε 2 t h in E p .
Estimate on the orthogonal part.

Applying Π ⊥ G = Id -Π G , the orthogonal projection onto (Ker (G ε )) ⊥ in L 2
x,v µ -1/2 , to the differential equation satisfied by h 1 yields

∂ t Π ⊥ G (h 1 ) = G ε (h 1 ) + Π ⊥ G 1 ε Q(h 1 , h 1 ) + A (δ) ε (h 0 ) = G ε Π ⊥ G (h 1 ) + Π ⊥ G 1 ε Q(h 1 , h 1 ) + A (δ) ε (h 0 ) . (4.7)
Moreover, we have by definition of Π G and π L (see (2.4) and (2.1)) that (π L (h) = 0) =⇒ (Π G (h) = 0) and therefore Π ⊥ G Q(h 1 , h 1 ) = Q(h 1 , h 1 ), since Q satisfies property (H).1. by Lemma 4.6. Plugging the latter equality into (4.7) gives

∂ t Π ⊥ G (h 1 ) = G ε Π ⊥ G (h 1 ) + 1 ε Q(h 1 , h 1 ) + Π ⊥ G A (δ) ε (h 0 ) .
By definition, Π ⊥ G (h 1 ) is in (Ker (G ε )) ⊥ for all time and thanks to the control on the Boltzmann operator Q in E (Lemma 4.6), we are able to use Theorem 4.7 with λ 0 > λ 0 to which we have to add the source term Π ⊥ G A (δ) ε (h 0 ) . This yields the following differential inequality, where we denote by C any positive constant independent of ε,

d dt Π ⊥ G (h 1 ) 2 E (4.8) - 2λ 0 ν 2 0 Π ⊥ G (h 1 ) 2 Eν + C F s Q (h 1 , h 1 ) 2 + Π ⊥ G A (δ) ε (h 0 ) , Π ⊥ G (h 1 ) E - 2λ 0 ν 2 0 Π ⊥ G (h 1 ) 2 Eν + C h 1 2 E h 1 2 Eν + Π ⊥ G A (δ) ε (h 0 ) E Π ⊥ G (h 1 ) E ,
where we used a Cauchy-Schwarz inequality on the last term on the right-hand side.

Then we can decompose h 1 = Π G (h 1 ) + Π ⊥ G (h 1 ) to get first 

h 1 2 E h 1 2 Eν 4 Π ⊥ G (h 1 ) 2 E Π ⊥ G (
Π ⊥ G A (δ) ε (h 0 ) E Π ⊥ G (h 1 ) E C A ε 2 h in E p e -λ 0 +λ 0 2ε 2 t Π ⊥ G (h 1 ) E .
We plug (4.9) and (4.10) into (4.8) and obtain, with C and C being positive constants independent of ε,

d dt Π ⊥ G (h 1 ) 2 E - 2λ 0 ν 2 0 -4 Π ⊥ G (h 1 ) 2 E + Cη 2 1 Π ⊥ G (h 1 ) 2 Eν + C h in 4 E p + 1 ε 2 h in E p Π ⊥ G (h 1
) E e -λ 0 +λ 0 2ε 2 t .

We now choose η 1 sufficiently small so that Cη We define

η * = λ 0 -λ 0 4ν 2 0 .
We have that h 1 t=0 = 0 so we can define u du e -2λ 0 t , where we used the change of variable u = ε -2 s and we considered ε 1/4 (which only amounts to decreasing ε d ).

t 0 = sup{t > 0, Π ⊥ G (h 1 )
Hence, there exists K > 0 independent of ε such that

∀t ∈ [0, t 0 ], Π ⊥ G (h 1 ) 2 E K(η 4 1 + η 1 √ η * ).
If we thus chose η 1 sufficiently small such that (η 4 1 + η 1 √ η * )K < η * /2 we reach a contradiction when t goes to t 0 since Π ⊥ G (h 1 ) 2 E (t 0 ) η * . Therefore, choosing η 1 small enough independently on ε implies first that t 0 = +∞ and second that (4.12)

∀t ∈ [0, +∞),

Π ⊥ G (h 1 ) 2 E C h in 2 
E p e -2λ 0 t . End of the proof. By just decomposing h 1 into its projection and orthogonal part and using the estimates (4.6) and (4.12) gives the expected exponential decay for h 1 in E. E is continuously embedded in E p ν because L 2 v µ -1/2 ⊂ L 2 v v k (mere Cauchy-Schwarz inequality) and L 2

x ⊂ L 1 x because T d is bounded. Hence, there exists C E,E > 0 such that (4.13)

1 ν 0 • E p • E p ν C E,E • E .
We define

η = min η 0 , η 1 , η 0 2C E,E C 1 ,
and we assume h in E p η. Since h 1 t=0 = 0 we also define t 0 = sup{t > 0, h 1

E p ν < η 0 }.
Suppose that t 0 < +∞. Then, thanks to Proposition 4.3 we have that ∀t ∈ [0, t 0 ], h 0 E p h in E p e -λ 0 +λ 0 2ε 2 t . We can thus apply Proposition 4.5 and get ∀t ∈ [0, t 0 ],

h 1 E C 1 h in E p e -λ 0 t C 1 η η 0 2C E,E ,
which is in contradiction with the definition of t 0 thanks to (4.13). Therefore t 0 = +∞ and we have the expected exponential decay stated in Theorem 4.1 for all time.
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 23 Let B be a Boltzmann collision kernel satisfying (1.1)-(1.2)-(1.3) and let p = 1 or p = 2. For α, β and k > 2 in N define

  is bounded by one on the set |v| δ -1 and 2δ |v -v * | δ -1 and |cos θ| 1 -2δ and whose support is included in |v| 2δ -1 and δ |v -v * | 2δ -1 and |cos θ| 1 -δ .
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 142 Section 4.2 focuses on the a priori study of the equation in E p . Section 4.3 deals with (4.4) in E. Finally, Section 4.4 gathers the previous results to prove Theorem 4.Study of equation (4.3) in E. In this section we prove the following general proposition about the equation taking place in
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 4 Proof of Theorem 4.1. Let p = 1 or p = 2, λ be in (0, λ 0 ), β β 0 = s 0 and 0 < ε ε d . All the constants used in this section are the ones constructed in Proposition 4.3 with (λ 0 + λ 0 )/2 and Proposition 4.5 with λ 0 .

  Remark 4.8. It is of importance to notice that the differential inequality given in Theorem 4.7 is independent of ε. In fact, it holds for a modified• H s x,v ,ε that includes ε factors but in a way that • H s x,v ,ε ∼ • H s x,v independently of ε as long as ε is sufficiently small. For clarity purposes, working directly with the • H s x,v does not hide any problematic behaviour. If one wants to incorporate the real • H s x,v ,ε , one just have do exactly the following computations but with the integrated in time version of Theorem 4.7 where one can use the usual • H s x,v thanks to the equivalence of the norms.

1 , g 2 ) 2 .

  h 1 ) And finally, this inequality together with assumption (ii) gives the existence of a constant C A > 0 such that(4.10) 

						2 Eν +	8 ν 2 0	Π G (h 1 )	2 Eν Π ⊥ G (h 1 )	2 Eν
			+	4 0 ν 2	Π G (h 1 )		
							2 Eν we derived in (4.6) to obtain,
	with h in	η 1 ,					
	(4.9)						
	h 1 2 E h 1 2 Eν	4 Π ⊥ G (h 1 )	2 E Π ⊥ G (h 1 )	2 Eν + Cη 2 1 Π ⊥ G (h 1 )	2 Eν + Ce -2(λ 0 +λ 0 ) ε 2	t h in	4 E p .

4

Eν , into which we can plug the control on Π G (h 1 )

  Suppose that t 0 < +∞, we therefore have for all t in [0, t 0 ]

	d dt	Π ⊥ G (h 1 )	2 E	-	2λ 0 ν 2 0	Π ⊥ G (h 1 )	2 Eν + C	h in	4 E p +	√ η * ε 2 h in E p e -λ 0 +λ 0 2ε 2 t ,
	which gives								
	∀t ∈ [0, t 0 ],	d dt	Π ⊥ G (h 1 )	2 E	-2λ 0 Π ⊥ G (h 1 )	2 E +C	h in	4 E p +	√ η * ε 2 h in E p e -λ 0 +λ 0 2ε 2 t ,
	and by Gronwall lemma with Π ⊥ G (h 1 ) (t=0) = 0,
	∀t ∈ [0, t 0 ],	Π ⊥ G (h 1 )	2 E		C	h in	4 E p +	√ η * ε 2 h in E p	0	t	e -λ 0 +λ 0 2ε 2 s e 2λ 0 s ds e -2λ 0 t
								C ε 2 h in	4 E p +	√ η * h in E p	+∞	e -λ 0 -λ 0 2
											0

2

E < η * }.
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