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Introduction

It is well established by now that the H ∞ functional calculus of a sectorial operator has important applications in the spectral theory of partial differential operators and the theory of evolution equations, e.g., in determining the domain of fractional powers of a partial differential operator in the solution of Kato's problem (e.g. [2,3,[START_REF] Denk | New thoughts on old results of R[END_REF]22,53]), in connection with maximal regularity of parabolic evolution equations (e.g. [29,[START_REF] Lancien | A joint functional calculus for sectorial operators with commuting resolvents[END_REF]40,[START_REF] Merdy | H ∞ -functional calculus and applications to maximal regularity[END_REF][START_REF] Prüss | H ∞ -calculus for the sum of non-commuting operators[END_REF][START_REF] Weis | A new approach to maximal L p -regularity. volution equations and their applications in physical and life sciences[END_REF]) and certain estimates in control theory ( [26,27,43]). Today it is known that many systems of elliptic partial differential operators, Schrödinger operators and related important examples of semigroup generators do have an H ∞ calculus ( [START_REF] Blunck | Calderón-Zygmund theory for non-integral operators and the H ∞ functional calculus[END_REF]10,[START_REF] Duong | Plancherel-type estimates and sharp spectral multipliers[END_REF]18,[START_REF] García-Cuerva | Functional calculus for the Ornstein-Uhlenbeck operator[END_REF][START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]30,[START_REF] Kunstmann | Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF]45]). Also from an abstract point of view, a lot of effort has been achieved to establish, characterise and transfer H ∞ calculus ( [START_REF] Arhancet | Isometric dilations and H ∞ calculus for bounded analytic semigroups and Ritt operators[END_REF]28,[START_REF] Kalton | The H ∞ -calculus and sums of closed operators[END_REF]33,[START_REF] Kalton | Perturbation and interpolation theorems for the H ∞ -calculus with applications to differential operators[END_REF]).

We let θ ∈ (0, π) be an angle and define Σ θ = {λ ∈ C\{0} : | arg λ| < θ} to be the sector around the positive half-axis with half opening angle equal to θ. The H ∞ class is then H ∞ (Σ θ ) = {f : Σ θ → C : f is holomorphic and bounded}, which is a Banach algebra when equipped with pointwise multiplication and norm m ∞,θ = sup λ∈Σ θ |m(λ)|. Let now -A be the generator of a c 0 -semigroup (T t ) t 0 on some Banach space X. Suppose that A is sectorial, i.e. the spectrum is contained in some Σ θ and the resolvents are appropriately norm controlled, and suppose for simplicity that A has dense range (see Subsection 2.2 for details). Furthermore, let m ∈ H ∞ (Σ θ ) decay polynomially at 0 and at ∞. Then one defines the H ∞ functional calculus m(A), a bounded linear operator on X, by means of the Cauchy integral formula over resolvents

m(A) = 1 2πi ∂Σ θ m(λ)R(λ, A)dλ,
with angles θ < θ < θ. Then H ∞ calculus is the question whether this ad hoc formula can be reasonably extended to all m ∈ H ∞ (Σ θ ) and whether one obtains the estimate

(1.1) m(A) B(X) C m ∞,θ (m ∈ H ∞ (Σ θ )).
This is a difficult task and its solution, for more or for less concrete operators A, requires several fundamental tools from harmonic analysis such as square functions (see e.g. [10, Section 6],

[33]), bounded imaginary powers of A [10, Section 5], bilinear embeddings [10, Section 4] and transference principles [START_REF] Arhancet | Isometric dilations and H ∞ calculus for bounded analytic semigroups and Ritt operators[END_REF][START_REF] Coifman | Some examples of transference methods in harmonic analysis[END_REF][START_REF] Fendler | On dilations and transference for continuous one-parameter semigroups of positive contractions on L p -spaces[END_REF]29]. Note that a positive answer of (1.1) depends in general on θ and a smaller angle yields a more restrictive condition, since H ∞ (Σ θ ) ⊆ H ∞ (Σ σ ) if σ θ by uniqueness of analytic continuation.

Let us give a brief overview of important operator theoretic results when an H ∞ calculus is known. Let (Ω, µ) be a σ-finite measure space. First suppose that the semigroup (T t ) t 0 is markovian (see Subsection 2.1 for the definition of this classical notion), so contractive on all L p (Ω), self-adjoint on L 2 (Ω), lattice positive and T t (1) = 1. The first universal multiplier theorem was proved by E. M. Stein, who showed that if m is of Laplace transform type, then m(A) is bounded on L p (Ω) for 1 < p < ∞ [START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF]Corollary 3,p. 121]. This result was later extended to submarkovian semigroups (see Subsection 2.1 for the definition) and for m belonging to H ∞ (Σ θ ) by Cowling [9, Theorem 1] and Meda [44,Theorem 3]. The angle of the functional calculus depends on p and by complex interpolation with the self-adjoint calculus on L 2 (Ω), one obtains θ > π 1 p -1 2 . Later on it was observed by Duong [START_REF] Duong | H ∞ functional calculus of second order elliptic partial differential operators on L p spaces[END_REF], (see also [29] for θ > π 2 and [32, Corollary 5.2] for θ < π

2 ) that semigroups acting on a single L p (Ω) space and consisting of positive and contractive operators, or even only regular contractive operators [START_REF] Coifman | Some examples of transference methods in harmonic analysis[END_REF][START_REF] Fendler | On dilations and transference for continuous one-parameter semigroups of positive contractions on L p -spaces[END_REF][START_REF] Stein | Topics in harmonic analysis related to the Littlewood-Paley theory[END_REF] suffices to obtain an H ∞ (Σ θ ) calculus. A recent extension of [29] and [START_REF] Kunstmann | Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF]Corollary 10.15] is [52, Theorem 4] where the setting is a vector valued semigroup of the form T t = T (0) t ⊗ Id Y acting on the Bochner space X = L p (Ω; Y ), where Y is an intermediate UMD space and where T (0) t is an analytic semigroup consisting of regular contractive operators acting on a single L p (Ω) space. Here the novelty compared to [START_REF] Kunstmann | Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF]Corollary 10.15] is an angle of H ∞ (Σ θ ) calculus θ < π 2 . Concerning the optimality of the H ∞ calculus angle, the recent breakthrough result [START_REF] Carbonaro | Functional calculus for generators of symmetric contraction semigroups[END_REF] yields θ > θ p = arctan |p-2| 2 √ p-1 on X = L p (Ω), 1 < p < ∞, within the class of submarkovian semigroups (or even the class of self-adjoint semigroups which are contractive on the L p (Ω) scale). Here the angle θ p is already optimal in the simple example of the Ornstein-Uhlenbeck semigroup acting on L p (R d , µ) where dµ(x) = (2π)

-d 2 exp -|x| 2 2
dx is Gaussian measure and

A = -∆ + x • ∇ [20].
In the present article we consider markovian and submarkovian semigroups, and add a weight w to the picture, so that f X = f L 2 (Ω,wdµ) = Ω |f (x)| 2 w(x)dµ(x) 1 2 . Weighted estimates for spectral multipliers have been recently studied by [18, Theorem 3.1 and Theorem 3.2] and [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]Theorem 4.1 and Theorem 4.2]. In the latter works, the space Ω is supposed to be of homogeneous type and the semigroup (T t ) t 0 is self-adjoint and has an integral kernel satisfying Gaussian bounds (see (2.16) below). The multiplier function m is allowed to belong to the so-called Hörmander-Mihlin class which consists of certain functions defined on (0, ∞) which are differentiable up to a prescribed order. Note that the Hörmander-Mihlin class contains H ∞ (Σ θ ) for any θ ∈ (0, π), so that [18,[START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF] yield an H ∞ calculus to any angle on weighted L p spaces. The weights that are allowed here belong to a certain (spatially defined) Muckenhoupt class, see also Remark 4.15 for a comparison with our results.

In this work, we settle the case of markovian and submarkovian semigroups without any dimension assumption on Ω nor integral kernel estimates of (T t ) t 0 . Our underlying Banach space will always be X = L 2 (Ω, wdµ). The natural condition for the weight w is the semigroup characteristic

Q A 2 (w) = sup t>0 ess-sup x∈Ω T t w(x)T t w -1 (x) < ∞.
Then our first main result reads as follows.

Theorem 1.1 (see Corollary 4.4) Let (Ω, µ) be a σ-finite measure space and (T t ) t 0 be a markovian semigroup on (Ω, µ). Let w be a weight on Ω such that Q A 2 (w) < ∞. Then under some technical condition on the semigroup (e.g. µ(Ω) < ∞ suffices), the negative generator A of (T t ) t 0 is π 2 -sectorial on L 2 (Ω, wdµ) and (1.1) holds, more precisely, (1.2) m(A) L 2 (Ω,wdµ)→L 2 (Ω,wdµ) C θ Q A 2 (w) (|m(0)| + m ∞,θ ) for any θ > π 2 . We are also able to push the angle θ to be equal to π 2 and show in Corollary 4.4 an H ∞ (Σ π 2 ; J) calculus on L 2 (Ω, wdµ), where H ∞ (Σ π 2 ; J) consists of holomorphic functions bounded on C + admitting a boundary function on iR which belongs to a certain Besov class (see Definition 2.5). For the additional term |m(0)| compared to (1.1) which disappears when A is injective, we refer to the classical Remark 2.12. We refer to Theorem 4.3 for the precise meaning of the technical conditions. They are satisfied in the following particular cases: µ(Ω) < ∞, or Ω being a space of homogeneous type and (T t ) t 0 having an integral kernel satisying Gaussian estimates (see Remarks 4.5 and 4.6). Also if Ω is a locally compact separable metric measure space, (T t ) t 0 is a Feller semigroup and the weight w is continuous, then one of the needed technical conditions is satisfied (see Remark 4.7 2.) The method of proof of Theorem 1.1 is establishing a bilinear estimate Theorem 4.3) which is well-known to yield H ∞ calculus (see [10, Theorem 4.4] or Proposition 2.9 and Proposition 2.11). For the proof of (1.3) in turn, we use a Bellman function from [START_REF] Domelevo | Differential Subordination under change of law[END_REF], see Lemma 3.1, in the spirit of [START_REF] Carbonaro | Functional calculus for generators of symmetric contraction semigroups[END_REF], capturing the weight variables. That is, we will define a functional E(t) = Ω B(T t f, T t g, T t (w -1 ), T t w)dt 0 (see (4.1)) with the two properties that

(1.3) ∞ 0 | AT t f, T t g | dt C f L 2 (Ω,wdµ) g L 2 (Ω,w -1 dµ) (see
E(0) f 2 L 2 (Ω,wdµ) + g 2 L 2 (Ω,w -1 dµ)
and (4.8), (4.9), (4.10) and Proposition 4.12), reflecting the properties of the Bellman function in Lemma 3.1. Then an integration of (1.4) over t ∈ (0, ∞) will yield (1.3). Note that despite the directness of this approach, the proof is rather involved, and it is notably the differentiability of E(t) which imposes additional hypotheses in Theorem 1.1 on the markovian semigroup.

-E (t) c Q | AT t , T t g | (1.4) (see
Our result also extends to submarkovian semigroups. Note that then the characteristic has to be modified into the a priori larger expression QA 2 (w) = sup t>0 ess-sup x∈Ω S t (w )(x)S t w -1 (x),

where Ω = Ω ∪ {∞} includes a supplementary cemetery point,

S t (f )(x) = T t (f | Ω )(x) + f (∞)(1 -T t (1))(x) : x ∈ Ω f (∞) : x = ∞
is the conservative semigroup extension of T t , i.e. S t (1) = 1, and w (x) = w(x)1 x∈Ω + 1 x=∞ . Then our second main results is the following.

Theorem 1.2 (see Corollary 5.3) Let (Ω, µ) be a σ-finite measure space and (T t ) t 0 be a submarkovian semigroup on (Ω, µ). Let w be a weight on Ω such that QA 2 (w) < ∞. Then under some technical condition on the semigroup (e.g. µ(Ω) < ∞ suffices), the negative generator A of (T t ) t 0 is π 2 -sectorial on L 2 (Ω, wdµ) and (1.1) holds, more precisely,

m(A) L 2 (Ω,wdµ)→L 2 (Ω,wdµ) C θ QA 2 (w) (|m(0)| + m ∞,θ )
for any θ > π 2 . The angle of H ∞ (Σ θ ) calculus in Theorems 1.1 and 1.2 above is θ > π 2 . In some cases, this angle can be reduced to θ < π 2 .

Proposition 1.3 (see Proposition 4.13, Remark 4.14 and Proposition 5.4) Let (Ω, µ) be a σ-finite measure space and (T t ) t 0 be a markovian (resp. submarkovian) semigroup on (Ω, µ). Suppose that the weight w on

Ω satisfies Q A 2 w δ < ∞ (resp. QA 2 w δ < ∞) for some δ > 1.
Then under the same technical conditions as in Theorem 1.1 (resp. Theorem 1.2), A has an H ∞ (Σ θ ) calculus on L 2 (Ω, wdµ) for some θ < π 2 and consequently, A has maximal regularity on L 2 (Ω, wdµ).

Note that if Ω = R n and if the class Q A 2 equals the class Q class 2
, where

Q class 2 (w) = sup B ball in R n 1 |B| B w 1 |B| B w -1 , then any weight w with Q A 2 (w) < ∞ automatically satisfies Q A 2 w δ < ∞ for some δ > 1.
Consequently, Proposition 1.3 above applies then for any Q A 2 weight. Note that δ > 1 depends then on w, and then θ < π 2 also depends on w. Moreover, the dependence of the H ∞ (Σ θ ) functional calculus norm on Q A 2 (w) is a priori not linear any more for θ < π 2 as it was in (1.2) Then the question arises whether one can lower the angle in Theorem 1.1 universally within the class of all markovian semigroups and all Q A 2 (w) weights. As a partial negative result, we obtain the following. Theorem 1.4 (see Theorem 6.1) There is a markovian semigroup with negative generator A on a probability space and a Q A 2 weight w such that for no s > 0, A has a Hörmander H s calculus on L 2 (Ω, wdµ). In other words, for no s > 0 there exists a constant C > 0 such that

m(A) L 2 (Ω,wdµ)→L 2 (Ω,wdµ) C (|m(0)| + m H s )
holds for all Hörmander multipliers m ∈ H s .

For a definition of the Hörmander H s class which consists of functions defined on R + , we refer to (6.1). The counter-example that exhibits Theorem 1.4 is based on a markovian semigroup defined on a space Ω consisting only of two points.

Let us close the introduction with an overview of the rest of the article. In the preliminary Section 2, we introduce the objects of study for the rest of the paper. In Subsection 2.1, standard notions of markovian and submarkovian semigroups are discussed. Then Subsection 2.2 contains the necessary material on H ∞ calculus. Here, the space H ∞ (Σ θ ; J) consisting of holomorphic functions with boundary term belonging to a Besov class (see Definition 2.5 and Lemma 2.6) might be less standard. Lemma 2.7 characterizing the H ∞ (Σ θ ; J) calculus in terms of the growth of the constant appearing in the H ∞ (Σ σ ) calculus (1.1) when σ → θ+, is possibly new. Also that the bilinear estimate (1.3) implies a H ∞ (Σ π 2 ; J) calculus with sharp angle π 2 (see Propositions 2.9 and 2.11) might be less known. Then in Subsection 2.3, we define weights in our setting and show a cut-off property of the characteristic Q A 2 . In Section 3 we introduce the Bellman function which is a crucial ingredient of the proof of Theorems 1.1 and 1.2. Some technical properties needed in the subsequent two sections are proved. Then in Section 4, we state and prove the H ∞ calculus on weighted L 2 space for markovian semigroups (Theorem 1.1), and discuss the technical conditions we have to impose. Parallelly to that, in Section 5, we state and prove the companion result for submarkovian semigroups (Theorem 1.2). Finally, in Section 6, we state and prove Theorem 1.4.

Preliminaries

Semigroups

In this article, (Ω, µ) always denotes a σ-finite measure space. Definition 2.1 Let (T t ) t 0 be a c 0 -semigroup on L 2 (Ω). (b) T t is self-adjoint for any t 0.

(c) T t f 0 for any t 0 whenever f ∈ p∈ [1,∞] L p (Ω) with f 0.

2. (T t ) t 0 is called a markovian semigroup, if (T t ) t 0 is submarkovian and in addition, T t (1) = 1 for any t 0.

In the same way, we call a single operator T submarkovian, if T is a contraction on L p (Ω) for all p ∈ [1, ∞], self-adjoint on L 2 (Ω) and T f 0 for f 0. We also call a single operator T markovian, if in addition

T (1) = 1.
In what follows, if (T t ) t 0 is a semigroup, we denote A its (negative) generator, i.e. T t = exp(-tA). In fact, we shall always call A the negative generator and omit the term "negative" sometimes. Note that if (T t ) t 0 is a submarkovian semigroup, then for 1 < p < ∞, (T t ) t 0 is analytic on L p (Ω), and thus, for f ∈ L p (Ω), we have that T t f belongs to D(A p ), the domain of the generator on L p (Ω). The semigroup (T t ) t 0 is typically not strongly continuous on L ∞ (Ω). However,

A ∞ (f ) = w * -lim h→0+ 1 h (f -T h f ) has a w * -dense domain D(A ∞ ) = {f ∈ L ∞ (Ω) : w * -lim h→0+ 1 h (f -T h f ) exists}. A classical w * -approximation of f ∈ L ∞ (Ω) by elements of D(A ∞ ) is 1 h h 0 T t f dt (h → 0+).
We have the following Cauchy Schwarz type lemma for positive L ∞ (Ω) contractions, in particular for operators coming from a (sub)markovian semigroup.

Lemma 2.2 Let T be a contraction on L ∞ (Ω) such that T f 0 for any f 0. Then for f, g ∈ L ∞ (Ω), |T (f g)(x)| 2 T (|f | 2 )(x)T (|g| 2 )(x) (a.e. x ∈ Ω).
Proof : For a measurable set B ⊂ Ω of finite positive measure, we put

φ B : L ∞ (Ω) → C, g → 1 µ(B) B T gdµ.
Then φ B is a well-defined positive linear functional. By the Cauchy-Schwarz inequality for positive linear functionals on C * -algebras, we have |φ Assume now that both functions T (|f | 2 ) and T (|g| 2 ) are strictly positive on B. For N ∈ N a given number whose value we shall specify later, we decompose [0, 2π] =

B (f g)| 2 φ B (|f | 2 )φ B (|g| 2 ). Assume on the contrary that |T (f g)(x)| 2 > T (|f | 2 )(x)T (|g| 2 )(x)
N -1 k=0 [2π k N , 2π k+1 N ]. Then there exists k 0 ∈ {1, . . . , N -1} and B ⊂ B of positive measure such that |T (f g)(x)| = T (e iθx f g)(x) for all x ∈ B and θ x ∈ [2π k0 N , 2π k0+1 N ]
. For a given η > 0 whose value we shall specify later, there is N ∈ N and θ = 2π

k0+ 1 2 N such that | T (e iθ f g)(x)| (1 -η)|T (f g)(x)| for x ∈ B .
We assume for simplicity of notation that B = B. Let δ > 0 be a number whose value we shall specify later. For n ∈ Z, put

W n = [(1+δ) n , (1+δ) n+1 ] and A n = T (|f | 2 ) -1 (W n )∩B. Since n∈Z W n = (0, ∞) and T (|f | 2
) is strictly positive on B, there exists n 0 such that A n0 is of positive measure. We have ess-sup

x∈An 0 T (|f | 2 )(x)/ ess-inf x∈An 0 T (|f | 2 )(x) 1 + δ. Consider in a similar manner B n = T (|g| 2 ) -1 (W n ) ∩ A n0
, and again, there is some n 1 such that B n1 is of positive measure. We have ess-sup

x∈Bn 1 T (|h| 2 )(x)/ ess-inf x∈Bn 1 T (|h| 2 )(x) 1 + δ for both h = f and h = g. Now with θ as above, |φ Bn 1 (f g)| 2 = 1 µ(B n1 ) Bn 1 T (f g)(x)dµ(x) 2 1 µ(B n1 ) Bn 1 T (e iθ f g)(x)dµ(x) 2 (1 -η) 2 1 µ(B n1 ) Bn 1 |T (f g)(x)|dµ(x) 2 (1 + ε)(1 -η) 2 1 µ(B n1 ) Bn 1 T (|f | 2 )(x)T (|g| 2 )(x)dµ(x) 2 (1 + ε)(1 -η) 2 ess-inf x∈Bn 1 T (|f | 2 )(x) ess-inf x∈Bn 1 T (|g| 2 )(x) (1 + ε)(1 -η) 2 1 (1 + δ) 2 ess-sup x∈Bn 1 T (|f | 2 )(x) ess-sup x∈Bn 1 T (|g| 2 )(x) (1 + ε)(1 -η) 2 1 (1 + δ) 2 1 µ(B n1 ) Bn 1 T (|f | 2 )(x)dµ(x) 1 µ(B n1 ) Bn 1 T (|g| 2 )(x)dµ(x) = (1 + ε)(1 -η) 2 1 (1 + δ) 2 φ Bn 1 (|f | 2 )φ Bn 1 (|g| 2 ).
Choosing now for the given ε > 0 the free parameters η and δ sufficiently close to 0, we get the desired contradiction with the Cauchy-Schwarz inequality for the positive linear functional φ Bn 1 .

H ∞ calculus

Let ω ∈ (0, π). We define the sector Σ ω = {z ∈ C\{0} : | arg z| < ω}. Definition 2.3 Let X be a Banach space, ω ∈ (0, π) and

A : D(A) ⊆ X → X an operator. A is called ω-sectorial if 1.
A is closed and densely defined on X.

The spectrum σ(

A) is contained in Σ ω .

For any ω > ω, we have sup λ∈C\Σ

ω λ(λ -A) -1 < ∞.
If X is reflexive, which will always be the case in this article and A is ω-sectorial, then A admits a canonical decomposition (2.1) 

A = A 0 0 0 0 : X = R(A) ⊕ Ker(A) → R(A) ⊕ Ker(A) such that A 0 : D(A 0 ) ⊆ R(A) → R(A) is again ω-sectorial
H ∞ 0 (Σ θ ) = f ∈ H ∞ (Σ θ ) : ∃ C, ε > 0 : |f (z)| C min(|z| ε , |z| -ε
) . For an ω-sectorial operator A and θ ∈ (ω, π), one can define a functional calculus H ∞ 0 (Σ θ ) → B(X), f → f (A) extending the ad hoc rational calculus, by using the Cauchy integral formula (2.2)

f (A) = 1 2πi ∂Σ θ f (λ)R(λ, A)dλ,
where θ = 1 2 (ω+θ) and ∂Σ θ is the boundary of a sector oriented counterclockwise. If moreover, there exists a constant

C < ∞ such that f (A) C f ∞,θ for any f ∈ H ∞ 0 (Σ θ ), then A is said to have a (bounded) H ∞ (Σ θ ) calculus. If X is reflexive and A has a bounded H ∞ (Σ θ ) calculus, then so does A 0 and f (A) = f (A 0 ) ⊕ 0 : R(A) ⊕ Ker(A) → R(A) ⊕ Ker(A) for f ∈ H ∞ 0 (Σ θ ). Moreover, the functional calculus defined for f ∈ H ∞ 0 (Σ θ ) can be extended to a bounded Banach algebra homomorphism H ∞ (Σ θ ) → B(R(A)), f → f (A 0 ).
Lemma 2. [START_REF] Bergh | Interpolation spaces. An introduction[END_REF] Let ω ∈ (0, π) and A be an ω-sectorial operator on X having an H ∞ (Σ θ ) calculus for some θ ∈ (ω, π). Assume that A is injective and has dense range (otherwise take the injective part in what follows). Let

(f n ) n be a sequence in H ∞ (Σ θ ) such that f n (λ) → f (λ) for any λ ∈ Σ θ and sup n f n ∞,θ < ∞. Then for any x ∈ X, f (A)x = lim n f n (A)x.
Proof : See [START_REF] Kunstmann | Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF]Theorem 9.6] or [10, Lemma 2.1].

In practice, if A is ω-sectorial, and one wants to show that A has an H ∞ (Σ θ ) calculus, the most what one can hope for is θ > ω. In order to deal with θ = ω, we have the following refinement of the H ∞ (Σ θ ) classes in this article.

Let J > 0 be a parameter. Let (φ n ) n∈Z be dyadic partition of unity, that is, a sequence of

C ∞ functions on R such that 1. supp(φ 0 ) ⊂ [-1, 1] 2. supp(φ 1 ) ⊂ [ 1 2 , 2] 3. φ n (t) = φ 1 (2 -n t) for n 1 4. φ -n (t) = φ n (-t) for n 1 5. n∈Z φ n (t) = 1 for t ∈ R. Then we let B J ∞,1 = {f ∈ L ∞ (R) : f B J ∞,1 = n∈Z 2 J|n| f * φn ∞ < ∞}.
This class is called a Besov space. Definition 2.5 Let θ ∈ (0, π). We let

H ∞ (Σ θ ; J) = f ∈ H ∞ (Σ θ ) : f (e ±iθ e (•) ) ∈ B J ∞,1 equipped with the norm f H ∞ (Σ θ ;J) = f ∞,θ + f (e iθ e (•) ) B J ∞,1 + f (e -iθ e (•) ) B J ∞,1 .
Hereby we note that a holomorphic bounded function f on Σ θ possesses almost everywhere non-tangential limits on ∂Σ θ , so that f (e ±iθ e λ ) is well-defined almost everywhere. Consider the horizontal strip in the complex plane Str θ = {z ∈ C : | z| < θ} and note that λ → e λ maps biholomorphically Str θ → Σ θ . For technical reasons, it will be easier at several instances to work with functions defined on Str θ instead of Σ θ . We therefore consider H ∞ (Str θ ) = {f : Str θ → C : f holomorphic and bounded} and

H ∞ (Str θ ; J) = {g ∈ H ∞ (Str θ ) : g(±iθ + •) ∈ B J ∞,1 }.
Lemma 2.6 Let θ ∈ (0, π) and J > 0. The space H ∞ (Σ θ ; J) is a Banach algebra and

H ∞ (Σ θ ) → H ∞ (Σ θ ; J) for any θ ∈ (θ, π) is a dense injection. Proof : We show first that H ∞ (Σ θ ; J) is a Banach space. To this end, let (f n ) n be a Cauchy sequence in H ∞ (Σ θ ; J). Since obviously H ∞ (Σ θ ; J) → H ∞ (Σ θ ), (f n ) n is a Cauchy sequence in H ∞ (Σ θ
) and has a limit f ∈ H ∞ (Σ θ ). Moreover, since B J ∞,1 is a Banach space, f n (e ±iθ e (•) ) has a limit g(e ±iθ e (•) ) in B J ∞,1 . Since f (e ±iθ e (•) ) is also a limit in L ∞ (∂Σ θ ) of f n (e ±iθ e (•) ), we have g(e ±iθ e λ ) = f (e ±iθ e λ ), λ ∈ R. Moreover,

f -f n H ∞ (Σ θ ;J) = f -f n ∞,θ + (f -f n )(e ±iθ e (•) ) B J ∞,1 → 0 + 0.
Thus, H ∞ (Σ θ ; J) is a Banach space. That H ∞ (Σ θ ; J) is also a Banach algebra follows from the fact that H ∞ (Σ θ ) and B J ∞,1 are Banach algebras and thus,

f g H ∞ (Σ θ ;J) = f g ∞,θ + (f g)(e ±iθ e (•) ) B J ∞,1 f ∞,θ g ∞,θ + C f (e ±iθ e (•) ) B J ∞,1 g(e ±iθ e (•) ) B J ∞,1 C f H ∞ (Σ θ ;J) g H ∞ (Σ θ ;J) .
For 2 g(±iθ

+ (•)) B J ∞,1 for g ∈ H ∞ (Str θ ; J), so that f n -f H ∞ (Str θ ) 2 (f n -f )(±iθ + (•)) B J ∞,1 → 0, too. We finally infer that f n - f H ∞ (Str θ ;J) = f n -f H ∞ (Str θ ) + (f n -f )(±iθ + (•)) B J
∞,1 → 0. Lemma 2.6 enables us to define a bounded H ∞ (Σ ω ; J) calculus via the well-known H ∞ (Σ θ ) calculus. Namely, we say that for ω ∈ (0, π) and A an injective ω-sectorial operator with dense range, A has a bounded H ∞ (Σ ω ; J) calculus if

(2.3) f (A) C f H ∞ (Σω;J) (f ∈ H ∞ (Σ θ ))
for some/any θ ∈ (ω, π). In this case, by density of

H ∞ (Σ θ ) in H ∞ (Σ ω ; J), we can define f (A) for all f ∈ H ∞ (Σ ω ; J) and (2.3) extends to all f ∈ H ∞ (Σ ω ; J). Clearly, H ∞ (Σ ω ; J) → B(X), f → f (A)
is then an algebra homomorphism. The following lemma is a variant of [10, Theorem 4.10].

Lemma 2. [START_REF] Carbonaro | Functional calculus for generators of symmetric contraction semigroups[END_REF] Let ω ∈ (0, π) and J > 0. Let X be a Banach space and A be an ω-sectorial operator on X which is injective and has dense range. Assume that for any θ > ω, A has an H ∞ (Σ θ ) calculus and that there is

C < ∞ such that f (A) C(θ -ω) -J f ∞,θ (f ∈ H ∞ (Σ θ ), θ > ω).
Then A has a bounded H ∞ (Σ ω ; J) calculus, meaning that

f (A) C f H ∞ (Σω;J) (f ∈ H ∞ (Σ ω ; J)).
Proof : We let B = log(A), which is an ω-strip-type operator in the sense of [28]. According to [28, Proposition 5.3.3], the hypothesis of the lemma implies that for θ > ω and g : Str θ → C analytic and bounded, we have g(B)

C(θ -ω) -J g ∞,θ . On the level of spectral multiplier functions, this can be simply seen as the correspondence f ∈ H Thus, g * φn (B)

∞ (Σ ω ) ∼ = g(λ) = f (e λ ) ∈ H ∞ (
C(2 -|n| ) -J g * φn H ∞ (Str ω+2 -|n| ) C(2 -|n| ) -J g * φn L ∞ (R±iω) . It suffices to check now that (2.5) n∈Z g * φn = g (convergence in H ∞ (Str θ )) for θ = 1 2 (θ + ω). Indeed, then by bounded H ∞ (Str θ ) calculus of B, g(B) n∈Z g * φn (B) n∈Z 2 |n|J g * φn L ∞ (R±iω) g H ∞ (Strω;J) ,
and so, (2.4) follows. To show (2.5), we note that

g -g * N n=-N φn H ∞ (Str θ ) g -g * N n=-N φn L ∞ (R±iθ ) g(•±iθ )-g(•±iθ ) * N n=-N φn B 1 ∞,1 ,
and the last quantity converges to 0 according to [START_REF] Kriegler | Spectral multipliers, R-bounded homomorphisms and analytic diffusion semigroups[END_REF]Lemma 4.15 (2)].

A typical H ∞ (Σ π 2 ; J) function (i.e. not belonging to any H ∞ (Σ θ ) for θ > π 2 ) is given in the following lemma.

Lemma 2.8 Let J > 0, ε > 0 and t 0. Let m t (λ) = (1 + λ) -J-ε e -tλ . Then m t belongs to the class H ∞ (Σ π 2 ; J) and we have the estimate

m t H ∞ (Σ π 2 ;J) C(1 + t) J+ε . Proof : It is easy to check that m t is holomorphic on Σ π 2 = C + and that m t ∞, π 2 1. It thus remains to estimate m t (±ie (•) ) B J ∞,1 . Since B J ∞,1 is a Banach algebra, we decompose m t (ie λ ) B J ∞,1 = (1 + ie λ ) -J-ε exp(-ite λ ) B J ∞,1 (1 + te λ ) J+ε (1 + ie λ ) J+ε B J ∞,1 (1 + te λ ) -J-ε exp(-ite λ ) B J ∞,1 (1 + tλ) J+ε (1 + iλ) J+ε ∞,δ (1 + te λ ) -J-ε exp(-ite λ ) B J ∞,1 , since H ∞ (Str δ ) → B J ∞,1
according to [START_REF] Kriegler | Spectral multipliers, R-bounded homomorphisms and analytic diffusion semigroups[END_REF]Remark 4.16], where δ > 0 is a small auxiliary angle. It is easy to estimate

(1+tλ) J+ε (1+iλ) J+ε ∞,δ C(1+t) J+ε . Moreover, (1 + te λ ) -J-ε exp(-ite λ ) B J ∞,1
C according to [37, Proof of Lemma 3.9 (2)]. The term m t (-ie λ ) B J ∞,1 is estimated in the same way.

The following proposition is a variant of [10, Theorem 4.4]. Note however that we do not assume that A Y is ω-sectorial but that this is a consequence of the proposition. Moreover, we precise the dependence of the H ∞ (Σ θ ) calculus norm on the angle θ > π 2 .

Proposition 2.9 Let X and Y be Banach spaces such that X, Y ⊆ Z with a bigger Banach space Z and similarly for the duals X , Y ⊆ Z. Assume that Y is reflexive. Assume that

X ∩ Y is dense in Y and that X ∩ Y is dense in Y . Assume furthermore that for f ∈ X ∩ Y and g ∈ X ∩ Y , the duality brackets f, g X,X = f, g Y,Y coincide. Let A be the (negative)
generator of an analytic semigroup (T t ) t on X, i.e. A is ω-sectorial for some ω < π 2 . Assume

(2.6) ∞ 0 | AT t f, g |dt C f Y g Y (f ∈ X ∩ Y, g ∈ X ∩ Y ).
Then there exists a π 2 -sectorial operator A Y on Y such that for J > 1

(2.7) m(A Y ) Y →Y C J (θ - π 2 ) -J m ∞,θ (m ∈ H ∞ 0 (Σ θ ), θ ∈ ( π 2 , π))
and m(A Y )f = m(A)f for any such m and f ∈ X ∩ Y .

Proof : We place ourselves in the notation of [10, Proof of Theorem 4.4] and put there ψ(z) = ze -z and for given ε > 0 sufficiently small so that

A is ( π 2 -ε)-sectorial, µ = π 2 -ε, ν = π 2 , η = π 2 + 3ε > 2ν -µ = π 2 + ε, and α = π 2 + 2ε ∈ (2ν -µ, η). Pick a b ∈ H ∞ 0 (Σ η ). Then one has according to [10, (4.3)] b(λ) = ∞ 0 (β + (t) + β -(t))ψ λ t dt t (λ ∈ Σ µ )
with β ± defined via the Fourier transform

(β ± e ) ˆ(t) = 1 2 γe (t) be (t)e ∓αt .
Here, the index e stands for composition with the exponential function, so

h e = h • exp : R → C for a function h : (0, ∞) → C. Moreover, γe (t) = 1 ψe (t) cosh(αt) = 1 Γ(1 -it) cosh(αt)
for our particular choice of ψ, see [10, Example 4.8]. Since both γe and be • e ∓αt belong to the Schwartz class, also β ± e belongs to the Schwartz class and thus,

∞ 0 |β ± (t)| dt t < ∞.
Therefore and since R(λ, A)

C µ 1 |λ| for λ ∈ ∂Σ µ \{0}, we can apply Fubini below and obtain for f ∈ X and g ∈ X , b(A)f, g = 1 2πi ∂Σµ ∞ 0 (β + (t) + β -(t))ψ λ t R(λ, A)f, g dλ = ∞ 0 (β + (t) + β -(t)) 1 2πi ∂Σµ ψ λ t R(λ, A)f, g dλ dt t = ∞ 0 (β + (t) + β -(t)) ψ 1 t A f, g dt t = ∞ 0 (β + (t) + β -(t)) AT t f, g dt.

Now by assumption, we have for

f ∈ X ∩ Y and g ∈ X ∩ Y (2.8) | b(A)f, g | ∞ 0 (|β + (t)| + |β -(t)|)| AT t f, g |dt C( β + L ∞ (R+) + β - L ∞ (R+) ) f Y g Y . We estimate β ± L ∞ (R+) . β ± L ∞ (R+) = β ± e L ∞ (R) = 1 2 γ e * b e ((•) ± iα) L ∞ (R) (2.9) 1 2 γ e L 1 (R) b e ((•) ± iα) L ∞ (R) = 1 2 γ e L 1 (R) b ∞,α . (2.10)
The technical Lemma 2.10 below gives an estimate of γ e L 1 (R) , so that (2.8) shows that b(A)

extends to a bounded operator on Y with b(A) Y →Y C η b ∞,η . Take now for µ ∈ C\Σ η , b(λ) = λ(µ -λ) -1 ∈ H ∞ 0 (Σ η ), so that J(µ) = 1 µ (Id + b(A)) = R(µ, A
) extends to an operator on Y with uniform norm bound for these µ. Since R(µ, A) is a resolvent, J(µ) is a pseudo-resolvent in the sense of [47, Section 1.9]. We claim that

(2.11) µJ(µ)f → f weakly in Y as µ → -∞ (f ∈ Y ).
Indeed, according to [START_REF] Kunstmann | Maximal L p -regularity for parabolic equations, Fourier multiplier theorems and H ∞ -functional calculus[END_REF]Proposition 15.2], µR(µ, A)f → f strongly in X for any f ∈ X. Thus, µR(µ, A)f, g → f, g for any f ∈ X ∩ Y and g ∈ X ∩ Y . A 3ε argument together with the uniform norm bound of µJ(µ) in B(Y ) allows then to deduce (2.11) for f ∈ X ∩ Y , and then for any f ∈ Y . This implies that the null space Ker(J(µ)) which is independent of µ [47, Lemma 9.2 p. 36] equals {0}. Indeed, if f ∈ N (J(µ)), then µJ(µ)f = 0 for any µ. Letting µ → -∞ together with (2.11) shows that f = 0. Then proceeding as in [47, Proof of Theorem 9.3 p. 37] allows to define an operator A Y : R(J(µ)) → Y where R(J(µ)) stands for the range of

J(µ), such that R(µ, A Y ) = J(µ). Then, since the resolvent bound [38, (15.1)] of µR(µ, A Y ) is satisfied, [38, 15.2 Proposition c)] allows with the reflexivity of Y to deduce that A Y is densely defined and that R(A Y ) ⊕ Ker(A Y ) = Y . In particular, A Y is sectorial and since η > π 2 was arbitrary, A Y is π 2 -sectorial. Moreover, R(µ, A Y )f = R(µ, A)f for f ∈ X ∩ Y , so that the Cauchy integral formula (2.2) implies that for b ∈ H ∞ 0 (Σ η ), we have b(A Y )f = b(A)f
for such f . It remains to show the estimate (2.7), which follows from the technical Lemma 2.10 together with (2.8) and (2.10).

Lemma 2.10 Let

α = π 2 + 2ε and γe (t) = 1 Γ(1 -it) cosh(αt)
. Then for δ > 0, we have the

estimate γ e L 1 (R) C δ ε -(1+δ) . Proof : Since the Fourier transform is bounded W 1,2 (R) → L 1 (R), it suffices to estimate γe L 2 (R) and γ e L 2 (R) . According to [10, Example 4.8], we have |Γ(1 -it)| Ce -π 2 |t| , so that |γ e (t)| Ce π 2 |t|-α|t| = Ce -2ε|t| . We have R |e -2εt | 2 dt 1 2
ε -1 2 , so that γe L 2 (R) is estimated. For the derivative, we have

|γ e (t)| = - -iΓ (1 -it) cosh(αt) + Γ(1 -it)α sinh(αt) Γ(1 -it) 2 cosh 2 (αt) |Γ (1 -it)| 1 |Γ(1 -it)| 2 | cosh(αt)| + |Γ(1 -it)| -1 |α| | sinh(αt)| | cosh(αt)| 2 C|Γ (1 -it)| exp 2 π 2 |t| -α|t| + C exp π 2 |t| -α|t| . (2.12)
The second summand can be treated as above. For the first summand, we have to find an estimate for Γ (1 -it) with |t| 1 > δ. We recall that |Γ(x + iy)| Ce -π 2 |y| |y| x-1 2 according to [41, p. 15]. We write, according to the Cauchy integral formula,

Γ (1 -it) = 1 2πi ∂B(1-it,δ) Γ(z) (z -(1 -it)) 2 dz.
Here we have choosen as contour path a circle of radius δ as in the statement. For

x + iy ∈ ∂B(1 -it, δ), we have ||y| -|t|| δ and x 1 + δ. Therefore, since x -1 2 0, |y| x-1 2 (|t| + δ) x-1 2 (|t| + δ) 1 2 +δ |t| 1 2 +δ . Moreover, e -π 2 |y| e -π 2 (|t|-δ) e -π 2 |t| . Thus, sup x+iy∈∂B(1-it,δ) |Γ(x + iy)| |t| 1 2 +δ e -π 2 |t| ,
which by the Cauchy integral formula implies

|Γ (1 -it)| Cδ 1 δ 2 |t| 1 2 +δ e -π 2 |t| .
Going up, we estimate the first summand in (2.12) by

|Γ (1 -it)| exp 2 π 2 |t| -α|t| δ |t| 1 2 +δ exp ( π 2 -α)|t| = |t| 1 2 +δ exp (-2ε|t|) . Passing to L 2 (R)-norms, we obtain R |Γ (1 -it) exp(2 π 2 |t| -α|t|)| 2 dt 1 2 C + ∞ 1 |t| 1+2δ exp(-4ε|t|)dt 1 2 = C + ∞ 4ε |t| 1+2δ (4ε) 1+2δ+1 exp(-|t|)dt 1 2 1 ε 2+2δ 1 2 = ε -1-δ .
This concludes the proof of the lemma and thus, also that of Proposition 2.9.

In our Main Theorem 4.3 on weighted L 2 functional calculus, we shall show the hypotheses of Proposition 2.9 in the case X = L 2 (Ω, µ) and Y = L 2 (Ω, wdµ) with w : Ω → (0, ∞) a certain weight, i.e. a positive measurable function. In the next proposition, we spell out the most general functional calculus consequence in this situation.

Proposition 2.11 Let (Ω, µ) be a σ-finite measure space and A be a positive self-adjoint operator on L 2 (Ω, µ). Let w : Ω → (0, ∞) be a positive measurable function. We consider the duality bracket f, g = Ω f (x)g(x)dµ(x), so that L 2 (Ω, µ) is its own dual and

L 2 (Ω, w -1 dµ) is the dual of L 2 (Ω, wdµ). Assume that for any f ∈ L 2 (Ω, µ)∩L 2 (Ω, wdµ) and g ∈ L 2 (Ω, µ)∩L 2 (Ω, w -1 dµ), we have ∞ 0 | AT t f, g |dt C f L 2 (Ω,wdµ) g L 2 (Ω,w -1 dµ) . Then for J > 1 and m ∈ H ∞ (Σ π 2 ; J), m(A) extends to a bounded operator on L 2 (Ω, wdµ) and m(A) L 2 (Ω,wdµ)→L 2 (Ω,wdµ) J |m(0)| + m H ∞ (Σ π 2 ;J) .
Remark 2. [START_REF] Denk | New thoughts on old results of R[END_REF] In fact, we will even show the following form of Proposition 2.11 in the proof below. Under the hypotheses of Proposition 2.11, according to Proposition 2.9, there exists a

π 2 -sectorial operator A Y on Y = L 2 (Ω, wdµ) with m(A Y )f = m(A)f for m ∈ H ∞ 0 (Σ π 2 +ε ) and f ∈ L 2 (Ω, µ) ∩ L 2 (Ω, wdµ). Then according to (2.1), L 2 (Ω, wdµ) decomposes as L 2 (Ω, wdµ) = R(A Y ) ⊕ Ker(A Y ). The part A Y,0 on R(A Y )
is injective and has dense range, so that A Y,0 has a bounded H ∞ (Σ π 2 ; J) calculus for any J > 1, according to Lemma 2.7. Putting then, in accordance with (2.1), for m ∈ H ∞ (Σ π 2 ; J)

(2.13) m(A Y ) = m(A Y,0 ) 0 0 m(0)Id Ker(A Y ) ,
we have

(2.14) m(A Y ) L 2 (Ω,wdµ)→L 2 (Ω,wdµ) J |m(0)| + m H ∞ (Σ π 2 ;J) and m(A)f = m(A Y )f for f ∈ L 2 (Ω, µ) ∩ L 2 (Ω, wdµ).
Proof of Proposition 2.11 and Remark 2.12 : Consider the π 2 -sectorial operator A Y on Y = L 2 (Ω, wdµ) from Proposition 2.9 and its space decomposition

Y = R(A Y )⊕Ker(A Y ) from (2.1). We define for J > 1 and m ∈ H ∞ (Σ π 2 ; J) the operator m(A Y ) : Y → Y as in (2.13). The norm estimate (2.14) is immediate. It only remains to check that m(A)f = m(A Y )f for f ∈ L 2 (Ω, µ)∩ L 2 (Ω, wdµ). We consider first m ∈ H ∞ (Σ θ ) for some θ > π 2 . Write f = f 1 ⊕ f 2 according to Y = R(A Y ) ⊕ Ker(A Y ) and f = g 1 ⊕ g 2 according to X := L 2 (Ω, µ) = R(A) ⊕ Ker(A). Let ρ n (λ) = n(n + λ) -1 -(1 + nλ) -1 ∈ H ∞ 0 (Σ θ ) from [38, 9.4 Proposition (2)]. According to [38, 15.2 Proposition], f 1 = Y -lim n ρ n (A Y )f = (X + Y ) -lim n ρ n (A)f = X -lim n ρ n (A)f = g 1 , so that f 1 = g 1 and f 2 = g 2 . It suffices to check that m(A Y )f 1 = m(A)f 1 and m(A Y )f 2 = m(A)f 2 . We have according to Lemma 2.4, m(A Y )f 1 = Y -lim n (mρ n )(A Y )f 1 = (X + Y ) - lim n (mρ n )(A)f 1 = X -lim n (mρ n )(A)f 1 = m(A)f 1 . Moreover, m(A Y )f 2 = m(0)f 2 = m(A)f 2 . We have shown m(A)f = m(A Y )f for m ∈ H ∞ (Σ θ ). For a more general m ∈ H ∞ (Σ π 2 ; J), we pick an approximating sequence m n ∈ H ∞ (Σ θ ), m n → m in H ∞ (Σ π 2 ; J) according to Lemma 2.6. Then we have m(A Y )f = m(A Y )f 1 ⊕ m(A Y )f 2 = Y -lim n m n (A Y )f 1 ⊕ m(0)f 2 = (X + Y ) -lim n m n (A)f 1 ⊕ m(0)f 2 = X -lim n m n (A)f 1 ⊕ m(A)f 2 = m(A)f.

Weights

Definition 2.13 Let (Ω, µ) be a σ-finite measure space and w : Ω → (0, ∞) a strictly positive measurable function. Then w is called a weight.

If T is a positive mapping on L ∞ (Ω) and w : Ω → (0, ∞) is a weight, then we can define T (w) : Ω → [0, ∞] to be a measurable function as follows. Let w (n) = w • 1 w n . Then w (n) is an increasing sequence of L ∞ functions, so T w (n) is an increasing sequence of measurable functions, which thus converges to a measurable function

T (w) : Ω → [0, ∞]. Note that if T extends to a bounded operator on L 1 and w ∈ L 1 (Ω), then T (w) is unambiguously defined. Also if w ∈ L 1 (Ω) + L ∞ (Ω), then T (w) is unambiguously defined.
For practical purposes, we define the following cut-offs of a weight.

Definition 2. [START_REF] Domelevo | Differential Subordination under change of law[END_REF] Let w be a weight on Ω and n ∈ N. Then we define the cut-off weight

w n (x) =      w(x) : w(x) ∈ [ 1 n , n] 1 n : w(x) < 1 n n : w(x) > n .
Definition 2.15 Let (T t ) t 0 be a semigroup acting on L 1 (Ω) and w : Ω → (0, ∞) a weight. Let p ∈ (1, ∞). We define the characteristic of w as

Q A p (w) = sup t 0 ess-sup x∈Ω T t (w)(x)(T t (u)(x)) p-1 , where u = w -1 p-1 . If p = 2, this becomes Q A 2 (w) = sup t 0 ess-sup x∈Ω T t (w)(x)T t (w -1 )(x)
. The upper index A stands for the (negative) generator A of (T t ) t 0 . Moreover, we define

Q A p = {w : Ω → (0, ∞) : Q A p (w) < ∞}.
Lemma 2. [START_REF] Duong | Semigroup kernels, Poisson bounds, and holomorphic functional calculus[END_REF] Let w be a weight on (Ω, µ) and n ∈ N. Let (T t ) t 0 be a positive semigroup acting contractively on L ∞ (Ω). If w belongs to Q A 2 , then the cut-off weight w n also belongs to Q A 2 and we have

Q A 2 (w n ) Q A 2 (w).
Proof : The idea of the proof is from [START_REF] Dahmani | Sharp dimension free bound for the Bakry-Riesz vector[END_REF]Lemma 4]. We let χ 1 = 1 w n and χ 2 = 1-χ 1 = 1 w>n . Furthermore, we define α 1 (x) = T t (χ 1 )(x), α 2 (x) = T t (χ 2 )(x), and moreover for v

: Ω → (0, ∞) positive, T 1 t v(x) = T t (vχ 1 )(x) 1 α1(x) , T 2 t v(x) = T t (vχ 2 )(x) 1 α2(x)
. Then we have

T t v(x) = α 1 (x)T 1 t v(x) + α 2 (x)T 2 t v(x).
Here we note that α i (x) = 0, for x belonging to a set of positive measure, implies 0

T t (vχ i )(x) = lim m→∞ T t (v1 v m χ i )(x) lim m→∞ mT t (χ i )(x)
= lim m→∞ 0 = 0, so that we can well define T i t v(x) by putting it to equal 1 for α i (x) = 0, i = 1, 2. We shall show that for

w n (x) = min(w(x), n), we have (2.15) T t w(x)T t (w -1 )(x) -T t (w n )(x)T t ((w n ) -1 )(x) 0.
Indeed, we have T2 t w(x)T 2 t (w -1 )(x) 1 when α 2 (x) = 0 according to Lemma 2.2. Then

T t w(x)T t (w -1 )(x) -T t (w n )(x)T t ((w n ) -1 )(x) = [α 1 (x)T 1 t w(x) + α 2 (x)T 2 t w(x)][α 1 (x)T 1 t (w -1 )(x) + α 2 (x)T 2 t (w -1 )(x)] -[α 1 (x)T 1 t (w n )(x) + α 2 (x)T 2 t (w n )(x)][α 1 (x)T 1 t ((w n ) -1 )(x) + α 2 (x)T 2 t ((w n ) -1 )(x)] = α 2 1 (x)[T 1 t w(x)T 1 t (w -1 )(x) -T 1 t w n (x)T 1 t ((w n ) -1 )(x)] + α 1 (x)α 2 (x)[T 1 t w(x)T 2 t (w -1 )(x) + T 2 t w(x)T 1 t (w -1 )(x) -T 1 t (w n )(x)T 2 t ((w n ) -1 )(x) -T 2 t (w n )(x)T 1 t ((w n ) -1 )(x)] + α 2 2 (x)[T 2 t w(x)T 2 t (w -1 )(x) -1] = α 2 1 (x)[T 1 t w(x)T 1 t (w -1 )(x) -T 1 t w(x)T 1 t (w -1 )(x)] + α 1 (x)α 2 (x)[T 1 t w(x)T 2 t (w -1 )(x) + T 2 t w(x)T 1 t (w -1 )(x) -T 2 t ( 1 n )T 1 t w(x) -T 2 t (n)T 1 t (w -1 )(x)] + α 2 2 (x)[T 2 t w(x)T 2 t (w -1 )(x) -1] α 1 (x)α 2 (x)[T 1 t w(x)T 2 t (w -1 - 1 n )(x) + T 1 t (w -1 )(x)T 2 t (w -n)(x)] + α 2 2 (x) • 0 = α 1 (x)α 2 (x)T 2 t (w -1 (•) - 1 n )T 1 t w(x) + (w(•) -n)T 1 t (w -1 )(x) (x) = α 1 (x)α 2 (x)T 2 t    w -n wn (-T 1 t w(x) n +wn T 1 t (w -1 )(x) 1 n )    (x) α 1 (x)α 2 (x)T 2 t w -n wn (w -n) 0.
We have thus shown (2.15), which implies

Q A 2 (w) Q A 2 (w n ). Now observe that w n = (((w n ) -1 ) n ) -1 and that Q A 2 (v) = Q A 2 (v -1 ), so that Q A 2 (w) Q A 2 (w n ) = Q A 2 ((w n ) -1 ) Q A 2 (((w n ) -1 ) n ) = Q A 2 (w n ).
Remark 2.17 Suppose that (Ω, dist, µ) is a space of homogeneous type, i.e. a metric measure space such that µ(B(x, 2r)) Cµ(B(x, r)) with uniform constant C over all x ∈ Ω and r > 0, where B(x, r) = {y ∈ Ω : dist(x, y) r} denotes a ball in Ω. This entails that Ω admits a doubling dimension d 0 such that µ(B(x, αr)) Cα d µ(B(x, r)) for x ∈ Ω, r > 0 and α 1. In the following cases, the semigroup characteristic can be compared to the classical characteristic defined in terms of means over balls, that is

Q class 2 (w) = sup B ball in Ω 1 µ(B) B w(y)dµ(y) 1 µ(B) B 1 w(y) dµ(y).
Let (T t ) t 0 be a submarkovian semigroup acting on L 2 (Ω). Suppose that T t has an integral kernel p t (x, y).

1. If p t (x, y) satisfies (one-sided) Gaussian estimates [25, (1.3)]: there exist C, C + > 0 such that

(2.16) p t (x, y) C 1 µ(B(x, √ t)) exp(-C + dist(x, y) 2 /t) (t > 0, x, y ∈ Ω),
then there exists some c < ∞ such that for any weight w : Ω → R + , we have Q A 2 (w) cQ class 2. If p t (x, y) satisfies lower Gaussian estimates: there exist c, C -> 0 such that

p t (x, y) c 1 µ(B(x, √ t)) exp(-C -dist(x, y) 2 /t) (t > 0, x, y ∈ Ω),
then there exists some c < ∞ such that for any weight w :

Ω → R + , we have Q class 2 (w) cQ A 2 (w). Consequently, if the semigroup satisfies two-sided Gaussian estimates, then Q class 2 (w) ∼ = Q A 2 (w)
. Proof : 1. Let x ∈ Ω, t > 0 and for k 0, denote the ball centered at x, B k = B(x, 2 k+1 √ t) and also the annulus

A k = B k \B k-1 (A k = B k if k = 0)
. Then with d denoting a doubling dimension of Ω, so that µ(B(x, 2 k+1 r)) 2 (k+1)d µ(B(x, r)), we have

T t w(x)T t (w -1 )(x) = Ω p t (x, y)w(y)dµ(y) Ω p t (x, y)w -1 (y)dµ(y) = ∞ k,l=0 A k p t (x, y)w(y)dµ(y) A l p t (x, y)w -1 (y)dµ(y) ∞ k,l=0 A k 1 µ(B(x, √ t)) exp(-C + dist(x, y) 2 /t)w(y)dµ(y) A l 1 µ(B(x, √ t)) exp(-C + dist(x, y) 2 /t)w -1 (y)dµ(y) ∞ k,l=0 A k 2 (k+1)d 1 µ(B(x, 2 k+1 √ t)) exp(-C + 2 2k )w(y)dµ(y) × A l 2 (l+1)d 1 µ(B(x, 2 l+1 √ t)) exp(-C + 2 2l )w -1 (y)dµ(y) ∞ k,l=0 2 (k+1)d exp(-C + 2 2k ) 1 µ(B k ) B k w(y)dµ(y)2 (l+1)d exp(-C + 2 2l ) 1 µ(B l ) B l w -1 (y)dµ(y) ∞ k,l=0 2 (k+l+2)d exp(-C + (2 2k + 2 2l ))2 (2 max(k,l)-k-l)d 1 µ(B max(k,l) ) B max(k,l)
w(y)dµ(y)

× 1 µ(B max(k,l) ) B max(k,l) w -1 (y)dµ(y) ∞ k,l=0 2 (k+l+2)d exp(-C + (2 2k + 2 2l ))2 (2 max(k,l)-k-l)d Q class 2 (w) = cQ class 2 (w),
where we note in the last step that the double series is clearly convergent.

2. We have

T t w(x)T t (w -1 )(x) Ω 1 µ(B(x, √ t)) exp(-C -dist(x, y) 2 /t)w(y)dµ(y) × Ω 1 µ(B(x, √ t)) exp(-C -dist(x, y) 2 /t)w -1 (y)dµ(y) exp(-C -) 1 µ(B(x, √ t)) B(x, √ t) w(y)dµ(y) exp(-C -) 1 µ(B(x, √ t)) B(x, √ t)
w -1 (y)dµ(y).

Taking the supremum over all t > 0 and x ∈ Ω yields

Q A 2 (w) Q class 2 (w).

The Bellman function and its main properties

For the proof of the Main Theorem 4.3 on weighted L 2 functional calculus, we need the existence of a Bellman function from [START_REF] Domelevo | Differential Subordination under change of law[END_REF]. Let us note V the quadruplet

V = (x, y, r, s) ∈ C × C × R * + × R * + =: S.
The variables (x, y) will be C-valued whereas the variables r and s are R-valued and represent the weights. We introduce the domain

D Q D Q = {V ∈ S : 1 rs Q} .
We will often restrict our attention to truncated weights, that is given 0 < ε < 1, variables r and s bounded below and above

D ε Q = V ∈ D Q : ε r ε -1 , ε s ε -1 .
Let | • | denote the standard norm in the complex plane and denote for x = x 1 + ix 2 the complex derivative

∂ x = ∂ x1 -i∂ x2 .

Lemma 3.1 (existence and properties of the Bellman function)

There exists a function

B(V ) = B Q that is C 1 on D ε Q , and piecewise C 2 , with the estimate (3.1) B(V ) |x| 2 r + |y| 2 s
and on each subdomain where it is C 2 there holds

(3.2) d 2 B(V ) 2 Q |dx||dy|.
Whenever V and V 0 are in the domain, the function has the property

(3.3) B(V ) -B(V 0 ) -dB(V 0 )(V -V 0 ) 2 Q |x -x 0 ||y -y 0 |.
Moreover, we have

(3.4) ∂ r B(V ) ≤ 0 and ∂ s B(V ) ≤ 0,
and the estimate

(3.5) [∂ x B(V )x + ∂ y B(V )y + ∂ r B(V )r + ∂ s B(V )s] 1 Q |x||y|.
Proof : We shall use the function constructed in [START_REF] Domelevo | Differential Subordination under change of law[END_REF], composed of linear combinations of functions B 1 through B 6 . The final function in [START_REF] Domelevo | Differential Subordination under change of law[END_REF] is of the form 6 i=1 C i B i for some positive constants C i and for some functions B i written below. The function B here will have C 1 replaced by C > C 1 to be determined. In order to have the last property (3.5) we will increase the coefficient of B 1 . Since B 1 is convex and has the desired upper bounds, this will not change the assertions made in [START_REF] Domelevo | Differential Subordination under change of law[END_REF] concerning the other properties of the function.

We recall that

B 1 (V ) = |x| 2 r + |y| 2 s and calculate ∂ x B 1 (V )x = 2 r |x| 2 , ∂ y B 1 (V )y = 2 s |y| 2 , ∂ r B 1 (V )r = -1 r |x| 2 and ∂ s B 1 (V )s = -1 s |y| 2 . Thus [∂ x B 1 (V )x + ∂ y B 1 (V )y + ∂ r B 1 (V )r + ∂ s B 1 (V )s] = |x| 2 r + |y| 2 s 2 |x||y| rs 2|x||y| Q .
This is the main term that gives us the desired estimate. We check now that the remaining parts of the function's derivatives stemming from B 2 through B 6 are not too large. We recall that

B 2 (V ) = |x| 2 2r - 1 s(N +1) + |y| 2 s and B 3 (V ) = |x| 2 r + |y| 2 2s - 1 r(N +1)
where

N = N (r, s) = √ rs √ Q 1 - (rs) 3/2 128Q 3/2 = √ rs √ Q - (rs) 2 128Q 2 .
Since 0 N 1 and 0 (rs -1)

1 s = r -1 s r we have r 2r - 1 s(N +1) 2r. Thus ∂ x B 2 (V )x = 2 2r - 1 s(N +1) |x| 2 |x| 2 r .
As above ∂ y B 2 (V )y = 2 s |y| 2 . We calculate the derivatives in r and s. First, we observe that

∂ r N = 1 r √ rs √ Q 1 2 - (rs) 3/2 64Q 3/2 and ∂ s N = 1 s √ rs √ Q 1 2 - (rs) 3/2 64Q 3/2 thus 0 ∂ r N 1 2r and 0 ∂ s N 1 2s . We calculate ∂ r B 2 (V ) = - |x| 2 2 + 1 s(N +1) 2 ∂ r N 2r - 1 s(N +1) 2 and ∂ s B 2 (V ) = - |y| 2 s 2 - |x| 2 (N + 1 + s∂ s N ) (2rs(N + 1) -1) 2 thus -∂ r B 2 (V )r |x| 2 4r 5
2 and with 1 rs we have

-∂ s B 2 (V )s |y| 2 s + |x| 2 r 5 2 . Therefore [∂ x B 2 (V )x + ∂ y B 2 (V )y + ∂ r B 2 (V )r + ∂ s B 2 (V )s] 1 - 25 8 |x| 2 r + |y| 2 s and similarly [∂ x B 3 (V )x + ∂ y B 3 (V )y + ∂ r B 3 (V )r + ∂ s B 3 (V )s] |x| 2 r + 1 - 25 8 |y| 2 s .
We turn to B 4 . Recall that

H 4 (x, y, r, s, K) = sup α>0 β(α, x, y, r, s, K) = sup α>0 |x| 2 r + αK + |y| 2 s + α -1 K and B 4 (x, y, r, s) = H 4 (x, y, r, s, K(r, s)) with K(r, s) = √ rs √ Q 1 - √ rs 8 √ Q .
Since H 4 is in C 1 we investigate the inequality on each piece separately, whether the supremum is attained in α = 0, ∞ or α finite. If the supremum occurs at the boundary, the function H 4 simplifies to the expression |x| 2 r or |y| 2 s so in this case there is nothing more to estimate. Let us assume the supremum is a maximum and is attained at a finite strictly positive α = α(x, y, r, s, K) so that H 4 (x, y, r, s, K) = β(α (x, y, r, s, K), x, y, r, s, K). Recall this happens if and only if |x|s -|y|K > 0 and |y|r -|x|K > 0. Since ∂ α β(α , x, y, r, s, K) = 0 we obtain

∂ x B 4 (V )x = |x| 2 r + α K 0 and ∂ y B 4 (V )y = |y| 2 s + α -1 K 0.
We prefer not to take advantage of the subtle gain from these derivatives as it is more easily had from B 1 . Now we control the damage from the other derivatives. To do so, let us resort to the explicit expression

H 4 (x, y, r, s, K) = |x| 2 s -2|x||y|K + |y| 2 r rs -K 2 .
We get

∂ r H 4 (V, K) = - (|x|s -|y|K) 2 (rs -K 2 ) 2 and ∂ s H 4 (V, K) = - (|y|r -|x|K) 2 (rs -K 2 ) 2 . Since K 2 rs Q we get rs -K 2 1 -1 Q rs. We estimate |∂ r H 4 | |x| 2 4r 2 and |∂ s H 4 | |y| 2 4s 2 for Q large enough. Now ∂ K H 4 (V, K) = |x|s(2K|x| -|y|r) + |y|r(2K|y| -|x|s) (rs -K 2 ) 2 . Let us estimate |∂ K H 4 | 24 |x||y|rs (rs) 2 = 24|x||y| rs .
In order to deduce the remaining derivative estimates for B 4 observe that 

∂ r K = 1 r √ rs √ Q 1 2 - √ rs 8 √ Q and ∂ s K = 1 s √ rs √ Q 1 2 - √ rs 8 √ Q with 1 8r ∂ r K
Now B 5 (V ) = |x| 2 2r - 1 s(K+1) + |y| 2 s and B 6 (V ) = |x| 2 r + |y| 2 2s - 1 r(K+1)
and since r 2r -

1 s(K+1)
2r we get Now notice that the proof of (3.4) is implicit in the considerations we just carried out and follow as an easy calculation, treating the pieces of B separately. The least obvious estimate is that of ∂ r B 4 and ∂ s B 4 for the case when the extremum is attained for 0 < α < ∞. For example,

∂ x B 5 (V )x = 2|x| 2 2r - 1 s(K+1) |x| 2 r and ∂ y B 5 (V )y = 2|y| 2 s . Further -∂ r B 5 (V )
∂ r B 4 (V ) = ∂ r H 4 (V, K) + ∂ K H 4 (V, K)∂ r K.
Here, we see from the considerations above that ∂ r H 4 (V, K) ≤ 0 as well as ∂ K H 4 (V, K) ≤ 0 and ∂ r K ≥ 0, giving us the desired sign.

Similarly to arguments detailed in [START_REF] Domelevo | Differential Subordination under change of law[END_REF], we can obtain a regularised version of this Bellman function so that its main properties remain true: Lemma 3.2 (regularised Bellman function and its properties) Let ε > 0 given. Let 0 < ε/2. There exists a function B (x, y, r, s) defined with domain

D ε, Q = V ∈ D ε Q ; |x| , |y| ⊂ D ε Q such that for all V 0 , V ∈ D ε, Q , we have B (V ) (1 + ) |x| 2 r + |y| 2 s , (3.6) d 2 V B (V ) 2 Q |dx||dy|, (3.7) B (V ) -B (V 0 ) -d V B (V 0 )(V -V 0 ) 1 Q |∆x||∆y| = 1 Q |x -x 0 ||y -y 0 |.
Further we have the estimates

∂ r B (V ) ≤ 0 and ∂ s B (V ) ≤ 0 and [∂ x B (V )x + ∂ y B (V )y + ∂ r B (V )r + ∂ s B (V )s] 1 Q |x||y|.
In addition, we have the following specific properties we formulate separately as lemmata.

Lemma 3.3 Let Q > 1, ε > 0 and B be the Bellman function from Lemma 3.1 with domain

D ε Q . Let f, g ∈ L 1 (Ω) ∩ L ∞ (Ω) and v 1 , v 2 : Ω → R measurable such that 1 v 1 v 2 Q and ε v 1 , v 2 1 ε . Then ∂ r B(f, g, v 1 , v 2 ), ∂ s B(f, g, v 1 , v 2 ) belong to L 1 (Ω) with L 1 -norm bounded by f 2 L 2 (Ω) + g 2 L 2 (Ω) (times a constant depending on ε). Moreover, ∂ r B(f, g, v 1 , v 2 ) and ∂ s B(f, g, v 1 , v 2 ) belong to L ∞ (Ω).
Proof : This follows via the calculations above. Let us treat the part ∂ r B 4 as an example. Above we have estimated

|∂ r B 4 (V )| ≤ |x| 2 4r 2 + 24|x||y| 2r 2 s . Plugging in f, g, v 1
, v 2 and integrating over Ω, then using elementary estimates and the range of v 1 and v 2 we obtain an estimate

∂ r B 4 (f, g, v 1 , v 2 ) L 1 (Ω) ≤ c(ε)( f 2 L 2 (Ω) + g 2 L 2 (Ω) ). Similarly, we obtain ∂ r B(f, g, v 1 , v 2 ), ∂ s B(f, g, v 1 , v 2 ) ∈ L ∞ (Ω). Lemma 3.4 Let Q > 1, ε > 0 and B be the Bellman function from Lemma 3.1 with domain D ε Q . Let f, g ∈ L 1 (Ω) ∩ L ∞ (Ω) and v 1 , v 2 : Ω → R measurable such that 1 v 1 v 2 Q and ε v 1 , v 2 1 ε . Then ∂ k B(f, g, v 1 , v 2 ) belongs to L 2 (Ω) for k = x 1 , x 2 , y 1 , y 2 with an estimate ∂ k B(f, g, v 1 , v 2 ) 2 2 c(ε)( f 2 2 + g 2 2 )
.

Proof : One shows this assertion for each part of B separately. Since the different first derivatives in the real and imaginary parts of x and y are similar, we focus on x 1 . We show the assertion for B 4 in the part of the domain where the supremum is obtained for 0 < α < ∞ since the other parts are easier. Recall that here B 4 (V ) = H 4 (x, y, r, s, K(r, s)) with H 4 (x, y, r, s, K) = β(α (x, y, r, s, K), x, y, r, s, K) with β(α, x, y, r, s, K) = |x| 2 r+αK + |y| 2 s+α -1 K . Note that ∂ α β at α is zero because we have a critical point there. Thus,

|∂ x1 B 4 (V )| 2 ≤ 4|x1| 2
r 2 , where we estimated the denominator r + α (x, y, r, s, K(r, s)), x, y, r, s, K(r, s) ≥ r. Plugging in the given functions for the variables while using the range of v 1 and v 2 , then integrating over Ω gives the desired result. Moreover assume 1 r j s j Q and ε r j , s j 1 ε for j = 1, 2 such that any (r, s) belonging to the line segment connecting (r 1 , s 1 ) and (r 2 , s 2 ) still satisfies

1 rs Q. Then |∂ r B(x, y, r 1 , s 1 ) -∂ r B(x, y, r 2 , s 2 )| , |∂ s B(x, y, r 1 , s 1 ) -∂ s B(x, y, r 2 , s 2 )| L(|x| 2 + |y| 2 )(|r 1 -r 2 | + |s 1 -s 2 |).
Proof : We split the Bellman function into its six parts (see the proof of Lemma 3.1) and majorize each of them. For the first part, we have (if both |y|r -|x|K > 0 and |x|s -|y|K > 0). Indeed, the remaining case, both |y|r -|x|K 0 and |x|s -|y|K 0 can only occur if both |x| = |y| = 0 (see [START_REF] Domelevo | Differential Subordination under change of law[END_REF]) in which case B 4 (x, y, r, s) = 0 for all r, s, so that ∂ r B 4 (x, y, r, s) = ∂ s B 4 (x, y, r, s) = 0 for all r, s and the claimed Lipschitz estimates for ∂ r B 4 and ∂ s B 4 are trivially true.

B 1 a C ∞ function on D ε Q . Moreover, it is clearly of the form B 1 (x, y, r, s) = |x| 2 B 1,1 (r, s) + |y| 2 B 1,2 (r, s). Thus, also ∂ r B 1 (x, y, r, s) = |x| 2 ∂ r B 1,1 (r, s) + |y| 2 ∂ r B 1,2 (r,
We claim that the signs of the expressions |x|s -|y|K(r, s) and |y|r -|x|K(r, s) which determine the formula giving B 4 cannot change too often along the segment connecting (r 1 , s 1 ) and (r 2 , s 2 ). Indeed, call f (r, s) = |x|s -|y|K(r, s), r(t) = r 1 + (r 2 -r 1 )t, s(t) = s 1 + (s 2 -s 1 )t and g(t) = f (r(t), s(t)). Then a longer yet elementary calculation reveals that

d 3 dt 3 g(t) = 1 [r(t)s(t)] 5 2 p(t)
, where p is a polynomial of degree at most 3. Thus, d 3 dt 3 g(t) has at most 3 zeros and by Rolle's theorem, g(t) itself has at most 6 zeros. The same reasoning applies to show that also |y|r -|x|K(r, s) has at most 6 zeros. Thus we can cut the segment connecting (r 1 , s 1 ) and (r 2 , r 2 ) into at most 6×6 = 36 subsegments such that on the interior of each of them, |x|s-|y|K and |y|r -|x|K keep the same sign. We infer that on these subsegments, B 4 (x, y, r, s) is given by one of the three expressions |x| 2 r , |y| 2 s or H 4 in a constant manner. Using the fact that these three expressions are C 2 , that their second derivatives in r, s are bounded by C(ε, Q)(|x| 2 + |y| 2 ) and that ∂ r B 4 , ∂ s B 4 as a whole are continuous, we can argue as in the case of B 1 above to deduce the Lipschitz estimates for ∂ r B 4 (x, y, r, s), ∂ s B 4 (x, y, r, s) as claimed in the lemma, where the points (r 1 , s 1 ), (r 2 , s 2 ) are replaced by the boundary points of the subsegments. Adding the estimates for the at most 36 subsegments yields the Lipschitz estimate for B 4 with the correct boundary points (r 1 , s 1 ), (r 2 , s 2 ).

The positive π 2 angle result, markovian case

This section is devoted to the proof of Theorem Q . Let (Ω, µ) be a σ-finite measure space, (T t ) t 0 a markovian semigroup on Ω and f, g

(A ∞ ) = {f ∈ L ∞ (Ω) : w * -lim h→0+ 1 h (f - T h f ) exists},
∈ L 1 (Ω) ∩ L ∞ (Ω). Let further v, w ∈ L ∞ (Ω) with ε v, w 1
ε and 2 T t vT t w Q/2 for all t belonging to some interval (t 0 , t 1 ) ⊆ (0, ∞). Assume one of the following conditions.

The measure space is finite

, i.e. µ(Ω) < ∞, or 2. T t v, T t w belong to D(A ∞ ) for t ∈ (t 0 , t 1 ), e.g. v, w ∈ D(A ∞ ).
Define the functional (4.1)

E(t) = Ω B(T t f (x), T t g(x), T t v(x), T t w(x))dµ(x) (t ∈ (t 0 , t 1 )).
Then E(t) is differentiable for t ∈ (t 0 , t 1 ), and we have

-E (t) = [ Ω ∂ x B(T t f, T t g, T t v, T t w)AT t f + ∂ y B(T t f, T t g, T t v, T t w)AT t g (4.2) + ∂ r B(T t f, T t g, T t v, T t w)AT t v + ∂ s B(T t f, T t g, T t v, T t w)AT t wdµ].
Proof : The proofs for the two alternative assumptions are different. Let us start with the case µ(Ω) < ∞. Since B is a C 1 function, we have

1 h (B(T t+h f, T t+h g, T t+h v, T t+h w) -B(T t f, T t g, T t v, T t w)) (4.3) = dB(T t f, T t g, T t v, T t w) • 1 h (T t+h -T t )(f, g, v, w) + 1 h [o(T t+h f -T t f ) + o(T t+h g -T t g) + o(T t+h v -T t v) + o(T t+h w -T t w)].
Here, we write dB

= (∂ x B, ∂ y B, ∂ r B, ∂ s B) with values in C × C × R × R.
According to Lemmas 3.3 and 3.4, all the six components of dB(T t f, T t g, T t v, T t w) belong to L 2 (Ω). On the other hand

1 h (T t+h -T t )f converges to -AT t f in L 2 (Ω), since T t f belongs to the domain of A in L 2 (Ω),
and similarly for g, v, w in place of f . Here, we use the crucial fact that v, w ∈ L ∞ (Ω) ⊆ L 2 (Ω) for µ(Ω) < ∞. Integrating in (4.3) over Ω and letting h → 0, it only remains to show that (4.4)

Ω 1 h [o(T t+h f -T t f ) + o(T t+h g -T t g) + o(T t+h v -T t v) + o(T t+h w -T t w)]dµ → 0 (h → 0+).
We treat the component with f , the others being entirely similar. Let h n be any sequence converging to 0+.

Since Ω | 1 hn (T t+hn f -T t f )|dµ → Ω |AT t f |dµ < ∞, we have that Ω 1 hn |o(T t+hn f - T t f )|dµ is a bounded sequence. We take a subsequence h k = h n k such that Ω 1 h k |o(T t+h k f - T t f )|dµ → lim sup n Ω 1 hn |o(T t+hn f -T t f )|dµ. As 1 h k (T t+h k f -T t f ) converges in L 1 , it con-
verges along a subsequence h l pointwise a.e. and L 1 dominated to the finite value -AT t f . Thus, T t+h l f -T t f converges pointwise a.e. to 0, and therefore, leveraging the o-notation,

1 h l o(T t+h l f -T t f
) converges pointwise a.e. to 0. This latter convergence is also L 1 dominated by the above. Thus, by dominated convergence, we infer that

Ω 1 h l |o(T t+h l f -T t f )|dµ → 0 = lim sup n Ω 1 hn |o(T t+hn f -T t f )|dµ.
Then (4.4) follows, and the Lemma is proved in the case µ(Ω) < ∞.

We turn to the second assumption T t v, T t w ∈ D(A ∞ ). We develop

1 h (B(T t+h f, T t+h g, T t+h v, T t+h w) -B(T t f, T t g, T t v, T t w)) (4.5) = 1 h (B(T t+h f, T t+h g, T t+h v, T t+h w) -B(T t f, T t g, T t+h v, T t+h w)) + 1 h (B(T t f, T t g, T t+h v, T t+h w) -B(T t f, T t g, T t v, T t w)) = (∂ x B, ∂ y B)(T t f, T t g, T t+h v, T t+h w) • 1 h (T t+h -T t )(f, g) + 1 h [o(T t+h f -T t f ) + o(T t+h g -T t g)] + 1 h (B(T t f, T t g, T t+h v, T t+h w) -B(T t f, T t g, T t v, T t+h w)) + 1 h (B(T t f, T t g, T t v, T t+h w) -B(T t f, T t g, T t v, T t w)).
Note that since

T t v ∈ D(A ∞ ), the w * convergent term 1 h (T t+h v -T t v) is bounded in L ∞ (Ω), so that T t+h v -T t v ∞ Ch.
Therefore, since 2 T t vT t w Q/2, we have that for h sufficiently small, 1 T t vT t+h w Q, and therefore the Bellman function in (4.5) is evaluated everywhere in points of its domain. We treat the first term on the right hand side of (4.5). Since T t+h v → T t v and T t+h w → T t w uniformly as h → 0+ and

|∂ k B(T t f, T t g, T t+h v, T t+h w)| c(ε)(|T t f | + |T t g|) for k = x 1 , x 2 ,
y 1 , y 2 according to the proof of Lemma 3.4, we can apply dominated convergence to deduce

∂ k B(T t f, T t g, T t+h v, T t+h w) → ∂ k B(T t f, T t g, T t v, T t w) in L 2 (Ω), k = x 1 , x 2 , y 1 , y 2 . Moreover, 1 h (T t+h f -T t f ) → -AT t f and 1 h (T t+h g -T t g) → -AT t g in L 2 (Ω).
The o-expressions can be treated as in the case µ(Ω) < ∞. For the moment, we have shown

Ω 1 h (B(T t+h f, T t+h g, T t+h v, T t+h w) -B(T t f, T t g, T t+h v, T t+h w))dµ (4.6) → - Ω (∂ x B, ∂ y B)(T t f, T t g, T t v, T t w) • (AT t f, AT t g)dµ.
The second and third term on the right hand side of (4.5) have to be treated differently, since we do not have v, w ∈ L 1 (Ω) any more. Let us treat the second term. According to the mean value theorem in one dimension, for any x ∈ Ω, there exists some V = V (h, x) in between T t v(x) and T t+h v(x) such that

1 h (B(T t f (x), T t g(x), T t+h v(x), T t+h w(x)) -B(T t f (x), T t g(x), T t v(x), T t+h w(x))) = ∂ r B(T t f (x), T t g(x), V (h, x), T t+h w(x)) 1 h (T t+h v(x) -T t v(x)).
According to Lemma 3.5,

|∂ r B(T t f (x), T t g(x), V (h, x), T t+h w(x)) -∂ r B(T t f (x), T t g(x), T t v(x), T t w(x))| f ∞, g ∞ (|T t f (x)| 2 + |T t g(x)| 2 )(|T t+h v(x) -T t v(x)| + |T t+h w(x) -T t w(x)|).
As

T t+h v -T t v ∞ , T t+h w -T t w ∞ Ch → 0 and T t f 2 2 + T t g 2 2 f 2 2 + g 2 2 < ∞, we deduce that ∂ r B(T t f, T t g, V (h, •), T t+h w) converges to ∂ r B(T t f, T t g, T t v, T t w) in L 1 (Ω). On the other hand, since T t v ∈ D(A ∞ ), we have the w * convergence 1 h (T t+h v -T t v) → -AT t v in L ∞ (Ω).
Therefore, the integral of the product converges appropriately, that is,

Ω ∂ r B(T t f, T t g, V (h, •), T t+h w) 1 h (T t+h v -T t v)dµ → - Ω ∂ r B(T t f, T t g, T t v, T t w)AT t vdµ.
We have treated the second term in (4.5). The third term can be treated in the same way.

Combining this with (4.6), we have shown the differentiation formula (4.2). Thus, the lemma follows.

In the Main Theorem 4.3 where we establish the bilinear estimate which will yield the weighted L 2 functional calculus, we have to impose some technical condition on the markovian semigroup we consider. One of them is the following. Definition 4.2 Let (Ω, µ) be a σ-finite measure space and (T t ) t 0 a markovian semigroup on Ω. We say that (T t ) t 0 satisfies local diffusion if there exist C, R > 0 such that for all w ∈ L ∞ (Ω) with w 0 and 0 s r t, we have T t+s w(x) CT R(t+r) w(x).

We are now in a position to spell out the Main Theorem. Theorem 4.3 Let (T t ) t 0 be a markovian semigroup on (Ω, µ). Let w be a weight on Ω with Q A 2 (w) < ∞. Assume one of the following alternative conditions. 1. The measure space is finite, µ(Ω) < ∞, or 2. For any t > 0, T t maps L ∞ (Ω) into the domain D(A ∞ ) of the w * L ∞ realization of A, or 3. (T t ) t 0 satisfies the local diffusion from Definition 4.2.

In case 2. and 3. above, assume moreover that for any v ∈ L ∞ (Ω), T t v(x) → v(x) as t → 0+ µ-almost everywhere. Then we have with C > 0 independent of w, f and g,

∞ 0 | AT t f, T t g |dt CQ A 2 (w) f L 2 (Ω,wdµ) g L 2 (Ω,w -1 dµ) for any f ∈ L 2 (Ω, wdµ) ∩ L 2 (Ω, dµ) and g ∈ L 2 (Ω, w -1 dµ) ∩ L 2 (Ω, dµ).
Theorem 4.3 together with our preliminary work from Subsection 2.2 will immediately give the following corollary on functional calculus. Corollary 4.4 Let (T t ) t 0 be a markovian semigroup on (Ω, µ). Let w be a weight on Ω such that Q A 2 (w) < ∞. Assume one of the alternative conditions from Theorem 4.3: 1. The measure space is finite, µ(Ω) < ∞, or 2. For any t > 0, T t maps L ∞ (Ω) into the domain D(A ∞ ) of the w * L ∞ realization of A, or 3. (T t ) t 0 satisfies the local diffusion from Definition 4.2.

In case 2. and 3. above, assume moreover that for any v ∈ L ∞ (Ω), T t v(x) → v(x) as t → 0+ µ-almost everywhere. Then A is π 2 -sectorial on L 2 (Ω, wdµ). For J > 1 there exists a constant C J only depending on J such that for any m ∈ H ∞ (Σ π 2 ; J), we have

m(A) L 2 (Ω,wdµ)→L 2 (Ω,wdµ) C J Q A 2 (w) |m(0)| + m H ∞ (Σ π 2 ;J) .
In particular, (1 + A) -J exp(-tA) extends to a bounded operator on L 2 (Ω, wdµ) and we have

(1 + A) -J exp(-tA) L 2 (Ω,wdµ)→L 2 (Ω,wdµ) C(1 + t) -J (t 0).
Proof : The first part of the corollary is a direct consequence of Theorem 4.3 together with Proposition 2.11. Note hereby that f, g = Ω f (x)g(x)dµ(x), and

∞ 0 | AT t f, T t g |dt = ∞ 0 | AT 2t f, g |dt = 1 2 ∞ 0 | AT t f, g |dt, due
to self-adjointness and lattice positivity of T t . The last part then follows from Lemma 2.8.

Before proving Theorem 4.3, we discuss examples where its alternative technical conditions in the hypothesis are satisfied.

Remark 4.5 In Theorem 4.3, Corollary 4.4 and Lemma 4.1, one of the alternative hypotheses is that T t w belongs to D(A ∞

) for t > 0. Note that this is true for any w ∈ L ∞ (Ω) in case that (T t ) t 0 is the Gauss or Poisson semigroup over R d . Moreover, the same holds true if Ω is a space of homogeneous type and (T t ) t 0 is a self-adjoint semigroup that has an integral kernel p t (x, y) satisfying (one-sided) Gaussian estimates [25, (1.3)]: there exist C, C + > 0 such that

p t (x, y) C 1 µ(B(x, √ t)) exp(-C + dist(x, y) 2 /t).
Proof : By self-adjointness it suffices to check that T t f falls in the domain of A realized over L 1 (Ω) whenever f ∈ L 1 (Ω) and t > 0. For the Gauss semigroup, we have for the integral kernel

∂ t p t (x, y) = c d (-d 2 t -d 2 -1 exp(-|x -y| 2 /4t) + t -d 2 |x-y| 2 4t 2 exp(-|x -y| 2 /4t
)) which is integrable with respect to y and moreover dominated uniformly in t over compact intervals ⊆ (0, ∞) by an integrable function. It follows by standard integrability arguments that -AT t f = ∂ t T t f ∈ L 1 (Ω). The proof for the Poisson semigroup and that of Gaussian estimates goes along the same lines. For the latter, one uses that the kernel of the semigroup is differentiable in time and satisfies also a Gaussian estimate [24, (1.3)]

|∂ t p t (x, y)| Ct -1 1 µ(B(x, √ t)) exp(-C + dist(x, y) 2 /t).
This is a standard consequence from the fact that t → p t (x, y) extends to a holomorphic function on a sector Σ θ with θ ∈ (0, π 2 ) satisfying the same Gaussian estimate (with different constants) when t is replaced by |t| [46, Theorem 7.2, (7.5)], together with an application of the Cauchy integral formula

∂ t p t (x, y) = 1 2πi B C (t,εt) pz(x,y) (z-t) 2 dz.

Remark 4.6 Let us comment on the local diffusion assumption 3. in Theorem 4.3. Assume that

(Ω, dist, µ) is a space of homogeneous type and the markovian semigroup (T t ) t 0 has an integral kernel p t (x, y) satisfying two-sided Gaussian estimates [25, (1.3)

]: there exist c, C, C + , C -> 0 such that c 1 µ(B(x, √ t)) exp(-C -dist(x, y) 2 /t) p t (x, y) C 1 µ(B(x, √ t)) exp(-C + dist(x, y) 2 /t).
Then (T t ) t 0 satisfies local diffusion. The same holds if the semigroup satisfies two-sided Poisson estimates [16, (7)]: there exist c, C, C + , C -> 0 and a decreasing function

s : [0, ∞) → [0, ∞) such that c 1 µ(B(x, √ t)) s(C -dist(x, y) 2 /t) p t (x, y) C 1 µ(B(x, √ t)) s(C + dist(x, y) 2 /t).
In 

p t+s (x, y) 1 µ(B(x, √ t + s)) s(C + dist(x, y) 2 /t) ∼ = 1 µ(B(x, R(t + r))) s(C -dist(x, y) 2 /(tC -/C + )) 1 µ(B(x, R(t + r))) s(C -dist(x, y) 2 /(R(t + r))) p R(t+r) (x, y).
Integrating over Ω, we obtain 1. The pointwise convergence holds true when Ω is a space of homogeneous type and (T t ) t 0 is a markovian semigroup having an integral kernel p t (x, y) with (one-sided) Gaussian estimates [25, (1.3)]

T
p t (x, y) C 1 µ(B(x, √ t)) exp(-C + dist(x, y) 2 /t).
More generally, the same holds true if the kernel has (one-sided) Poisson estimates [16, (7)]

p t (x, y) C 1 µ(B(x, √ t)) s(dist(x, y) 2 /t) with s : [0, ∞) → [0, ∞) decreasing such that ∞ k=0 2 kd s(2 2k ) < ∞,
where d denotes a doubling dimension of Ω.

On the other hand, if

Ω is a locally compact separable metric measure space and (T t ) t 0 is moreover a Feller semigroup, meaning that T t maps the space C 0 (Ω) of bounded continuous functions vanishing at ∞ into itself and

T t v -v ∞ → 0 (t → 0+)
for any v ∈ C 0 (Ω), then for a continuous bounded function v ∈ C b (Ω), we have Proof : 1. Let x 0 ∈ Ω and R > 0. We first claim that T t (1 B(x0,r) c v)(x) → 0 as r → ∞ uniformly in t 1 and x ∈ B(x 0 , R). Indeed, we have for r > R + 1 and r = r -R

T t v(x) → v(x)
|T t (1 B(x0,r) c v)(x)| v ∞ B(x0,r) c p t (x, y)dµ(y) v ∞ B(x,r ) c p t (x, y)dµ(y) v ∞ B(x,r ) c 1 µ(B(x, √ t)) exp(-C + dist(x, y) 2 /t)dµ(y) v ∞ k 0: √ t2 k+1 r 1 µ(B(x, √ t)) B(x,2 k+1 √ t)\B(x,2 k √ t) exp(-C + 2 2k )dµ(y) v ∞ k 0: √ t2 k+1 r 2 (k+1)d µ(B(x, 2 k+1 √ t)) B(x,2 k+1 √ t) exp(-C + 2 2k )dµ(y) v ∞ k 0:2 k+1 r 2 (k+1)d exp(-C + 2 2k ) • 1 → 0 (r → ∞). Now |T t v(x)-v(x)| |T t (1 B(x0,r) v)(x)-1 B(x0,r) v(x)|+|T t (1 B(x0,r) c v)(x)|.
For the second term on the right hand side, we use the proved uniform convergence as r → ∞. Let us turn to the first term. It suffices to show that

T t (1 B(x0,r) v)(x) → 1 B(x,0,r) v(x) for r > 0 fixed, as t → 0+ µ-a.e.
To this end, let f be a continuous approximation of 1

B(x0,r) v such that f -1 B(x0,r) v 2 ε. We have |T t (1 B(x0,r) v) -1 B(x0,r) v| |T t (1 B(x0,r) v) -T t f | + |T t f -f | + |f -1 B(x0,r) v| M ((1 B(x0,r) v) -f ) + |T t f -f | + |f -1 B(x0,r) v|,
where M denotes the maximal operator M g = sup t>0 |T t g|, which is bounded on L 2 (Ω) since

(T t ) t 0 is markovian. Then for c > 0, µ{x ∈ Ω : lim sup t→0 |T t (1 B(x0,r) v)(x) -1 B(x0,r) v(x)| c} µ{x : lim sup t→0 |T t f (x) -f (x)| c/3} + µ{x : |f (x) -1 B(x0,r) v(x)| c/3} + µ{x : M (f -1 B(x0,r) v)(x) c/3} µ{x : lim sup t→0 |T t f (x) -f (x)| c/3} + f -1 B(x0,r) v 2 2 (c/3) 2 + M (f -1 B(x0,r) v) 2 2 (c/3) 2 µ{x : lim sup t→0 |T t f (x) -f (x)| c/3} + f -1 B(x0,r) v 2 2 (c/3) 2 + M 2 2→2 f -1 B(x0,r) v 2 2 (c/3) 2 .
The last two terms are small according to f -1 B(x0,r) v 2 ε. The first term is 0 since it is a classical fact that a markovian semigroup with Gaussian estimates satisfies lim t→0 |T t f (x)f (x)| = 0 µ-almost everywhere for a continuous function f . Thus

µ{x ∈ Ω : lim sup t→0 |T t (1 B(x0,r) v)(x) -1 B(x0,r) v(x)| 0} = 0
for any c > 0. Letting c → 0, we infer the claimed pointwise convergence almost everywhere.

The proof for Poisson estimates instead of Gaussian estimates goes along the same lines. 2. This is proved in [6, Lemma 1.8]. Proof of Theorem 4.3 : Let n ∈ N and put w n the truncation of the weight w from Definition 2.14. Suppose that we have shown the theorem with w n , w -1

n and Q A 2 (w n ) in place of w, w -1 and Q A 2 (w). Then since w n → w pointwise as n → ∞, we get for f ∈ L 2 (Ω, wdµ) ∩ L 2 (Ω, dµ) that f L 2 (Ω,wdµ) = lim n→∞ f L 2 (Ω,wndµ) and for g ∈ L 2 (Ω, dµ) ∩ L 2 (Ω, w -1 dµ) that g L 2 (Ω,w -1 dµ) = lim n→∞ g L 2 (Ω,w -1 n dµ) . Moreover, according to Lemma 2.16, Q A 2 (w n ) Q A 2 (w)
. Thus, the theorem would follow with the weight w. We therefore assume from now on without loss of generality that there is some ε > 0 such that ε w(x)

1 2ε
for almost every x ∈ Ω. We prove the theorem first under the alternative hypotheses 1 or 2, and indicate the adaptation for the alternative hypothesis 3 at the end of the proof. Put v = 2w -1 so that ε v, w 1 ε . Note that according to lattice positivity of T t , we have

ε = T t (ε1 Ω )(x) T t (v)(x), T t (w)(x) T t ( 1 ε 1 Ω )(x) = 1 ε .
Moreover, according to Lemma 2.2,

1 = |T t (1)(x)| 2 = |T t (w -1 2 w 1 2 )(x)| 2 T t (w -1 )(x)T t (w)(x) Q A 2 (w),
so that 2 T t vT t w Q/2, where we put Q = 4Q A 2 (w). Then we let f, g ∈ L 1 (Ω) ∩ L ∞ (Ω) fixed for the rest of the proof and B the Bellman function from Lemma 3.1. We define the functional

E(t) = Ω B(T t f (x), T t g(x), T t v(x), T t w(x))dµ(x)
from Lemma 4.1. Note that indeed (T t v(x), T t w(x)) falls in the range needed in Lemma 4.1, according to the above. Moreover, under the alternative hypotheses 1 or 2, according to Lemma 4.1

-E (t) = [ Ω ∂ x B(T t f, T t g, T t v, T t w)AT t f + ∂ y B(T t f, T t g, T t v, T t w))AT t g (4.7) + ∂ r B(T t f, T t g, T t v, T t w)AT t v + ∂ s B(T t f, T t g, T t v, T t w)AT t wdµ].

Now in order to have the bilinear estimate

∞ 0 | AT t f, T t g |dt CQ f L 2 (wdµ) g L 2 (w -1 dµ) ,
it will suffice to show (see the end of the proof of Theorem 4.3 after Proposition 4.12)

(4.8) -E (t) c Q | AT t f, T t g |.
In view of the explicit expression of E (t) from (4.7), it suffices to show that for any f, g ∈ L 2 (Ω) and v 1 , v 2 ∈ L ∞ (Ω), all belonging to the domain of A, with ε v 1 , v 2 1 ε , and

1 v 1 (x)v 2 (x) Q for any x ∈ Ω, we have Ω Af gdµ cQ Ω ∂ x B(f, g, v 1 , v 2 )Af + ∂ y B(f, g, v 1 , v 2 )Ag (4.9) +∂ r B(f, g, v 1 , v 2 )Av 1 + ∂ s B(f, g, v 1 , v 2 )Av 2 dµ]
(from this, go then up to (4.8) by replacing f by T t f, g by T t g, v 1 by T t v and v 2 by T t w.) For this in turn, it suffices to show that for any T markovian (that is, T = T t for some t 0 fixed), we have

Ω (Id -T )(f )gdµ cQ Ω ∂ x B(f, g, v 1 , v 2 )(Id -T )(f ) + ∂ y B(f, g, v 1 , v 2 )(Id -T )(g) (4.10) +∂ r B(f, g, v 1 , v 2 )(Id -T )(v 1 ) + ∂ s B(f, g, v 1 , v 2 )(Id -T )(v 2 )dµ]
(from this, go then up to (4.9) by replacing T by T t , dividing by t, and letting t → 0; note that Af = lim t→0 1 t (Id -T t )(f ) and similarly for g, v 1 and v 2 .) The proof of (4.10) requires several technical steps, where the simplest form of (4.10) is proved in Proposition 4.8 and the most general form is shown in Proposition 4.12. We proceed now to these steps, and conclude the proof of the theorem once Proposition 4.12 is shown. 

T t = 1 2 1 + e -2t 1 -e -2t 1 -e -2t 1 + e -2t [35]). Let Q 1.
Then for any f, g : {a, b} → C and

v 1 , v 2 : {a, b} → (0, ∞) with 1 v 1 (x) • v 2 (x) Q (and ε v 1 (x), v 2 (x) 1 ε ), the estimate (4.9) holds with a universal constant C < ∞, that is, {a,b} Gf • gdν a,b CQ {a,b} ∂ x B(f, g, v 1 , v 2 )Gf + ∂ y B(f, g, v 1 , v 2 )Gg (4.11) +∂ r B(f, g, v 1 , v 2 )Gv 1 + ∂ s B(f, g, v 1 , v 2 )Gv 2 dν a,b ] . Proof :
The key observation is that our Bellman function satisfies its one-leg convexity, which will retranslate into (4.11). Namely, take some

W 1 , W 2 ∈ D ε Q . Then (3.3) gives B(W 1 ) -B(W 2 ) -dB(W 2 ) • (W 1 -W 2 ) c Q |W 1,x -W 2,x | • |W 1,y -W 2,y | (4.12) and B(W 2 ) -B(W 1 ) -dB(W 1 ) • (W 2 -W 1 ) c Q |W 1,x -W 2,x | • |W 1,y -W 2,y |. (4.13)
Taking the sum of (4.12) and (4.13) yields

(4.14) dB(W 2 ) • (W 2 -W 1 ) -dB(W 1 ) • (W 2 -W 1 ) 2c Q |W 1,x -W 2,x | • |W 1,y -W 2,y |.
On the other hand, (4.11) can be rewritten as

|f (a) -f (b)| • |g(a) -g(b)| CQ [(∂ x B(f (a), g(a), v 1 (a), v 2 (a)) (4.15) -∂ x B(f (b), g(b), v 1 (b), v 2 (b))) • (f (a) -f (b)) + (∂ y B(f (a), g(a), v 1 (a), v 2 (a)) -∂ y B(f (b), g(b), v 1 (b), v 2 (b))) • (g(a) -g(b)) + (∂ r B(f (a), g(a), v 1 (a), v 2 (a)) -∂ r B(f (b), g(b), v 1 (b), v 2 (b))) • (v 1 (a) -v 1 (b)) + (∂ s B(f (a), g(a), v 1 (a), v 2 (a)) -∂ s B(f (b), g(b), v 1 (b), v 2 (b))) • (v 2 (a) -v 2 (b))],
where the right hand side can be rewritten as CQ times

dB(f (a), g(a), v 1 (a), v 2 (a)) • (f (a) -f (b), g(a) -g(b), v 1 (a) -v (b), v 2 (a) -v 2 (b)) -dB(f (b), g(b), v 1 (b), v 2 (b)) • (f (a) -f (b), g(a) -g(b), v 1 (a) -v 1 (b), v 2 (a) -v 2 (b)).
Note hereby, that we have done the identification C = R 2 , so that e.g. (4.14) gives (4.15), and thus, (4.11).

f (a) -f (b) = ( (f (a) -f (b)), (f (a) -f (b))) ∈ R 2 . If we put W 1 = (f (b), g(b), v 1 (b), v 2 (b)) and W 2 = (f (a), g(a), v 1 (a), v 2 (a)), then
It turns out that under certain technical conditions which we will precise below, (4.10) to show becomes an average of (4.11). To this end, we recall the Gelfand transform which is used in [START_REF] Carbonaro | Functional calculus for generators of symmetric contraction semigroups[END_REF] in a similar context. Namely, suppose that (Ω, µ) is a finite measure space. Denote Ω the maximal ideal space of the commutative C * -algebra L ∞ (Ω, µ). Then there is an isometric isomorphism, the Gelfand isomorphism

F : L ∞ (Ω, µ) → C( Ω) satisfying F(1) = 1, F(f • g) = F(f ) • F(g) and F(f ) = F(f ).
In particular, F is positivity preserving. We shall write in short F(f ) = f . Since Ω is a compact Hausdorff space, by the Riesz representation theorem, the measure µ is transported to some positive Radon measure μ on Ω such that

Ω f dµ = Ω f dμ for f ∈ L ∞ (Ω, µ). Moreover, every f ∈ L ∞ ( Ω, μ) has a representative in C( Ω), so that L ∞ ( Ω, μ)
and C( Ω) coincide as Banach spaces.

Lemma 4.9 Suppose that (Ω, µ) is a finite measure space, so that the above Gelfand isomor-

phism exists. Let f ∈ L ∞ (Ω), D = {z ∈ C : |z| f ∞ } and G : D → C a continuous function. Then G(f ) = G( f ). Similarly, let f, g, v 1 , v 2 ∈ L ∞ (Ω) such that (f (x), g(x), v 1 (x), v 2 (x)) ∈ D ε Q for some ε > 0 and Q 1, and all x ∈ Ω. Here D ε Q is the domain of the Bellman function from Lemma 3.1. Let G : D ε Q → C be a continuous function. Then ( f (y), ĝ(y), v1 (y), v2 (y)) ∈ D ε Q for any y ∈ Ω and G(f, g, v 1 , v 2 ) = G( f , ĝ, v1 , v2 ).
Proof : The first statement is standard. Indeed, since D is compact, G can be approximated uniformly on D by polynomials P n in z, z. Now the fact that the Gelfand isomorphism is multiplicative and involutive yields P n (f ) = P n ( f ). Then

G(f ) -P n (f ) L ∞ ( Ω,μ) = G(f ) -P n (f ) L ∞ (Ω,µ) G -P n L ∞ (D) f L ∞ (Ω) → 0 as n → ∞.
On the other hand,

G( f ) -P n ( f ) L ∞ ( Ω,μ) G -P n L ∞ (D) f L ∞ (Ω,µ) → 0 as n → ∞.
Combining the two convergences yields the first statement.

For the second statement, note first that (f,

g, v 1 , v 2 ) ∈ D ε Q restates as ε v 1 , v 2 1 ε and 1 w Q with w = v 1 v 2 .
Since F is involutive, we deduce that also v1 , v2 are real valued. Since F is an isometry (on the L ∞ level), we have v1 , v2 1 ε and ŵ = v1 v2 Q. For the lower estimates, note that vk -ε = v k -ε 0 since F is positivity preserving. Similarly, ŵ 1. Thus, ( f , ĝ, v1 , v2 ) takes its in D ε Q , too. Now take again a sequence of polynomials P n in 6 commuting variables z f , z f , z g , z g , x 1 , x 2 where z f , z g ∈ C and

x 1 , x 2 ∈ R, approximating G uni- formly on D ε Q ∩ Ran(f, g, v 1 , v 2 ) ∪ Ran( f , ĝ, v1 , v2 ) . We have P n (f, g, v 1 , v 2 ) = P n ( f , ĝ, v1 , v2 ), G(f, g, v 1 , v 2 ) = lim n P n (f, g, v 1 , v 2 ) and G( f , ĝ, v1 , v2 ) = lim n P n ( f , ĝ, v1 , v2
). Thus, the second statement follows as was done for the first one.

We will need the following proposition from [7, Lemma 30]. Proposition 4.10 Let (Ω, µ) be a finite measure space and T a submarkovian operator on (Ω, µ) in the sense of Definition 2.1. Then there exists a positive symmetric Radon measure

m T on Ω × Ω such that Ω T f (x)g(x)dµ(x) = Ω× Ω f (x)ĝ(y)dm T (x, y) (f, g ∈ L ∞ (Ω)).
Here, by a symmetric measure we mean that dm T (x, y) = dm T (y, x). Proposition 4.11 Let (Ω, µ) be a finite measure space and T a submarkovian operator on (Ω, µ). Then for any f, g ∈ L ∞ (Ω) and real valued

v 1 , v 2 ∈ L ∞ (Ω) with 1 v 1 (x) • v 2 (x) Q and ε v 1 (x), v 2 (x) 1 ε , the estimate (4.10) holds with a universal constant C < ∞, that is, Ω (Id -T )f • gdµ CQ Ω ∂ x B(f, g, v 1 , v 2 )(Id -T )f (4.16) + ∂ y B(f, g, v 1 , v 2 )(Id -T )g +∂ r B(f, g, v 1 , v 2 )(Id -T )v 1 + ∂ s B(f, g, v 1 , v 2 )(Id -T )v 2 dµ] .
Proof : The idea of the proof, stemming from [START_REF] Carbonaro | Functional calculus for generators of symmetric contraction semigroups[END_REF], is to use the representation of T by the symmetric measure m T from Proposition 4.10 and then to integrate over the estimate obtained in Proposition 4.8. First, we decompose (4.17)

Ω (Id -T )f • gdµ = Ω (Id -T (1)Id)f • gdµ + Ω (T (1)Id -T )f • gdµ.
The first integral can be considered as an error term and will be controlled through the estimate (3.5). We start with the second integral. Note that according to Proposition 4.10,

Ω (T (1)Id -T )f • gdµ = Ω T (1)(x)f (x)g(x)dµ(x) - Ω T f (x)g(x)dµ(x) = Ω× Ω 1 • f (y)ĝ(y)dm T (x, y) - Ω× Ω f (x)ĝ(y)dm T (x, y) = 1 2 Ω× Ω f (x)ĝ(x) + f (y)ĝ(y)dm T (x, y) - 1 2 Ω× Ω f (x)ĝ(y) + f (y)ĝ(x)dm T (x, y) = 1 2 Ω× Ω( f (x) -ĝ(x))( f (y) -ĝ(y))dm T (x, y) = 1 2 Ω× Ω {x,y} G f • ĝdν x,y dm T (x, y).
Here we have used the symmetry of the measure m T . On the other hand, according to Lemma 4.9 and Proposition 4.10,

Ω ∂ x B(f, g, v 1 , v 2 )(T (1)Id -T )f + ∂ y B(f, g, v 1 , v 2 )(T (1)Id -T )g + ∂ r B(f, g, v 1 , v 2 )(T (1)Id -T )v 1 + ∂ s B(f, g, v 1 , v 2 )(T (1)Id -T )v 2 dµ = Ω× Ω ∂ x B( f , ĝ, v1 , v2 )(x) f (x) -∂ x B( f , ĝ, v1 , v2 )(y) f (x) 
+ ∂ y B( f , ĝ, v1 , v2 )(x)ĝ(x) -∂ y B( f , ĝ, v1 , v2 )(y)ĝ(x) + ∂ r B( f , ĝ, v1 , v2 )(x)v 1 (x) -∂ r B( f , ĝ, v1 , v2 )(y)v 1 (x) + ∂ s B( f , ĝ, v1 , v2 )(x)v 2 (x) -∂ s B( f , ĝ, v1 , v2 )(y)v 2 (x)dm T (x, y) = 1 2 Ω× Ω {x,y} ∂ x B( f , ĝ, v1 , v2 )G f + ∂ y B( f , ĝ, v1 , v2 )Gĝ + ∂ r B( f , ĝ, v1 , v2 )Gv 1 + ∂ s B( f , ĝ, v1 , v2 )Gv 2 dν x,y dm T (x, y).
Noting that ε v1 , v2 1 ε and that 1 v1 v2 Q, we deduce from Proposition 4.8 together with an integration over Ω × Ω, and the above that

Ω (T (1)Id -T )f • gdµ CQ Ω ∂ x B(f, g, v 1 , v 2 )(T (1)Id -T )f (4.18) + ∂ y B(f, g, v 1 , v 2 )(T (1)Id -T )g + ∂ r B(f, g, v 1 , v 2 )(T (1)Id -T )v 1 + ∂ s B(f, g, v 1 , v 2 )(T (1)Id -T )v 2 dµ.
In other words, the second integral of the right hand side in (4.17) is estimated. We proceed to the first integral of the right hand side in (4.17). According to (3.5), we have the pointwise estimate

[∂ x B(f, g, v 1 , v 2 ) • f + ∂ y B(f, g, v 1 , v 2 ) • g + ∂ r B(f, g, v 1 , v 2 ) • v 1 + ∂ s B(f, g, v 1 , v 2 ) • v 2 ] c Q |f • g|.
Multiplying this inequality pointwise with the positive function 1 -T (1) and then integrating over Ω yields

Ω ∂ x B(f, g, v 1 , v 2 ) • (1 -T (1))f + ∂ y B(f, g, v 1 , v 2 ) • (1 -T (1))g (4.19) +∂ r B(f, g, v 1 , v 2 ) • (1 -T (1))v 1 + ∂ s B(f, g, v 1 , v 2 ) • (1 -T (1))v 2 dµ] c Q Ω |(1 -T (1))f • g|dµ c Q Ω (1 -T (1))f • gdµ .
Summing the above estimates (4.18) and (4.19) for the first and the second integral in (4.17), we obtain

Ω (Id -T )f gdµ Ω (Id -T (1)Id)f gdµ + Ω (T (1)Id -T )f gdµ CQ Ω ∂ x B(f, g, v 1 , v 2 )(Id -T )f + ∂ y B(f, g, v 1 , v 2 )(Id -T )g + ∂ r B(f, g, v 1 , v 2 )(Id -T )v 1 + ∂ s B(f, g, v 1 , v 2 )(Id -T )v 2 dµ.
Thus, we proved (4.16).

We are now in the position to prove (4.10) in its general form, and thus to conclude the proof of Theorem 4.3. Proposition 4.12 Let (Ω, µ) be a σ-finite measure space and T a submarkovian operator on (Ω, µ). Then for any f, g

∈ L 1 (Ω) ∩ L ∞ (Ω) and real valued v 1 , v 2 ∈ L ∞ (Ω) with 1 v 1 (x) • v 2 (x) Q and ε v 1 (x), v 2 (x) 1
ε , the estimate (4.10) holds, that is

Ω (Id -T )f • gdµ CQ Ω ∂ x B(f, g, v 1 , v 2 )(Id -T )f (4.20) + ∂ y B(f, g, v 1 , v 2 )(Id -T )g +∂ r B(f, g, v 1 , v 2 )(Id -T )v 1 + ∂ s B(f, g, v 1 , v 2 )(Id -T )v 2 dµ] .
Proof : Since Ω is σ-finite, we can write Ω = n∈N Ω n with Ω n an increasing sequence of measurable sets of finite measure. Let f, g ∈ L 1 (Ω) ∩ L ∞ (Ω) and put f n = 1 Ωn f and similarly g n , v 1,n , v 2,n . We note that T n = 1 Ωn T 1 Ωn is again a submarkovian operator, acting on (Ω n , µ| Ωn ) of finite measure. Also, (Id -T n )f n = 1 Ωn (Id -T )f n and similarly for g, v 1 and v 2 . Thus, according to Proposition 4.11, the estimate (4.20) holds with f, g, v 1 and v 2 replaced by f n , g n , v 1,n and v 2,n and Ω replaced by Ω n . We have pointwise and L 2 dominated convergence of f n → f and g n → g, so these are convergences in L 2 . Thus, Ωn (Id -T )f n g n dµ → Ω (Id -T )f gdµ. We argue similarly for the right hand side of (4.20), noting that

∂ k B(f n , g n , v 1,n , v 2,n ) converges to ∂ k B(f, g, v 1 , v 2 ) in L 2 for k = x,
y using Lemma 3.4 and in L 1 for k = r, s using Lemma 3.3, together with the following reasoning:

v 1,n converges to v 1 weak * in L ∞ (Ω). Then, writing w = ∂ r B(f, g, v 1 , v 2 ) ∈ L 1 (Ω), we have 1 Ωn (Id -T )(1 Ωn v 1 ), w L ∞ ,L 1 = v 1 , 1 Ωn (Id -T )(1 Ωn w) → v 1 , (Id -T )w = (Id -T )v 1 , w ,
since a subsequence of (Id -T )(1 Ωn w) converges pointwise and dominated in L 1 (Ω) to (Id -T )(w). Use the same reasoning for v 2,n and ∂ s B(f, g, v 1 , v 2 ).

Proof -conclusion of Theorem 4.3 : According to Proposition 4.12, estimate (4.10) holds for f, g ∈ L 1 (Ω) ∩ L ∞ (Ω) and T = T t . Dividing by t and letting t → 0+ yields (4.9). Since T t leaves L 1 (Ω) ∩ L ∞ (Ω) invariant, we deduce that for these f and g,

| AT t f, T t g | -CQE (t).
Integrating over t ∈ (0, ∞) yields in view of the lower and upper estimate of the Bellman function that

∞ 0 | AT t f, T t g |dt CQ(lim inf r→0+ E(r) -lim sup s→∞ E(s)) CQ lim inf r→0+ E(r) Q lim inf r→0+ Ω |T r f | 2 (T r (w -1 )) -1 dµ + Ω |T r g| 2 (T r w) -1 dµ Q A 2 (w) f 2 L 2 (Ω,wdµ) + g 2 L 2 (Ω,w -1 dµ) .
Here we have used the assumption lim t→0 T t (w ±1 )(x) = w ±1 (x) almost everywhere in the last estimate in the case of alternative assumption 2. In case of alternative assumption 1., we have lim n→∞ T tn (w ±1 )(x) = w ±1 (x) almost everywhere along a sequence t n → 0+, since then T t (w ±1 ) → w ±1 in L 1 (Ω), which allows still to conclude as above. Changing f λf and g λ -1 g and optimizing in λ > 0 yields the desired bilinear estimate

∞ 0 | AT t f, T t g |dt CQ f L 2 (Ω,wdµ) g L 2 (Ω,w -1 dµ) .
To replace the restriction f, g

∈ L 1 (Ω, µ) ∩ L ∞ (Ω, µ) by the requirement f ∈ L 2 (Ω, µ) ∩ L 2 (Ω, wdµ) and g ∈ L 2 (Ω, µ) ∩ L 2 (Ω, w -1 dµ), we use a standard approximation f n , g n ∈ L 1 (Ω, µ) ∩ L ∞ (Ω, µ) with |f n | |f | and |g n |
|g|, and pointwise convergence f n → f and g n → g. Then we have AT t f = lim n AT t f n and T t g = lim n T t g n in L 2 (Ω), so that lim n AT t f n , T t g n = AT t f, T t g . Then by dominated convergence, for 0 < t 0 < t 1 < ∞,

t1 t0 | AT t f, T t g |dt = lim n t1 t0 | AT t f n , T t g n |dt CQ lim n f n L 2 (Ω,wdµ) g n L 2 (Ω,w -1 dµ) = CQ f L 2 (Ω,wdµ) g L 2 (Ω,w -1 dµ) .
We can now let t 0 → 0+ and t 1 → ∞ to conclude.

Let us now indicate the adaptation to the case of the alternative hypothesis 3. In this case, in order to have the functional E(t) differentiable, we have to modify the involved weight functions. That is, we let for given h > 0 the weights

v = 1 h h 0 T s (w -1 )ds, w = 1 h h 0 T r wdr.
Then by classical semigroup theory, v and w belong to D(A ∞ ). Moreover, ε v, w 1 ε . We now leverage the local diffusion property to enframe T t v • T t w. Namely, we have, as soon as

h t, T t v • T t w = 1 h h 0 T t+s (w -1 )ds • 1 h h 0 T t+r wdr = 1 h 2 h 0 h 0 T t+s (w -1 )T t+r wdsdr = 1 h 2 h 0 r 0 T t+s (w -1 )T t+r wdsdr + 1 h 2 h 0 s 0 T t+s (w -1 )T t+r wdrds 1 h 2 h 0 r 0 T R(t+r) (w -1 )T R(t+r) wdsdr + 1 h 2 h 0 s 0 T R(t+s) (w -1 )T R(t+s) wdrds Q A 2 (w) 1 h 2 h 0 r 0 1dsdr + Q A 2 (w) 1 h 2 h 0 s 0 1drds = Q A 2 (w).
In the same manner, we estimate from below

T t v • T t w = 1 h 2 h 0 r 0 T t+s (w -1 )T t+r wdsdr + 1 h 2 h 0 s 0 T t+s (w -1 )T t+r wdrds 1 h 2 h 0 r 0 T 1 R (t+s) (w -1 )T 1 R (t+s) wdsdr + 1 h 2 h 0 s 0 T 1 R (t+r) (w -1 )T 1 R (t+r) wdrds 1 h 2 h 0 r 0 1dsdr + 1 h 2 h 0 s 0 1drds = 1.
Thus, defining Q = CQ A 2 (w) and multiplying v with a constant, as we did in the case of the alternative hypotheses 1 and 2, we get 2 T t vT t w Q/2 for h t. We define the functional

E(t) = Ω B(T t f, T t g, T t v, T t w)dµ (t h)
and deduce from Lemma 4.1 that E is differentiable with derivative given by (4.2). Going along the same lines as in the case of the alternative hypotheses 1 and 2, we deduce that

-E(t) c Q | AT t f, T t g | (t h)
and thus that

∞ h | AT t f, T t g |dt CQ T h f 2 L 2 (Ω,(T h v) -1 dµ) + T h g 2 L 2 (Ω,(T h w) -1 dµ) .
Letting h → 0+, the left hand side converges to ∞ 0 | AT t g, T t g |dt. Moreover, according to the assumption of Theorem 4.3, T h v converges pointwise almost everywhere to w -1 . Also

|T h f | 2 → |f | 2 in L 1 (Ω), so converges pointwise almost everywhere and L 1 dominated, along a sequence h = h k → 0. It follows that T h k f 2 L 2 (Ω,(T h k v) -1 dµ) → f 2 L 2 (Ω,wdµ) .
In the same manner, there exists a subsequence

h l = h k l such that T h l g L 2 (Ω,(T h l w) -1 dµ) → g L 2 (Ω,w -1 dµ) . We infer that ∞ 0 | AT t f, T t g |dt CQ f 2 L 2 (Ω,wdµ) + g 2 L 2 (Ω,w -1 dµ) .
We conclude the proof with the optimization f λf and g λ -1 g and the approximation of L 2 functions by L 1 ∩ L ∞ functions as we did in the case of alternative hypothesis 1 and 2 above. Proposition 4.13 Let (T t ) t 0 be a markovian semigroup on (Ω, µ). Assume one of the following alternative conditions.

1. The measure space is finite, µ(Ω) < ∞, or 2. For any t > 0, T t maps L ∞ (Ω) into the domain D(A ∞ ) of the w * L ∞ realization of A, or 3. (T t ) t 0 satisfies the local diffusion from Definition 4.2.

In case 2. and 3. above, assume moreover that for any v ∈ L ∞ (Ω), T t v(x) → v(x) as t → 0+ µ-almost everywhere. Assume that the weight w satisfies w δ ∈ Q A 2 for some δ > 1. Then A has an H ∞ (Σ θ ) calculus on L 2 (Ω, wdµ) for some θ < π 2 and in particular, the analytic semigroup T z extends boundedly to L 2 (Ω, wdµ) for | arg z| < π 2 -θ, and A has maximal regularity on L 2 (Ω, wdµ).

Proof : Corollary 4.4 yields that A is π 2 -sectorial on L 2 (Ω, w δ dµ) and has an H ∞ (Σ σ ) calculus for any σ > π 2 . Moreover, by self-adjointness, A is 0-sectorial on L 2 (Ω, µ) and has an H ∞ (Σ σ ) calculus for any σ > 0. Note that the spaces interpolate (complex) and we have L 2 (Ω, wdµ) = [L 2 (Ω, µ), L 2 (Ω, w δ dµ)] 

(A) = µ(A ∩ Ω) + δ A (∞) on Ω . Then we put for f = f | Ω + f (∞)δ ∞ ∈ L ∞ (Ω ) and t 0 (5.1) S t (f )(x) = T t (f | Ω )(x) + f (∞)(1 -T t (1))(x) : x ∈ Ω f (∞) : x = ∞.
It is easy to check that S t is a positive semigroup 1 on L ∞ (Ω ) and that moreover, S t (1) = 1. Thus S t are contractions on L ∞ (Ω ). Note however that S t is in general no longer self-adjoint or even defined on L p (Ω ) for p < ∞. If w : Ω → (0, ∞) is a weight, we define the characteristic associated with S t by

QA 2 (w) = sup t>0 ess-sup x∈Ω S t (w )(x)S t (w -1 )(x),
where w (x) = w(x) for x ∈ Ω and w (∞) = 1. Note that even if w has support only in Ω, the characteristic QA 2 (w) is in general larger than Q A 2 (w). As in the markovian case, we will need the following lemma on differentiability of the Bellman functional. Q . Let (Ω, µ) be a σ-finite measure space, (T t ) t 0 a submarkovian semigroup on Ω and f, g ∈ L 1 (Ω) ∩ L ∞ (Ω). Consider the one point addition Ω = Ω ∪ {∞} and the amplified semigroup (S t ) t 0 associated with (T t ) t 0 , as above. Let further v, w ∈ L ∞ (Ω ) with ε v, w 1 ε and 2 S t vS t w Q/2 for all t belonging to some interval (t 0 , t 1 ) ⊆ (0, ∞). Assume one of the following conditions.

1. The measure space is finite, i.e. µ(Ω) < ∞, or 2. T t (v| Ω ), T t (w| Ω ), T t (1 Ω ) belong to D(A ∞ ) for t ∈ (t 0 , t 1 ).

Define the functional

E(t) = Ω B(T t f (x), T t g(x), S t v(x), S t w(x))dµ(x) (t ∈ (t 0 , t 1 )).
Then E(t) is differentiable for t ∈ (t 0 , t 1 ), and we have

-E (t) = [ Ω ∂ x B(T t f, T t g, S t v, S t w)AT t f + ∂ y B(T t f, T t g, S t v, S t w)AT t g (5.2) + ∂ r B(T t f, T t g, S t v, S t w)(AT t (v| Ω ) -v(∞)AT t 1) + ∂ s B(T t f, T t g, S t v, S t w)(AT t (w| Ω ) -w(∞)AT t 1)dµ].
1. We do not need any continuity assumption of t → St.

Proof : Observe that 1 h (S t+h (v) -S t v) = 1 Ω 1 h (T t+h (v| Ω ) -T t (v| Ω )) + v(∞) 1 h (T t 1 -T t+h 1) → 1 Ω {-AT t (v| Ω ) + v(∞)AT t (1)} (h → 0+),
and the same formula for w in place of v. This convergence holds in L 1 (Ω) under the first assumption, and in L ∞ (Ω) with respect to w * topology under the second assumption. In particular, under the second assumption, we have 

S t+h v -S t v L ∞ (Ω) Ch → 0 (h → 0+).
(w) < ∞. Then there exists a constant C < ∞ such that for any f ∈ L 2 (Ω, µ) ∩ L 2 (Ω, wdµ) and g ∈ L 2 (Ω, µ) ∩ L 2 (Ω, w -1 dµ), we have ∞ 0 | AT t f, T t g |dt C QA 2 (w) f L 2 (Ω,wdµ) g L 2 (Ω,w -1 dµ) .
Proof : We proceed in a similar manner to Theorem 4.3. We let w be the extended weight w (x) = w(x) if x ∈ Ω and w (∞) = 1. Again, due to Lemma 2.16, it suffices to assume that the weight w satisfies ε w 1 2ε and thanks to positivity of S t and the fact that S t (1) = 1, we will then also have ε S t (w ), S t (w -1 ) 1 2ε . Assume the alternative assumption 1. or 2. above. Put v = 2(w ) -1 and Q = 4 QA 2 (w), so that 2 S t vS t w Q/2. Then for f, g as in the theorem, we define the functional

E(t) = Ω B(T t f, T t g, S t v, S t (w ))dµ.
As in the proof of Theorem 4.3, it will suffice to prove for f, g ∈ L 2 (Ω) and t > 0 that (5.3)

Ω AT t f • T t gdµ -CQE (t).
Indeed, then we use

lim inf r→0+ E(r) C lim inf r→0+ T r f 2 L 2 (Ω,Sr(v) -1 dµ) + T r g 2 L 2 (Ω,Sr(w ) -1 dµ) C f 2 L 2 (Ω,wdµ) + g 2 L 2 (Ω,w -1 dµ) ,
since S r (v)(x) → v(x) + 0 and S r (w )(x) → w(x) + 0 for a.e. x ∈ Ω. We have according to (5.2)

-E (t) = Ω ∂ x B(T t f, T t g, S t v, S t (w ))AT t f + ∂ y B(T t f, T t g, S t v, S t (w ))AT t g + ∂ r B(T t f, T t g, S t v, S t (w ))(AT t (v| Ω ) -v(∞)AT t 1) + ∂ s B(T t f, T t g, S t v, S t (w ))(AT t (w) -w(∞)AT t (1))dµ,
Replace first, as in the proof of Theorem 4.3, T t f , T t g, S t v, S t (w ) by generic f, g ⊆ L 2 (Ω) and

v 1 , v 2 ∈ L ∞ (Ω ) with 1 v 1 (x)v 2 (x) Q and ε v 1 (x), v 2 (x) 1 ε . Then replacing A by 1 t (Id -T t ), it will then suffice to show for f, g ∈ L ∞ (Ω) ∩ L 1 (Ω), Ω (Id -T t )f • gdµ CQ Ω ∂ x B(f, g, v 1 , v 2 )(Id -T t )f + ∂ y B(f, g, v 1 , v 2 )(Id -T t )g (5.4) + ∂ r B(f, g, v 1 , v 2 )(Id -S t )v 1 + ∂ s B(f, g, v 1 , v 2 )(Id -S t )v 2 dµ.
According to (5.1), we decompose the right hand side of (5.4) into

CQ Ω ∂ x B(f, g, v 1 , v 2 )(Id -T t )f + ∂ y B(f, g, v 1 , v 2 )(Id -T t )g + ∂ r B(f, g, v 1 , v 2 )(Id -T t )v 1 + ∂ s B(f, g, v 1 , v 2 )(Id -T t )v 2 dµ + CQ Ω ∂ r B(f, g, v 1 , v 2 )v(∞)(T t (1) -1) + ∂ s B(f, g, v 1 , v 2 )w(∞)(T t (1) -1)dµ.
Note that the first term is indeed minorised by | (Id -T t )f, g |, according to Proposition 4.12 (note that we had allowed T to be a submarkovian operator in this proposition). The second term is positive, since T t (1) -1 0 and ∂ r B, ∂ s B 0, according to property (3.4). Thus, (5.4) and ( 5.3) are shown, and Theorem 5.2 follows in the case of the alternative assumptions 1 or 2.

In case of the alternative assumption 3., we proceed as in the proof of Theorem 4.3. We define on Ω, v = 1 2 (w). The rest of the proof goes along the same lines as the end of the proof of Theorem 4.3, with the modified functional E(t) = Ω B(T t f, T t g, S t v, S t w)dµ as above.

Corollary 5.3 Let (T t ) t 0 be a submarkovian semigroup on some σ-finite measure space (Ω, µ). Assume one of the following alternative conditions. 1. The measure space is finite, µ(Ω) < ∞, or 2. For any t > 0, T t maps L ∞ (Ω) into the domain D(A ∞ ) of the w * L ∞ realization of A, or 3. The amplified semigroup (S t ) t 0 on Ω satisfies the local diffusion from Definition 4.2 and

1 Ω ∈ D(A ∞ ).
In case 2. and 3. above, assume moreover that for any

v ∈ L ∞ (Ω), T t v(x) → v(x) as t → 0+ µ-almost everywhere. Let J > 1.
Then there exists a constant C J depending only on J such that for any weight w : Ω → (0, ∞) with QA 2 (w) < ∞, we have 

m(A) L 2 (Ω,wdµ)→L 2 (Ω,wdµ) C J QA 2 (w) |m(0)| + m H ∞ (
Ω ∈ D(A ∞ ).
In case 2. and 3. above, assume moreover that for any v ∈ L ∞ (Ω), T t v(x) → v(x) as t → 0+ µ-almost everywhere. Assume that the weight w satisfies w δ ∈ QA 2 for some δ > 1. Then A has an H ∞ (Σ θ ) calculus on L 2 (Ω, wdµ) for some θ < π 2 and in particular, the analytic semigroup T z extends boundedly to L 2 (Ω, wdµ) for | arg z| < π 2 -θ, and A has maximal regularity on L 2 (Ω, wdµ).

Proof : The proof is the same as that of Proposition 4.13.

Negative results: tensor powers of the two-point semigroup

Our result from Corollary 4.4 showed that any markovian semigroup satisfying technical conditions has an H ∞ (Σ θ ) calculus on weighted L 2 space for any θ > π 2 and any Q A 2 weight w, and that moreover, the dependence of the norm of this H ∞ calculus is linear in the Q A 2 (w) constant. The question arises whether the angle θ can be lowered in this result. In this section, we show the partial negative result in Theorem 6.1 below. We recall here the definition of the Hörmander spectral multiplier class for a parameter s > 0: (6.1)

H s = m ∈ L 1 loc (R + ) : m H s = sup t>0 ηm(t•) W ∞ s (R) < ∞ ,
where W 2 ∞ (R) stands for the usual Sobolev space and η is any non-zero cut-off function from C ∞ c (0, ∞). Note that H s functional calculus is related to H ∞ (Σ θ ) functional calculus for angles θ → 0 according to [10, Theorem 4.10]. Namely, if a sectorial operator A has a H s functional calculus for some fixed s > 0, then it has a H ∞ (Σ θ ) calculus for any θ ∈ (0, π), and for any s > s there is a constant C > 0 such that (6.2) m(A) Cθ -s m H ∞ (Σ θ ) (m ∈ H ∞ 0 (Σ θ ), θ ∈ (0, π)).

Conversely, (6.2) implies that A has a H s calculus for any s > s . Thus, Theorem 6.1 below can be read as a failure of the weighted functional calculus from Corollary 4.4 when the angle θ is close to 0.

Theorem 6.1 There exists a markovian semigroup T t = exp(-tA) on a probability space and a Q A 2 weight w such that A does not have a Hörmander H s calculus for any s > 0 on weighted L 2 (w) space, that is, for no s > 0 and no C > 0 the estimate (6.3) m(A) L 2 (Ω,wdµ)→L 2 (Ω,wdµ) C ( m H s + |m(0)|) (m ∈ H s ) holds. In fact, (6.3) does not even hold for m(λ) = exp(-λz) with z ∈ Σ π 2 .

so that T L 2 (Ω0,w0dµ0)→L 2 (Ω0,w0dµ0) = M √ w0 T (M √ w0 ) -1 f L 2 (Ω0,µ0)→L 2 (Ω0,µ0) . Write S = M √ w0 T (M √ w0 ) -1 . The norm of S on unweighted space is well-known to be √ m, where m denotes the maximal eigenvalue of S * S. We have with T = T z and γ = e -2z S = 1 0 where we have used the following elementary Taylor series expansions (recall v = 1 + ε)

0 v • 1 2 1 + γ 1 -γ 1 -γ 1 + γ 1 0 0 1 v = 1 2 1 + γ 1 v (1 -γ) v(1 -γ) 1 + γ , so S * S = 1 4 
|1 + γ| 2 + v 2 |1 -γ| 2 β β |1 + γ| 2 + 1 v 2 |1 -γ| 2 , with β = 1 v (1 + γ)(1 -γ) + v(1 -γ)(1 + γ) = (v + 1 v )(1 -|γ| 2 ) + 2i(v -1 v ) (γ).
v 2 + 1 v 2 = 2 + 4ε 2 + o(ε 2 ), (v 2 - 1 v 2 ) 2 = 16ε 2 + o(ε 2 ), (v + 1 v ) 2 = 4 + 4ε 2 + o(ε 2 ), (v - 1 v ) 2 = 4ε 2 + o(ε 2 ).
Write in short

d γ = |1 -γ| 4 + (1 -|γ| 2 ) 2 + 4 (γ) 2 (1 -|γ| 2 ) 2 .
Then the above calculation continues with

S * S = 1 8 2|1 + γ| 2 + 2|1 -γ| 2 + (4ε 2 + o(ε 2 ))|1 -γ| 2 + 4(1 -|γ| 2 ) 1 + (ε 2 + o(ε 2 ))d γ = 1 8 2|1 + γ| 2 + 2|1 -γ| 2 + (4ε 2 + o(ε 2 ))|1 -γ| 2 + 4(1 -|γ| 2 ) 1 + 1 2 d γ (ε 2 + o(ε 2 )) = 1 + 1 8 4|1 -γ| 2 + 1 2 d γ (ε 2 + o(ε 2 )),
where we have used that 2|1 + γ| 2 + 2|1 -γ| 2 + 4(1 -|γ| 2 ) = 8. Take now the square root of S * S and use (again) the asymptotics √ 1 + x = 1 + 1 2 x + o(x) to obtain (6.7). We now use (6.7) to produce a lower estimate taylored for an application to Theorem 6.1. Lemma 6. [START_REF] Bergh | Interpolation spaces. An introduction[END_REF] Consider again the two-point semigroup from (6.4), and a weight w = (1, v 2 ) with v = 1 + ε. Then we have for z = re iφ with r > 0 and φ ∈ - Thus, in view of (6.7), we have e -zG L 2 (w)→L 2 (w) = 1 +

1 16 16r 2 + 1 2 • 1 + tan 2 (φ) + o r (1) ε 2 + o ε (ε 2 ) = 1 + 1 32 1 + tan 2 (φ) + o r (1) ε 2 + o ε (ε 2 ).
Putting the above intermediate results together, we are now in a position to prove the main result of this section. Proof of Theorem 6.1 : We take the spectral multiplier m(λ) = exp(-λz) with z = re iφ , where r > 0 (resp. φ ∈ (0, π 2 )) is sufficiently close to 0 (resp. to π 2 ) to be determined later. The counterexample will be the direct sum of tensor powers of the two-point semigroup as in Lemma 6.2. We pick a sequence of weights w n = 1, (1 + ε n ) 2 . We note first that there exists a constant C > 0 such that for any ε 0, we have Q G 2 (w) 1 + Cε 2 for the weight w = 1, (1 + ε) 2 . Indeed, we already know this if ε ε 0 for a certain 0 < ε 0 1, from the asymptotics Q G 2 (w) = 1 + ε 2 + o(ε 2 ). Then for ε ε 0 , we have Q G 2 (w) = ) 2

Q,

where Q can be chosen independent of N . Take now the semigroup T t = T (N ) t associated to Ω N 0 , µ ⊗N 0 and w (N ) as in Lemma 6.2. We estimate with this lemma together with (6.8) has total mass 2 N , so that µ is a probability measure. Take moreover the weight w = N ∈N w (N ) , that is, on each N -component, we have w| Ω N 0 = w (N ) . We also take the direct sum semigroup

T (N )
T t f (x N ) = T (N ) t (f | Ω N 0 )(x N )
, where T (N ) t is as above and f : N ∈N Ω N 0 → C, x N → f (x N ). It is not hard to check that (T t ) t is again markovian and that with respect to this semigroup, we have

Q A 2 (w) sup N ∈N Q A (N )

2

(w (N ) ) Q < ∞ according to (6.9). Moreover, for given z = re iφ with fixed r sufficiently close to 0 as above, but φ varying and approaching π 2 , we have for N tan 2 (φ) (6.11) T z L 2 (w)→L 2 (w) T (N ) z L 2 (w (N ) )→L 2 (w (N ) ) (6.10) e c tan 2 (φ) , where c does not depend on φ. Now if this markovian semigroup T t had a weighted Hörmander calculus on L 2 (Ω, wdµ), we would have T z L 2 (w)→L 2 (w) C(w) λ → e -λz H s , and the last quantity is bounded by ( π 2 -|φ|) -s ∼ = |tan(φ)| s according to [37, Lemma 3.9 (1)]. But no inequality e c tan 2 (φ) |tan(φ)| s can hold for all φ ∈ -π 2 , π 2 , so that we get a contradiction from (6.11).

Remark 6.5 Comparing Corollary 4.4 and Theorem 6.1, the question arises if for a certain θ between 0 and π 2 there is a H ∞ (Σ θ ) calculus result for any markovian semigroup on L 2 (Ω, wdµ) and any Q A 2 weight w. We say that θ ∈ (0, π) is a universal angle for weighted L 2 calculus if for any markovian semigroup satisfying the technical hypotheses of Corollary 4.4 and any Q A 2 weight w, there is a constant C w > 0 such that

m(A) L 2 (Ω,wdµ)→L 2 (Ω,wdµ) C w m H ∞ (Σ θ ) (m ∈ H ∞ 0 (Σ θ )).
According to Corollary 4.4, any θ > π 2 is a universal angle for weighted L 2 calculus. We conjecture that no angle θ < π 2 is a universal angle.

1 .

 1 Then (T t ) t 0 is called a submarkovian semigroup, if (a) T t extends boundedly to an operator on L p (Ω) for all p ∈ [1, ∞] and we have T t p→p 1 for any t 0 and p ∈ [1, ∞].

  on a set B of positive measure. Then passing to a smaller set of positive measure, we have |T (f g)(x)| 2 (1 + ε)T (|f | 2 )(x)T (|g| 2 )(x) for some ε > 0. We can assume that B has finite (positive) measure. Consider first the case that one of the two functions T (|f | 2 ), T (|g| 2 ) is equal to 0 on B, say T (|f | 2 ). We have 0 |φ B (|f g|)| 2 φ B (|f | 2 )φ B (|g| 2 ) = 0, so φ B (|f g|) = 0. Since T (|f g|) 0, it follows T (|f g|) = 0 on B, and by positivity of T , also that |T (f g)(x)| T (|f g|)(x) = 0 for x ∈ B.

  and in addition injective and has dense range [38, Proposition 15.2]. Here, R(A) stands for the range of A and Ker(A) for its kernel. The operator A 0 is called the injective part of A. For θ ∈ (0, π), let H ∞ (Σ θ ) = f : Σ θ → C : f analytic and bounded equipped with the uniform norm f ∞,θ = sup z∈Σ θ |f (z)|. Let further

Lemma 3. 5

 5 Let B be the Bellman function from Lemma 3.1 with domain D ε Q . For C > 0 there exists L = L(C, ε, Q) > 0 with the following property. Assume x, y ∈ R 2 with |x|, |y| C.

  s) and similar for ∂ s B 1 . Now we conclude for B 1 by the mean value theorem (note that we have assumed that the line segment between (r 1 , s 1 ) and (r 2 , s 2 ) lies in the domain D ε Q ), the Lipschitz constant popping up being clearly majorized by L(|x| 2 + |y| 2 ). The same argument works for the parts B 2 , B 3 , B 5 and B 6 .We turn to the most technical part B 4 . It is given by one of the three expressions |x| 2 r (if |y|r -|x|K > 0 and |x|s -|y|K 0), or |y| 2 s (if |y|r -|x|K 0 and |x|s -|y|K > 0) or B 4 (x, y, r, s) = H 4 (x, y, r, s, K) = |x| 2 s-2|x| |y|K+|y| 2 r rs-K 2

  and the derivatives ∂ x = ∂ x1 -i∂ x2 and ∂ y = ∂ y1 -i∂ y2 . Lemma 4.1 Let B be the Bellman function from Lemma 3.1 with domain D ε

Remark 4 . 7

 47 t+s w(x) = Ω p t+s (x, y)w(y)dµ(y) Ω p R(t+r) (x, y)w(y)dµ(y) = T R(t+r) w(x) as we wished. In Theorem 4.3 and Corollary 4.4, we assumed in two cases that for v ∈ L ∞ (Ω), we have pointwise convergence a.e. T t v(x) → v(x) as t → 0+.

Proposition 4 . 8

 48 Consider a two-point measure space Ω = {a, b} equipped with the measure ν a,b = δ a + δ b and the (negative) generator G = 1 -1 -1 1 of a markovian semigroup (given by

Lemma 5 . 1

 51 Let B be the Bellman function from Lemma 3.1 with domain D ε

h h 0

 0 S s (w ) -1 ds = 1 h h 0 T s (w -1 ) + 1 -T s (1)ds and w = 1 h h 0 S r (w )dr = 1 h h 0 T r w + 1 -T r (1)dr. Note that v| Ω , w| Ω belong to D(A ∞ ) since 1 ∈ D(A ∞ ) by assumption. As in the proof of Theorem 4.3, the local diffusion property implies that c1 S t vS t ( w) C QA

  2 (φ) + o r (1) ε 2 + o ε (ε 2 ).Proof : Since we shall have both asymptotics in r and ε, we distinguish the little o notations o r and o ε . In the course of the proof we shall pick z = re iφ , choose r sufficiently close to 0 and use (6.7). Namely, we have for r close to 0, γ = e -2re iφ = 1-2re iφ +o r (r). Then |1-γ| = 2r +o r (r) and 1-|γ| 2 = 1 -|1 -2re iφ + o r (r)| 2 = 1 -(1 -4r cos(φ) + o r (r)) = 4r cos(φ) + o r (r), as well as (γ) = -2r sin(φ) + o r (r). This yieldsd γ = 16r 4 + 16r 2 cos 2 (φ) + 16r 2 sin 2 (φ) + o r (r 2 ) 16r 2 cos 2 (φ) + o r (r 2 ) = r 2 cos 2 (φ)+ 1 + tan 2 (φ) + o r (1) = 1 + tan 2 (φ) + o r (1).

  Now assume that for a given N ∈ N the sequence (ε k ) k∈N = (ε to the above, the associated weight w (N ) = w

z L 2 . 1 2

 21 (w (N ) )→L 2 (w (N ) )Choose r sufficiently close to 0 to have o r (1) -1 here above. Moreover, for given z = re iφ , choose N so large that tan 2 (φ) ε .e. N tan 2 (φ), and that o ε ((ε(N ) k ) 2 ) is in force. Then we obtain log T (N ) z L 2 (w (N ) )→L 2 (w (N )) now the direct sum Ω = N ∈N Ω N 0 equipped with the sum measure µ = N ∈N 2N µ ⊗N 0 . Note that each µ ⊗N 0

  the statement of dense injection, we pass the problem from the sector Σ θ to the strip Str θ and thus have to show that H ∞ (Str θ ) → H ∞ (Str θ ; J) densely. That this is indeed an injection follows from[START_REF] Kriegler | Spectral multipliers, R-bounded homomorphisms and analytic diffusion semigroups[END_REF] Remark 4.16]. For the density, we let f ∈ H ∞ (Str θ ; J) be given and take f n = f *

	n k=-n φk , where (φ n ) n is a dyadic partition of unity as above.
	Then according to [36, Lemma 4.15 (2)], f n (±iθ + (•)) converges to f in B J ∞,1 . Moreover,
	according to [20, p. 416], we have g H ∞ (Str θ )

  Str ω ). It suffices now to show that for θ > ω

	(2.4)	g(B)	C g H ∞ (Strω;J) (g ∈ H ∞ (Str θ )).
	Let (φ n ) n∈Z be a dyadic partition of unity as above. According to the Paley-Wiener theorem,
	see also [10, Proof of Theorem 4.10], g * φn is an entire function, and moreover, for b > 0,
	sup	|g * φn (x + iy)| exp(b2 |n|+1 ) g * φn L ∞ (R±iω) .
	x∈R, |y-(±ω)| b		
	Choose now b = 2 -|n| . Then using the maximum principle to bound
	sup	|g * φn (x + iy)|	sup	|g * φn (x + iy)|,
	x∈R, |y| ω			x∈R, |y-(±ω)| 2 -|n|
	we obtain			
		sup	|g * φn (x + iy)| C g * φn L ∞ (R±iω) .
	x∈R, |y| ω+2 -|n|	

  r Thus, a large enough coefficient before B 1 will arrange for us the desired property in our function B.

	|x| 2 4r	5 2 and, using 1	rs we get -∂ s B 5 (V )s	|x| 2 4r	5 2 + |y| 2 s . Similarly,
	estimates hold for B 6 . Summarizing, we see that none of the arising terms from B 2 through B 6 exceed C |x| 2 r + |y| 2

s for a suitably large C.

  1.1 (see Theorem 4.3 and Corollary 4.4) and Proposition 1.3 (see Proposition 4.13). In the proof of the Main Theorem 4.3 of this section, the functional E from the following Lemma 4.1 involving the Bellman function from Section 3 plays an important rôle. After that, we shall define a technical condition assumed in the Main Theorem, that is the local diffusion (Definition 4.2). Then we state the main results, Theorem 4.3 and Corollary 4.4 on weighted L 2 functional calculus. In the subsequent remarks, we shall discuss the validity of their hypotheses in important examples. Afterwards, we prove Theorem 4.3, where the crucial estimate on the derivative of the functional E is split into several Propositions and Lemmas. Finally, we state and prove Proposition 4.13 on the angle reduction θ < π 2 and compare in Remark 4.15 our result with the literature [18, 23]. Recall for a markovian semigroup the domain D

  particular, local diffusion holds for the classical Gauss and Poisson semigroup on R d .

	Proof : We show the local diffusion under the more general Poisson estimates (put then
	s(r) = exp(-r) for Gaussian estimates). Take R = C-C+ and 0 Definition 4.2. Note first that µ(B(x, √ t + s)) ∼ = µ(B(x, R(t + r))) thanks to the doubling s r t as required in
	property. Then

  as t → 0+ pointwise almost everywhere (even locally uniformly). Consequently, going through the end of the proof of Theorem 4.3 and taking into account that the cut-off w n remains continuous if w is continuous, one sees that for Feller semigroups with one of the three alternative assumptions in Theorem 4.3 and continuous weights, Theorem 4.3 and Corollary 4.4 are valid. We refer to[6] for classical examples of Feller semigroups.

  1 δ[START_REF] Bergh | Interpolation spaces. An introduction[END_REF] 5.5.3 Theorem]. By Stein's interpolation[49], A is then ( 1 δ • π 2 )sectorial on L 2 (Ω, wdµ). Moreover, by complex interpolation, A has an H ∞ (Σ σ ) calculus on L 2 (Ω, wdµ) for any σ > max(0, π 2 ) = π 2 . The angle π 2 can then be reduced toθ 0 = 1 δ • π 2 < π 2 e.g.by the method of imaginary powers [31, Proof of Proposition 5.8]. Then A has an H ∞ (Σ θ ) calculus on L 2 (Ω, wdµ) for any θ > θ 0 . It is well-known that this implies that on L 2 (Ω, wdµ), the analytic semigroup angle is bigger or equal to π 2 -θ and that A has maximal regularity [38, 13]. Note that any H ∞ (Σ θ ) function for any θ ∈ (0, π) satisfies the Hörmander condition and m H s θ,s m ∞,θ . On the other hand, our result, Corollary 4.4 is stronger in respect that Q A 2 weights are admitted, whereas in [18, 23], one has to take the smaller class of weights belonging to Q class 2/r0 ⊂ Q class Corollary 4.4 applies according to Remarks 4.5 and 4.7. Note that in our setting, no Hörmander calculus result on weighted L 2 can be available in general, see Theorem 6.1.In Theorem 4.3, we assumed that (T t ) t 0 is a markovian semigroup, so that T t (1) = 1. It turns out that there is also a version of that theorem for submarkovian semigroups. So the main objective of this section is to prove Theorem 5.2 and Corollary 5.3. Let (T t ) t 0 be a submarkovian semigroup on (Ω, µ). Define Ω = Ω ∪ {∞} with some exterior cemetery point ∞ ∈ Ω. Define moreover the measure µ

	Remark 4.14 Note that if Ω = R n and the characteristic Q A 2 is equivalent to the spatial characteristic Q class 2 (see Remark 2.17), then according to [21, Theorem 2.7, p. 399], a weight w ∈ Q A 2 already satisfies w δ ∈ Q A 2 for some δ > 1. Thus, under the hypotheses of Corollary 4.4, Proposition 4.13 yields that for any Q A 2 weight w, A has an H ∞ (Σ θ ) calculus on L 2 (Ω, wdµ) for some θ < π 2 , and thus maximal regularity. t>0 ηm(t•) W ∞ s (R) < ∞ are admitted. Here, s > d 2 , where d is a doubling dimension of Ω, W ∞ s (R) stands for the usual Sobolev space and η is any C ∞ ⊂ Q A 2 (cf. c (0, ∞) function different from 0. 2 Remark 2.17). Indeed, 5 The positive π 2 angle result, submarkovian case

Remark 4.

[START_REF] Duong | H ∞ functional calculus of second order elliptic partial differential operators on L p spaces[END_REF] 

Assume that (Ω, dist, µ) is a space of homogeneous type and that the semigroup (T t ) t 0 satisfies Gaussian estimates (2.16) and is self-adjoint on L 2 (Ω). In [18, Theorem 3.2] [23, Theorem 4.2], a functional calculus for the (negative) generator A on weighted L p spaces is proved. If (T t ) t 0 is in addition markovian, then one can compare these results to ours. On the one hand, the results in

[18,[START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF] 

are stronger in respect that L p spaces with exponents p ∈ (r 0 , ∞) (for a certain r 0 ∈ [1, 2)) different from 2 are allowed and that non-holomorphic spectral multipliers m defined on [0, ∞) and satisfying a so-called Hörmander condition m H s = sup

  Now the rest of the proof goes the same lines as that of Lemma 4.1. Let (Ω, µ) be a σ-finite measure space and (T t ) t 0 a submarkovian semigroup. Assume one of the following alternative conditions.1. The measure space is finite, µ(Ω) < ∞, or 2. For any t > 0, T t maps L ∞ (Ω) into the domain D(A ∞ ) of the w * L ∞ realization of A, or 3. The amplified semigroup (S t ) t 0 on Ω satisfies the local diffusion from Definition 4.2 and 1

	Theorem 5.2

Ω ∈ D(A ∞ ).

In case 2. and 3. above, assume moreover that for any v ∈ L ∞ (Ω), T t v(x) → v(x) as t → 0+ µ-almost everywhere. Let moreover w : Ω → (0, ∞) be a weight with QA 2

  Let (T t ) t 0 be a submarkovian semigroup on (Ω, µ). Assume one of the following alternative conditions.1. The measure space is finite, µ(Ω) < ∞, or 2. For any t > 0, T t maps L ∞ (Ω) into the domain D(A ∞ ) of the w * L ∞ realization of A, or 3. The amplified semigroup (S t ) t 0 on Ω satisfies the local diffusion from Definition 4.2 and 1

	Proof : Copy the proof of Corollary 4.4, Theorem 5.2 replacing Theorem 4.3.
	Proposition 5.4	
	Σ π 2	;J) .
	40	

  ± (α -δ) 2 + 4|β| 2 , so that we obtain with choice of sign "+" here thatS * S L 2 (Ω0,µ0)→L 2 (Ω0,µ0) γ| 2 + (2 + 4ε 2 + o(ε 2 ))|1 -γ| 2 + (16ε 2 + o(ε 2 ))|1 -γ| 4 + 4(4 + 4ε 2 + o(ε 2 ))(1 -|γ| 2 ) 2 + 16 • (4ε 2 + o(ε 2 )) (γ) 2

						The eigenvalues
	of a positive matrix	α β β δ	are			
	1 2 α + δ = 1 8 2|1 + γ| 2 + (v 2 + 1 v 2 )|1 -γ| 2 + (v 2 -	1 v 2 ) 2 |1 -γ| 4 + 4(v +	1 v	) 2 (1 -|γ| 2 ) 2 + 4 • 4(v -	1 v	) 2 (γ) 2
	= 2|1 + = 1 8 1 8 2|1 + γ|					

2 + 2|1 -γ| 2 + (4ε 2 + o(ε 2 ))|1 -γ| 2 + 16(1 -|γ| 2 ) 2 + (ε 2 + o(ε 2 ))(16|1 -γ| 4 + 16(1 -|γ| 2 ) 2 + 16 • 4 (γ) 2 ) ,

  ε 2 . From this, we deduce for the tensor power weight w = w 1 ⊗ . . . ⊗ w n from Lemma 6.2 that

		1 4 2 + (1 + ε) 2 + 1 (1+ε) 2
	1 4 2 + 1 + 2ε + ε 2 + 1	1 4 2 + 1 + 2 ε0 ε 2 + ε 2 + 1 ε0 + 1 log(Q A 1 + 1 4 2 2 (w))

(w).
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We remind that the above theorem is in contrast with the positive result in Remark 4.15 for self-adjoint semigroups on spaces of homogeneous type satisfying Gaussian estimates and a restricted weight class.

The semigroup exhibiting the counter-example for the statement (6.3) is based on the twopoint semigroup that we have already encountered in Proposition 4.8, together with a tensor power extension of the semigroup. So we consider a two point space Ω 0 = {a, b} equipped with counting measure µ 0 = δ a + δ b . Consider moreover the operator

which generates the markovian semigroup

1 -e -2t 1 + e -2t . Lemma 6.2 For any n ∈ N, the above semigroup admits a tensor power extension to a markovian semigroup in the following way. We let w 1 = (u 1 , v 1 ), . . . , w n = (u n , v n ) be weights on Ω 0 . Then we put

where

We have that T t is a markovian semigroup on (Ω, µ). Moreover,

L 2 (Ω0,w k dµ0)→L 2 (Ω0,w k dµ0) , (6.5)

where Q A 2 stands for the weight characteristics with respect to the markovian semigroup T t .

Proof : It is easy to check that t → T t satisfies the semigroup property. Since all of the four entries of exp(-tG) in (6.4) are positive for any t 0, all the entries of T t are positive too, and

Self-adjointness of T t is again easy, so that T t is L 1 contractive and finally L p contractive for all p ∈ [1, ∞]. We infer that T t is a markovian semigroup on (Ω, µ). For the two claimed estimates, we observe that for a normalised function

Thus, (6.5) follows. For (6.6), we note

We claim that each of the n L ∞ norms above attains its supremum for t = ∞, so that we can swap sup t>0 and n k=1 above and thus deduce the first equality in (6.6). Indeed, if

, so that the first of the two coordinates of e -tG w 0 • e -tG (w -1 0 ) equals

The last quantity clearly attains its sup at t = ∞ where its value is 1 4 (2 + u v + v u ). Now the same calculation with exchanged roles of u and v works for the second coordinate. We deduce the first equality in (6.6), and in fact also the second equality.

The tensor power extension of Lemma 6.2 will be used to bootstrap lower estimates for the two-point semigroup on weighted L 2 space, to a lower estimate of the same kind, but with a better constant. We shall now establish such lower bounds on e -zG L 2 (w)→L 2 (w) (in terms of

). Proposition 6.3 Consider the markovian semigroup e -tG on (Ω 0 , µ 0 ) from (6.4). Let w 0 = (1, v 2 ) be a weight on Ω 0 with v = 1 + ε for some small ε > 0. Let z ∈ C + \[0, ∞). Then we have the following asymptotic formula for weighted norm of the analytic semigroup:

where γ = e -2z and

Proof : First we rewrite the norm on weighted L 2 space into a norm on unweighted L 2 space. To this end, consider the multiplication operator M √ w0 : L 2 (Ω 0 , µ 0 ) → L 2 (Ω 0 , µ 0 ), (f 1 , f 2 ) → (f 1 , vf 2 ). Then for any operator T on L 2 (Ω 0 , w 0 dµ 0 ), we have