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Abstract-- A new method for coronary artery tracking in 

biplane digital subtraction is presented. The dynamic tracking of 

non-rigid objects from two views is achieved using a 

generalization of Parametrically Deformable Models. 3D Fourier 

descriptors used for shape representation are obtained from the 

2D descriptors of the projections. A new constraint inferred from 

epipolar geometry is applied to the contour model. Direct 3D 

tracking is compared to the classical approach in two steps: 

independent 2D tracking in each of the two projection planes and 

3D reconstruction using the epipolar constraint. Convergence 

quality and accuracy of the 3D reconstruction are analyzed for 

several sequences showing different displacement amplitudes, 

deformation rates and image contrasts. 

 
Index Terms--– 3D reconstruction, biplane angiography, 

deformable contour model, dynamic tracking. 

I. INTRODUCTION 

HE recovery of 3D object features is an important 

application of stereoscopic vision. New developments 

involve the temporal dimension to enable motion estimation. 

Digital subtraction angiography provides imaging sequences 

on two different views. Subtraction itself is rarely applied for 

coronary arteries in interventional cardiology due to permanent 

movement of the heart and surrounding tissues. But non 

subtracted acquisitions may be used to track coronary arteries 

with more or less user interaction to obtain morphological and 

dynamic description of vascular trees [1]-[5]. They can be 

used in several ways: motion analysis [6], [7], optimal 

viewpoint determination [8]-[10] or as automatic delineation 

for the measurement of 3D densitometric content. Indeed, 

several works showed that spatiotemporal density variations 

inside the artery bed provide functional information like 

absolute blood flow velocity, and consequently stenosis ratio 

and coronary flow reserve [11]-[15]. Biplane angiography is 

for now the only imaging system that enables to record a short-

live contrast medium bolus at a high acquisition rate, while 

allowing to access to 3D geometry of the vessel centerline. 

Multi-slice CT [16], rotational angiography [17] and MRI 

techniques [18] are better designed to assess the full 3D 

geometry of a coronary artery tree than to perform vessel 

tracking, because one acquisition at a given time of the cardiac 

cycle requires ECG gating to overcome motion artifacts. In the 

case of biplane angiography, computerized tomography 
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techniques are unusable with only two views and when 

opacification is no longer stationary. Therefore, a computer 

vision approach is proposed in this paper, involving a new 3D 

contour model based on Fourier shape descriptors and epipolar 

constraint for non-rigid object tracking in order to minimize 

user interaction. This principle was already experimented for 

intravascular ultrasound (IVUS) catheter segmentation using a 

B-spline parameterization [19]. 

In 3D contour tracking processes, two stages are usual: 

 2D dynamic tracking in both projection planes (segment 

matching): the new 2D centerline is inferred from last location 

and intra and/or inter frame information. In a previous paper 

[20], we proposed a comparison of several deformable models 

to perform the first step. Classical Active Contour Models [21] 

are unable to track vessels reliably between two consecutive 

images when movement is greater than vessel radius. Results 

are somewhat improved by the use of velocity field estimation 

[22], [23], but constraints based on optical flow calculation are 

not valid in case of strong deformation as well. Instead of 

describing a contour with its exhaustive set of points, we used 

a limited set of shape descriptors. A deformable model, called 

the Parametrically Deformable Model, was first designed in 

[24]. We have successfully implemented it for coronary artery 

tracking. Robustness is increased by the fact that each point is 

implicated in global shape behavior and that pattern 

deformation is limited in spatial extent leading to a shape 

memory effect. 

*  3D reconstruction of vessel centerline (point matching). 

For methods based on motion detection, the estimated velocity 

field is used to pair points between the two projection views 

[3], [4], while other methods use constraints inferred from the 

epipolar geometry of the biplane system [25]. 

In the first part of this paper (paragraph II-A), the principle 

of 2D and 3D shape descriptions are introduced. Paragraph II-

B concerns the geometric attributes of the biplane system. In 

paragraph II-C, the 2D method in two distinct steps is 

described. The principle of Parametrically Deformable Models 

in two dimensions is presented. The point matching problem is 

considered from a different angle in that it does not require any 

reference point on the projected contours. This paper concerns 

the application of Parametrically Deformable Models to the 

real 3D dynamic tracking of a coronary artery. In paragraph II-

D, the deformable model is generalized to take into account 

the image information in both planes and the epipolar 

constraint. Advantages of the new description concern 

convergence robustness and 3D reconstruction precision 

thanks to a strong immunity towards image parasitic content 
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(noise, overlapping objects) and stereoscopic calibration 

inaccuracies. 

II. METHODS 

A.  Shape description 

The basic problem is to recover the 3D centerline of one 

artery segment during a whole angiographic sequence. Biplane 

digital angiography provides temporal sequences for two 

different incidences, thus it gives access to the 3D dynamic 

geometry, but it suffers from an intrinsic technical limitation: 

images on planes A and B are acquired in an interlaced way 

(Fig. 1). At time t of the acquisition on plane A (resp. B), the 

vessel projection At (resp. Bt) is determined, but the 

corresponding contour on the other plane Bt-1|t (resp. At|t+1) is 

unknown. Instead of time interpolating the missing images 

prior to reconstruction as in [26], the shape descriptors are 

approximated using linear interpolation as follows: 

  211 
 tttt

AAA  and   211 tttt
BBB  

. (1) 

Interpolation of shape descriptors is equivalent to 

interpolating contour points because of the linearity of discrete 

Fourier transform. Figure 2 gives a schematic overview of one 

3D contour, its corresponding projection on the existing image 

plane and the interpolated projection on the other image plane. 

The 3D contour corresponding to a vessel feature can be 

described by an exhaustive set of points, equally sampled 

along the length L. Each point location is uniquely determined 

by its arc length s along the contour: 

  LsszsysxC  0;)(),(),( . (2) 

Parametric representation affords the same shape 

information with only 3(N+1) parameters: 
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The choice of Fourier shape descriptors [27] eases the 

calculation of the parameter vectors px, py and pz. Coordinate 

functions x(s), y(s) and z(s) are expanded into Fourier series 

by means of discrete Fourier transform F (FFT algorithm). 

Only a few Fourier coefficients pi are needed because vessel 

shapes are smooth (N ranging from 10 to 20). The 

computation of the Fourier descriptors for an open shape 

requires double sampling of the contour in the following 

manner: 

 points 1 to M are the M sampled points numbered along 

the direction of blood flow, 

 points M+1 to 2M are the same points numbered in the 

reverse direction. 

The resulting function of coordinates versus arc length is 

symmetric relative to the coordinate s=L. Fourier coefficients 

are no longer complex numbers, but real quantities: 
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For the 2D projected contours, the same description has 

2(N+1) parameters with vectors pu and pv for u and v 

coordinates.  The contour coordinates are obtained from the 

Fourier descriptors by reverse discrete Fourier transform F-1. 

Zero padding is used to fill in the descriptor vector from N to 

L harmonics. 

B.  Biplane system description 

The biplane system is characterized by three different spaces 

for shape representation: two spaces of dimension 2 in each of 

the image planes and one space of dimension 3 corresponding 

to the world coordinate system. Two different reference 

coordinates may be used to locate a point in space: coordinates 

related to image plane A and coordinates related to image 

plane B. 

B PLANE                        SPACE               A          PLANE

),(),,(),,(),(
BA M)t,R(M BBBBBAAAAA vuzyxzyxvu  

 

 Let (iA, jA) and (iA, jA, kA) be the respective 2D and 3D 

reference coordinates of projection view A, where iA, jA, kA 

are orthogonal to each other. Let (iB, jB) and (iB, jB, kB) be the 

respective 2D and 3D reference coordinates of projection view 

B, where iB, jB, kB are orthogonal to each other. The 

transformation (R,t) is the 3D displacement (rotation matrix R 

and translation vector t) from a point mA
T = (xA, yA, zA) in the 

plane A coordinate system to a point mB
T = (xB, yB, zB) in the 

plane B coordinate system. The homogeneous coordinates 

M
~

of a given 3D point M in the world coordinate system and 

its homogeneous retinal coordinates Am~  and Bm~  are related 

by the perspective projection matrices PA and PB. We assume 

that 3D coordinates of M are expressed in the coordinate 

frame of plane A: 
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A and B are respective arbitrary scales for planes A and B, fA 

and fB, are the focal lengths on planes A and B. Au, Av, Bu 

and Bv are the horizontal and vertical scale factors, whose 

inverses characterize the size of the pixel in the world 

coordinate system. Finally, (uA0, vA0), (uB0, vB0) are the 

coordinates of the principal points, which are the orthogonal 

intersections of the optical axes with the image planes. For 

application to optimal viewpoint determination, the 

orientations of the planes should be relative to the world 

coordinate system (i, j, k); therefore, [I 0] and [R t] should be 

replaced in (5) by [RA tA] and [RB tB], the rigid transforms 

from the world system to the image planes A and B 

respectively (Fig. 2). 

The rotational and translational parameters can be 

determined from the angulation values provided along with the 

image data [8], which implies that the isocenter assumption 

holds. For higher accuracy, they are recovered using the 

essential matrix estimation from the knowledge of the retinal 

coordinates of eight or more points [29]-[31]. Such an 

algebraic method is rather constraining because an offline 

procedure is required, as well as for the correction of 
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pincushion distortion which is based on the recording of a 

rectangular grid and the bicubic interpolation of true 

coordinates to the whole image plane. This process is to be 

performed for every calibrated positions of the biplane system, 

since long-range time drift was proved to be negligible [32]. 

For higher convenience, correction could be extended to any 

intermediate position through an interpolation process [33]. 

C.  Two-dimensional tracking on projection views 

The 3D vascular structure recovery is performed in two 

independent steps: a segment matching problem and a point 

matching problem. The first step is solved by independently 

tracking 2D vessel projections in both planes. Contours on 

planes At and Bt are determined on the whole angiographic 

sequence. Contours At and Bt-1|t, and contours At|t+1 and Bt 

allow us to compute two consecutive vessel locations in space. 

Then the point matching problem consists in finding 

corresponding points on both segments. Coordinates of 3D 

points are inferred from coordinates of the matched points. 

1)  Segment matching 

Fourier descriptors are used to parameterize 2D contours by 

means of vector pu for decomposition of coordinates u and 

vector pv for coordinates v. The Parametrically Deformable 

Model as defined in [24] enables adjustment of the initial 

shape to the final one on the next image by the optimization of 

its shape descriptors. Each coefficient of vectors pu and pv is 

given a Gaussian distribution (means mu, mv and standard 

deviations u, v), so that the model is constrained to a 

particular overall shape, while allowing for deformations. 

Vessel deformation between two consecutive images is 

considered to be regular. At each step of the optimization 

problem, the sum of gray levels at the model points described 

by the parameter vectors pu and pv is calculated to search for 

intensity valleys. A compromise has to be made between 

minimization of this sum and preservation of the initial shape. 

For the image At(x,y), we have to maximize a cost function 

with respect to parameters pA = [pu
T pv

T]T: 
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A is the maximum gray level of the object of interest in 

plane A and nA
2 represents the weight between the first term 

of shape memory and the second term of image information. It 

is an equivalent of a signal-to-noise ratio that would 

characterize the influence of other objects and image noise 

sources encountered in the vessel search. When many parasitic 

objects occur in the projection field, we showed that the 

variance nA
2 must be high to encourage the memory effect. 

Reciprocally, when the vessel deformation is strong, it must be 

low to maximize the spatial extent of the object search. Poor 

results are obtained when low vessel contrast and strong 

deformation co-occur [20]. 

2)  Point matching 

The use of Eq. (1) gives two simultaneous projections of a 

3D contour. The geometrical constraint, inferred from the 

knowledge of the intrinsic parameters of the two image planes, 

is used to recover the contour location in the world coordinate 

system. It is expressed by the fundamental equation, called the 

epipolar constraint: 

0A

1

A

T

B

T

B 
mTRMMm  (7) 

E = TR is the essential matrix, and T is antisymmetric 

matrix such that Tx = t^x, where t is the vector connecting the 

two x-ray spots of the biplane imaging system, and ^ denotes 

the operator of cross-product. The matrix  defined by MB
-

TTRMA
-1 is known as the fundamental matrix of the two image 

planes A and B. Eq. (7) corresponds to the epipolar line in 

plane A when the point mB is known in plane B, and 

reciprocally, to the epipolar line in plane B when the point mA 

is known in plane A. Points on the two contours are matched 

using a least-squares criterion defined in [28]. We minimize 

the sum D of the squared distance of one projection point mA 

(resp. mB) and the corresponding epipolar line from the other 

image plane BmΦ~  (resp. AmΦ~ ): 
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The use of dynamic programming to solve this minimization 

problem has been detailed elsewhere [1], [3]. 

3) Temporal tracking 

At this point, the 3D vessel feature can be reached through 

segment and point matching steps. To perform temporal 

tracking, the manual delineation of the vessel centerline is 

required in both planes for the first image. Then, convergence 

result of the segment matching is validated or corrected by the 

user. Two different levels of interaction may be designed: a 

global correction in case of wrong convergence, which 

consists in drawing the whole contour again, and a local 

correction when the model fails for a minority of points. The 

resulting contour is used as an initialization for the deformable 

model at the next time step. Then point matching is performed 

for contours At and Bt-1|t and for contours At|t+1 and Bt. 

D.  Full three-dimensional tracking 

The main drawback of the previous method is that it involves 

two independent tracking processes and a point to point 

matching step. The multiplicity of the matching solutions in 

case of two views induces local minimums in spite of an order 

constraint along the contour. This section describes a totally 

3D one-step tracking that intrinsically includes the vessel 

reconstruction. It is based on the parametric representation of 

the 3D contour as described by Eq. (4). 

1)  Application of the perspective constraint to 3D 

Fourier descriptors 

Because of Eq. (5), the knowledge of one projection of the 

vessel contour {(u(s),v(s))} induces conditions on the other 

projection. Indeed, 3D Fourier descriptors are linked by the 

two following relationships: 

 
 

]N[0,kwith
))](([).()(

))](([).()(
















skpsvkp

skpsukp

zy

zx

1

1

FF

FF
 (9) 

This equation shows biplane system redundancy. Two out of 

the three coordinate descriptors (for example px and py) can be 

calculated from the third one (for example pz) and the 2D 
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contour projection. Two interesting properties for numerical 

calculations stem from the previous formal relationship and the 

definition of the 3D descriptors (4). The following equations 

concern results developed in appendix A: 
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pu and pv are the vectors of 2D Fourier descriptors 

previously defined. The harmonics l+k and l-k result from the 

first 2N coefficients of the Fourier series decomposition of the 

coordinates u and v. Hence, px and py may be obtained from a 

single FFT step instead of the two steps stated in (9). The other 

result concerns the partial derivatives of the descriptor vectors 

px and py with respect to the descriptor vector pz: 
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These derivatives can result from the same previous FFT 

step. We will see that this expression is useful in the gradient 

formulation of the objective function. 

2)  3D Parametrically Deformable Contour model 

The new formulation takes into account image gray levels 

on both projection views and a parameter vector p = [px
T py

T 

pz
T]T. By analogy with the 2D model, the estimation of the 3D 

contour together with its projection Bt-1|t uses a cost function 

M(At, Bt-1|t, p) which is the sum of three different terms: 

 a shape memory term S(p): the square distance from the 

coordinate z descriptors pz to the initial ones mz: 

  



N

k

zzzz kkmkpkS
0

22 )(2))()((2)(ln)( p  (12a) 

 a constraint C(At, p) inferred from the known 2D contour 

At: given the descriptor vector pz for coordinate z, the 

associated theoretical vectors px0 and py0 can be calculated 

using (10). The set of all possible vectors pz defines a skew 

surface to which 3D contour is supposed to belong when 

calibration is exact (Fig. 2). To take into account calibration 

inaccuracies, 3D contour is constrained to stay not into but 

close to this surface: 
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 and the image gray level information I(Bt-1|t,p) at the 

location of Bt in plane B: Bt is calculated from the previous 

contour Bt-1 and the projection Bt-1|t of the current 3D contour 

using interpolation (1): 
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The same equation can be written for the cost function 

M(At|t+1,Bt,p). Numerical solution of this optimization problem 

is obtained using the Fletcher-Reeves-Polak-Ribiere version of 

the conjugate gradient algorithm [34]. The analytical 

expression of the gradient vector is fully developed in 

appendix B. 

3) Constant length constraint 

One of the major drawbacks of open deformable contours of 

any type is that they have a strong tendency to shrink inside the 

gray level valleys. It is less acute in case of Parametrically 

Deformable Models because of the shape preservation term, 

but it may occur when motion direction is parallel to the vessel 

orientation. To overcome this limitation, we have used the 

termination criterion used in case of Active Contour Models 

[35] as a constraint for our model. This assumption is 

appropriate since clinical validation for 3D QCA have proved 

that there was no systematic variability of the length during the 

cardiac cycle [36]. The constraint consists in bringing the 

image strength back to one unit of the contour length L(p): 
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The calculation of the contour length from the descriptor 

vector p is developed in appendix C. 

4) Temporal tracking 

As for the 2D process in two steps, the 3D contour at 

convergence is used as an initialization for the next time step 

and its descriptor vector pz as the new average vector mz. The 

first 3D contour is reconstructed from the 2D centerlines A0 

and B0 manually drawn in the image plane and automatically 

refined into the gray level potential valley using classical 

Active Contour models. Its Fourier transform provides the 

initial and average parameters for the first tracking step. The 

extrapolation Bt of 2D contour Bt-1|t or At+1 of 2D contour At|t+1 

are the new projection constraints for the 3D deformable 

model. User interaction for correction is a bit more complex 

because modifications of 2D contours affect previous, current 

and next 3D contour. Point matching is used to update these 

contours from their projections.  

E. Validation protocol 

1) Assessment of convergence quality and reconstruction 

accuracy 

The Parametrically Deformable Models in 2D and 3D are 

used for 3D tracking of a single vessel segment on a whole 

cardiac cycle. In this work, we focus on both convergence 

quality, on which the amount of user interaction depends, and 

on the accuracy of 3D reconstruction. The choice of the 

intrinsic model parameters is assumed to be optimal in 

accordance with the previous studies [20,24] and will not be 

discussed here. As we work on real imaging sequences, the 

true contour location in space is unknown but can be 

reconstructed from its projections, manually drawn in the two 

angiographic planes. Therefore, they will be used as a gold 

standard and tracking results are analyzed through the 

calculation of the average 2D distance error 2D between 

estimated C2Dest and manual C2Dman contours during a whole 

cardiac cycle (n images): 

 
 
















 
n

i

L

s
S

D sss
Ln 1 1

02 )()(min
11

0
i2Dmani2Dest CC  (14) 

The same expression may be used for the average 3D 

distance error 3D between estimated C3Dest contours and 

C3Dman contours reconstructed from the C2Dman ones. To 

discuss tracking results, coronary artery motion in 2D (resp. 
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3D) is quantified by means of the calculation of the translation 

t2D (resp. t3D) and deformation d2D (resp. d3D) between two 

consecutive images j-1 and j: 

22

2 )]0()0([)]0()0([
11 


jjjj vvuuD ppppt  (15a) 







N

k

vvuuD kpkpkpkp
N

d
jjjj

1

22

2 )]()([)]()([
1

11
 (15b) 

2)  Acquisition and preprocessing of the angiographic 

biplane sequences 

All images were acquired in a biplane Hicor DSA system 

(Siemens, Forchheim, Germany) at a rate of 25 images per 

second and using a densitometric mode for quantification 

purpose. The system was stereoscopically calibrated and 

corrected from pincushion distortion in an offline procedure 

for every preprogrammed incidence used in clinical routine. 

An optimal viewpoint is chosen among the existing ones in 

order to reduce foreshortening at the maximum in both planes. 

For these viewpoints, the stereoscopic angle between the two 

principal axes is contained between 80 and 105 degrees. 

Besides, patient movement and table panning are forbidden 

and breath-holding is recommended. 19 segments are 

dynamically tracked on 14 different biplane angiographic 

sequences. Major arteries such as left anterior descending 

(LAD), left circumflex (LCX) and right coronary artery 

(RCA), but also more tortuous and smaller branches such as 

diagonal, obtuse marginal (OM) and posterior descending 

artery (PDA) are located in the image planes and in space 

using the manual, 2D and 3D based methods. 

III. RESULTS AND DISCUSSION 

The computation of 2D and 3D distance errors (14) were 

quantified for both 2D and 3D optimization processes. For 

each of the 19 processed vascular segments, the maximum and 

mean translation (15a) and deformation (15b) were calculated 

from the manual 2D and 3D contours, as well as the contrast c 

between the object average level and the background level. 

Ten harmonics for each coordinate are required to represent 

most of the vessels, which usually have a fairly smooth shape. 

The intrinsic optimal parameters for the Parametrically 

Deformable Models were chosen identically for 2D and 3D 

contours: 
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Standard deviations decrease as the square of harmonic 

numbers to ensure robustness towards noise and details. 

Convergence results of the 2D and 3D optimization processes 

are reported: in Figure 3, convergence quality versus image 

contrast, mean translation and deformation are plotted, and in 

Figure 4, distance errors 2D and 3D are compared. Figure 5 

gives illustrative results of the dynamic tracking in action for 

four different datasets chosen for their testing values: high 

displacement amplitude, low contrast and the presence of 

overlapping or crossing by other vessels. A 3D plot is 

provided for four consecutive time points, as well as the 

projections of the 2D and 3D based models in the image 

planes At-1|t and Bt. 

Figure 3 confirms that the 3D dynamic tracking presents a 

better rate of convergence than the 2D one. Statistical analysis 

of the number of good convergence result is performed in two 

steps. First, a Wilcoxon T-test shows a significant difference 

2D and 3D convergence rates (p=0.05). Then, Principal 

Components Analysis (PCA) is used to characterize the artery 

segment population and to extract which variables among 

contrast c, translation t3D and deformation d3D explain most of 

the variability of the experimental conditions. Let c, t3D and 

d3D be the unit vectors associated with variables c, t3D and d3D 

respectively in the representation space. The first two 

eigenvalues v1 and v2 explain most of the variance of the data 

(respectively 61% and 33%). Their corresponding 

eigenvectors V1 and V2 are mostly associated, on the one hand 

with translation and deformation in the same part (V1 = 0.02c-

0.71t3D-0.71d3D) due to a strong correlation coefficient 

between the two variables t3D and d3D, and with contrast (V2 = 

0.99c-0.03t3D+0.06d3D). From all these statistical results, it 

comes that the 3D method is proved to be more robust, 

especially in case of strong movement which happens to be the 

main characteristic of the angiographic sequences we used. 

Figure 5 illustrates that the convergence result of the 3D 

method is closer to the true centerline location in both image 

planes. For quantification algorithms based on the 

measurement of spatiotemporal density variations [11]-[15], it 

is essential that backprojected contours adjust with the 

centerline of the vascular bed. For the 3D tracking method 

(Fig. 4), the distance errors are globally lower: on average, 

0.14 mm versus 0.35 mm for 2D error in plane A, 0.14 mm 

versus 0.19 mm for 2D error in plane B and 0.56 mm versus 

0.5 mm for both methods for 3D error. But this last result is 

not totally reliable, due to the fact that point to point 

reconstruction of the 3D manual contour suffers from 

inaccuracies. Indeed, the lower values of 2D distance errors in 

planes A and B with the 3D method should mean a lower 3D 

distance. Bland and Altman method [37] enables a quantitative 

comparison between 3D and 2D methods. We should expect 

most of the differences between distance errors to lie in the 

interval m2 with bias m of -0.2 mm and -0.06 mm 

respectively in planes A (Fig. 4a) and B (Fig. 4b) and of -0.05 

mm in space (Fig. 4c). Indeed in the 3 figures, only 1 or 2 out 

of the 19 data points stands outside the interval, not far from 

the 5 % required in case of a Normal distribution. 

With the 3D method, the manual interaction is reduced; the 

user task is to validate the contour for most of the images. 

However, when necessary, manual centerline delineation is 

used to correct wrong convergence that may result from the 

conjunction of high displacement and parasitic objects such as 

diaphragm or ribs… The memory term of the 2D and 3D 

based methods makes the model not much sensitive to vessel 

overlapping or crossing. Besides, as overlapping often occurs 

only in one of the image planes, the epipolar constraint 

stemming from the knowledge of the projection in the other 

plane increases the robustness of the object search in the case 

of the 3D model (Fig. 5). Besides reconstruction accuracy is 

proved to be higher because 3D contour model is not very 
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sensitive to calibration imperfections thanks to Eq. (12b). This 

weak constraint also takes into account the fact that the linear 

interpolation of an unknown contour location is an 

approximation that only holds in case of uniform and slowly 

variable deformation. Immunity towards strong foreshortening 

is higher in the case of the 3D model, because the pairing 

process of the 2D method fails when ambiguity level becomes 

higher. This case is well-illustrated by the posterior descending 

artery of Figure 5 that presents high foreshortening on plane B. 

The method is not restricted to an acquisition rate of 25 images 

per second. But temporal subsampling would cause the 

tracking to fail more often because translation and deformation 

would increase between two consecutive images. For both 2D 

and 3D processes, the choice of the relative orientations of the 

two planes is important too. The imaging incidences are nearly 

perpendicular and therefore biplane redundancy is minimized. 

For the viewpoint range used in this study, no significant 

influence of the angle could be underlined on the tracking 

result. But, the choice of opener angles could lead to the 

degeneracy of the 2D shape information and to the 

inconsistency of the epipolar constraint. 

The feasibility of the method has been demonstrated for the 

tracking of one coronary artery segment. For both 2D and 3D 

methods, results are better using the constant length constraint 

of Eq. (13), which enables variations in length to stay below 

0.01 mm at each time step. However, constant length doesn’t 

deal with the drift of the deformable contour inside the vessel 

gray level valley due to its free contour ends. This issue is the 

origin of a non-negligible amount of contour corrections. It is 

likely that the parameterization of the entire vascular tree 

would solve this problem because of the connectivity imposed 

at vessel branchings. Practically, if C1 and C2 are two 

consecutive segments parameterized by p1 and p2, the 

superposition of the last point (x1(L),y1(L),z1(L))T of C1 and the 

first point (x2(0),y2(0),z2(0))T of C2 removes three degrees of 

freedom from C2 shape descriptors. From equation (4), the 

constraint on descriptors of order zero can be expressed as: 
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Therefore, the mean position of a given segment depends 

not only on its own fundamental and harmonics, but also on 

the descriptors of the upstream segments. The global 

convergence criterion could be extended to the tree model by 

minimizing the sum of the terms of Eq. (12) for every 

segments with respect to all the descriptors, except for the ones 

of order zero provided by Eq. (16). For a single segment, usual 

convergence time for the 2D deformable model is one second 

whereas it is five times more with the 3D model (processor 

AMD Athlon 1.2 GHz, 256 Mo RAM, operating system 

Microsoft Windows 2000). 

IV. CONCLUSION 

In this paper, we generalize the notion of Fourier descriptor 

to the representation of a 3D contour. We show that the 

descriptors and their partial derivatives may be easily obtained 

from the Fourier decomposition of the projected contour 

coordinates. These properties are turned to account in the 

generalization of the Parametrically Deformable Model first 

defined by Staib et al. [24] to the three-dimensional case with 

two projection views. 3D Parametrically Deformable Models 

are found to perform well in tracking coronary artery motion. 

They are relatively insensitive to the influence of nearby 

objects. Taking into account the full 3D information enhances 

shape discrimination. 

The use of the 3D Parametrically Deformable Model 

requires two prior calibration steps. The biplane parameters 

(rotation matrix, translation vector) have to be reached through 

a stereoscopic calibration step and the image plane attributes 

(focal lengths, image centers and pixel sizes) through another 

calibration step including distortion correction. The designed 

model deals with calibration imperfections and shows higher 

convergence rate and reconstruction accuracy than the 2D one 

consisting in two steps. 

Besides the increase in robustness, the advantages 

pertaining to moving from a single vessel to the complete 

coronary artery tree, is to make some quantitative processes 

exploratory. The proposed high rate dynamic tracking gives 

access to the bolus information and to the estimation of blood 

flow velocity, but is for now limited to the assessment of a 

suspected coronary segment. 

For on-line process purpose in clinical environment, the 

model could be adapted to take into account the variability of 

anatomical vasculature systems. Indeed, standard deviations of 

Fourier descriptors were chosen identically for every segment. 

But they could be calculated as the deviation of a 

representative population for every coronary segment and 

every cardiac phase in the cycle, which exhibit different 

deformation and motion amplitude (stronger near the end-

systolic phase and smaller for the mid-diastolic one). 

APPENDIX A: RELATIONSHIP BETWEEN THE 3D COORDINATE 

DESCRIPTORS 

In the following, we will establish the relationship between 

the descriptor vector of the coordinate x, px, and the descriptor 

vector of the coordinate z, pz. 2D coordinate vector pu of the 

contour projection is known. The same results are available for 

the descriptor vector py and the 2D coordinate vector pv. 

From Eq. (9): 
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By inverting the summation symbols, we have: 
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Then, using trigonometric relationships: 
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We recognize the Fourier coefficients of orders l+k and l-k 

induced from the discrete Fourier transform of the coordinate 

vector pu. 

APPENDIX B: FORMULATION OF THE 3D OBJECTIVE FUNCTION 

GRADIENT 
Let us consider the case of the objective function M(At,Bt-

1|t,p). The following results can be easily extended to the 

function M(At|t+1,Bt,p). Parameter vectors px, py and pz are 

expressed in the referential linked to the plane where the 

projection constraint holds, here plane A. 

Differentiating (12a), we have: 
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Differentiating (12b), we have: 
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 The values of the descriptors px(i) and py(i) are calculated 

using (10). The partial derivatives of px(i) and py(i) with 

respect to pz(k) are inferred from Eq. (11). Differentiating 

(12c), we have: 
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 The contour Bt is extrapolated from Bt-1 and Bt-1|t (1). For 

each contour point, the derivatives of gray level with respect to 

the image coordinates are calculated using a bilinear 

approximation with the four closest neighbors. Due to 

extrapolation, these values should be simply multiplied by two. 

The partial derivatives of the image coordinates uB and vB 

with respect to the world system coordinates linked to plane B 

are the elements of the intrinsic matrix MB. The partial 

derivatives of the 3D coordinates in referential B with respect 

to the 3D coordinates in referential A are the elements of the 

matrix [R t]. The partial derivatives of the 3D coordinates in 

referential A with respect to zA are equal to the inverse of the 

elements of intrinsic matrix MA. The last term of the 

differentiation is the derivative of zA with respect to pz(k). 

From Eq. (4), we have:  Lkskpz zA cos)(  . 

APPENDIX C: CONTOUR LENGTH DERIVATION 

Length L(p) of a 3D contour described by vector p and its 

derivatives can be calculated as follows: 
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 Derivatives of the image strength IL(Bt-1|t,p) (13) are 

modified following the rules of the quotient derivation: 
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Fig. 1. Interlaced acquisition of image planes A and B. Bold characters are used for the contours corresponding to existing images and normal characters for the 

interpolated ones. 
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Fig. 2. Scheme of vascular segment and its respective projections on 

planes At and Bt-1|t. (uA0,vA0) and (uB0,vB0) are the principal points, which 

are the orthogonal intersections between the optical axes and the image 

planes A and B. (Au
-1,Av

-1) and (Bu
-1,Bv

-1) are the pixel dimensions in 

planes A and B. The distance from the x-ray spots SA and SB to the image 

planes A and B are denoted as the focal lengths fA and fB of the biplane 

system. [RA,tA], [RB,tB] and [R,t] are the rigid transforms between the 

world coordinate system and the reference coordinates related to the 

projection views. The 3D contour model is attracted to the gray surface, 

which materialize the constraint inferred from the known projection on 

plane A. 
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Fig. 3. Convergence quality is evaluated by the rate of user interaction, i.e. 

the number of corrections of the model contour location at convergence 

and is expressed against: (a) image contrast c, (b) object mean translation 

t3D, and (c) object mean deformation d3D for 2D () and 3D () methods. 
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Fig. 4. Bland and Altman test for the comparison between the 2D and 3D 

tracking methods, i.e. plot of the difference against the mean for the 

distances to the manual contour 2D and 3D: (a) 2D distance in plane A, 

(b) 2D distance in plane B, and (c) 3D distance. The continuous line is the 

mean difference, i.e. the bias between the two methods and dotted lines 

give the confidence interval at two standard deviations, i.e. their degree of 

agreement. 
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Fig. 5. Comparison of the 2D () vs. 3D () based tracking methods in the planes A (left column) and B (right column). The middle column exhibits the result 

of the 3D based method for four consecutive time points at the end-systolic phase and in the world coordinate system. From top to bottom: diagonal of a left 

coronary arterial tree and, right coronary artery, marginal and posterior descending artery of a right arterial tree. 


