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Abstract
This work investigates speaker adaptation and transfer

learning for spoken language understanding (SLU). We focus
on the direct extraction of semantic tags from the audio signal
using an end-to-end neural network approach. We demonstrate
that the learning performance of the target predictive function
for the semantic slot filling task can be substantially improved
by speaker adaptation and by various knowledge transfer ap-
proaches. First, we explore speaker adaptive training (SAT)
for end-to-end SLU models and propose to use zero pseudo i-
vectors for more efficient model initialization and pretraining in
SAT. Second, in order to improve the learning convergence for
the target semantic slot filling (SF) task, models trained for dif-
ferent tasks, such as automatic speech recognition and named
entity extraction are used to initialize neural end-to-end models
trained for the target task. In addition, we explore the impact of
the knowledge transfer for SLU from a speech recognition task
trained in a different language. These approaches allow to de-
velop end-to-end SLU systems in low-resource data scenarios
when there is no enough in-domain semantically labeled data,
but other resources, such as word transcriptions for the same or
another language or named entity annotation, are available.
Index Terms: adaptation, end-to-end models, named entity
recognition, automatic speech recognition, spoken language un-
derstanding, deep neural networks, semantic slot filling

1. Introduction
Traditional SLU systems consist of several components: (1) an
automatic speech recognition (ASR) system that transcribes
acoustic speech signal into word sequences and (2) a natural
language understanding (NLU) system which predicts, given
the output of the ASR system, named entities, semantic or do-
main tags, and other language characteristics depending on the
considered task. In classical approaches, these two systems are
usually built and optimized independently.

In the recent years, there has be a great interest of the re-
search community in end-to-end systems for various speech
and language technologies, such as ASR [1, 2, 3, 4], text-to-
speech synthesis [5], machine translation [6], speaker verifica-
tion [7] and many others. A few recent papers [8, 9, 10, 11, 12]
present ASR-free end-to-end approaches for SLU tasks and
show promising results. These methods aim to learn SLU mod-
els from acoustic signal without intermediate text representa-
tion. Paper [12] proposed an audio-to-intent architecture for
semantic classification in dialog systems. An encoder-decoder
framework [13] is used in paper [10] for domain and intent clas-
sification, and in [9] for domain, intent, and argument recogni-
tion. A different approach based on the model trained with the
connectionist temporal classification (CTC) criterion [14] was

proposed in [11] for named entity recognition (NER) and slot
filling, and it is the closest to the current work.

These methods are motivated by the following factors:
(1) possibility of better information transfer from the speech
signal due to the joint optimization on the final objective func-
tion, and, in particular, leveraging errors from the ASR system
and focusing on the most important information; and (2) simpli-
fication of the overall system; getting rid of some components,
such as pronunciation lexicon, etc.

In this paper, we focus on the two SLU tasks: named entity
recognition (NER) and semantic slot filling (SF). The target task
in this paper is SF, and we use the NER task as an auxiliary
task for transfer learning. The aim of this work is to explore
the efficiency of speaker adaptation and knowledge transfer for
end-to-end SLU models.

The rest of the paper is organized as follows. Section 2
presents a review on speaker adaptation for end-to-end models
and the proposed adaptation approach. Section 3 introduces the
transfer learning approaches that we investigate in the current
work. Sections 4 describes the experimental setup and results.
Finally, the conclusions are given in Section 5.

2. Speaker adaptation
Differences between training and testing conditions may signifi-
cantly reduce recognition accuracy in ASR systems and degrade
performance of other speech-related technologies. Adaptation
is an efficient way to reduce the mismatches between the mod-
els and the data from a particular speaker or channel. For many
decades, acoustic model adaptation has been an essential com-
ponent of any state-of-the-art ASR system. For end-to-end ap-
proaches, speaker adaptation is less studied, and most of the first
end-to-end ASR systems do not use any speaker adaptation and
are built on spectrograms [1, 3] or filterbank features [4, 15].
However, some recent works [16, 17, 18, 19] demonstrated
the effectiveness of speaker adaptation for end-to-end models.
Various feature-space speaker adaptation techniques, such as i-
vectors [20, 21], feature-space maximum linear regression (fM-
LLR) [22] and maximum a posteriori (MAP) adaptation [23]
using GMM-derived features [24] were investigated in [16] for
bidirectional long short term memory (BLSTM) recurrent neu-
ral network based acoustic models (AMs) trained with the CTC
objective function. In [17], an auxiliary feature based adap-
tation in the form of a sequence summary network is studied
for end-to-end encoder-decoder models. Adaptation for multi-
channel end-to-end encoder-decoder ASR model was explored
in [18]. Kullback-Leibler divergence (KLD) regularization and
multi-task learning (MTL) was investigated in [19] for CTC
models.

For SLU tasks, there is also an emerging interest in the
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end-to-end models which have a speech signal as input. Thus,
acoustic, and particularly speaker, adaptation for such models
can play an important role in improving the overall performance
of these systems. However, to our knowledge, there is no re-
search on speaker adaptation for end-to-end SLU models, and
the existing works do not use any speaker adaptation. In [8],
Mel frequency cepstral coefficient (MFCC) features were used
for an ASR-free end-to-end NLU model for dialog systems. Pa-
pers [9] and [10] use log-Mel filterbanks in encoder-decoder
based end-to-end approaches: [9] – for domain, intent, and ar-
gument prediction; and [10] – for intent and domain classifi-
cation. In [11], end-to-end CTC-based systems for NER and
SF were built on spectograms. For semantic classification, an
ASR-free system was built in [12] on log-spectrum features.

One of the main objectives of this work is to explore speaker
adaptation for end-to-end SLU. For experiments in this paper,
we apply i-vector based speaker adaptation [21, 20]. I-vectors
can capture the relevant information about the speaker in a low-
dimensional fixed-length representation [21].

2.1. Integration of i-vectors into end-to-end models

The proposed way of integration of i-vectors into the end-to-
end model architecture is shown in Figure 1. Speaker i-vectors
are appended to the outputs of the last (second) convolutional
layer, just before the first recurrent (BLSTM) layer. In our
preliminary experiments (not reported in this paper), we also
tried other ways of i-vector integration (in particularly, to ap-
pend to upper or to lower layers, or to several layers) and found
out the chosen configuration is the most efficient. We do not
append i-vectors to the input layer, because the first two lay-
ers in our model are convolutional, incorporation of auxiliary
features is not straightforward since i-vectors do not have the
same time and frequency locality properties as input acoustic
features. Thus, incorporation of auxiliary features to a convolu-
tional layer makes a system more complex [25].

In this paper, we experiment with two ways of speaker
adaptive training. For better initialization, we first propose to
train a model with zero pseudo i-vectors (all values are equal
to 0). Then, we use this pretrained model and fine-tune a new
model on the same data but with the real i-vectors. This ap-
proach was inspired by [26], where an idea of using zero auxil-
iary features during pretraining was implemented for language
models. For comparison purpose, we also train a model directly
on real i-vectors without pretraining with zero i-vectors.

3. Transfer learning for end-to-end SLU
Transfer learning is a popular and efficient method to improve
the learning performance of the target predictive function us-
ing knowledge from a different source domain [27]. It allows
to train a model for a given target task using available out-of-
domain source data, and hence to avoid an expensive data label-
ing process, which is especially useful in case of low-resource
scenarios.

In this paper, the target task is semantic slot filling (SF). We
investigate the effectiveness of the transfer learning paradigm
for various source domains and tasks:

1. ASR
(a) in the target language;
(b) in the out-of-domain language;

2. NER in the target language;
3. Slot filling (SF).

Similarly to point 1(a), transfer learning from ASR to SF in

Input speech audio
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Output character sequence
CTC

Softmax
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Spectrogram

Figure 1: Universal end-to-end deep neural network model ar-

chitecture for ASR, NER and SF tasks. Depending on the cur-

rent task, the set of the output characters (targets) consists of:

(1) 43 characters for French ASR and 28 – for English ASR; (2)

43+9=52 – for NER; and (3) 43+87=130 – for SF.

the target language was used in [11], however the gain of this
approach was not reported.

For all the tasks, we used similar model architectures (Sec-
tion 4.2 and Figure 1). The difference is in the text data prepa-
ration and output targets. For training ASR systems, the output
targets correspond to alphabetic characters and a ’blank’ (no
label) symbol. For NER tasks, the output targets include all
the ASR targets and targets corresponding to named entity tags.
We have several symbols corresponding to named entities (in
the text these characters are situated before the beginning of a
named entity, which can be a single word or a sequence of sev-
eral words) and a one tag corresponding to the end of the named
entity, which is the same for all named entities. Similarly, for
SF tags, we use targets corresponding to the semantic concept
tags and one tag corresponding to the end of the given concept.

Transfer learning is realized through the chain of conse-
quence model training on different tasks. For example, we can
start from training an ASR model on audio data and correspond-
ing text transcriptions. Then, we change the softmax layer in
this model by replacing the targets with the SF targets and con-
tinue training on the corpus annotated with semantic tags. Fur-
ther in the paper, we denote this type of chain as ASR ! SF .
Models in this chain can be trained on different corpora, that
can make this method especially useful in low-resource scenar-
ios when we do not have enough semantically annotated data
to train an end-to-end model, but have sufficient amount of data
annotated with more general concepts or only transcribed data.
Details on the use of this approach are presented in [28].

Table 1: Corpus statistics for ASR, NER and SF tasks.

Task Corpora Size, h # Speakers
ASR train EPAC [29], ESTER 1,2 [30], 404.6 12518

ETAPE [31], REPERE [32],
DECODA [33], MEDIA [34]
PORTMEDIA [35]

NER train EPAC [29], ESTER 1,2 [30], 323.8 7327
ETAPE [31], REPERE [32]

SF train MEDIA [34] (train), 16.1 727
PORTMEDIA [35] (train) 7.2 257

SF dev MEDIA [34] (dev) 1.7 79
SF test MEDIA [34] (test) 4.8 208
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Table 2: Results on the MEDIA test dataset for speaker independent end-to-end SF models trained with different transfer learning

approaches. Results are given in terms of F-measure (F), CER and CVER metrics (%); �CVER denotes relative error reduction

for CVER in comparison with the baseline model (#1). CER and CVER are reported with 95% confidence intervals shown in gray.

T corresponds to the Target task when a model is trained on MEDIA train data and A denotes the Auxiliary task when the model is

trained on MEDIA+PORTMEDIA training data; F and E refer to the languages: French and English; and ”*” means a starred mode.

Without LM With LM
# Training chain F CER CVER �CVER F CER CVER �CVER
1 SFT 72.5 39.4 ±1.0 52.7 ±1.0 baseline 77.6 34.0 ±1.0 39.7 ±1.0 baseline
2 SFA 73.2 39.0 ±1.0 50.1 ±1.1 4.9 77.9 33.8 ±1.0 38.3 ±1.0 3.5
3 SFA ! SFT 77.4 33.9 ±1.0 44.9 ±1.0 14.8 81.2 29.4 ±1.0 34.3 ±1.0 13.6
4 ASRE ! SFA ! SFT 81.3 28.4 ±0.9 37.3 ±1.0 29.2 84.0 25.2 ±0.9 29.7 ±1.0 25.2
5 ASRF ! SFA ! SFT 85.9 21.7 ±0.9 28.4 ±0.9 46.1 88.3 18.7 ±0.8 22.8 ±0.9 42.6
6 NER ! SFA ! SFT 86.4 20.9 ±0.9 27.5 ±0.9 47.8 88.0 18.9 ±0.8 23.1 ±0.9 41.8
7 ASRF ! SFA ! SF ⇤

T 85.9 21.2 ±0.9 27.9 ±0.9 47.1 88.6 17.2 ±0.8 21.6 ±0.9 45.6
state-of-the-art [36] 19.9 25.1

Table 3: Speaker adaptation results on the MEDIA test dataset for end-to-end SF models trained with different transfer learning ap-

proaches (following the same numeration as in Table 2). iv0 corresponds to zero pseudo i-vector pretraining as described in Section 2.1,

and iv is a standard using of i-vectors (without pretraining); �CER, �CVER (%) denote relative error reduction of CER and CVER for:

(1) SAT models with the proposed zero pseudo i-vector pretraing with respect to the speaker independent (SI) models (see Table 2) ”SI

vs SAT with iv0”; and (2) SAT models with the proposed zero pseudo i-vector pretraing with respect to the SAT models with convention

training using i-vectors: ”SAT with iv vs iv0”.

Without LM With LM
iv iv0 iv iv0 (1) SI vs SAT with iv0 (2) SAT with iv vs iv0

# CER CVER CER CVER CER CVER CER CVER �CER �CVER �CER �CVER
1 38.0 50.9 32.2 43.1 32.5 37.4 28.1 33.0 17.4 16.9 13.5 11.8
2 40.8 50.9 30.3 40.2 34.0 38.2 26.8 31.4 20.7 18.0 21.2 17.8
3 32.2 42.6 28.1 37.2 28.4 33.2 24.5 29.4 16.7 14.3 13.7 11.5
4 25.7 34.5 24.6 32.6 23.0 27.5 22.0 26.8 12.7 9.8 4.4 2.6
5 20.2 26.6 19.4 25.4 18.2 22.5 17.8 21.9 4.8 4.0 2.2 2.7
6 20.6 27.4 19.5 26.0 19.0 22.9 18.0 22.0 4.8 4.8 5.3 3.9
7 19.3 26.8 18.8 25.5 16.6 21.1 16.4 20.8 4.7 3.7 1.2 1.4

4. Experiments
4.1. Data
Several publicly available corpora have been used for experi-
ments (see Table 1).

4.1.1. ASR data

The corpus for ASR training was composed of corpora from
various evaluation campaigns in the field of automatic speech
processing for French, as shown in Table 1. The EPAC [29], ES-
TER 1,2 [30], ETAPE [31], REPERE [32] contain transcribed
speech in French from TV and radio broadcasts. These data
were originally in the microphone channel and for experiments
in this paper were downsampled from 16kHz to 8kHz, since
the test set for our main target task (SF) consists of telephone
conversations. The DECODA [33] corpus is composed of dia-
logues from the call-center of the Paris transport authority. The
MEDIA [34, 37] and PORTMEDIA [35] are corpora of dia-
logues simulating a vocal tourist information server. The target
language in all experiments is French. For experiments with
transfer learning from ASR built in a different source language
(English in our case) to SF in the target language, we used
the TED-LIUM corpus [38]. This publicly available dataset
contains 1495 TED talks in English that amount to 207 hours
speech data from 1242 speakers, 16kHz. For experiments, we
downsampled the audio data to 8kHz.

4.1.2. NER data

To train the NER system, we used the following corpora:
EPAC, ESTER 1,2, ETAPE, and REPERE. These corpora con-

tain speech with text transcriptions and named entity annota-
tion. The named entity annotation is performed following the
methodology of the Quaero project [39]. The taxonomy is com-
posed of 8 main types: person, function, organization, location,

product, amount, time, and event. Each named entity can be a
single word or a sequence of several words. The total amount of
annotated data is 112 hours. Based on this data, a classical NER
system was trained using NeuroNLP2

1 to automatically extract
named entities for the rest 212 hours of the training corpus. This
was done in order to increase the amount of the training data for
NER (as proposed in [11]). Thus, the total amount of audio data
to train the NER system is about 324 (112+212) hours.

4.1.3. SF data

The following two French corpora, dedicated to semantic ex-
traction from speech in a context of human/machine dialogues,
were used in the current experiments: MEDIA and PORT-
MEDIA (see Table 1). The corpora have manual transcription
and conceptual annotation. A concept is defined by a label and a
value, for example with the concept date, the value 2001/02/03

can be associated [40, 34]. The MEDIA corpus is related to the
hotel booking domain, and its annotation contains 76 seman-
tic tags: room number, hotel name, location, date, room equip-

ment, etc. The PORTMEDIA corpus is related to the theater
ticket reservation domain and its annotation contains 35 seman-
tic tags which are very similar to the tags used in the MEDIA
corpus. For joint training on these corpora, we used a combined
set of 86 semantic tags.

1https://github.com/XuezheMax/NeuroNLP2
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4.2. Models

The neural architecture is similar to the Deep Speech 2 [3] for
ASR. The two major differences in comparison with the origi-
nal architecture are the following. First, we integrated speaker
adaptation into this system based on i-vectors as shown in Fig-
ure 1 and proposed in Section 2.1. Second, in this paper, the
tasks include NER and SF, therefore when we train neural net-
works for these tasks, the output sequence besides the alpha-
betic characters also contains special characters corresponding
to named entities or semantic tags. A spectrogram of power
normalized audio clips calculated on 20ms windows is used as
the input features for the system. As shown in Figure 1, it is
followed by two 2D-invariant (in the time and-frequency do-
main) convolutional layers, and then by five BLSTM layers with
sequence-wise batch normalization [41]. A fully connected
layer is applied after BLSTM layers, and the output layer of the
neural network is a softmax layer. The model is trained using
the CTC loss function [14]. We used the deepspeech.torch im-
plementation2 for training speaker independent models, and our
modification of this implementation to integrate speaker adap-
tation. The open-source Kaldi toolkit [42] was used to extract
100-dimensional speaker i-vectors.

4.3. Results

Performance was evaluated in terms of F-measure, concept er-

ror rate (CER) and concept value error rate (CVER). A 4-gram
LM with an about 4K word vocabulary built on French text data
of the training corpus (including the semantic tags from MEDIA
and PORTMEDIA training corpora) was used for evaluation.

Results for different training chains for speaker-
independent (SI) models are given in Table 2. The first
line SFT shows the baseline result on the test MEDIA dataset
for the SF task, when a model was trained directly on the target
task using in-domain data for this task (the training part of the
MEDIA corpus). The second line SFA corresponds to the case
when the model was trained on the auxiliary SF task, where
targets were the same, but the training corpus was comprised
of two corpora: the target corpus MEDIA and an additional
corpus PORTMEDIA. The rest lines in the table correspond
to different training chains described in Section 3. In #4, we
can see a chain that starts from training an ASR model for
English. We can observe that using a pretrained ASR model
from a different language can significantly (16.9% of relative
CVER reduction, in case when no LM is used) improve the
performance of the SF model (#4 vs #3). Using an ASR model
trained in French (#5) provides better improvement: 36.7% of
relative CVER reduction (#5 vs #3). When we start the training
process from a NER model (#6) we can observe similar results.
In #7, symbol ”*” corresponds to a starred mode [11] where
during the training, a new symbol ”*” was added for targets,
while in the texts all irrelevant words (according to the current
task) were replaced by this character in order to make the
learning process more focused on the target words and tags
and to ignore less relevant information. This means that word
sequence occurrences that do not appear within a concept are
replaced by a star. For this mode, we also used a corresponding
4-gram LM which was built on the texts including ”*”. This
SF model provides the best result when the LM is used for
decoding. In terms of CER and CVER metrics, three last
models (#5, #6 and #7), outperform the best published result
(shown in the last line of the table) for SF for the MEDIA test

2https://github.com/SeanNaren/deepspeech.pytorch
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Figure 2: Slot tagging performance (without LMs) on the ME-

DIA test set for different training chains for speaker indepen-

dent and two types of speaker adapted SF models.

task when the concept extraction was based on the ASR output.
Results with speaker adaptation in terms of CER are shown

in Figure 2 for different transfer learning chains. We can see that
most of the models with speaker adaptive training (SAT) show
better results than speaker independent (SI) ones. SAT models
with the proposed zero pseudo i-vector pretraining outperform
all SI models and all SAT models obtained with conventional
training using i-vectors. In average, the gain from adaptation is
greater for less accurate SI models. Table 3 shows the detailed
results for different SAT models and their relative comparison
with the SI ones.

5. Conclusions
In this paper, we have investigated the effectiveness of speaker
adaptation and various transfer learning approaches for end-to-
end SLU in the context of the SF task. First, in order to improve
the quality of the SF models, during the training, we proposed
to use knowledge transfer from an ASR system in another lan-
guage and from a NER in a target language. Experiments on
the French MEDIA test corpus demonstrated that using knowl-
edge transfer from the ASR in English improves the SF model
performance by about 14–16% of relative CER reduction for
SI models and by 10–20% for speaker adapted models. This
approach can be especially useful in a low-resource scenario,
when there is a lack of transcribed and semantically annotated
data in the target language. The improvement from the trans-
fer learning is greater when the ASR model is trained on the
target language (27–37% of relative CER reduction) or when
the NER model in the target language is used for pretraining
(24–38% of relative CER reduction). Another contribution con-
cerns SAT training for SLU models. We demonstrated that us-
ing speaker adaptation can significantly improve the model per-
formance. In addition, for better initialization, we proposed a
novel method for SAT, based on zero pseudo i-vector pretrain-
ing, which outperforms the conventional SAT models by about
1–21% of relative CER reduction for different models, and SI
models – by 5–21%. The best adapted system outperforms the
best (to our knowledge) published result for this task (for the
traditional SLU system) by 17.6% of relative CER reduction.
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