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Abstract
In order to leverage the information embedded in the background state and observations, covariance

matrices modelling is a pivotal point in data assimilation algorithms. These matrices are often estimated
from an ensemble of observations or forecast differences. Nevertheless, for many industrial applications the
modelling still remains empirical based on some form of expertise and physical constraints enforcement in the
absence of historical observations or predictions. We have developed two novel robust adaptive assimilation
methods named CUTE (Covariance Updating iTerativE) and PUB (Partially Updating BLUE). These two
non-parametric methods are based on different optimization objectives, both capable of sequentially adapting
background error covariance matrices in order to improve assimilation results under the assumption of a good
knowledge of the observation error covariances. We have compared these two methods with the standard
approach using a misspecified background matrix in a shallow water twin experiments framework with a
linear observation operator. Numerical experiments have shown that the proposed methods bear a real
advantage both in terms of posterior error correlation identification and assimilation accuracy.

1 Introduction
Data assimilation methods are widely used in engineering applications with the objective of state-estimation
or/and parameter registration/identification based on the weighted combination of different sources of noisy
information. Data assimilation often starts from some initial (i.e. prior) knowledge of the quantity of interest,
and then produces a subsequent (i.e. posterior) estimator of it. Because of the noise alteration, it is most
convenient if the method also provides some statistical information about the posterior estimator, at best in the
form of its probability distribution. These algorithms are very well known in geosciences and are used as reference
methods in the fields of numerical weather prediction ([32]), nuclear safety ([46]), atmospheric chemistry ([39]),
hydrologic modelling [28], seismology, glaciology, agronomy, etc. Over decades, these approaches have been
applied in the energy industry, for projects involving temperature field reconstruction ([1]) or forecasting in
neutronic ([34]) and hydraulic ([20]). More recently, they have also made their way to other fields such as
medicine, biomedical applications ([30]) or wildfire front-tracking problems ([36]).

Data assimilation methods are based on prior estimation of the true state (also called background state)
and one or several vectors of observations. There exist non-negligible errors in these two quantities. The
essential idea is therefore to find a compromise by fusing the information presented in these two quantities
([5]), while accounting for errors, in order to improve the quality of field reconstruction and forecasting by
learning from observations. Due to lack of knowledge, the background state is often provided by some experts
or approximated, e.g. from a numerical simulation. A remarkable difficulty in the efficiency of these methods
is that the prior error covariance matrices are themselves imperfectly known, especially the one of background
errors (often noted as matrix B).

The modelling of B as well as the observation error covariance matrix R, remains a very critical point in
data assimilation problems because it determines how prior errors spread spatially or temporally (e.g [38]) and
this may substantially change the assimilation results ([21]). It also provides an important information of the
relationship between observations and forecasts. As mentioned by [16], there exist a wide variety of methods
to estimate these matrices. Well known methods among others, are the one of [22], the NMC (National
Meteorological Center) method ([32]) and ensemble methods ([10]) which are often combined with algebraic
operations such as matrix factorization ([24]) or covariance localization ([29]). For many industrial applications,
the paucity of historical observations as well as the large dimension and complexity (e.g.[40]) of the system, make
the estimation of these covariance matrices unfeasible. A common practice in this case is to impose a standard
form for the covariance matrices by empiricism. Certain types of matrices with homogeneous and isotropic
characteristics such as diagonal matrices ([23]) or relying on generic covariance kernels: e.g. Matérn kernel
([39]), are often favoured. Other approaches are based on numerical techniques involving convolution operations
([19]) or the resolution of diffusion equations ([45]). The latter methods are sometimes equivalent to the former
ones, under simplifying assumptions, as explained in [31]. An a priori choice of fixed covariance matrices with
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certain regularity properties thus implicitly imposes extra assumptions to the problem, which may lead to
supplementary uncertainties. Research efforts are continuously made toward improving the estimation of error
covariances. Suffering from problems dimension and complexity, a variety of background matrix computation
methods have been proposed in reduced spaces such as the spectral space ([11]) or the wavelet space ([6]).
However, these contributions require prior assumptions about the matrix structure which could be difficult to
justify in industrial applications.

Recent works of [14] have also investigated model error covariance modelling (often noted as matrix Q),
which can be seen as the main contributor of the background matrix in a dynamical system. Another pathway
of research is to make assimilation more robust to this unavoidable lack of knowledge. This challenge applies
to both background and observation error covariances. In this work, we focus on the former but both are
important.

In this paper, we are interested in iterative algorithms that can be resilient to inconsistent prior background
error covariance. More specifically, we look for algorithms that would automatically adjust, thanks to an opti-
mization process, the structure of the error covariance matrices. Our objective is to gain a better knowledge of
error correlation which leads to a reduction of a posteriori reconstruction errors with limited available data. The
meteorology community has been a strong contributor to this topic, and several algorithms and their improved
versions have been developed in [13], [12], [7] etc. These methods have been applied world-widely in industrial
problems ever since, e.g. [18], [44]. Among them, the Desroziers & Ivanov tuning method consists in finding
a fixed point for the assimilated state by regulating the ratio between background and observation covariance
matrices magnitude without modifying their structures. This method, for which no statistical estimation of
full matrices is required, could have a particular interest for industrial applications with limited prior data.
However, it relies on a good knowledge of the correlation of prior errors as shown in [7]. This last condition
can be difficult to fulfil without enough historical statistics or in the case of a new application. Another iter-
ative method, based on a diagnostic in the observation space ([12]), aims at estimating the whole covariance
matrices (see [25]). However, this method strongly relies on the statistics of either redundant observation data
or historical innovation quantity, which are difficult to obtain in our industrial context.

In this work, we develop two novel methods, consisting in repeating several times the assimilation procedure
of the state-estimating problem with the same set of observations. A related idea of reusing several times the
same observation data set has been carried out by [26] in the "running in place"(RIP) method for the Ensemble
Kalman Filtering in order to improve the system spin-up. We provide different approaches which are directly
based on static Best Unbiased Linear Estimator (BLUE) and involve an updating of the background covariance
matrix at the end of each iteration. We further take into account the covariance between the errors of the updated
background vectors and the ones of observations; this covariance appearing due to the iterative process itself.
Based on this idea, we propose two iterative algorithms: CUTE (Covariance Updating iTerativE) method and
PUB (Partially Updating BLUE) method. These methods can also be considered as some kind of preliminary
step, improving a sequence of dynamical reconstruction with prediction, as they provide a more "consistent"
covariance estimate, right after the first assimilation step. For numerical testing, a two-dimensional shallow
water model with periodic boundary conditions is used to perform twin experiments for validation purposes.
Both iterative methods are studied for a static reconstruction problem and a dynamical data assimilation chain.

The paper is organized as follows. Variational data assimilation is introduced briefly in section 2, with a
focus on covariance updating. We then propose two novel iterative methods in section 3, together with a simple
illustrative scalar test case. In section 4, these methods are then compared on a two-dimensional fluid mechanics
system in a twin experiments framework for both state-independent and state-dependent prior errors.

2 Data assimilation and variational methods framework
2.1 Data assimilation concept
The idea behind data assimilation system is to combine different sources of information in order to provide
a more reliable estimation of the system state variables which can be a discretized physical field or a set of
parameters (see [27]). We focus on the former where the state is presented by a vector of real entries which
could for instance represent a discretized multidimensional physical field (e.g. speed, temperature) at some
given coordinates. The true state is denoted by xt. In general, the information is split into two parts: an
initial state estimation xb (so called the background state) and an observation vector y, related to the state
and representing measurements. Both parts are noisy and the observations are often sparse especially for field
reconstruction/prediction problems. The observation operator H from the state space to the observable space
is supposed to be known. Both background state and observations are uncertain quantities. Their tolerance,
regarding theoretical (or ‘true’) values, are quantified by εb and εy, respectively:

εb = xb − xt (1)
εy = y−H(xt).

The transformation operator H and the true state xt are assumed to be deterministic quantities, except
in the case of a dynamical data assimilation chain, which will not be discussed in great details in this paper.
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Following unbiased Gaussian distributions with covariance matrices B and R, the background error εb and the
observation error εy are supposed to be uncorrelated i.e

εb ∼ N (0,B) (2)
εy ∼ N (0,R)

COV (εb, εy) = 0.

Simply speaking, the inverse of these covariance matrices (i.e. B−1,R−1) acts as some “weights” given to the
different information sources. In fact, these covariances not only describe the variation of estimation/instrument
errors but also how they are correlated. These correlations may depend on the spatial distance, time scale or
other physical quantities between two state variables or measure points.

Things become slightly more complicated, due to the iterative approach proposed in this work to finely tune
covariances. Indeed, some error correlation between updated state variables and observations may be induced
by the iterative process. Therefore, it is crucial to account for this modified covariance, which will be discussed
in full details later, in particular in section 3.

This approach is applied in a large variety of scientific domains, such as weather prediction, geophysical
problems, signal processing, control theory etc. The mathematical handlings of data assimilation are mainly
two-fold: Kalman filter-type methods based on estimation theory and variational methods related to control
theory. Certain equivalences exist between these two families, especially when the transformation operator H is
linear. Both approaches can be derived from Bayes’ theorem (see [5]) where the state estimation xa provided by
the data assimilation procedure may be apprehended as a compromise between the information of background
estimation and the ones of observations. In practice, dealing with nonlinear problems of large dimension via
Bayesian approaches remains a computationally expensive task. In this paper, we focus on the framework
of linearized variational methods. However, the analysis and algorithms developed later in this paper can be
directly applied at each updating of Kalman filter-type methods.

2.2 Variational formulation
In order to better focus on the study of background covariance matrix computation, we suppose in this paper
that H is linear and perfectly known, represented in matrix form by H from now on. For this reason, we refer to
instrument errors when computing the observation matrix R. In the case of field reconstruction, the observation
y is only supposed to provide a partial information on the true state.

As mentioned in section 2.1, the key idea in variational methods is to find a balance between the background
and the observations ([4]) according to the weights represented by the inverse of B and R. This leads to the
loss function:

J3D-VAR(x) = 1
2(x− xb)TB−1(x− xb) + 1

2(y−H(x))TR−1(y−H(x)) (3)

= 1
2 ||x− xb||2B−1 + 1

2 ||y−H(x)||2R−1 . (4)

The optimisation problem defined by the objective function of Eq. (4) is called three-dimensional variational
method (3D-VAR), which can also be considered as the general equation of variational methods without con-
sidering the transition model error (i.e. except weak-constraint data assimilation) (see.[5]).

2.3 Best Linear Unbiased Estimator (BLUE)
Given some observed datasets (in our case both xb and y) and the associated error variance, the Best Linear
Unbiased Estimator (BLUE) combines both source of information to produce an unbiased linear estimator with
minimum posterior variance (see [2]). When H = H is linear, the optimal solution provided by the variational
formulation (Eq.4) is identical to the one obtained by a BLUE under the assumption of independence between
xb and y in terms of prior estimation errors. This approach is unbiased and minimises optimally the error
variance, assuming the error covariance matrices are perfectly known. It also coincides with the maximum
likelihood estimator when prior errors of both background state and observations are normally distributed. In
this case, the analysed state xa can be updated explicitly as:

xa = xb + K(y−Hxb) (5)

where the Kalman gain matrix K is defined as:

K = BHT (HBHT + R)−1. (6)
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Under the assumption of linearity, the covariance of analysis error εa = (xa − xt) takes an exact explicit
form:

A = COV (xa − xt)
= (I−KH)B(I−KH)T + KRKT

= (I−KH)B. (7)

Under the assumption that both background and observation errors follow centered Gaussian distributions,
it is easy to justify that:

εa = xa − xt ∼ N (0,A). (8)

Eq.8 holds when H is linear. We recall that the uncorrelatedness between εb and εy is a crucial assumption
for Eq.5-8. Furthermore, the assumption of Gaussianity on prior errors ensures the complete knowledge of
posterior errors distribution as a Gaussian vector can be fully represented by its expectation and covariance.
Nonetheless, the estimation of posterior covariance in Eq.7, as well as in the iterative tuning methods proposed
in this work remains valid as long as the prior information (both xb and y) is unbiased, regardless of the nature
of prior distributions. A more general form of BLUE is presented latter in section 3.4. Non-Gaussianity in data
assimilation problems, for example due to the nonlinearity of H, has been discussed (e.g [41]).
However, we emphasize that when prior covariances are not well known, the estimation provided by Eq.7 could be
very different from the exact1 output error covariance (later noted as AE). It is therefore of highest importance
to differentiate between well or loosely known prior covariance matrices. This aspect will be investigated further
in section 3.

2.4 Misspecification of B matrix
From here, we follow the notations given in [15], where BE designates the unknown exact background error
covariance while BA stands for the assumed (or guessed) matrix which can be considered as a parametric quantity
within data assimilation algorithms. In this section, we focus on the impact on the output error covariance
and its estimation given by the misspecification of matrix BE (mismatch between BE and BA). Following the
current notation, the standard estimation of output error covariance AA (here we have kept subscript A to
indicate that this form is obtained from BA) provided by the plain-vanilla 3D-VAR method in Eq. (7) becomes:

AA = (I−K(BA)H)BA, (9)

which is different from the exact output error covariance when the unknown BE has merely been approximated
by BA. The gain matrix K remains a function of the assumed background covariance matrix BA and the one
of the observation, R. The latter is supposed to be perfectly known. In fact, the exact output error covariance
AE depends on the prior error and the parameters of the algorithm. Therefore, as described by [15], AE is in
function of BE and BA:

AE = (I−K(BA)H)BE(I−K(BA)H)T + K(BA)RK(BA)T . (10)

As we have mentioned before, the final analysis of the assimilation procedure is very much dependent on
the specification of the weights given to background and observations, through the error covariances. In fact,
when the background matrix is perfectly specified, i.e. BA = BE, the obtained Kalman gain matrix K(BE)
is a so called optimal gain matrix, which ensures that the trace of AE is minimal. Because the covariance
of these errors are not well known, it is natural to turn to methods producing a posteriori diagnoses of the
misspecification of the a priori errors, in order to (sequentially) adapt them. For instance, the Desroziers tuning
algorithms ([13]) allow the adjustment of the multiplicative ratio (i.e. the total variance) between matrices BA
and R, in order to improve the quality of the analysis.

Our goal is somewhat different from the Desroziers tuning algorithm, as we wish to gain a better knowledge
about the error correlation pattern/structure of the output analysis. Indeed, the knowledge of error correlation
is crucial for posterior analysis and provides a finer information than the error variance alone. We remind in
general how a covariance matrix Cov is related to its correlation matrix Cor:

Cov = D
1
2 CorD

1
2 (11)

where D is a diagonal matrix with identical diagonal elements of Cov and thus D
1
2 represents the standard

deviations.
1Here, by the term “exact”, we refer to the covariance truly corresponding to the remaining errors present in the analysed state,

no matter the level of optimality of the chosen assimilation scheme.
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2.5 Data assimilation for dynamical systems
Data assimilation algorithms could be applied to dynamical systems thanks to a sequential application of
variational methods using a transition operator (from discretized time tk to tk+1)Mtk→tk+1 , where

xtk+1 =Mtk→tk+1(xtk ). (12)

The forecasting in data assimilation thus relies on the knowledge of transition operator Mtk→tk+1 and the
corrected state at the current time xa,tk . The state correction could be carried out at each time step t = tk with
current observation ytk . Typically, the background state is often provided by the forecasting from the previous
step, i.e.

xb,tk =Mtk−1→tk (xa,tk−1). (13)

It is known that as long as the transformation operator H and the transition operatorM are linear, the analysis
based on the variational method (4D-VAR) and the Kalman filter leads to the same forecasting result ([17]).
As in both cases the approximation ofM may bring extra noises which may probably lead to a nonlinear error
propagation, we think an error covariance diagnostic/correction at different time step could be helpful. Not
relying on the dynamic of the system, the iterative tuning methods proposed in this paper could be applied at
any step in a data assimilation chain.

3 Iterative variational methods with advanced covariance updating
For interpolation of complex industrial applications, the model error, due to the approximation of the transition
model M, is often integrated as a part of the background error. This modelling choice usually leads to a
less precise knowledge about the background covariance matrix B relative to the observation covariance matrix
R. Therefore, we consider that the background errors are dominant over observation errors with a noise-free
transformation operator H, but the exact ratio between them is difficult to estimate. It was pointed out in
[15] that an overestimation of covariance B will introduce a significant risk of mis-calculating the output error
covariances. As a consequence, the main idea of our iterative methods is to iterate the data assimilation
procedure for a better posterior state estimation and error covariance specification, avoiding overestimation of
B. Therefore, the adjustment of the state variables and its covariance associated will take place progressively.

3.1 Naive approach
In practice, the data assimilation procedure can be reapplied several times making use of the same observations,
in order to balance the weight between background states and observations. This naive approach may be
summarised as:

xb,n+1 ← xa,n = xb,n + Kn(y−Hxb,n) (14)
BA,n+1 ← AA,n = (I−KnH)BA,n, (15)

where n refers to the iteration number, and:

Kn = BA,n HT (HBA,nHT + R)−1, (16)

is the iterated Kalman gain matrix.

3.2 Mis-calculation of updated covariances
The updating of error covariances is incorrect because of the state-observation error correlation emerging due
to the iterative process. In fact, the evolution of the exact analysed/background error covariance AE,n/BE,n

can be expressed as a function of BA,n and Kn:

BE,n+1 = AE,n = (I−KnH)BE,n(I−KnH)T + (I−KnH)Cov(εb,n, εy)KT
n

+ KnCov(εy, εb,n, )(I−KnH)T + KnRKT
n , (17)

where Cov(εb,n, εy) = Cov(εy, εb,n)T represents the error covariance of xb,n and y. Indeed, the state errors are
no longer uncorrelated to the observation ones after the first iteration, i.e.

Cov(εb,n, εy) 6= 0 for ∀n ≥ 1.

As a result, the exact analysis error covariance AE,n tends to be under-estimated by AA,n in Eq.15 throughout
the iterations.
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This is an important drawback that we next attempt to illustrate in a straightforward scalar case, where we
assume:

BA, R ∈ R+ \ {0}, H ∈ R \ {0}. (18)

Here, we keep the covariance matrix denomination for notation coherence but they only reflect scalar variances.
In this case,

BA,n+1 ←
(

1− BA,nH
2

BA,nH2 +R

)
BA,n = BA,nR

BA,nH2 +R
. (19)

In fact, one may see that the assumed error covariance (scalar variance in this case) BA,n→∞ provided by the
naive iterations converges to zero, therefore falsely suggesting a reasonable estimator. This convergence can be
easily proved by studying the fixed-point and monotonicity of the function f in R+ defined as:

f(x) = xR

xH2 +R
, where R ∈ R+ \ {0}, H ∈ R \ {0}. (20)

Zero is obviously the only fixed-point of f . On the other hand,

∀x ∈ R+ \ {0}, f(x) < x, (21)

and f (n)(x) (f (n)(x) = f(f (n−1)(x))) is a decreasing sequence with a lower bound zero, thus it is convergent.
Because zero is the only fixed-point of f , we can conclude that BA,n→∞ → 0 for any initial value BA ∈ R \ {0}.
This theoretical result is numerically confirmed in Fig 1, (solid green line). The distribution of the exact covari-
ance, consistent with the updating loop (Eq. (17)), is depicted by the dashed green line and remains positive
and non-zero.

Based on this idea, we propose two different algorithms named CUTE and PUB , aiming at a better control of
the output error correlation, and consequently a reduction of assimilation error. From now on, for the simplicity
of analysis, we make further hypothesis about the error covariance matrix R of observations to be well known.

3.3 CUTE (Covariance Updating iTerativE) method
As pointed out in section 3.2, the state-observation covariance COV (εb,n, εy) must be taken care of in the co-
variance updating.

Algorithm

As we have mentioned in the previous sections, when H = H is a linear operator, the reconstructed state xa
can be expressed as a linear combination of xb and y. Therefore, the covariance of updated background state
and observations can be estimated sequentially as:

Cov(εb,n, εy) = Cov(εy, εb,n)T = Cov
([

(I−Kn−1H)εb,n−1 + Kn−1εy
]
, εy

)
(22)

= (I−Kn−1H)Cov(εb,n−1, εy) + Kn−1R, (23)

with

Cov(εb,0, εy) = 0dim(xb)×dim(y). (24)
In practice, especially in the case of a poor quality of matrix specification a priori, we have found that it is
helpful to control the trace of matrices BA,n at each iteration in order to balance the weight of background state
and observations. Indeed, if no care is taken of that, the norm of the updated covariance BA,n may reduce too
quickly after the first iteration, thereby causing a neglect of the observation data during the next iterations.
Therefore a scaling is introduced through a coefficient α ∈ (0, 1) related to the confidence level of prior matrix
estimation, in order to control the trace of the updating matrix Tr(BA,n+1). The latter, representing the
posterior covariance estimation, is introduced in Eq.27.

The complete update of the state and the background covariance matrix is therefore written as:

xb,n+1 ← xa,n, (25)
AA,n = (I−KnH)BA,n + (I−KnH)Cov(εb,n, εy)KT

n (26)
+ KnCov(εy, εb,n)(I−KnH)T ,

BA,n+1←
(1− α)Tr(BA,n) + αTr(AA,n)

Tr(AA,n) AA,n (27)
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where Kn is expressed in Eq. (16). The more confident we are in the initial guess BA,0, the higher level of α
should be set. In the extreme case where the initial background matrix is set arbitrarily (which is not rare in
industrial applications), setting α = 0 is suggested which means the trace of BA,n will be kept constant in the
iterative process.

Analysis

It should be mentioned that, despite our effort on taking the background-observation covariance into account,
the evolution of the error covariance can not be perfectly known due to the misspecification of B at the first
iteration. The evolution of exact analysis/background error covariance BE,n+1, which depend on the set up of
BA,n, can be expressed as:

BE,n+1 ← An = (I−KnH)BE,n(I−KnH)T + (I−KnH)CovE(εb,n, εy)KT
n (28)

+ KnCovE(εy, εb,n)(I−KnH)T + KnRKT
n .

We remind that the term CovE, (εb,n, εy), which represents the exact background-observation covariances,
is calculated as done in Eq. (23) but using the exact updated covariance matrix BE,n in the expression of K.

Estimating the covariance introduced between xb,n and y, at each iteration, allows for a more "consistent"
update, in the sense that if the estimation of B and R becomes asymptotically accurate, the iterative process
will not add extra errors to the posterior covariance estimate. However, since the covariance between xb and
y emerges, the optimality of a 3D-VAR formula in a loop ( Eq. (4)) may be questioned. Therefore, under
the assumption of linearity, we propose another formulation that relies directly on the BLUE estimator in an
extended space.

3.4 PUB (Partially Updating Blue) method
With the CUTE formulation, we have taken COV (εb,n, εy) into account in the covariance updating but they
are not considered in the optimization loss function (Eq. (4)). To overcome this shortage, our idea is to merge
the background and observations in a broader space of larger dimension (as shown in [43]) with a partial up-
dating dealing only concerning the part of the background state and its associated covariance. By merging the
state and the observation space, the cross-covariances COV (εb, εy) could be taken into account in the iterative
applications of minimisation problems using BLUE-type formulation.

Algorithm

In general, the BLUE estimator consists of constructing an unbiased estimate with minimum of variance from
a true state θ, an observation z, a transformation operator H̃ from the state to the observation space and the
observation error covariance matrix C, under the assumption that:

z = H̃θ + w, (29)

where w is a white noise.

The minimization of state minus observation under the norm defined by the error covariance C is:

J(x) = 1
2 ||z− H̃θ||C−1 , (30)

and yields the BLUE θ̂ and its output covariance estimation Cθ̂:

θ̂ = (H̃TC−1H̃)−1H̃TC−1z,

Cθ̂ = (H̃TC−1H̃)−1. (31)

Here we refer to the general form of the BLUE without any extra assumptions, for example, the uncorrelation
between εb and εy as in section 2.3. Furthermore, under the assumption of linearity of H, Eq.31 is equivalent
to the Maximum Likelihood Estimator. In order to be well adapted to the general framework of the BLUE
estimator, we redefine the system (5-7) by simply combining the observation and the background spaces:

θ ≡ xt, z ≡
(

xb
y

)
, H̃ ≡

(
I
H

)
, w ≡

(
εb
εy

)
, C ≡

(
B 0
0 R

)
. (32)

Similarly to the previous algorithms, we suppose that the matrix B is misspecified, which yields also a
misspecification of the matrix C in Eq. (33). The assumed covariance matrix in the extended space is denoted
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as CA (CA,0 latter in the iterative method) with no initial covariance between the background state and the
observations, which can be written as:

CA ≡
(

BA 0
0 R

)
. (33)

As for the CUTE method, we aim to adjust the structure of error covariance matrix CA by taking into account
the covariance between the updated background and the observation, which yields the updating loop of PUB
method:

xb,n+1 ← xa,n = (H̃TC−1
A,nH̃)−1H̃TC−1

A,nzn, (34)

zn+1 =
(

xb,n+1
y

)
(35)

AA,n = (H̃TC−1
A,nH̃)−1 (36)

BA,n+1←
(1− α)Tr(BA,n) + αTr(AA,n)

Tr(AA,n) AA,n (37)

Cov(εb,n+1, εy) = (H̃TC−1
A,nH̃)−1H̃TC−1

A,n

(
Cov(εb,n, εy)

R

)
(38)

CA,n+1 =
(

BA,n+1 Cov(εb,n+1, εy)
Cov(εb,n+1, εy)T R

)
(39)

where CA,n is the assumed error covariance matrix in the combined space of background state and observations.
Similar to CUTE , the coefficient α is introduced to balance the ratio between assumed covariances in CA,n

Analysis

Let CE,n denotes the exact iterated error covariance with CovE(εb,n, εy) representing the exact covariance
between xb,n and y in this extended space, i.e.

CE,n =
(

BE,n CovE(εb,n, εy)
CovE(εb,n, εy)T R

)
, (40)

where, as for the CUTE method, we can also express the exact background error covariance evolution as:

BE,n+1 = (H̃TC−1
A,nH̃)−1H̃TC−1

A,n CE,n

(
(H̃TC−1

A,nH̃)−1H̃TC−1
A,n

)T
. (41)

We note that this method does not only take into account the updated variances but also modify the optimisation
formula (30) in the extended space. This effect could make the PUB method more robust and less sensitive
to prior assumptions, which will be shown later in section 4. However, the implementation of the algorithm,
especially the matrix conditioning could be a bit more sophisticated due to the vector space of a larger dimension.

3.5 Comparison of these methods using an illustrative simple scalar case
As we explained earlier, the objective of the proposed iterative methods is to obtain a better knowledge of the
covariance (amplitude and/or correlation, depending on the application and prior knowledge) of output errors
which can be crucial for future predictions in a data assimilation chain.

Going back to the simple numerical illustration of a scalar case introduced in section 3 and depicted in
Fig. (1), we monitor the behaviour of our iterative algorithms for ten steps. Here, we display the evolution of
the successive analysed covariance matrices (in fact, we simply look at variances due to the scalar variables).
The dashed lines represent the evolution of exact error variance for the different methods (i.e. BNaive

E,n , BCUTE
E,n ,

BPUB
E,n ), that we are capable of computing thanks to our perfect knowledge of the exact prior background

variance. The solid lines represent their associated estimators (i.e. BNaive
A,n , BCUTE

A,n , BPUB
A,n ). In the left figure,

all algorithms start from a perfect knowledge of the prior background variance (i.e. BE = BA). Since we
are dealing with a scalar problem, there is no need to adjust the matrix trace, while α is set to be one in all
applications of CUTE/PUB (i.e. BA,n+1 = AA,n).

In this case, the estimated variances provided by CUTE and PUB coincide with the evolution of the exact
variance. Meanwhile the estimated variance of the naive approach converges to zero, which leads to a significant
under-estimation. We remind the reader that the first step of these three iterative methods are the same. In the
right figure, we voluntarily under-estimate the exact background error variance at the beginning. We notice that
BCUTE

A,n and BPUB
A,n are stable after some iterations. This behaviour was verified (not displayed here) no matter

the choice of the initial variance. Moreover, for CUTE method, we notice that the estimation of error variance
becomes consistent with the exact error variance and they both converge to the observation error variance.

8



Meanwhile despite being under-estimated by its estimator (solid red line), the exact error variance of PUB
(dashed red line) remains inferior to the one of CUTE and 3D-VAR (dashed green line). In both situations,
a simple naive iteration of the variational method (green solid lines) leads to an important under-estimation
(green curves) of the posterior error variance.

Figure 1: Analysis of the evolution of the exact updated background error variance Bn (dashed curves) vs
its estimation provided by data assimilation algorithms BA,n (solid curves). On the left side, the prior error
variance is perfectly known (i.e. BA = BE = 3) at the initial step. On the right side, the background variance
is voluntarily under-estimated: (BA = 2,BE = 3). We remind that the updating of BA,n is independent
of the exact covariance evolution BE,i=1,...,n; however, BE,n is a function of the recurrence BA,i=1,...,n−1.The
observation error variance is fixed at R = 1, perfectly known for both solid and dashed lines.

Unlike our illustration of the scalar case, in a space of larger dimension, these iterative methods may not
reach a convergence in terms of error covariance and analysis state. We will discuss later how to define the
stopping criteria outside the framework of twin experiments. Under the assumption of lower noise observation
level, one well-known quantity that has to be monitored is the innovation quantity: (y −H(xb,n)) which will
be displayed in the following numerical tests (e.g. Fig. 8, Table. 1).

4 Numerical experiments
Numerical experiments in twin experiments framework are carried out in order to compare the performance of
the different methods. This principle is illustrated in Fig. 2 where the background states and the observations
are obtained from a chosen true state by adding a known artificial noise (dashed line). The objective is to
estimate how close is the estimated output to the true state. In this work, it is quantified by computing the
expectation of the assimilation error E(||xt − xa||L2) over the support of the a priori noise level, relying on
Monte Carlo tests with different realizations of (xb,y). More precisely, the original background state xb,n=0
(n stands for the number of iterations in CUTE, PUB) and observation y (via H) are first constructed from
a chosen true state xt, thanks to the exact knowledge of B and R. In our experiments, xt is obtained by a
reference simulation.

4.1 Description of the system
In the following twin experiments, we consider a standard shallow-water fluid mechanics system which is
frequently used for evaluating the performance of data assimilation algorithms (as in [42], [9]). The wave-
propagation problem is nonlinear and time-dependent. The initial condition is chosen in the form of a cylinder
of water of a certain radius that is released at t = 0. We assume that the horizontal length scale is more
important than the vertical one and we also neglect the Coriolis force. They lead to the Saint-Venant equations
([37]) coupling the fluid velocity and height as shown in Eq.42 where (u, v) are the two components of the
two dimensional fluid velocity (in 0.1m/s) and h stands for the fluid height (in millimeter). The earth gravity
constant g is thus scaled to 1 and the dynamical system is defined in a non-conservative form.
The initial values of u and v are set to zero for the whole velocity field and the height of the water cylinder
is set to be hcyl

t=0 = 0.1mm high above the one of the still water as shown in Fig. 3. The domain of size
(Lx × Ly) = (100mm × 100mm) is discretized with a regular structured grid of size (100 × 100) and the so-
lution of Eq. (42) is approximated thanks to a finite difference method of first order. The time-integration is
also first-order with a time interval δt = 10−6s. The system is integrated up to a time tf = 1.5 × 10−3s (see
Fig. 4(c-d)), and the obtained solution is used as the reference state (xt) in 4.2 and 4.3. Our objective is to
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Figure 2: Scheme of a twin experiments data assimilation framework for an iterative method. Quantities in
black are kept fixed while iterations are repeated: new assimilated state xa,n and covariance errors An are
injected at the next step in order to update background quantities. The difference (in some norm) between
the true state and the output of the algorithm ||xt − xa,n|| is called the error of reconstruction and may be
monitored. The entire experiment may be repeated numerous times for different realisations of xb,n=0 to collect
statistics of the assimilation results in order to assess the method robustness.
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Figure 3: Initial h of shallow water in mm

reconstruct the state x = (u, v) within a non-centered (10× 10) subdomain (represented by a red square in Fig.
4 (c) and (d)) from noisy measurements via data assimilation processes. Thanks to an observation operator H
described later, we will use a collection of observations from the subdomain. Therefore, the dimension of the
state space (i.e. xt,xa,xb) which combined two 2D fields u and v may be algebraically combined in an array of
size 200, i.e. xt ≡ {xt(k)}k=1...200 ≡ {(u(t = tf ), v(t = tf ))}. The observation vector y is of size 100 but with
zero elements included as shown in Fig. 4 (b).

In all numerical tests, we keep the assumption of linearity of the transformation operator H. As we have
mentioned in section 2.2, H could represent a transformation between two physical quantities/fields or even
include discretized forecast/model operators. In this work, we wish to remain as general as possible. Therefore,
we prefer not to set a particular form of the observation operator, which would promote some space-filling
properties or some other type of optimality. With this aim, we decide to model the observation operator
with a random matrix H acting as a binomial selection operator. Each observation will be constructed as
a sum of a contribution from a linear combination of a few true state variables randomly collected over the
subdomain and some random noise. In order to do so, we introduce the notation for a subset sample {x∗t (i)}i=1...n
randomly but homogeneously chosen (with replacement) with probability P among the available data set, i.e.
{xt(k)}k=1...200. The subset values x∗t are summed up and the process is re-iterated 100 times in order to
construct the observations:

y(j) =
nj∑
i=1

x∗t (i) + εy, for j = 1, . . . , 100, (43)

where the size nj of the collected sample used for each jth observation data point y(j) is random and by construc-
tion follows a binomial distribution B(200, P ). In the following we choose a sparse representation with P = 1%.

Once H is randomly chosen, it is kept fixed for a whole set of numerical experiments. This operator H is
shown in Fig. 4 ((c) and (d)). In fact, with this definition of H, the observed quantities can be apprehended
as some sorts of barycenters in the state space. As explained, the number of points in the field associated to
each barycenter can thus be seen as a random variable of binomial distribution as shown in Fig. 4 (d). If we
increase the probability of success of the selection operator, more points will be selected and combined across
the domain, resulting in a more centered barycenters distribution.

We have numerically verified that in general, the results obtained with a transformation operator H of more
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(a) (b)
(c)

(d)

Figure 4: Illustrations of the random observation operator H and example of 2D flow velocity fields of the
shallow water model. Barycenters measured by the linear transformation operator H are shown in (c) where
the symbol radius is proportional to the number of measures associated to each barycenter. The histogram of
the number of selected points associated to each barycenter (rows in matrix H) is shown in (d) and is reminiscent
of a binomial distribution. Shallow water 2D velocity fields are represented in (a) and (b) (respectively for u
and v in Eq. (42)) at time t = tf . Data assimilations are performed in the red square subdomain.

regular span structure tend to be less optimal than the ones obtained in the case with randomly simulated H,
in terms of output correlation identification. We believe that repeated assimilations based on the same uniform
data set of observations may unwillingly put emphasis on certain correlation lengths while missing others, in
relation to the structure of H.

4.2 Experiments with state-independent homogeneous prior errors
For the sake of simplicity, in the analysis of data assimilation algorithms, prior background and observation
errors (i.e. εb and εy) are often supposed to be independent of their theoretical values (i.e. respectively xt and
Hxt). Under this assumption, the assimilation error depends only on the prior errors εb and εy, as:

xa − xt = xb + K(y−Hxb)− xt (44)
= εb + K(εy −Hεb)
= (I−KH)εb + Kεy.

Therefore, the numerical results shown in this section are independent from the choice of the true state, and
therefore valid for any (2D) field reconstruction with state-independent prior noise. Here, background states
and observations are simulated using chosen error covariances matrices BE and R. Our assumption of higher
background error amplitude leads to:

Tr(BE) > Tr(R). (45)

In our experiments, the average standard deviation of the background error is set to be at least 10 times higher
than the observation error. We make further assumption that the correlation pattern of background covariance
is poorly known. In order to make numerical tests representative, we make use of homogeneous and isotropic
(invariant under rotations and translations) one-dimensional correlation patterns (of spatial euclidean distance
r =

√
∆2
x + ∆2

y) for simulating true or initially estimated background errors (i.e. BE and BA,n=0). We consider
the following correlation function types:

• Exponential type: φ(r) = exp(− r
L ),

• Balgovind type: φ(r) = (1 + r
L ) exp(− r

L ),

• Gaussian type: φ(r) = exp(− r2

2L2 ),

where L is defined as the typical correlation length scale. These correlation functions are part of the Matérn
family of covariance function (respectively of order ν = 1/2, 3/2 and ∞) and are often used as imposed struc-
tures in background matrix construction (see [39], [34]). For the sake of simplicity, in this section the correlation
kernel of the exact background covariance matrices are always chosen to be of Balgovind type with scale length
L = 2, where observation errors are supposed to be spatially independent (i.e. R is proportional to an identity
matrix). The latter is supposed to be known in the algorithms. Because both the amplitude and the correlation
pattern of BE are supposed to be poorly specified by BA, we choose to set the coefficient of confidence α = 0
for the trace operator in all following numerical tests.
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In order to verify the robustness of the proposed methods, different scenarios are considered for the correlation
pattern of the initial assumed covariance BA,n=0. As mentioned in section 3, the objective of our algorithms is
to improve the output error correlation estimation, and in consequence, obtain a reduction of assimilation error.
In fact, using Eq. (11), the error correlation matrices associated to BE,n (exact background error correlation at
nth step) and BA,n (estimation of error correlation at nth step) can be extracted and compared at each iteration.
Our objective is therefore to reduce the dissimilarity between these two correlation matrices, the monitoring of
this distance taking different forms: – through a simple correlation calibration or – other correlation dissimilarity
measure such as the Affine Invariant Riemannian Metric (AIRM) ([8]) defined for two semi-positive definite
matrices X and Y by:

DAIRM(X,Y) = || log(X−1/2YX−1/2)||F (46)

where ||.||F represent the Frobenius norm of matrices. This similarity measure is widely used as it integrates
the knowledge of the manifold structure of the covariance matrices. In our cases, the two semi-positive definite
matrices to be compared by AIRM are the assumed background error correlation matrix CorBA,n

and the exact
background error correlation matrix CorBE,n

defined respectively from covariance matrices BA,n and BE,n as
shown in Eq. (11). According to [33], invariant under linear transformations, AIRM can be seen as a natural
choice of metric for symmetric semi-positive definite matrices.

Fig. 5 -7 and Table 1 represent the results of twin experiments with different mis-specified (in terms of both
amplitude and error correlation) background matrices BA, where CUTE and PUB are (arbitrarily) applied
for 10 iterations. In each experiment, the true state xt is set to be the shallow water solution at t = tf in
an approximation sub-space defined by the finite difference method. We remind that under the assumption
of state-independent prior errors, both the output error and its spatial correlation is independent from the
choice of the true state. For the Monte-Carlo validations, 10000 background states are simulated independently
following a multivariate Gaussian distribution centred at the true state xt of fixed background error amplitude
with (σb = 10× σo = 0.01m/s) and imposed correlation kernel (exponential, Balgovind or Gaussian). We show
explicitly the evolution of assimilation error as well as posterior error correlation (both the exact correlation
kernel and the estimation given by CUTE and PUB).

More specifically, the distribution of background error correlations is shown in sub-figures (a) where the
exact original error correlation of B (black solid line with triangles) and its estimator (BA,n=0, green solid line
with circles), both being homogeneous and isotropic, are drawn against spatial distance r (mm). In order to
avoid sampling error for large distance, the error correlation is only considered for r ∈ (0, 10) in a 10× 10 grid.
The evolution of average background/analysis error ||xt−xb,n|| in CUTE and PUB is shown in sub-figures (b),
compared with the analysis error level obtained by a one-shot 3D-VAR algorithm (the stared green line) and the
results of the same 3D-VAR with the exact background error covariance matrix (i.e. BA = BE, represented by
the dashed black line). The results obtained using the exact background matrix are considered as the optimal
target in our study. We observe in (b) (Fig. 5-7) that for both proposed approaches, the average values of
the analysed error decrease significantly with algorithm iterations. In fact, the first step of CUTE and PUB
is equivalent to a 3D-VAR with mis-specified BA (stared green line). Then, the experiments show that both
assimilation errors of CUTE (blue curve) and PUB (red curve) decrease and remain stable while approaching
better the optimal result (dashed black curve) after a sufficient number of iterations.

Standard deviations of the estimators are also displayed with transparent shades. Fig. 5 (c) shows the
decrease of the innovation quantity ||y −Hxb,n||. We consider the innovation quantity, available outside the
framework of twin experiments, as an appropriate stopping criteria for CUTE and PUB algorithms, because of
its coherence with the assimilation error (Fig. 5 (a)) both in terms of monotonicity and stability.

Despite the fact that output error correlation recognition is significantly improved by CUTE and PUB (as
shown in Fig. 5 (d-f) and the correlation mismatches in Table (1), little impact was found on reduction of the
output error deviation as shown in the transparent shades in sub-figures (b). The posterior correlation kernels
(both the exact one and its estimators), shown in Fig. 5 (d-e) and used to calculate the correlation mismatch in
Table 1, are estimated from the data sample by calculating the average correlation value for all pairs of points
sharing the same spatial distance in the 2D velocity field of u. Correlation kernels obtained in the velocity field
of v are very similar. Compared to the prior scenario, with all three initial guess of prior correlation kernel,
the bias of the correlation error estimation is significantly reduced a posteriori. This improvement is also very
noticeable when examining the L2 norm of the correlation mismatches as displayed in Table 1. Sub-figure (f)
demonstrates that the AIRM criteria decreases significantly for both approaches after several iterations. It is
particularly stable for the PUB method but exhibits some asymptotic non-motonicity for the CUTE method.
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Figure 5: Twin experiments with state-independent homogeneous prior error. Figures on the first line refer to
the initial choice of prior correlations (a) and the evolution of assimilation error (b) and innovation quantities
(c), while figures on the second line monitor iterated quantities extracted from the errors covariance in the
velocity field of u (d-f). In this test, BA,n=0 is chosen to follow an exponential kernel with L = 3 (shown by the
green curve in (a)).

(a) (b)

Figure 6: Evolution of assimilation error in twin experiments using same simulated observations as Fig. 5 with
different initial background matrix estimation (BA,n=0 is of Balgovind type with scale length L = 1).
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Figure 7: Evolution of assimilation error in twin experiments using same simulated observations as Fig. 5 with
different initial background matrix estimation (BA,n=0 is of Gaussian type with length scale L = 1).

BA,n=0 kernel choice Correlation mismatch (u) AIRM
Initial CUTE PUB Initial CUTE PUB

Exponential (L = 3) 0.667 0.115 0.251 28.772 17.510 19.069
Balgovind (L = 1) 1.310 0.140 0.174 23.095 15.607 15.116
Gaussian (L = 1) 1.834 0.305 0.660 26.642 19.518 20.957

Table 1: Quantification of results of the CUTE and PUB iterative methods in terms of error correlation identifi-
cation at the tenth iteration. The prior error covariance BE is set to be of Balgovind type with correlation length
L = 2, homogeneous and state-independent. The mismatch of calibrated correlation functions is calculated with
an L2 norm error between the one-dimensional correlation curves. The AIRM criteria is also reported.
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In conclusion, the iterative approaches improve the assimilation both in terms of reliability of the analyzed
error covariance estimate as well as accuracy of the analyzed state. Nevertheless, the final result seems to
remain dependent, to some extent, to the level of dissimilarity between the initial guess BA and the exact B. In
particular, poorer results are obtained when the prior background error correlation distributions are extremely
misspecified (e.g. Gaussian(L = 1)), regardless of the type of correlation kernel structures considered.

All these numerical results and analyses are obtained under the assumption of a high level of background
error variance amplitude, which are here under-estimated by the assumed covariance matrix BA (i.e. Tr(BA) <
Tr(BE)). This assumption is consistent with the phenomenon of background error inflation as mentioned in
2.2. We remind that as the dimension of the observation space is inferior to the one of the state space, the
equation

y = Hx (47)

is underdetermined. It thus defines a hyperplane in the space of x. Fig. 8 (b) shows that the CUTE method
converges to a stable state when the assimilation error ||xCUTE

a,n − xt|| is very close to the optimal target
||xoptimal

a − xt||. However, we don’t necessarily have

xa,n → xoptimal
a . (48)

4.3 Twin experiments with state-dependent prior errors
In this section, we are interested in the performance of our methods in the case of state-dependent errors, i.e.
when the assumption of independence between the true state and estimation errors no longer stands (such as
the optimal property of the maximum likelihood). State-dependent uncertainties are certainly more complex
but it is more realistic for numerous industrial applications. Very recent effort was given along this path in
order to improve data assimilation algorithms, e.g. ([3]).

As for the case of homogeneous prior errors, background states and observations are simulated by Gaussian
distributions centred around true values (i.e. respectively xt and Hxt for background states and observations).
However, the standard deviation at each coordinate is set to be proportional to the magnitude of the true state,
while keeping the prior correlation structures as described in 4.2.
In order to better define how state-dependent prior errors are simulated, we denote DB (resp. DR) as the
diagonal of the exact covariance matrix BE (resp. RE). Above assumption of state-dependent errors leads to:

DB
i = (µb × xt,i)2 (49)

DR
i = (µo × (Hxt)i)2, (50)

where i refers to an index mapping to the two dimensional fields and (µb, µo) stand for two real coefficients.
Combining this state-dependent variance and a homogeneous structure of error correlation, state-dependent
error covariance matrices can be written as:

BE = (DB) 1
2 CorB,E(DB) 1

2 (51)

RE = (DR) 1
2 CorR,E(DR) 1

2 ,

where the exact prior correlation matrices CorB,E and CorR,E are still chosen to follow homogeneous and
isotropic correlation kernels as in the case of 4.2.

The two velocity fields u and v are supposed to be uncorrelated in terms of prior estimation error. Thus
both BE and BA follow a block diagonal structure. This is obviously a very crude assumption in the context
of incompressible fluid mechanics systems. Since observation errors are also state-dependent in this case, the
associated observation error covariance cannot be known exactly a priori. We introduce the notation RA for
assuming observation error covariance, which is different from the true observation error covariance only in this
section (4.3). The assumption of relatively higher background error is also respected by setting 10% standard
deviation for background state (i.e. µb = 10%) while 1% for observations (i.e. µo = 1%) in twin experiments.

Monte Carlo twin experiments of 10000 tests with state-dependent prior errors are carried out as presented in
Fig. 8-10. We keep homogeneous structure of the assumed covariance matrices BA (constructed using correlation
kernels) and RA (set to be the identity matrix) as in section 4.2. We also choose to keep the trace of BA and RA
during iterative processes CUTE/PUB. Results in Fig. 8-10 and Table 2 show that for state-dependent errors,
CUTE and PUB iterative methods could also significantly reduce the output errors (sub-figures (b) of Fig.
8-10) compared to the first iteration (standard 3D-VAR algorithm), as well as the innovation quantity (sub-
figures (c)). The latter remains an appropriate candidate for the stopping criteria. Important improvements
are obtained in terms of decreasing the bias of error correlation estimation as shown in sub-figures (e) and (f)
(comparing with (a)). However, as shown in Fig. 8 (f) and in the last two columns in Table 2, the AIRM
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criteria which monitors a global correlation matrix estimation mismatch, reveals a risk of saturation of the use
of the same observation data set for the CUTE method after a certain number of iterations. This is due to the
imperfect knowledge of observation error covariance. The PUB method is less sensitive and more stable in this
case. However, as for the case of state-independent prior errors, CUTE owns a slight advantage over PUB in
terms of assimilation error reduction.
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Figure 8: Twin experiments with state-dependent prior error for background state and observations. Figures
on the first line refer to the initial choice of prior correlations (a) and the evolution of assimilation error (b)
and innovation quantities (c), while figures on the second line monitor iterated quantities extracted from the
errors covariance in the velocity field of u(d-f). In this test, the correlation of BA,n=0 is chosen to follow an
exponential kernel with L = 3 (shown by the green curve in (a)).
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Figure 9: Evolution of assimilation error in twin experiments using same simulated observations as Fig. 8 with
different initial background matrix estimation (the correlation kernel of BA,n=0 is of Balgovind type with length
scale L = 1).
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Figure 10: Evolution of assimilation error in twin experiments using same simulated observations as Fig. 8 with
different initial background matrix estimation (the correlation kernel of BA,n=0 is of Gaussian type with length
scale L = 1).

BA,n=0 kernel choice Correlation mismatch(u) AIRM
Initial CUTE PUB Initial CUTE PUB

Exponential (L = 3) 0.586 0.147 0.220 29.550 25.234 22.752
Balgovind (L = 1) 1.191 0.207 0.180 24.181 24.439 19.785
Gaussian (L = 1) 1.733 0.333 0.662 27.495 28.068 23.569

Table 2: Quantification of assimilation results of the CUTE and PUB iterative methods in terms of error
correlation identification at the tenth iteration. The prior error covariance is set to be non homogeneous and
state-dependent with correlation matrix of Balgovind type, L = 2. The mismatch of calibrated correlation
functions is calculated with an L2 norm error between the calibrated one-dimensional correlation curves. The
AIRM criteria is also reported.

4.4 Twin experiments in a successive data assimilation process of reconstruc-
tion/prediction

The idea of this section is to anticipate on the use of these types of approaches in the wider framework of time-
dependent data assimilation problems. Based on the shallow water propagation model introduced in section
4.3, we construct new twin experiments of a dynamical field reconstruction and prediction relying on successive
applications of data assimilation algorithm using flow-independent background matrix BA. The choice of the
test model is made for its simplicity and for better revealing the impact of CUTE and PUB methods. The state
dimension remains 200 which is composed of two squarely meshed velocity fields of 10 × 10 each as for static
reconstruction with state-independent prior errors in 4.2. In order to focus on the impact of background error
propagation, correct boundary conditions are simulated independently in an error free framework and provided
at each reconstruction step for state-transition model to avoid an overlay of model resolution error. In order to
observe the impact of CUTE and PUB methods in a long term data assimilation procedure, we choose to apply
solely CUTE and PUB at the first reconstruction step of the process for a fixed number of iterations n (n = 10 in
following numerical tests), following 3D-VAR reconstructions every 2× 10−3s. With a significant improvement
of assimilation error reduction and error correlation recognition provided by CUTE or PUB, this advantage
should be recognised and kept by a standard variational method (in our case, the 3D-VAR method) for several
further steps in a data assimilation chain. We then compare the results obtained by a standard approach of
3D-VAR all the way along. We remind that the difference among the three data assimilation processes shown
in Fig. 11 are only the first reconstruction at t = 10−3s. The evolution of average assimilation error of 100
independent dynamical simulations is illustrated in Fig. 11 with two different levels of initial errors. We observe
a significant improvement due to the iterative process of CUTE and PUB at the first several reconstruction
steps. The gaps among the three curves then tend to disappear. In fact, even starting with a high level of
noise, a standard successive data assimilation process should be capable of providing a reasonably good long
term prediction for both assimilation error reduction and covariance recognition when the information about
the state-transition model is accurate enough ([35]), which is the case in our experiments.

The result in Fig. 11 confirms the interest of applying CUTE, PUB methods for a short term prediction. It is
also shown that when the assumption of high level or inflated background errors is well respected (Fig. 11 (b)),
the "advantage" of an iterative process at the initial step could be kept longer in the dynamical assimilation.
However, when the observation error is not sufficiently negligible relatively to the background error, a continuous
correction by iterative processes is helpful. The same holds when the information about the dynamical state-
transition is not precise, especially in a highly nonlinear system where the misspecification of estimation errors
could be enlarged in the successive predictions. Therefore, in these cases an interest can be arisen to apply the
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Figure 11: Comparison of standard 3D-VAR method with iterative methods in terms of evolution of assimilation
error in a dynamical twin experiments framework, where a data assimilation reconstruction takes place every
2 × 10−3s. Semi-log grid is used for ordinate coordinates. In these experiments, iterative methods CUTE and
PUB are only applied at the first reconstruction of the process, followed later by standard 3D-VAR. Simulations
are made based on two different level of prior background-observation error: σb = 10σo (a), σb = 100σo (b).

iterative methods continuously at several different moments. We present in Fig. 12, the same dynamical twin
experiments with an implementation of CUTE , PUB at each assimilation step (i.e. every 2× 10−3s) instead of
3D-VAR. By construction, the first steps (both (a) and (b)) of Fig. 11 and 12 are equivalent.
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Figure 12: Comparison of dynamical twin experiments, with same initial conditions as in Fig. 11, where ten
CUTE and PUB sub-iterations are performed at each assimilation step, illustrated by the green and red disk
symbols.

We observe clearly from Fig. 12 that, when the observation error is negligible compared to the background
error, the implementation of CUTE method at each assimilation step enables a continuous reduction of assim-
ilation error. On the other hand, consistent with previous analysis, the CUTE method is very sensitive to the
level of observation errors, especially when being reapplied several times in a dynamical procedure with a good
knowledge of the transition model (no inflation of background errors) as presented in Fig. 12 (a). In general,
the PUB method remains more robust and less sensitive to the hypothesis of the high level of background error.

5 Conclusion
In this paper we introduced two novel data assimilation iterative methods recycling the observation data for
the purpose of damping the detrimental effect of a poor knowledge of the background error covariance. In
this framework, we have shown that a naive approach which neglects the background-observation correlation
introduced by the iterative process is prone to failure. This indicates that there is a need for a complete
covariance updating, as being carried out in the proposed approaches.

Under the assumption of perfect knowledge of the observation error covariance and the transformation op-
erator, we numerically demonstrated that CUTE and PUB methods could noticeably improve output error
correlation identification as well as reduce the assimilation error for a variety of initial guesses of the back-
ground error covariance matrix, when prior errors are either state-independent or state-dependent. These two
methods are different from other iterative methods, in the sense that they not only update the variance of state
components but also the background state correlation structure. Other covariance tuning methods, such as the
full Desroziers diagnostic used in the observation space, require more data especially for large-scale problem.
Originally developed for the purpose of statistical reconstructions or short term predictions, we have shown
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that there might be an interest in reapplying the proposed algorithms several times in a dynamical assimilation
chain. Limitations of these two methods have also been pointed out in this article, in particular, concerning the
risk of straining a redundant observation data set without a careful monitoring of the convergence results.

The difference between CUTE and PUB resides mainly in the minimization function, where the covariance
between updated background and observation is only taken into account into the PUB method. This feature
makes the PUB method more robust, i.e. less sensitive to the assumption of the trace of the prior errors
Tr(BE) > Tr(RE) and the usage of the same observation data set. Numerically, we have also found that the
performance of CUTE can be more optimal when the background error is much underestimated. In fact, the
estimation of COV (εb, εy) is also based on the prior knowledge of matrix B. In summary, we recommend the
utilisation of CUTE when the initial background error covariance matrix is set arbitrarily, especially when it is
probably underestimated while the PUB method can be more appropriate when limited data are available for
making a rough estimation of B or its diagonal.

In terms of computational cost, CUTE and PUB methods can be relatively more expensive than the
Desroziers approach which only requires a posteriori computation of matrix traces. However, when no lineariza-
tion of the observation operator is needed, the updating process can be done aside once the initial guess for
covariance matrices are available and independently from the current background state. This feature promotes a
more flexible use of these methods with much lower computational overheads. Future work will investigate along
this path of research and will access their performance in a more realistic/sophisticated industrial application
case.
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